<u>Property</u>	Residual Factor
F_{b}	0.70
E	070
$\mathbf{F}_{\mathbf{v}}$	0.75
Fc,	0.85

14. The table below is a summary of the allowable properties of the various visual grades for the 3x4 dimension lumber at the time of the collapse based on our laboratory results. The allowable bending strength provided for the ECON grade was calculated based documented scientific literature cited in ASTM D 245 regarding the effect of slope-of-grain on bending strength. No other allowable stresses could be calculated for the economy grade material.

Visual	(Current Allowa	able Stresses (J	psi)
Grade	F _b '	E	$\mathbf{F_v}^f$	Fc,'
SS	1,300	1.1x10 ⁶	100	350
No. 1	925	1.0x10 ⁶	100	350
No. 2	925	1.0x10 ⁶	100	350
No. 3	525	0.8x10 ⁶	100	350
CONST	700	0.9x10 ⁶	100	350
STAND	375	0.8x10 ⁶	100	350
ECON	200			

15. A summary of the approximate mean ultimate stresses for each grade of the 3x4 lumber are provided below. For the two strength properties (F_b and F_v), the L5% (lower 5th percentile) value was determined where as only mean (\bar{x}) values were reported for E and F_{c1} which are considered primarily serviceability properties. Mean values were also reported for F_b and F_v using published coefficients of variation. To

convert allowable design stresses to ultimate stresses, the general adjustment further must be removed from the allowable design stress. This was done to provide the data in the following summary. For stress calculations, we recommend using the L5% for both strength properties (F_b and F_v) since these values represent the samples which would fail first in a collapse.

Visual Grade		al of Gener etor = L5%				ated Allow ate Stress		
	F _b L5%	Ε̄Σ	F _v L5%	Fc₁≅	F₀≅	Е	$F_v \bar{x}$	Fc₊×
SS	2,757	0.98x10 ⁶	202	603	4,683	0.98×10 ⁶	262	603
No. 1	1,930	0.92x10 ⁶	202	603	3,278	0.92x10 ⁶	262	603
No. 2	1,930	0.92×10 ⁶	202	603	3,278	0.92x10 ⁶	262	603
No. 3	1,103	0.79x10 ⁶	202	603	1,873	0.79x10 ⁶	262	603
CONST	1,470	0.86x10 ⁶	202	603	2,496	0.86x10 ⁶	262	603
STD	809	0.79x10 ⁶	202	603	1,374	0.79x10 ⁶	262	603
ECON2	405				689			

Although the L5% exclusion value is technically the most important and most appropriate value to use for estimates of ultimate strength for the determination of failure, WAS, Inc. was also requested to provide an estimated mean strength value for the lumber used at 246 Spring Street. This was accomplished by computing a mean value weighted by the lumber grades observed during our inspection. The resulting values are 3132 psi for F_b , 262 psi for F_v , and 603 for $F_{c\perp}$, and 916,000 psi for E.

- 16. Two loading conditions were used to examine the ultimate concentrated load levels in four 4"x8" concrete formwork plywood panels. The load conditions were as follows:
 - 1. Base plate located at center of 16" span, interior edge of plate 11" from panel edge.
 - 2. Base plate located at center of 16" span, interior edge ~24-26" from panel edge.

The resulting failure patterns at the time of testing were consistent with those punch through failures observed during our inspection. The results of the concentrated load testing for each loading condition are provided in both tables below:

Loading Condition #1 • 2'x4' Test Specimen with Base Plate at Center of 16" Span & Interior Edge of Base Plate 11" from Panel Edge.

Sample	Thickness (in.)	Maximum Load (lbs.) (Punch Through)	Deflection at Maximum Load (in) (Punch Through)
TP8-A #1	0.65	4,988	0.73
TP8-A #2	0.64	5,151	1.70
TP9-A #2	0.65	4,857	1.70
PW4055 #2	0.61	3,586	0.63
Mean		4,646	1.19

Loading Condition #2 • 2'x4' Test Specimen with Base Plate at Center of 16" Span & Interior Edge of Base Plate 20"-24" from Panel Edge.

Sample	Thickness (in.)	Maximum Load (lbs.) (Punch Through)	Deflection at Maximum Load (in) (Punch Through)
TP10-A	0.65	8,697	1.00
TP9-A	0.65	6,765	0.90
PW4055 #1	0.61	3,753	0.60
Mean		6,393	0.83

In addition to maximum load (punch through), deflections at punch through were also measured. For loading condition #1, the mean deflection at punch through was 1.19". For loading condition #2, it was 0.83" with a combined mean of 1.04".

17. The nailing pattern spacing observed during our inspection ranged from 3" to 20" with an average of 9-1/4". Nailing was primarily observed around the panel edges and not within the field of the panels.

Respectfully Submitted, Wood Advisory Services, Inc.

M.E. Anderson, M.S. Wood Scientist

NATZ A .1....

MEA: kTEschenasy2.DRAFT.R08125.01.wpd

Wood Advisory Services, Inc.

A.L. De Bonis, Ph.D.

President/Principal Wood Scientist

APPENDIX I Photographs

Photo 1 - Brash failure with partial tension finger in 3x4 stored on 40th floor.

Photo 2 - Brash failure along bottom edge of sample with DOB #TB40070.

Photo 3 - Brash failure in sample with DOB #TB40087.

Photo 4 - Slope-of-grain of 1:3 in 3x4 stored on 40^{th} floor.

Photo 5 - Slope-of-grain of 1:1 in sample with DOB #TB40316.

Photo 6 - Slope-of-grain of 1:3 on lumber attached to sample with DOB #PW40007.

Photo 7 - Stamp and 3x4 lumber, "LAUZON."

Photo 8 - Visible wood decay growth on 3x4 lumber specimen marked DOB #TB40291.

Photo 9 - Visible wood decay growth on 3x4 lumber specimen marked DOB #TB40101.

Photo 10 - Standard and Better (STAND&BTR) lumber stamp on 4x4, sample with DOB #41035C.

Photo 11 - No. 2 grade stamp on 4x4, sample with DOB #40021.

Photo 12 - Two 3x4 lumber ribs exhibiting brash failures at the ends.

Photo 13 - A 3x4 lumber rib exhibiting a brash failure being used in formwork during our inspection.

Photo 14 - 4'x8' plywood sheet with "Feldman Lumber" melamine overlay.

Photo 15 - 4'x8' plywood sheet with "Mid-South Lumber Company" melamine overlay.

Photo 16 - 4'x8' plywood sheet with a Futter Lumber Company grade stamp.

Photo 17 - Failure pattern consistent with a base plate punch through failure in panel DOB #PW41019.

Photo 18 - Failure pattern consistent with a base plate punch through failure in panel DOB #PW41007A.

Photo 19 - Failure pattern consistent with a base plate punch through failure in panel DOB #PW41003.

Photo 20 - Occasional wood decay hyphae observed near the surface of TP3-A.

Photo 25 - Punch through failure of test specimen TP10-A.

Photo 26 - Punch through failure of test specimen TP9-A.

APPENDIX II
Summary of the Visual Grade Results & Inspection of Lumber

Dan Eschenasy Spring Street Project Client:

08.125 Job No. Test

Visual Grading and Inspection of Dimension Lumber

T = Typical Bending Failure Failure Modes:

NGCD = No Grade Contrilling Defect

Other:

VD = Visible Decay PC = Pith Center

BK = Brash bending faliure with saw kerf BT = Brash/tension combination B = Brash Bending Failure

F = Factory Cut

FC = Field Cut

HOLE = Hole cut into lumber

C = Compression

Results of Field Inspection and Visual Grading of Dimension Lumber at Spring Street

1. 11.					MC	Lenath	VisGrd	VisGrd	
White Lag	Black Mark	Fall	Failure Modes	odes	(%)	(in.)	(joists)	(C,S,U)	Comments
PW40013	3X4	⊢	8			47	No 3	CONST	SOG 1:7
PW41014B		L	FC			32			NGCD PHOTO 177
PW41014C		т	FC			31			NGCD PHOTO 177
TB 40310	757	В	В		15.8	25	No. 3	STAND	SOG 1:6
TB 40322	680 B	В	<u>-</u>			20 1/2			
TB 40325	687	m	⊢			20 1/2			
TB04232	183	BT	և	_		87			NGCD
TB40001	ZONE 40K	L	ВТ		_,	32	No 3	STAND	1-5/8 EDGE
TB40002	113 ZONE 40K	<u>Б</u>	5	L		113	No 3	STAND	SOG 1:6 LAUZON STAMPE PHOTOS 144-145
TB40003	ZONE 40K	ч	⊢			9/	No 3	STAND	SOG 1:6
TB40004	ZONE 40K	BT	4	4X4		25	SS		3/4" & 1/2" EDGE COMBO
TB40005	ZONE 40J	ட	۲			74	No 3	CONST	1" TWEENER, SOG 1:6
TB40006	ZONE 40F	FC	FC			145			VISIBLE HYPHAE ON SURFACE 25%
TB40007	ZONE 40F	Ь	BT			40	SS	CONST	3/4" EDGE
TB40008	ZONE 40F	ш	HOLE	<u> </u>		75	SS	CONST	4" BREAK + 20% KNOT
TB40009	ZONE 40F	Ŀ	L.	2X4		96	No 1		30% COMBO
TB40010	40 F/245 A&B	F	_			64,64	SS	CONST	TOGETHER; A-NGCD 8-3/4" EDGE
TB40011	240 F	BT	BT			17			NGCD
TB40012	ZONE 40F	4	_			57.5	SS	CONST	25%DISP
TB40014	ZONE 40F	Ь	_			81			NGCD
TB40015	40F	ш	ပ္ပ			9/			NGCD
TB40016	40 F	FC	ш			58			NGCD
TB40017	40 F	BT	ВТ			64			NGCD
TB40018	ZONE 40F	5	ш			48	No 2	CONST	3/4" NARROW FACE HOLE
TB40019	ZONE 40F	<u>ц</u>	FC		14.2	24	SS	CONST	7/16" NARROW FACE

Black Mark	Failt	Failure Modes		ည် (၁)	Length (in.)	(foists)	(C,S,U)	Comments
ZONE 40F	ш	HOLE			69	No 3	STAND	HOLE 1-3/4
ZONE 40K	4	i i i	4X4	_	88	No 2		S-GRN, 266, S-GRN NO. 2 40%
ZONE 40K	ВТ	L L	4X4		83			STRAPPED TOGETHER PHOTOS 153-154
128	5	⊥			80			NGCD
126	ш	BT	-	15.3	83			NGCD
175	FC	ВТ	<u></u>		2	No 2	STAND	3/4" NARROW FACE, LOCAL GRAIN
274	F	_	4X4		65			COVERED CONCRETE
239	Ь	⊥		-	55			NGCD
307	Ъ	BT	-		56	No 3	STAND	SOG 1:4
308	BT	Τ			59	No 3	CONST	SOG 1:8
306	⊥				38	No 3	CONST	TENSION FINGER SOG 1:7
303	ш	В			30			NGCD
298	ВТ	L			09	SS	CONST	5/8 C KNOT
308	Ţ	BT	-		69	No 1	CONST	1" EDGE KNOT
295	ц	⊥		17.3	48	SS	LSNOO	25% DISP
304	F	1			22.5	No 3	CONST	SOG 1:6
294	F	BT			21			NGCD
305	T	ı			33	No 3	CONST	5/16 KNOT SOG 1:6
226	BT	BT			- 52			NGCD
206	FC	BT			61			_
243	u.	В			82	SS	CONST	
230	FC	ВТ		П	63	SS	CONST	
294 A	ட	⊢	ഥ		82			NGCD PHOTO 168-172
207	5	ВТ			42			NGCD
294B, 28								
249 B	4	BT	4X4		113	No 2		
204	HOLE	ногеноге		14.6	1.1	No 2	CONST	1-1/4" HOLES
208	5	ВТ			44			
22.4	Ŀ	⊢			93	No 3	STAND	
272	L	Ш			98			NGCD
172	u. .	<u>-</u>		15.2	99			NGCD
173	ц.	ВТ		15.9	83	SS	CONST	3/4" EDGE KNOT
283	F	BT		17.9	108	No 2	CONST	SOG 1:8
282	-	ш			120			NGCD
279	u.	_			123	No 2	CONST	SOG 1:8
108	ВĶ	⊢	В		118	No 2	CONST	KERF ON ONE END (1-1/4" AT FAILURE HOLE NARROW FACE)
184	F	BT			79			NGCD
334	ட	<u> </u>			79			
330	В	ВТ			37	SS	CONST	
331	ь	⊢			31	No 3	CONST	SOG 1:6
000	+				١			I

Failure Modes	MC L	th VisGrd		Comments
	(iii	1	4	
BT	各	No 1	STAND	5/8, 5/8, 1/2, & 1"
79 B	54.5	2		NGCD
T 51	-			NGCD
4	46	No 2	CONST	SOG 1:9
BT BT 18.3	33	SS	CONST	1/4" KNOTS 2
BT 3	37.5	ıς		NGCD
, H	26.5	5 SS	CONST	20% DISP
В	32	_	\vdash	1"C
BT 14	47	-		SOG 1:8
 	ន	-	-	25% DISP
ВТ	9	No 1	CONST	1-1/8 NARROW FACE
ВТ	<u>අ</u>			NGCD
BT 19.8	18	\dashv	\rightarrow	SOG 1:4
	က္ထ	ECON	ECON	1:1.5 LOCAL GRAIN AT FAILURE
4x4	સ	No 3		SOG 1:7
BT 21.5	28		-	NGCD
F 14.7	4,	7 No 2	CONST	1-1/4" EDGE KNOT
FC	21.5	.5 No 1	STAND	2 KNOTS 5/8, 1-1/8
BK	88	9		NGCD
BT	တ္ထ			NGCD
	4,	7 No 3	CONST	SOG 1:6
BT FC	48	88	CONST	3/4" EDGE KNOT
Т .	71	No 3	STAND	SOG 1:4
-	7.	2		NGCD
F 4x4	F			PLIB STD + BTR (PHOTO 34,35)
F	8	No 1	CONST	T AT 1" EDGE KNOT
	\$ 3	4,		NGCD
BT IO.	5 5	288	CONST	1/4" NARROW FACE KNOT
В	76	-		NGCD
	101	N SS	CONST	LOCAL DEVIATION - 20%
ш	105	35		NGCD
L	ম	No 1	CONST	40% COMBO
 -	53	3 No 3	-	30% DISTORTED GRAIN
8	45	5 No 3	3 STAND	SOG 1:5
HOLE T	94		STAND	1-1/4" HOLE SOME LIMITED SURFACE HYPHAE
BT	8	o		NGCD
	38	<u>ω</u>		2X10 POSS SCAFFOLD 1"C
FC	6	17		
BT	Οĺ	_	CONST	1-1/4" C KNOT
ட	Ĝ	No.3	_	1-1/2 HOLE

Mileifo Tag	Jack Jeel O		College Modes	200	MC	Length	VisGrd	VisGrd	***************************************
) ag	DIACK IVIATK	La	a Mic	des	(%)	(in.)	(joists)	(C,S,U)	Comments
TB40086	433	FC	18			41	SS	CONST	KERF 1/2" DEEP
TB40087	488	FC	8			26			PHOTO 106
TB40087 C	623	F	BT			17			NGCD
TB40088	484					36			3 SECTIONS OF PLYWOOD PHOTOS 101,102
TB40089	503	Т	⊢			72	No 3	STAND	SOG 1:5
TB40090	586	F	В			40	SS	STAND	25% DISP COMBO
TB40091	200	В	В			36	No 2	STAND	1-1/4" HOLE DRILLED
TB40092	466	В	æ			26			NGCD
TB40093	389	ВТ	ட			74	No 1	CONST	1" EDGE KNOT
TB40094	544	FC	5			43			NGCD
TB40095	421	<u></u>	H			30	No 3	STAND	SOG 1:5
TB40096	292	ВТ				6			NGCD
TB40097	575			1X4		48			1"X4" PHOTO 104,105 (EDGE BENDING)
TB40098	194	18	ш	4X4		62	No 2		7/8" NARROW FACE
TB40098	195	īL.	BT	4X4		64	No 2		1" NARROW FACE
TB40089	402	മ	BT			39			NGCD
TB40100	510	FC	В			29	No 1	CONST	FAILED AT 1" HOLE
TB40101	573	FC	⊢		18.2	36	No 2	LSNOO	SOG 1:8 PHOTO 108-109 SURFACE HYPHAE
TB40103	561	В	FC		16.3	27			NGCD
TB40104	435	F.				35	No 3	STAND	1-1/2 HOLE
TB40105	446	ᇆ	⊢			22	No 1	CONST	3/4 NARROW FACE
TB40106	581	Æ	ш			19			NGCD
TB40107	449	꼰	⊢			38.5			NGCD
TB40108	461	60	ВТ			72	No 1	CONST	30% DISP
TB40109	584 B	ΒŢ	ВТ			19			NGCD
TB40109	560	ட	ВТ			39	No 1	CONST	SOG 1:10
TB40110	450	윤	 -			41	SS	CONST	3/8" C KNOT
TB40111	471	Б	В	Ы		69			NGCD
TB40113	534	<u>.</u>	۵۵			32			NGCD
TB40114	499	늄	В			8			NGCD
TB40115	506	압	⊢			54	No 3	CONST	SOG 1:6
TB40116	552	S.	ВТ			42			NGCD
TB40117	469	ည	ВТ			19.5			NGCD
10118	437	요	⊢			52			SHEAR FAILURE SHAKE (PHOTO 107) FULL LENGTH
TB40120	541	ഥ	단	4X4		23			NGCD
TB40121	528	ഥ	단	4X4		37.5			4X4 NGCD
10122	584	ц.	ВТ			22.5	No 1	CONST	3/4" SAW KERF FULL 3" WIDTH
TB40122	436	고	BT			40			NGCD
TB40123	438	<u>"</u>	۲			30			
10124	375	Ω	⊢			49	No 1	CONST	30% DISP
10125	511	BT	BT	_		24			NGCD

White Tag	Black Mark	Failt	Failure Modes	Н	MC	Length	VisGrd	VisGrd	Comments
				1	(%)	(ID.)	(loists)	(C,S,U)	
	585	ပ်	ВТ			78			NGCD
	562	ВТ	ВТ			29			NGCD
L	588	ш	BT	-		83	SS	CONST	1/2" NARROW FACE
	564	단	⊢			9	No 3	CONST	SOG 1.6
L	390	ВТ	IL.			84			NGCD
	394	ıL	⊢	-	-	8	No 1	CONST	40% DISPLACE
	218	В	В			25	No 3	CONST	8061:6
	779	⊥	ВТ			54	SS	CONST	1/2" C
	329	Ь	⊥			94	SS	CONST	25% DISP
	257	L	⊥			37.5	SS	CONST	5/8" EDGE KNOT
	231 B	В	BT			104			NGCD
L	387	BT	u.			92	No 1	CONST	40% DISP
	209	5	F			20	No 1	CONST	30% DISP
L	909	요	۲			43	No 2	CONST	SOG 1:8 3/4" NARROW FACE
	575	ပ်	⊢			24			NGCD
L.	603	윤	!			18	ECON	ECON	2"C & SEVERE LOCAL GRAIN
_	440	FC	⊢		14.3	32	No 1	CONST	1/2", 3/4, 7/8"
	132	F	BT			42.5			NGCD
-	573 B	<u>Б</u>	단			31			NGCD SURFACE HYPHAE (PHOTO 110-111)
	392	ш	۲			8	No 3	CONST	SOG 1:6
\dashv	587	ᇆ	ᄔ			25.5	No 2	STAND	45% CROSS SECTION
	396	단	m			22			NGCD
_	447	FC	느	4X4	,	40			NGCD
	406	띥	8		17.9	34	No 3	CONST	SOG 1:6
	592			1x4		27.5			3-1X4 ZIPTIED TOGETHER (PHOTO 103)
	610	В	⊢			31	No 3	CONST	CONCRETE POSS. 1:6 SOG
	609	FC	BT			51	No 3	STAND	SOG 1:5
-	374	ഥ				33			NGCD
\dashv	494	ပ်	ш			36	SS	CONST	1/2" NARROW FACE - COVERED IN CONCRETE
-	483	_	ВТ			24			NGCD
-	428	⊢				34			COVERED IN CONCRETE
-	426	ш	Τ	1×4		29			1X4
	400	⊢	ВТ		- ""	64	No 3	CONST	SOG 1:7
-	324	FC	ВТ			61	SS	LSNOO	20% DISP
	638	ш	В			15,5			NGCD
	521	FC	Τ			90			NGCD
-	069	BT	_			36	No 3	CONST	SOG 1:6
-	702 B	⊢				27.5			NGCD
	702 A					35			
	795	В	Τ			36			NGCD
	866 B	⊢				19			NGCD

į

V ... VV

Black	Black Mark	Failt	Failure Modes	-	MC 1	Length	VisGrd	VisGrd	Comments
A 808				t	(R)	2	(Jointa)	(2,2,5)	1 TENSION FINGER
774		F.	<u>18</u>	-	+	\$ 5	No 1	STAND	2" (4 KNOTS) PC COMBO
685		<u>_</u>	BT	-	-	78	SS	CONST	3/4" TWEENER (PHOTO 47)
758		В	BT	 		26			NGCD
439 C		5	T			20	No 2	STAND	4", 1", 1 1/2"
707						36	No 1	CONST	SOG 1:10
446		!	FC	,-	17.5	65	SS	CONST	2 KNOTS 2-1/2" EDGE KNOTS
182		ட	BT			100	No 1	CONST	SOG 1:10
791		В	В			39	SS	CONST	3/4" EDGE KNOT
386		Ŀ	В		15.2	36			NGCD
458		В	۲			51	No 2	CONST	SOG 1;8
131		FC	Т			63			NGCD
363		1	BŢ		_	30	SS	CONST	3/4" NARROW FACE
989		1	BT			39			NGCD
595		BT	FC			30			NGCD
617		ВТ	8			51			NGCD
617 B	[8	۴			27	ECON	ECON	SOG 1"-1" EXTREME LOCAL DEVIATION
313		F	BT			118	No 1	CONST	
311		ш	В			108	SS	CONST	1/4" NARROW FACE KNOTS
310		ВТ	F			117	No 1	CONST	1-1/8 NARROW FACE KNOT
31	8	ВТ	ıL			136	No 2	CONST	SOG 1:8
314	4	띪	ட			117	No 2	STAND	1 1/8", 1", and 5/8"
315	5	ч	В	_		120	SS	CONST	1/2" C
782	2	i-	F			86	SS	CONST	SOG 1:12
327	7	ш	_			121	No 1	CONST	5/8" EDGE KNOT
43	6	5	_		15.1	24	No 1	CONST	5/8 NARROW FACE
24	ະວ	ч	BT		_	53	No 2	CONST	1-1/4" PHOTOS 16,17,18, GENERAL ON CDBOARD
20)1	PIPE	FC			99	No 1	CONST	1" HOLE PIPE
624	4	ıL	⊢		21.1	29			NGCD
27		ш.,	⊢			58			NGCD
77	91	Ľ.	⊢			54			NGCD
99	608	ц	PIPE			48	No 1	CONST	PIPE 1"
32	88	ч	В			51	No 1	CONST	1-3/8 C KNOT
22	88	ш	-			54	ECON	ECON	3" WIDE FACE TO 0 WITH 1:2 SOG
2.	214	և	BT			73			NGCD
1	176	Ŀ	F		21.1	62	No 1	CONST	SOG 1:10
77	244	⊢	⊥	L		67.5			NGCD (SOME TRIM/KNOTS) (PHOTOS 13,14)
178	8	ш	۳			9	No 1	CONST	SOG 1:10
ř	360	ᇤ	⊢			57			
3,	73	늅	⊢	⊢		29	No 2	CONST	SOG 1:8
621	-	BŢ	BT			හි			NGCD

.

· ·

White Tag	Black Mark	Fail	Failure Modes	odes	MC (%)	Length (in.)	VisGrd	VisGrd	Comments
TB40215	625	600	М	ŭ.		64	,		NGCD
TB40216	174	1	P.			75	No 2	CONST	1-1/4-2 IN
TB40217	254	-	, E	-		92	2	CONST	3 KNOTS 1/2" EACH
TR40218	196	, L	"			g	2 2 2	CONST	\$061.9
TB40219	372	1	В			8 8			TOO MUCH CONCRETE
TB40220	629	ВТ	la H	_		33			NGCD
TB40222	651 B	-	B			25			NGCD
TB40223	312	_	ட	_		112.5	N 4	CONST	7/8", 1/2", 5/8"
TB40224	319	۰	LL.			124	No 1	CONST	f" KNOT
TB40225	125	ட	BT		: -	69			
TB40226	317	BT	ഥ			123	No 2	CONST	SOG 1:9
TB40227	351	BT.	ட			101	No 1	CONST	7/8", 1/2", 1"
TB40228	133	<u>i</u>	⊢			20	ECON	ECON	SOG 1:3 (PHOTO #15)
TB40229	294 A 4X4	4.	BT			82	No 3	CONST	SOG 1:7
TB40230	374	ВТ	В			111	SS	CONST	1/2" KNOT
TB40231	133 B	4	BT			1.2			NGCD
TB40233	215	Щ	۲			09	No 2	CONST	1-1/4" EDGE KNOT
TB40234	232	ш	В			112	No 2	CONST	1", 1", 1 1/2"
TB40236	171	⊢	1			46	ECON	ECON	SOG 1:3 (PHOTO #14)
TB40237	354	-	-	BŢ		20	No 3	STAND	SOG 1:4 @ MIDDLE FAILURE
TB40238	378	ᇤ	В			37	No 1	CONST	SOG 1:10
TB40239	401	ш	В			44			NGCD
TB40240	213	L	_			36			NGCD
TB40241	369	Ŀ	BT			28			NGCD
TB40242	130	Ŀ	-		17.3		No 2	CONST	1" EDGE OR SOG 1:8
TB40243	654	Β	В			22			NGCD
TB40244	361	В	В			51	SS	CONST	3/4" EDGE KNOT
TB40245	657	ᄔ	BT	_		4			NGCD
TB40246	494 B	윤	ᆸ			12	No 3	STAND	1.4 SOG
TB40246	329			2X10		99			SPIB DI-65 MEETS SCAFFOLD KD 19 OSHA 1910,28 #350 (PHOTOS 20,21,22)
TB40247	418 D	ВТ	В		24.8	78			NGCD (1/2 WIDTH OF PIECE)
TB40249	235 B	5	_			61			NGCD
TB40250	376	ഥ	BT	,		8			NGCD
TB40251	512B	FC	-			43			NGCD
TB40252	242	ட	ВТ			45.5	SS	CONST	3/4" EDGE KNOT
TB40253	131 B	۲	BT			37			NGCD
TB40254	368	띡	<u>—</u>			38.5	SS	CONST	1/2" SPIKE ON 1 SURFACE
TB40255	259	ш	⊢	_		8			NGCD
TB40256	9/9	-	-			34	No 1	CONST	2-3/14" (2KNOTS) COMBO PC
TB40257	241	۲	B			34	No 2	CONST	FULL LENGTH FAILURE SOG 1:8
TB40259	367	BT	<u>ω</u>			26			NGCD

White Tag	Black Mark	Fail	Failure Modes	sapo	% % %	Length (in.)	VisGrd (joists)	VisGrd (C,S,U)	Comments
TB40260	575	Б Б	PIPEHOLE	의 무		14	No 2	CONST	P-HOLE 1" DIAMETER NARROWFACE
TB40261	365	ပ်	a			45	SS	CONST	3/4" EDGE KNOT
TB40262	208 B	⊢	⊢		15.2	52	SS	CONST	3/4" C ONE FACE LOTS OF CONCRETE ATTACHED
TB40263	673	ВТ	ВТ		-	48	SS	CONST	5/8C
TB40264	(865) 859	ш	i			48			NGCD
TB40265	671	BT	ВТ			28	No 2	CONST	SLOPE 1:7
TB40266	651	-	BT			35	No 1	CONST	2-1/4 TOTAL (3 KNOTS)
TB40267	807 B	S.	۲			22.25	No 1	CONST	2-1/4 (2KNOTS) COMBO PC
TB40268	212	F	-	⊥		120			NGCD (FAILED AT KNOT)
TB40269	481	ВТ	ВТ			54			NGCD
TB40270	487	-	BT		14.8	49	No3	STAND	SOG 1:5, 6 TYPEND
TB40271	628	F	BT			52	No 2	STAND	2" TOTAL 4 KNOTS (PHOTO 33)
TB40272	803	ш	5			31.5	No 3	CONST	SOG 1:6
TB40273	840	BT	⊥	BT		99	ECON	NOOE	SOG 1:3 AT CENTER FAILURE
TB40274	737	BŢ	ВТ			45	SS	CONST	5/8" C
TB40275	582	Ł	BT			42	No 1	LSNOO	7/8, 1-1/2 PITH ON EDGE 2 KNOTS COMBO
TB40276	118	ВТ	ВТ			38			NGCD
TB40277	824	В	ΒŢ			17			NGCD
TB40278	480	8	⊥			31	No 3	STAND	T @ 1:4
TB40279	823	ц	۲			30	No 1	CONST	1-1/2 TOTAL (3 KNOTS COMBO)
TB40280	869	F	ပ			22			NGCD
TB40281	773	В	⊢			27			NGCD
TB40282	523 B	5	BT			31.5	SS	CONST	3/8" EDGE KNOT
TB40283	739	FC	В			25	SS		1/4" EDGE KNOT
TB40284	787	ВТ	۲			28	No 2	CONST	SOG 1:8
TB40285	502	요	ВТ		23.2	17.5			NGCD
TB40286	257	-	BŢ			28	SS	CONST	1-1/2" NARROW FACE KNOT
TB40287	228	ᇤ	В			56			BOTH BROKE @ KNOTS 1/2" EDGE KNOT
TB40288	330	٢	m	ВТ		49	No 2	STAND	2-1/2" KNOTS
TB40289	708	ᆸ	m			34	ECON	ECON	TYP @ PIPE HOLE @ B/2"-3C PC COMBO
TB40290	756	ш	8	_		12	SS	CONST	1-1/2" TOTAL COMBO 2 KNOTS
TB40291	706	요	⊢			36	SS	CONST	VD (PHOTO #12) 1/4" EDGE
TB40292	228	요	В			25	No 1	CONST	2 KNOTS 1" EACH NARROW FACE
TB40293	520	요	ᅜ			53	ECON	ECON	SOG LOCALIZE DISTORTED GRAIN
TB40294	635	<u>"</u>	-			59	No 1	CONST	5/8" EDGE KNOT
TB40295	517	ᄔ	-			83	No 2	CONST	COVERED IN CEMENT - EST. #2
TB40296	518	인	H	_		69	No 3	CONST	SOG 1:6
TB40297	726	۳	8		15.7	30.5	No 3	CONST	SOG 1:6
TB40298	736	╙	8			39			NGCD
TB40299	777	В	-		18.9	41	ECON	ECON	SOG 1:3 (PHOTO #11)
TB40300	852	8	_			98	ECON	ECON	T @ 1:3 (PHOTO #10)

.....

ì

Failure Modes		\dashv	(%)	(in.)	(joists)	(C,S,U)	Comments
	8			33	SS	CONST	1-3/4" TOTAL (3 KNOTS)
┞	ш	 		42	ECON	ECON	SOG 1:3 (PHOTO #9)
-	ВТ			34			NGCD
_	FI	4x4	_	26	No 1		2" (2 KNOTS) PC COMBO
<u> </u>	⊢		_	35	ECON	ECON	SOG 1:3 TYPEND
L				32	No 1	CONST	2" (2KNOTS) COMBO
Ĺ	ட	-	13.6	8	SS	CONST	SOG 1:12
_	ВТ	4×4		83	No 2		3" TOTAL PITH CTR COMBO 4 KNOTS
<u> </u>	_	4×4	\vdash	32	No 1		1" EDGE KNOT
	BT	ш		89			NGCD
L	Ľ			76			NGCD
-	BT			98			NGCD
	m	2x10	16.8	121	No 2		SOG 1:8 FLATWISE FAILURE AT END
В	BT		13.6	110			REJECT (PHOTOS 53-56) BUT DID NOT BREAK AT DEFECT
-	Ι.			36	ECON	ECON	SOG 1:2
<u>m</u>	Γ		15.4	31	No 1	CONST	SOG 1:10
<u>an</u>			L.	11			NGCD
-			,	59	No 3	STAND	SOG 1;4 (PHOTO #8)
В				22	SS	CONST	1/2" C KNOT
BT	_			22	No 1	CONST	1" NF KNOT
В				33.5			NGCD
В				19.5			NGCD
BT	_			21	No 1	CONST	BT @ 1-3/16 NFKNOT
_				23.5			NGCD
BT	⊢		17.2	32	SS	CONST	5/8 EDGE
BT	1			30.5	No 2	CONST	3" TOTAL (4 RINGS) COMBO
ш	~		15.1	24			VG, NGCD
ш.	FC			89.5			NGCD
	L.			102			NGCD
_	L.			120			65 DNS IND, K019 MILL 350 PHOTO 155
	_C			28.5	SS	CONST	20% COMBO
-	L.			168	No 3	STAND	1-1/2" EDGE KNOT
⊢	⊢	ΙL		160	SS	CONST	25% AT FAILURE 5/8 C
⊢	BT			118			NGCD
μ.	F			120			NGCD
-	ВТ			36			NGCD
_	⊢			140	No 2	STAND	11/16 EDGE KNOT & LOCAL DIST GRAIN
_	F			95			NGCD PHOTO 173-176
-	Ŀ			29			NGCD PHOTO 173-176
ᇤ	LL			8			NGCD
	!	ı	17.7	120			32" TO FAIL FROM END N6CD

RINCK MURK	7		200	,				
Dade Hain				(%)	(in.)	(joists)	(C,S,U)	ı
ZONE 41B	4	BT		-	68	No 3	CONST	BT AT 1/2" KERF SOG IN 1:6
	ш	Щ	¥	_	78	No 1	CONST	1-1/8 C KNOT
308 ZONE 41B	F	ш			104	No 2	CONST	SOG 1:8
ZONE 41B	FC	BT			87			NGCD
ZONE 41B	i.	Ц.	4X4		91	No 2		50% COMBO
10 ZONE 41B	u.	⊢			102	No 3	CONST	SOG 1:7
ZONE 41F	ш	되으면			75	No 3	STAND	1-3/4" HOLE AT FAILURE
66 ZONE 41G	1	ш			20	SS	CONST	20% DISP COMBO
ZONE 41G	ш	 	4X4			No 1		A&B 128-23" 1"C PHOTO 145
72.ZONE 41G	IL.	ВТ			29	No 1	CONST	SOG 1:11
71 ZONE 41G	ВТ	ı.	7		83	SS	CONST	7/8 C KNOT
ZONE 41G	u.	-			74.5	SS	CONST	25% DISP COMBO
ZONE 41G	L.	1-			142			NGCD
ZONE 41G	œ	<u>m</u>			99			DISCOLORED POSSIBLE DECAY NGCD
79 ZONE 41G	⊢	5			82	SS	CONST	5/8 EDGE
ZONE 41G	В	1			75	No 3	CONST	SOG 1:8 AT T FAIL
ZONE 41G	ш	⊢		19.9	71	No 3	STAND	HOLE 1-1/2 NARROW FACE + LOCAL GRINA DEVIATION/CONCRETE
ZONE 41J	⊢	⊢	ш.		132	No 2	CONST	6' + 5' = 11' 40% DIST PHOTOS 150-152
ZONE 41C	В	F	4X4		52			PLIB STD & BTR GRAIN D-FIR PHOTOS 112, 113
ZONE 413	ш	В			81.5	No 2	STAND	LOCAL GRAIN + SPIKE KNOT = 50
ZONE 41J	ш	⊢			133.5			NGCD
ZONE 41J	ш	Ţ			83			T AT KERF - NGCD
50 ZONE 41E	ш	BŢ			151	SS	CONST	25% COMBO
81 ZONE 41G	ш	-	4X4		83	No 2		LOCAL GRAIN 40% CONCRETE
ZONE 41G	ட	-	4X4		120	No 2		SOG 1:9
ZONE 41G	ıL	5 S			28.5			NGCD
ZONE 41J	ட	B	BŢ		101	No 2	CONST	SOG 1:8
ZONE 41J	L.	ന		17	141			NGCD
ZONE 41J	ı	ВТ			56			BT WITH CONCRETE NGCD
ZONE 41G	5 S	ပ			28.5			NGCD
ZONE 41G	ıL	윤			28.5	SS	CONST	5/8" EDGE KNOT
ZONE41G	4	요			67	SS	CONST	3/4 C
ZONE 41G	ш.	댎		18.7	84	No 2	CONST	SOG 1:8
ZONE 41G	ч	æ			111	No 2	CONST	SOG 1:9
ZONE 41G	FC	⊢		14.1	66			NGCD
ZONE 41G	- -	늄	⊢		9			COVERED IN CONCRETE
ZONE 41G	- -	Ŀ			134.5			_
	<u>.</u>	⊢			109	No 1	CONST	
13 ZONE 41G	_		-	7.3	161	200	CIAND	HOLE 1-1/2"

APPENDIX III Small Clear Mechanical Test Results

WOOD ADVISORY SERVICES, INC.

3700 Route 44 Suite 102 P.O. Box 1322 MILLBROOK, NEW YORK 12545 (845) 677-3091 FAX (845) 677-6547

JOB	
SHEET NO	OF
CALCULATED BY	DATE
CHECKED BY	DATE

	SCALE
Тур	PICAL CROSS SECTION OF 3X4 LUMBER (21/2" X 31/2")
	+6
	+0
	3
-	LOCATIONS () THROUGH (1) EVALUATED
	FOR EACH MICROBIOGICAL ANALYSIS
	PERFORMED ON EACH 3X4
	Lumber RIB
	SCHEMATIC # 1

Cllent: Dan Eschenasy Project Spring Street Job No. 08.126 Test ASTM D-143 Static Bending

Spruce (weighted average of red, balck and white): NOR at 12% = 10,644 ps/ MOE at 12% = 1.511 x10⁸ ps/

Fit (Balsam Nr) MOR at 12% = 8,341 psl MOE at 12% = 1,432 x10⁶ psl

Wood Decay Chart: Occasional
Light
Moderate
Heavy

astern Spruce															
Span	Helght	Width	Load/Deff.	Max	Green	go	go	MOR	MORad	MOE	MOEad	Residual	Residual		
	(in.)	(in.)	(lb./ln.)	Load (Ib)	Wt (g)	WT (g)	Vol (g)	(bst)	(lsd)	(bsl)	(isd)	MOR	MOE	MC%	9
	76.0	96.0	1737.1	328.0	6.30	5.58	15.32	7470	7842	1.33E+06	1.36E+06	0.74	06.0	13.3	0.36
	0.98	86.0	1831.4	398.2	6.41	5.64	15.74	8885	9447	1.36E+06	1.39E+06	0.89	0.92	13.7	0.36
7	0.98	0.98	1674.9	336.8	5.60	4.91	15.18	7515	8110	1,25E+08	1,28E+06	0.76	0.85	14.1	0.32
4	88'0	0,98	1404.0	345.4	5.58	4.93	15.08	2022	8053	1.04E+06	1.06E+06	0.76	02'0	13.2	0.33
14	0.98	16.0	2013,7	509.9	8,23	7.23	15,10	11494	12303	1.51E+08	1.55€+06	1.00	1,00	13.8	0.48
4	26.0	0,98	2135.4	473.2	7.80	8.82	15,02	10777	11768	1.84E+06	1,69E+06	1.00	1.00	14.4	0.45
	26.0	86.0	1847.4	320.5	6.91	6.12	15.38	7299	7550	1,42E+06	1.43E+06	1,70	0.95	12.9	0.40
1	86'0	96.0	1523.4	375.9	6.23	5.54	14.99	8387	8530	1,13€+06	1 145+06	0.80	0.75	12.5	0.37
14	.0.97	26.0	1910.3	436.3	7.04	6.21	15.17	10039	10561	1.48E+06	1.51E+08	0.99	1.00	13.4	0.41
4	1,00	1.00	2373.7	423.0	7.65	69.9	16.03	8883	8683	1.63E+06	1.68Ë+06	0,91	1.00	14.3	0.42
4	1.00	1.00	2536.0	461.4	8,23	7.20	15.47	9689	10555	1.74E+06	1.795+06	66.0	1,00	14.3	0.47
4	1.00	1.00	2366.9	482.3	7.39	6.46	15.42	10128	11070	1.62E+06	1.68E+06	1,00	1.00	14.4	0.42
Į.								9023	9623	1429761	1462660	0.88	0.92	13.7	0,40

Eastern Fir	n Fir															
Sample	Span	Helght	Width	Load/Deff.	Max	Green	0	00	MOR	MORad	MOE	MOEad	Residual	Residual		
	(Ju.)	(ju)	(ju)	(lb./in.)	Load (lb)	Wt (g)	WT (g)	Vol (g)	(bal)	(lsd)	(jsd)	(lsd)	MOR	MOE	MC%	SG
6-2	14	0.98	26'0	2077.1	412.8	6.60	5.72	15.15	9308	9800	1.56E+06	1.58E+08	1.00	1,00	13.6	96,0
7-1	14	0.98	0.98	1674.3	335.3	5.92	5.22	15.00	7481	7823	1.25E+06	1.26E+06	0,94	0.88	13.4	0.35
7-2	14	0.97	0.98	2354.9	429.6	6.70	5.94	14.88	9784	10033	1.81E+06	1.82E+06	4.00	1.00	12.8	0.40
7-3	14	1.00	1.00	2416.0	497.0	6.94	6.13	15.74	10437	10846	1.66E+06	1.68E+06	1,00	1,00	13,2	0.39
8-1	14	1,00	0.99	2121.1	397.4	6,50	5.73	15.86	6430	8823	1.47E+06	1.49£+06	1.00	1,00	13.4	0.36
8-2	14	1,01	1.01	1743,4	378.4	6,08	5,34	15.91	7713	8180	1.15E+06	1.17E+06	86.0	0,82	13.9	0.34
8.2	14	66.0	1.00	1984.6	396.8	6,47	5.71	16.13	8481	8840	1.40E+08	1.42E+06	1:00	66.0	13.3	0,35
8-3	14	1:01	1.01	2192.6	367.5	6.95	6.14	15.98	7491	7779	1.45E+08	1.46E+06	£6.0	1.00	13.2	0.38
Mean									8640	9016	1467142	1485295	0.98	0.96	13.4	0.37

Dan Eschenasy Client: Project Job No. Test

Spring Street 08,125

ASTM D-143 Shear Parallel to Grain

Shear,, at 12% = 1,182 psi

Spruce (weighted average of red, balck and white):

Fir (Balsam fir)

Shear,, at 12% = 938 psi

Wood Decay Chart: Occasional

Moderate Heavy Light

Spruce												
Sample	Length	Width	Мах	Green	ao	go	SHEAR	SHEARadj	Residual			
	(in.)	(in.)	Load (Ib)	Wt (g)	WT (g)	Vol (g)	(isd)	(isd)	Shear	MC%	SG	SG adj
1-1	2.00	2.00	4259	18.95	16.73	46.71	1065	1109	0.94	13.3	0.36	0.33
2-1	2.01	2.00	3379	16.72	14.69	42.89	841	891	0.75	13.8	0.34	0.31
3-1	2,00	2.01	5689	24,45	21.43	45.67	1415	1513	1.00	14.1	0.47	0.42
3-2	2.01.	2,00	5740	25.77	22.52	47.62	1428	1543	1.00	14.4	0.47	0.42
4-1	2.01	2.01	4658	20,01	17.76	45,63	1163	1178	1,00	12.7	0.39	0.35
4-2	2.03	2.00	4687	25,61	22.69	54.89	1130	1162	96.0	12.9	0,41	0.37
5-1	2.03	2.00	4969	17.86	15.73	40.08	1224	1286	1.00	13.5	0.39	0.36
11-1	2.05	2,01	3913	22.53	19.83	47.69	950	1000	0.85	13.6	0.42	0.37
11-2	2,02	2,01	4479	21.57	18.97	44.95	1103	1165	66.0	13.7	0.42	0.38
Mean		Linkship Chapter Chapt				11/2	1145	1205	0.94	13.6	0.41	0.37

(in.))	1			100014001			
A TOTAL CONTRACTOR OF THE PARTY		Load (Ib)	Wt (g)	WT (g)	Vol (g)	(isd)	(isd)	Shear	MC%	SG	SG adj
		5128	20.70	18.27	46.38	1251	1303	1.00	13.3	0.39	0,36
		5027	20.73	18.33	46.40	1244	1288	1,00	13.1	0.40	0.36
	2.00	4375	21.14	18.74	46.79	1088	1116	1.00	12.8	0.40	0.36
	· 	4694	21.43	18.98	46.41	1156	1190	1.00	12.9	0,41	0.37
8-1 2.01		3592	18.67	16.54	45.53	889	914	0.97	12.9	0.36	0.33
Mean			NOW AND DESCRIPTION OF THE PROPERTY OF THE PRO			1126	1162	0.99	13.0	0.39	0,36

Client: Project Job No. Test

Dan Eschenasy Spring Street 08.125 ASTM D-143 Compression Perpendicular to Grain

Spruce (weighted average of red, balck and white): Comp.Perp at 12% = 1,004 psi

Fir (Balsanı fir) Comp.Perp at 12% = 862 psi

Wood Decay Chart:

Occasional Light Moderate Heavy

		SG ad	0.34	0,42	0.39	0.42	0.39
		SG	0.37	0.47	0.44	0.47	0.44
		MC%	13.8	14.4	12.8	13.9	13.7
	Residual	Comp	69.0	1.00	6.79	0.76	0.81
	Comp adj	(bsi)	688	1110	798,	762	840
	Comp	(isd)	633	991	692	669	773
	QO	Vol (g)	59.65	61,40	56.41	60.90	
	go	WT (g)	22.07	28.71	24.61	28.80	
	Green	Wt (g)	25.11	32,85	27.76	32.79	
	Max	Load (Ib)	2545	4024	3075	2795	
	Height	(in.)	2.00	2,02	2.00	1.99	
	Width	(in.)	2.01	2.01	2.00	2.01	
Spruce	Sample		2.1	3-1	5-1	1-1	Wean

	HINE	of Charles			por death dies
to company the state of the sta		SG adj	0.36	0.34	0.35
Series and Children was a series of the seri		SG	0.39	0.38	0.39
SPANSON NATIONAL PROPERTY OF THE PROPERTY OF T		MC%	13.0	13.1	13.0
SECURIORISM MEDICAL PROPERTY OF THE PROPERTY O	Kesidual		0,56	0.58	0.57
Company of the state of the second of the se	Comp adj	(psi)	486	504	495
Securitario de la facto de la	Comp	(bsi)	464	477	47.1
CONSTRUCTION OF THE PROPERTY.	go	Vol (g)	62.58	63.99	
SAN PROPERTY OF THE PROPERTY OF THE PARTY OF	0	WT (g)	24.64	24.10	
STATE OF THE PERSON NAMED IN COLUMN	Green	Wff (g)	27.84	27.26	
CONTRACTOR DESCRIPTION OF THE PROPERTY OF THE	Max	Load (lb)	1855	1919	
CHECKER PROPERTY OF THE PROPER	Height	(in.)	2,00	2.01	
CAMPING THE PROPERTY OF THE PR	Width	(in.)	2.00	2.00	A STREET, STRE
ubpseudonumapeumenteiteiteiteiteiteiteiteiteiteiteiteiteit	Sample		6-1	7-1	Mean

APPENDIX IV Concentrated Load Test Results

Client:

Dan Eschenasy

Project Job No. Spring Street 08.125

6.075

0.775

7000

Test

Concentrated Load Test Data

Loading Condition #1 - Base plate with interior edge 11" from panel edge

Loading Condition #2 - Base plate with interior edge 20"-24" from panel edge

Defl. - The deflection read on the engineers ruler during the test

Actual Defl. - The actual deflection after adjusting for the initial offset (first reading for Defl.)

Meter Value - The digital output from the meter

Actual Value - The digital meter output value adjusted using calibration between proving ring and digital meter

	TP	3-A #1: 2'x4', Loa	ding Condition #1	-	Thickness = 0.647 in.
	Defl.	Actual Defl. (in.)	Meter Value (units)	Actual Value (lbs.)	
	5.3	0	0	0	
	5.4	0.1	500	499	
	5.5	0.2	1000	1002	
	5.55	0.25	1500	1506	
	5.6	0.3	2000	2009	
	5.65	0.35	2500	2513	
	5.7	0.4	3000	3017	
	5.775	0.475	3500	3520	
	5.825	0.525	4000	4024	
	5.9	0.6	4500	4527	
lax.	6.025	0.725	4958	4988	
	TP	3-A #2: 2'x4', Loa	ding Condition #1	-	Thickness = 0.642 in.
	Defl.		Meter Value (units)		
	5.2	0 ` ′	0 ` ´	0 ` ´	
	5.275	0.075	500	4 99	
	5.3	0.1	1000	1002	
	5.375	0.175	1500	1506	
	5.425	0.225	2000	2009	
	5.475	0.275	2500	2513	
	5.525	0.325	3000	3017	
	5.6	0.4	3500	3520	
	5.7	0.5	4000	4024	
	5.8	0.6	4 500	4527	
	5.95	0.75	5000	5031	
lax.	6.9	1.7	5119	5151	
	TI	P10A: 4'x4', Load	ing Condition #2	7	Γhickness = 0.653 in.
	Defl.		Meter Value (units)	Actual Value (lbs.)	
	5.3	0 (***)	0 ` ´	0 ` ´	
	5.375	0.075	500	499	
	5.425	0.125	1000	1002	
	5.475	0.175	1500	1506	
	5.5	0.2	2000	2009	
	5.575	0.275	2500	2513	
	5.625	0.325	3000	3017	
	5.675	0.375	3500	3520	
	5.7	0.4	4000	4024	
	5.775	•		4527	
		0.475	4500 5000		
	5.8	0.5	5000	5031	
	5.825	0.525	5500	5534	
			5900	5937	
	E 00E	0.005	0000	6000	
	5.925	0.625	6000	6038	
	5.925 6.025	0.625 0.725	6000 6500	6038 6541	

7045

	6.125	0.825	7500	7549	
	6.2	0.9	8000	8052	
	6.3	1	8500	8556	
Max.	6.3	1	8640	8697	
	TI	P9A: 4'x4', Loadir	g Condition #2		Thickness = 0.653 in.
	Defl.	Actual Defl. (in.) I	Meter Value (units)	Actual Value (lbs.)	
	5.2	0	0	0	
	5.275	0.075	500	499	
	5.325	0.125	1000	1002	
	5.375	0.175	1500	1506	
	5.425	0.225	2000	2009	
	5.475	0.275	2500	2513	
	5.5	0.3	3000	3017	
	5.55	0.35	3500	3520	
	5.6	0.4	4000	4024	
	5.7	0.5	4500	4527	
	5.775	0.575	5000	5031	
	5.825	0.625	5500	5534	
	5.9	0.7	6000	6038	
	5.95	0.75	6500	6541	
	6	0.8	6575	6617	
Max.	6.1	0.9	6722	6765	
		A-#2: 2'x4', Load	-		Thickness = 0.653 in.
	Defl.			Actual Value (lbs.)	
	5	0	0	0	
	5.1	0.1	500	499	
	5.15	0.15	1000	1002	
	5.2	0,2	1500	1506	
	5.25	0.25	2000	2009	
	5.3	0.3	2500	2513	
	5.35	0.35	3000	3017	
	5.425	0.425	3500	3520	
	5.6	0.6	4000	4024	
	5.625	0.625	4100	4124	
	5.65	0.65	4200	4225	
	5.7	0.7	4300	4326	
	5.75	0.75	4400	4427	
	5.825	0.825	4500	4527	
	5.9	0.9	4590	4618	
	6.2	1.2	4600	4628	
	6.3	1.3	4700	4729	
	6.425	1.425	4800	4829	
Max.	6.7	1.7	4827	4857	
	PW4	055-#1: 4'x4', Loa	ding Condition #2		Thickness = 0.606 in.
	Defl.			Actual Value (lbs.)	
	5	0 ` ´	0	0	
	5.075	0.075	500	499	
	5.15	0,15	1000	1002	
	5.2	0.2	1500	1506	
	5.275	0.275	2000	2009	
	5.325	0.325	2500	2513	
	5.4	0.4	2600	2614	
	5.475	0.475	3000	3017	
	5.5	0.5	3131	3148	
	5.525	0.525	3500	3520	
Max.	5.6	0.6	3731	3753	
····ux	6.2	1.2	3695	3716	
	0.2	1.2	5050	07.10	

	PW4	Thickness = 0.606 in.			
	Defl.	Actual Defl. (in.)	Meter Value (units)	Actual Value (lbs.)	
	5	0	0	0	
	5.125	0.125	500	499	
	5.2	0.2	1000	1002	
	5.25	0.25	1500	1506	
	5.3	0.3	2000	2009	
	5.375	0.375	2500	2513	
	5.425	0.425	2600	2614	
	5.5	0.5	3000	3017	
Max.	5.625	0.625	3566	3586	
	5.8	0.8	2923	2939	

may the statement of the same of the same and the same and the same same of the same of the same same same of the same same same same same same same sam		tende emplementationer of a first on topics. We are the first tenderman man		office of applyment was type open due to bedugate the besteven was an exercise	0.5, 4527		0,35,3520	\$ 0,3,301,7-	\$ 0,275, 2513	.0,225, 200 9	<pre> 0.175, 1506</pre>	menter. I want of the part of the temperature of the transfer that finding the following members of	The same of the sa
	Commence Constitution of the State of the St	they a family market	* .	\$.0.575,5031-	4527	AND THE PARTY AND						military to the second of the	A C
	\$ 0.9, 6765		© 0.625, 5534	in the state of t		. The contract of the second o		Community operators the state of the state o				tong come to an an armony the . Madden district entering thinks both complement	one manufacture and the second

APPENDIX V Patent Construction Systems Drawing No. 4607K070

PATENT CONSTRUCTION SYSTEMS LAYOUT DRAWING NOTES GENERAL NOTES

The state of the s

The start is that the transcense of Allegaine Agents on the starting and the start is given and the starting and the starting

A shorter of the state of the s

The part of the control of the contr

Compare and the probability in the probability of t

We window a set of war and the set of the se

CHESTER DRIEGON ELAYA
CHESTAL
PSF VIB. CONTON. SPRASTY, OF

Most dysign pressure.

And the second of the second o

The control co

Datent

ALWAYS FOLLOW SERARATE SAFETY RULES & INSTRUCTIONS AS INDICATED IN EACH SPECIFIC SECTION.

LUMBER DESIGN VALUES

Suggested lumber details shown are based on the use of tember with allowable unit areases increased per ANS/AFEPA NDS — 1997 for short farm loading to the limiting values below:

Extreme fiber stress in bending Horizontal shear

Compression perp. to grain Compression parallel to grain

Modulus of elasticity

Pose grain of plysood must run of right angles to its support. Plysood suggested in layout cassumed to be A.P.A. phform Class t. 8-B exterior type PS 1-85 or equal in as sew? condition. Customer must make suitable ollowaness for lower grades or condition of plywood used.

This clouchs is joined with the supressed optiviously that the develop and information thereth contributed under the Perhal Contribution before the Copysides of Operation of Copysides of Copysides the Perhal Contribution before the Copysides of the Copysides and the Copysides of the Copysides o

DATE: 12/14/2007 **20KA SHORING LAYOUT** PROJECTS SOHO HOTEL TITLE

LOCATION 246 SPRING STREET NYC CUSTOMER DI FAMA CONCRETE

Patent Construction Systems
Harsoo Gorporation
PATAL TANAMATION SYSTEMS
1400 LAW FORM TONG
LIMING HW. MARSON TONG
(723) 184-1888

4607K070 GHEET NO.

_					
			•		
p* ~q					
To a second					
_					
1					
t" }					
7 9					
·					
7 1					
ن _					
× 2					
. 3					
£ 4					
A STATE OF THE STA				•	
r n					
E					
				•	
. 4					
로 즉 : 					
e j					
	,				
٤ يا					
2					
		·			

APPENDIX "C" Report on Patent Aluminum Shores Tests ATLSS Lehigh University

Structural Testing Laboratories Fritz Engineering Laboratory 13 East Packer Avenue Bethlehem, PA 18015-4729 (610) 758-5498 Fax (610) 758-5902

June 15, 2009 FL2009.1208.1

Dan Eschenasy Department Chief Structural Engineer NYC Buildings 280 Broadway, 7th Floor New York, NY 10007

Subject: Testing of Shoring Towers for NYC Buildings

Dear Mr. Eschenasy,

On May 4th and 5th, 2009, six shoring towers were tested in the Fritz Lab Baldwin-Lima-Hamilton 5,000K testing machine. The 5,000K machine was calibrated on April 8, 2009. Three towers had concentric axial force applied, and three towers had eccentric axial force applied. Five string pot type displacement transducers were used to measure deflections for the eccentric load tests. The test types and results are summarized in Table 1. Before and after photos of the six test specimens are shown in Figures 1-12.

Load was applied to the towers using an H frame arrangement. A spherical bearing block was affixed to the bottom of the sensitive crosshead which loaded on a spreader beam which in turn loaded on two load beams. The concentric test specimens were loaded directly through the four columns using spacer blocks on top of the screw jack feet. The three eccentric load tests were performed by moving the south load beam so that the center of the load was 2" outboard of the centerline of the screw jack. The North load beam was centered over the screw jacks. Stringer beams were also placed on top of the screw jack feet for the eccentric tests. The bottom screw jack extensions were 12" for all tests except Tests 3 and 5, which had no bottom screw jacks. The top screw jack extensions were either 18" or 21".

Table 1: Summary of Test Results

Test	Test Type	Btm SJ [in]	Top SJ [in]	Total Height [in]	Max Load [lbs]	Failure mode
1	Concentric Load Tower "A"	12	18	136	159,000	Racking
2	Concentric Load Tower "C"	12	18	136	154,500	Racking
3	Concentric Load Tower "B"	None	18	130	152,100	Racking
4	Eccentric Load (Various Components)	12	18	136	61,300	Screw jack buckling
5	Eccentric Load (Various Components)	None	21	133	52,100	Screw jack buckling
6	Eccentric Load (Various Components)	12	21	139	56,400	Top plate fractured

Figure 1: Tower 1 Pretest

The results of the project presented in this report are provided on an "AS IS" basis. University makes no warranties of any kind, express or implied, as to any matter whatsoever, including, without limitation, warranties with respect to the merchantability or fitness for a particular purpose of the project or any deliverables. University makes no warranty of any kind with respect to freedom from patent, trademark, copyright or trade secret infringement arising from the use of the results of the project, deliverables, services, intellectual property or other materials provided hereunder. University shall not be liable for any direct, indirect, consequential, punitive, or other damages suffered by Sponsor or any other person resulting from the project or use of any deliverables. Sponsor agrees that it shall not make any warranty on behalf of University, express or implied, to any person containing the application of the results or any deliverables of this project.

Figure 2: Tower 1 Post Test

Figure 3: Tower 2 Pretest

Figure 4: Tower 2 Post Test

Figure 5: Tower 3 Pretest

Figure 6: Tower 3 Post Test

Figure 7: Tower 4 Pretest

Figure 8: Tower 4 Post Test

Figure 9: Tower 5 Pretest

Figure 10: Tower 5 Post Test

Figure 11: Tower 6 Pretest

Figure 12: Tower 6 Post Test

The locations of the sensors used for the testing are given using the cardinal directions. Figure 13 Shows the North and South directions relative to the 5,000K testing machine. Figure 14 shows the five string pots and their designations. The vertical string pot measured the total axial compression deflection of the tower. The remaining four string pots measured the lateral deflection of the columns at the top of the screw jacks and at the bottom of the second tower tier.

Figure 13: 5,000K Machine with Columns Labeled N for North and S for South West is in front of the machine, and East is in the back

Figure 14: Location of String Pots

Included with this report is a CD containing the 5,000K testing machine calibrations certificate, additional test pictures, load deflection plots for the three eccentric load tests and an electronic copy of this report.

Sincerely,

Robin J. Hendricks

Cc: Frank E. Stokes - ATLSS

APPENDIX "D" Documentation and Preparatory Documents for Shoring Layout

9H 40113

409 MOTTON PL + NOTEUR 914 40 122 469 - PRACTURE AB 40009 KOA 12 FT 40c 1287 00 AB 40007 1340010 404 1ZFT OL , AB 400 20 AOG 122T 41 NAIL AB40014 406-F

22-141 50 SHEETS 22-142 100 SHEETS 22-144 200 SHEETS

MANNE 22-

AB 400 11 RETAG NO AREA 12/007 NAILS ON TOP AB 400 12 40A NAILS ONTOP 17FT AB 40013 406-7 1287 AB 40042 154>

22-141 50 SHEETS 22-142 100 SHEETS 22-144 200 SHEETS

Anne

PS 40002-132/14"

PS 410047-135/5
PS 40007-861/4"

PS 4100-3-2911/4"

SH4006LB - 453/4"

SH 40133 - 451/2

SH 4017 - 211

SH 40128 - 45"

SH 40128 - 45"

SH 41046-#348-16/2

349-60"
350-50"

SH 40066-99"

SH 40052-107/2"

SH 40052-107/2"

SH 40054-99"

SH 40064-99"

SH 40065-96"

SH 40067-99"

SH 40067-99"

SH 401142-523/4"

SH 40112-405-19/2

SH 40071-40B 19/L

3×14 -189/4 TO 40000 クレ 3×1 400 31 234B - 481/2 20' 31 401 36 3/ 11 3 POPO 6 3 (13) -354 48X4-201 20 39 TO 10066 4X4-324 XO 371 ì

Wash by Brack 416 SH 41170 4IF SH 41189 - AIFB SH 4117P 22-141 22-142 22-144 403 WELD ON 1 CO 5H 40044 AMERICO 419 SH 41171 40F SH 400 P/ 15# 400 74 41F SA400 62B ZONE FOR METE BY VAY HAS WECKS ON BOTH CN/ SH 400 16B 407 24 x10 44" SH 40041 well. 40B

24x1 5H 40086 40F 1 450 SH 411P4 41F SF 411P7 41F - 211

> AB 41041- 41F 40"45

> > 276 Plywood TXB

\$16,NED 2/2(-)

TB 40061

TB 40072

SH 40134

135 140 No 6,1,8,9

V15 40003

0/21/08-	JAY RUBINSTEIN BEST SQD
7/21/09	
429C 3443 81/2	TB40131 5x4 - 92"
50913 8431-1/2	TB 40132 3x4 - 991/2"
405-344-32"	TB 40137 3x4 +31/2"
415 - 33"	TB 40134 3x4 87"
604 + 19"	TB 40136 314 201/2"
600 - 912	TB 40137 3x4 43/2"
4103 - 15/2	T13 40138 344 IN'
593 - 16" 464 - 32/2"	TB 40139 3+6 17/2"
464 - 32/2"	1B 40140 3x4-32"
529 7 23 12	TO 40141 - 3x4- 43"
607 4K+ 22/2"	TB 40143 - 3KY 31"
526 3K4 = 52"	TB 40144 - 3x4 900
474 344 - 63/2	PB 40146 3x4.55"
fyr 1x4 - 72"	113 40 147 3X4 40"
527 3XY 32" 768 - 1 33" 3888 - 1 891 381	TB 40 148 34" TB 40 148 29"
	TB 40141 29" 7K4 52"
391 \ 901/2" 386 \ 461/2"	PB 40152 344- 311/2
786 \ 16/14 577 \ 32"	1B 40157 - 3K4 - 51/2
V	TB 40154 - 3M - 34"
	11340 156 - 34 - 28
	173 40 157 344 35
	913 40 159 344 54/2
	TB 40-00 34- 60"

wada 0 20 a 20 117 40 117

22-141 50 SMEET 22-142 100 SHEET 22-144 200 SHEET

40123 40124 40124 40126

5440122

40121 40126 AB 40019 EH 40127 cu 6200 SH 40128 pane CH 40139 22-141 SO SHEETS 22-142 100 SHEETS 22-144 200 SHEETS

Amendo

SKIP 450 142

TOPPIECE PIL

FRAC SH 4001 FRAC TOD 11 - M19.

5H 41053

41 F

TITY & FRACT

	# 591 = 311/2"
	473 - 64"
	530 = 31"
	495- 32"
	173- 12
SHEETS SHEETS SHEETS	4388-40/2"
200 St	547-3174"
142	668-14"
ង្គង់ង	576-313/4"
Chiedina	4326-341
•	1
	417 - 83"
	445 32"
•	578-21"
	478-31/2
	CIC M'
	515: 14" 570 - 72"
	810-72
1	

3.44
11 A 32
76B 38"
42 32"
31B 41'
- A- I .
72 42
1 . ;
543 41/2 465 48"
465 48" 524 57"
580 18"
546 \$ 13/2
i. i.
509 4xt 341"
/
215 / 32'
451B 49"
192 30
491 58"
540 611/2" 404 48"
472 V 32"
414 1KY 291/2"
418B (212x4 24:/2
591 424 32"
473 124 64"
413 124 01
530 3X4 31"
495 3x4 32"
4388 1 41"
577 \$ 32
438B 1 41" 577 1 32" 439 B 314 40° (2

SH 41.161 50 SHEETS 100 SHEETS 200 SHEETS 644144 AMPAD

3/3 SIGNED > TB 40268 MG 40015

)

.'

22-141 50 SHEETS 22-142 100 SHEETS 22-144 200 SHEETS

ON LINE

9H 40204 A 40C -NO FRACT I'M THE TOO COME DUT? . WITH CONCOZETE SH 4005 403 HEAD TORN PULL LEGY X 3-9H 400 58 The BY JHANHER

}

50 SHEETS 100 SHEETS 200 SHEETS

CONTRACTOR OF THE PROPERTY OF

.

CONNECT TO SA GOLGE WO CONCRETE MAYBE WIT BY SHAMA FOR GH 40 138 CHEHR NO CONCRETE -we(1) WITH CONC 47 11 HIGH 4 SH 40166 40F SH 40120 GH4013P

FOR GH 40062 63K CHANNA CH SH40072 40B

MISSONE AND FOUND SHEHRED END

)

22-141 50 SHEETS MACALD 22-142 100 SHEETS 22-144 200 SHEETS

SH 40170 40K

SH 40143 64 H16H I NOTCLEAR TOPOR USSTT ANTA DATE OF THE PARTY OF THE P NOT CLEAR NO HOLE FOR PIN 9440088 40F TOP -100 FRAC

9440191 406-E 9440110 9440103 F 164 TOP 42" H

50 SHEETS 100 SHEETS 200 SHEETS

22-141 22-142 22-144

The state of the s

40021 409 NOGHEAR - HOTE PIN PRESENT - PAINT MARZE gared (demo?)

9440163 MICS HOLE FOR PIN EXICTS SH 40 196 40C GEELLY THIS OPE WAS PRACTORED AT ACCIDED 4214165 \$4 40/g/ SHOWER broken by Jock | hande EN 40 KPF

AMPAD 22-141 SO SHEETS 22-144 200 SHEETS

5H 40 13 4067 0415 J BROK 50 SHEETS 100 SHEETS 200 SHEETS -0415 22-14 22-142 22-144 AMPAGO 814 40129 40F w Mis SH 40161 40G 364 42 H

49 40012 40 BC ANTARD AB 40014B 40 C-B 4H 40 207 GHEAR 2/29 (16/00) 46 60012

AB 40015 AB 40016 40 E 40F 9H 41028 419 T- HCA2 Bo17? AZH 9440096 404 9440069 40x

50 SHEETS 100 SHEETS 200 SHEETS

22-141 22-142 22-144

AMPACO

5H 40079

Angelo 22-1

WEID MISS

BRUZH

GHADIOS 406,

1 weld - Miss

1 weld Brot PIPCE - MISS

1 weld - Miss

7 110

94 41193 AIF - 940E MG 46005 AOB FAKCEVRED 4 LG

M9 40005 40B LAT GUP M9 40004 ADG " SH4014 PIBCE 2/4×1 15" LG S-9 10169.

SH 40134

40 6

7 - oris

Some HAT REHALDING,

GH 40 144 406

33" 69

PRACTURED WITH CONCRETE ON IT.

SH 4007) 40F BRACT'
SH 41151 419
SH 40136 4061

7

MOTUBE WT MG 400003 14B51-460009 4 &B 40F MG 40011 AFR 4511 2/22 SIGNE SH 40 149 SH 40008 SH 40,151 SH 40 163 De 9-40009 MS 40 11

22-141 22-142 22-144

AMPADO

246 Spring Street Investigation

APPENDIX D

Documentation and Preparatory Documents for Shoring Layout

