

Table of Contents

Executive Summary

Introduction

- 35 The City of New York MS4 Permit
- 36 Impaired Waters and Pollutants of Concern
- 37 Existing Stormwater Management Efforts
- 39 Stormwater Management Program Plan

Chapter 1

Legal Authority and Program Administration

- 44 1.1 Stormwater Management Program Administration
- 47 1.2 Legal Authority Interagency and NYSDEC Coordination
- 49 1.3 Enforcement Response Plan
- 49 1.4 Reliance on Third Parties (Part IV.K)
- 50 1.5 Fiscal Analysis
- 51 1.6 Notification of Entities Regulated Under MS4
 Permit

Chapter 2

Public Education and Outreach (Part IV.A)

- 56 2.1 Existing Programs
- 59 2.2 Pollutants and Waterbodies of Concern
- 60 2.3 Target Audiences
- 61 2.4 Education and Outreach Strategies
- 64 2.5 Public Reporting of Illicit Discharges or Water Quality Impacts
- 64 2.6 Proper Management and Disposal of Pollutants of Concern
- 66 2.7 Measurable Goals and Program Assessment

Chapter 3

Public Involvement and Participation (Part IV.B)

- 70 3.1 Existing Programs
- 70 3.2 Key Stakeholders
- 70 3.3 Public Engagement during SWMP Development
- 71 3.4 Public Comments on the Progress Reports and the Plan
- 73 3.5 Ongoing Public Involvement and Participation
- 73 3.6 Mechanisms for Public Reporting and Stormwater Related Requests
- 74 3.7 Annual Report Public Review Process
- 74 3.8 Measurable Goals and Program Assessment

Chapter 4

Mapping (Part IV.C)

- 78 4.1 Existing Programs
- 80 4.2 Historical MS4 Map
- 81 4.3 Delineation Methodologies for Preliminary and Final MS4 Maps
- 82 4.4 Preliminary MS4 Map and Associated Information
- 4.5 Final MS4 Map and Associated Information
- 86 4.6 MS4 Map Update Process
- 86 4.7 Measureable Goals and Program Assessment

Chapter 5

Illicit Discharge Detection and Elimination—IDDE (Part IV.D)

- 90 5.1 Existing Programs
- 90 5.2 Non-Stormwater Discharges
- 92 5.3 Illicit Discharge Detection
- 92 5.4 Illicit Discharge Trackdown, Elimination, and Notification
- 95 5.5 Spill Prevention and Citywide Response
- 96 5.6 Sanitary Pipe Seepage Controls
- 96 5.7 Public Education and Participation
- 97 5.8 Staff Training
- 97 5.9 Measurable Goals and Program Assessment

Chapter 6

Construction (Part IV.E) and Post-Construction (Part IV.F)

- 103 6.1 SWPPP Review and Approval
- 06 6.2 DEP Issued Stormwater Permits
- 108 6.3 Education, Certification, and Training
- 109 6.4 Results of the Threshold Study
- 110 6.5 Measureable Goals and Program Assessment

Chapter 7

Pollution Prevention / Good Housekeeping for Municipal Operations and Facilities (Part IV.G)

- 114 7.1 Existing Practices
- 115 7.2 Inventory and Prioritization of Municipal Facilities and Operations
- 118 7.3 Self-Assessments of Municipal Facilities and Operations
- 119 7.4 City Staff Training

Table of Contents

20	7.5 NYSDEC Multi-Sector General Permit for	Chap
	Municipal Facilities	
		Spec

- 121 7.6 Green Infrastructure Feasibility for Planned Municipal Upgrades
- 122 7.7 Requirements for Third-Party Contractors
- 122 7.8 Measurable Goals and Program Assessment

Chapter 8

Industrial and Commercial Stormwater Sources (Part IV.H)

- 127 8.1 Existing Programs
- 127 8.2 Industrial and Commercial Facility Inventory
- 129 8.3 No Exposure Facility Inspections (Category 2)
- 129 8.4 Unpermitted Facility Assessments (Category 3)
- 131 8.5 SPDES MSGP Facility Inspection (Category 4)
- 133 8.6 Industrial and Commercial Tracking System
- 133 8.7 Inspection Staff Training
- 134 8.8 Measureable Goals and Program Assessment

Chapter 9

Control Of Floatable And Settleable Trash And Debris (Part IV.I)

- 138 9.1 Existing Programs
- 141 9.2 Evaluation of Existing Programs
- 144 9.3 Loading Rate Work Plan
- 145 9.4 Review of Available Technologies and Controls
- 9.5 Methodology for Selecting Technologies and Controls
- 147 9.6 Media Campaigns
- 150 9.7 Measurable Goals and Program Assessment

Chapter 10

Monitoring and Assessment of Controls (Part IV.J.2, J.3)

- 153 10.1 Existing Programs
- 155 10.2 MS4 Monitoring Program
- 158 10.3 MS4 Monitoring Program Procedures
- 160 10.4 Assessment of MS4 Monitoring Program
- 160 10.5 Measureable Goals and Program Assessment

Chapter 11

Special Conditions for Impaired Waters (Part II.B)

- 163 11.1 Introduction
- 65 11.2 Programs for Impaired Waters with Approved LTCPs
- 166 11.3 Enhanced or Additional SCMs for Coney Island Creek
- 166 11.4 Measurable Goals and Program Assessment

Chapter 12

Recordkeeping (Part IV.J; IV.L) and Reporting (Part IV.M)

- 175 12.1 Recordkeeping and Data Management
- 175 12.2 Annual Report Process and Schedule
- 176 12.3 Monitoring and Assessment of Controls
- 176 12.4 Measurable Goals and Program Assessment

Definitions and Acronyms

Appendices

- 187 1.1 Enforcement Response Plan (ERP)
- 195 1.2 Deliverables in the NYC MS4 Permit and Schedule
- 197 1.3 Organizational Chart
- 199 2.1 311 Complaints related to MS4/Stormwater
 Management Issues
- 201 3.1 Stakeholder Meeting Log with Summary of Public Comments and City Responses
- 202 5.1 DEP Standard Operating Procedures for the Shoreline Survey and Sentinel Monitoring Program
- 207 5.2 Rules, Sewer Design Standards and Standard Sewer and Water Main Specifications for the City
- 208 6.1 Lot Size Soil Disturbance Threshold Study for Construction and Post-Construction Stormwater Management
- 355 9.1 Work Plan to Determine Loads of Floatable and Settleable Trash and Debris from the MS4 to Impaired Waterbodies
- 380 10.1 MS4 Monitoring Program

Letters from the Mayor and the Commissioner

Dear Friends,

New York is one of the great coastal cities in the world. Our harbor, with the Hudson and East Rivers flanking it, gives shape to our geography and has helped define our history. Poets have celebrated our waterways, and countless generations of immigrants and visitors have been welcomed by them. Our rivers, creeks, and bays have supported industrial growth, neighborhood development, transportation, open space, and recreation. That continues to this day, as our new citywide ferry service transforms the coastline and opens it up to new generations.

We have just one local environment, and we have to constantly support and nurture it. The plan outlined here is one of the ways we do that. It represents the best of New York City government. Multiple agencies worked together on it, combining a range of skills and expertise, while receiving critical input from New Yorkers. This plan raises the bar on the great work we have already done. It creates innovative new initiatives, sets audacious new goals, and holds us accountable by mandating that we measure our progress.

New York City has long been a world leader in environmental protection. The first wastewater treatment facilities in this country were built here in the 19th century. In 1972, New Yorkers came together to launch the modern era of environmental stewardship with the passage of the Clean Water Act. Since then, our waters have become steadily cleaner. Today whales, oysters and wetlands are thriving. This new plan for our waterways builds on my Administration's environmental roadmap, OneNYC: The Plan for a Strong and Just City, which included 15 specific initiatives for our local waterways.

Together, today's New Yorkers will continue the work of those who came before us, to enhance and protect our waterways and pass on a healthy and sustainable harbor to our children.

Bill de Blani

Mayor Bill de Blasio

Dear Friends,

As the largest municipal water and wastewater utility in the country, the New York City Department of Environmental Protection (DEP) carries out an expansive environmental mission. We invest billions of dollars in new infrastructure, while pioneering advancements in environmental planning & analysis, sewer design & construction, and wastewater treatment. These efforts have had a profound impact on the health of our waterbodies and today the New York City Harbor is cleaner than it has been in more than a century.

Continuing to reduce and prevent pollution while protecting the overall health of the harbor requires longterm investment, public and private partnerships, and strategic planning. The NYC Stormwater Management Program Plan (the Plan) is the City's first comprehensive planning effort to target pollution generated in areas served by the municipal separate storm sewer system (MS4) which comprises nearly 40% of the City. The Plan is part of a comprehensive, integrated planning approach that builds upon DEP's Long Term Control Plan Program, which has committed over \$8 billion in recent years for gray and green infrastructure projects for water quality improvements. This work cannot be done alone, however. All New Yorkers who live, work, and play in MS4 areas or on these impaired waterways can have an important role in both the development and implementation of these programs.

Many of the initiatives described in the Plan build off existing DEP operations while proposing bold new steps and actions. We have incorporated feedback from a variety of environmental organizations, neighborhood associations, and the development community while holding technical workshops, releasing progress reports, and hosting community meetings. We will continue to coordinate and engage with all of these stakeholders as we carry out our most vital job: the protection of public health and the environment for nearly nine million New Yorkers.

Uml My

NYC Department of Environmental Protection Commissioner Vincent Sapienza, P.E.

Executive Summary

Coney Island beach and swimmers (1922)

New York City is shaped by water. The waters of the New York City Harbor set boundaries for the City's boroughs and define our history. Hundreds of years ago, freshwater wetlands, salt marshes, streams, and rivers supported communities, commerce, and wildlife. By the industrial age, the rivers became a means for supporting the manufacturing and maritime industries. Wetlands and marshes were filled in and the resulting manmade tributaries became some of the nation's busiest commercial waterways. As one of the world's great waterfront cities, the development and rapid urbanization of NYC is intrinsically linked to the waters around it.

This growth eventually adversely impacted the environment and quality of life. As New York's population grew, open trenches and early sewers conveyed increasing quantities of waste directly to the nearest waterbody. Over a century and a half of industrial pollution and sewage degraded the onceflourishing environment. These water quality and ecosystem degradations were exacerbated by the physical alterations to many waterways surrounding NYC and the legacy industrial pollution. As a result, wildlife disappeared, waterborne diseases spread, and communities of people moved away from the waters' edge. New York City officials responded with investments in the first wastewater treatment plants at Coney Island (1886), 26th Ward (1894), and Jamaica (1903).

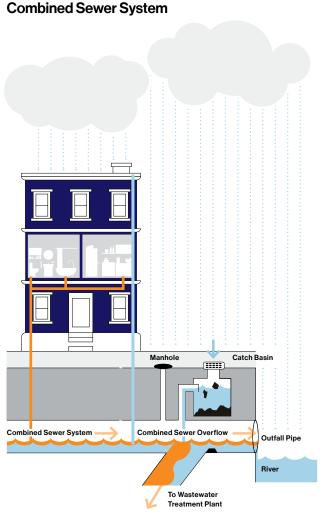
New York City loves the water. The City's early investments in sewers and wastewater treatment ushered in a century of innovation in engineering, research, monitoring, marine science, urban planning, and design and construction. The first water quality studies began in the early 1900s and by 1909 the City established its Harbor

Survey Program. This program helped identify the need for new infrastructure projects.

By the time the United States Congress passed the Clean Water Act in 1972, the City was on its way to reversing the effects of neglect. The Clean Water Act delegated much of the responsibility for setting water quality standards to the states, making the New York State Department of Environmental Conservation a critical partner involved in the City's efforts to reduce pollution and introduce a new generation of New Yorkers to the Harbor. Since 2002 the City has completed \$12 billion in capital projects such as wastewater treatment plant upgrades, sewer separation and sewer system upgrades, combined sewer overflow abatement, nitrogen reduction from wastewater, green infrastructure, and marshland restoration. In recent years the City has committed \$4.1 billion in both grey and green infrastructure projects to reduce combined sewer overflows. Thanks to these investments, water quality related to municipal sewage and waste is significantly better than it was in 1909 and the waters surrounding NYC are recovering and making a dramatic comeback. Whales are returning to the harbor, wetland and oyster restoration projects are thriving, and New Yorkers are able to enjoy recreational activities in their local waterways. This NYC Stormwater Management Program Plan continues the legacy of innovation while reflecting a new era of critical thinking and planning. With this Plan, the City will continue to identify sources of stormwater pollution and develop a range of policies and strategies to reduce it, all with the goal of improving and protecting the waters for the generations of New Yorkers to come.

New York City (NYC)

Land Area. The total area of NYC is approximately 305 square miles organized into five boroughs: Manhattan, the Bronx, Queens, Brooklyn, and Staten Island.


Population. According to the Census Bureau, the July 1, 2017 estimated population of NYC is 8,622,698. NYC is expected to reach about 9 million people by 2040.

Sewer System. About 60 percent of NYC uses a combined sewer system to convey stormwater runoff. The rest of NYC uses either the municipal separate storm sewer system, a private sewer system, or no sewer system at all (often referred to as direct drainage or overland flow).

Impervious Area. Impervious surfaces cover approximately 72% of NYC's land area and generate a significant amount of stormwater runoff.

Municipal Separate Storm Sewer System Catch Basin To Wastewater Treatment Plant Separate Storm Sewer System Outfall Pipe

How do sewer systems handle stormwater?

The City has two types of sewer systems that keep stormwater from flooding streets and homes: a combined sewer system and a separate sewer system. While these systems look the same at the street level, there are some important differences.

In a **Combined Sewer System**, both wastewater and stormwater are carried by a single pipe to a wastewater treatment plant (WWTP). During times of heavy precipitation, the combined sewer system may be overwhelmed and discharge into waterbodies. This discharge is known as a combined sewer overflow (CSO).

In a **Separate Storm Sewer System**, wastewater and stormwater are carried by separate pipes. Wastewater is conveyed to a WWTP where it is treated, while untreated stormwater is discharged into a waterbody.

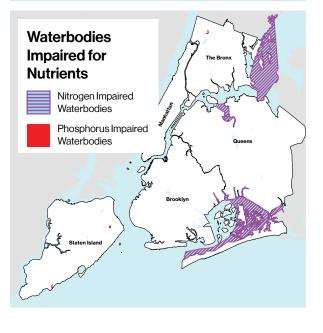
A Municipal Separate Storm Sewer System (MS4) is a separate storm sewer system that is owned by a municipality, in this case the City of New York.

Background

When it rains in New York City, stormwater flows over impervious surfaces such as streets, sidewalks, rooftops, and parking lots before reaching a sewer. Along the way, stormwater can come in contact with pollutants such as oils, pathogens, and sediments. In areas with a separate storm sewer system, this pollution is carried into nearby waterbodies. This is harmful to water quality and can negatively impact the local ecology or limit recreational uses like boating.

The Clean Water Act, which Congress passed to help protect and restore the health of waterbodies across the country, regulates pollution from stormwater as well as other sources. To reduce stormwater pollution, the Clean Water Act requires cities with a municipal separate storm sewer system (MS4) to obtain permits to discharge stormwater into local waterbodies.

The City of New York MS4 Permit


On August 1, 2015, the City of New York (the City) received a State Pollutant Discharge Elimination System (SPDES) Permit from the New York State Department of Environmental Conservation (NYSDEC) for the City's MS4. This permit requires the City to implement measures to reduce pollution in stormwater runoff. While this is the City's first comprehensive MS4 Permit, the City has been implementing stormwater management activities and projects for many years under the SPDES Permits for its 14 Wastewater Treatment Plants (WWTPs).

The MS4 Permit identifies certain bodies of water in the NYC area as impaired. A waterbody is considered impaired when it fails to meet its NYSDEC-designated use (e.g., swimming, fishing, or recreational boating). In Appendix 2 of the MS4 Permit, NYSDEC identifies impaired waters as well as the relevant pollutants of concern for each waterbody listed. Pollutants of concern (POCs) are pollutants that might reasonably be expected to be present in stormwater runoff in quantities that can cause or contribute to a violation of water quality standards. The POCs that have been identified for waterbodies in NYC are:

- **Pathogens** Pathogens are disease-producing agents such as bacteria, viruses, or other microorganisms.
- Floatables Floatables are manmade materials such as plastics, papers, or other products, which have made their way to a waterbody.
- Nutrients Nutrients, including phosphorus and nitrogen, can lead to algae blooms that deplete oxygen in the water, which kills aquatic life.

5 DRAFT FOR PUBLIC REVIEW DRAFT FOR PUBLIC REVIEW

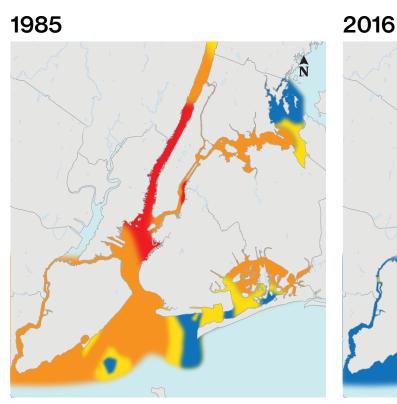
The MS4 Permit regulates drainage areas (collectively called the MS4 area) where one or more of the following statements apply:

- Stormwater drains to separate storm sewers owned or operated by the City that discharge to Surface Waters of the State through MS4 outfalls, or that connect to combined sewer overflow outfalls downstream of a CSO regulator (a device used in NYC's combined sewers to control the diversion of sewage flow to the treatment plants during dry and wet weather);
- Stormwater drains to high-level storm sewers and Bluebelts that ultimately discharge to Surface Waters of the State through MS4 outfalls; or
- Stormwater drains by overland flow from a City operation or facility directly to Surface Waters of the State.

Existing Stormwater Management Efforts

New York City has long been at the forefront of innovative stormwater management, including construction of the award-winning Staten Island Bluebelts and a \$1.5 billion commitment to construct green infrastructure that naturally collects stormwater across the urban landscape. Ongoing programs to manage stormwater runoff include:

- Jamaica Bay Watershed Protection Plan
- Sustainable Stormwater Management Plan
- Bluebelt Initiatives
- NYC Green Infrastructure Program


Scale (# col/100 mL)

0-100

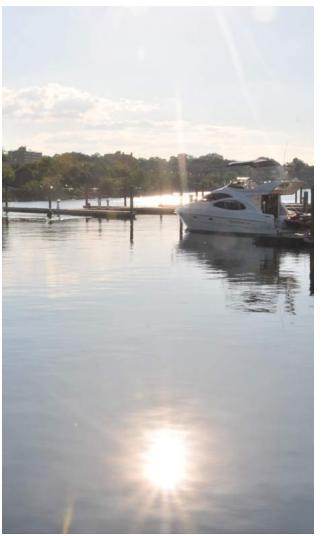
• CSO Mitigation Program and Long-Term Control Plans

As a testament to the City's substantial investments over the last four decades, NYC's waterbodies are healthier than they have been in more than 100 years of testing.

Water Quality Improvements in NYC

100-200

201-2000


>2000

The Stormwater Management Program Plan

The MS4 Permit requires the City to develop a Stormwater Management Program (SWMP), which includes numerous programs designed to reduce pollution in stormwater runoff. The draft SWMP Plan (Plan) is due to NYSDEC on August 1, 2018. The Plan describes the ways in which the City will satisfy the requirements of the MS4 Permit by managing stormwater discharges into and from the City's separate storm sewers. The Plan details the major components of the SWMP and their associated best management practices (BMPs) to reduce the discharge of pollutants from the MS4. The components described in this Plan satisfy the MS4 Permit requirements to meet the maximum extent practicable (MEP) standard.

Most chapters of this Plan include a description of any relevant existing City programs; new initiatives and/or program enhancements; and measureable goals for future assessment of the program. This Plan also refers at times to Appendices, which include documents that the MS4 Permit requires or provide additional information.

Flushing Bay

Chapters in this Plan:

- Legal Authority and Program Administration
- 2 Public Education and Outreach
- 3 Public Involvement and Participation
- Mapping
- 5 Illicit Discharge Detection and Elimination
- 6 Construction and Post-Construction
- 7 Pollution Prevention/Good Housekeeping for Municipal Operations and Facilities
- Industrial and Commercial Stormwater Sources
- Control of Floatable and Settleable Trash and Debris
- **10** Monitoring and Assessment of Controls
- 11 Special Conditions for Impaired Waters
- **12** Recordkeeping and Reporting

MEP

Because of the unique nature of stormwater (an MS4 has limited control of its inputs and cannot treat them as a wastewater treatment plant can treat its influent before discharging it to a waterbody), the Clean Water Act¹ established the MEP standard as the appropriate compliance standard for the MS4s. The New York State Environmental Conservation Law also establishes the same standard.² Rather than requiring strict compliance with water quality standards through traditional end-of-pipe control techniques or numeric effluent limits, the MEP standard requires that the City implement all technicallyfeasible and cost-effective best management practices (BMPs) that will reduce the discharge of pollutants to the MS4.

- 1 33 U.S.C. § 1342(p)(3)(B)(iii)
- 2 ECL § 17-0808(3)(c)

1.0 Legal Authority and Program Administration

Administration of the SWMP

The New York City Department of Environmental Protection (DEP) has led the development of the SWMP with contributions from and assistance of the Stormwater Controls Working Group, a team of representatives from the following New York City agencies that collaborate on MS4 programs. A subset of these agencies have obligations under the MS4 Permit.

- Department of Citywide Administrative Services (DCAS)
- Department of City Planning (DCP)
- Department of Design and Construction (DDC)
- Department of Environmental Protection (DEP)
- Department of Buildings (DOB)
- Department of Corrections (DOC)
- Department of Education (DOE)
- Department of Health and Mental Hygiene (DOHMH)
- Department of Transportation (DOT)
- Department of Parks and Recreation (DPR)
- Department of Sanitation (DSNY)
- Fire Department (FDNY)
- Police Department (NYPD)
- Small Business Services (SBS)
- NYC Law Department (LAW)
- Economic Development Corporation (EDC)
- Mayor's Office of Management and Budget (OMB)
- Mayor's Office of Recovery and Resiliency (ORR)

Interagency collaboration is a critical component for successful implementation of the SWMP. The MS4 Permit requires an interdisciplinary approach and diverse technical skill sets to address a broad range of water quality issues. Furthermore, strong communication between agencies enables a comprehensive set of practices to manage stormwater and help protect local waterbodies.

To enhance interagency coordination, agency representatives participate in sub-teams that focus on certain program elements of the SWMP. Some sub-teams consist only of DEP staff—Industrial and Commercial, Illicit Discharge Detection and Elimination (IDDE), and Monitoring; others include staff from other agencies—Public Outreach and Participation, Mapping, Pollution

Prevention/Good Housekeeping, Construction and Post Construction, and Floatables.

The agencies that have contributed to the SWMP will continue to work together to implement all of its programs and initiatives.

Legal Authority

The MS4 Permit requires that the City have adequate legal authority to implement and enforce the SWMP. A review by the City conducted in 2016 concluded that the New York City Charter provides adequate legal authority to the Mayor and mayoral agencies to manage their operations and facilities, and to ensure coordination and information sharing for the City's compliance with the MS4 Permit. The review also identified three programs that required supplemental legislation to achieve the full legal authority necessary to implement the MS4 Permit: IDDE; Construction and Post-Construction; and Industrial and Commercial.

Accordingly, the City Council approved comprehensive legislation that consolidated, clarified, and supplemented the City's existing legal authority. The Mayor signed the legislation on May 30, 2017, making it Local Law 97 of 2017, or the NYC Stormwater Law. This law enables the City to promulgate rules necessary to address each of the three areas identified as requiring additional authority. A rule is a type of law that is proposed and adopted by a City agency following a process that provides New Yorkers with the opportunity to review and comment on the drafts. The City has already begun the process to adopt these rules:

Regulatory Program	Proposed Rules Published	Final Rules Published
IDDE	September 2017	February 2018
Construction and Post- Construction	Anticipated June 2018	Anticipated within 30 days from Plan Approval
Industrial and Commercial	Anticipated June 2018	Anticipated December 2018

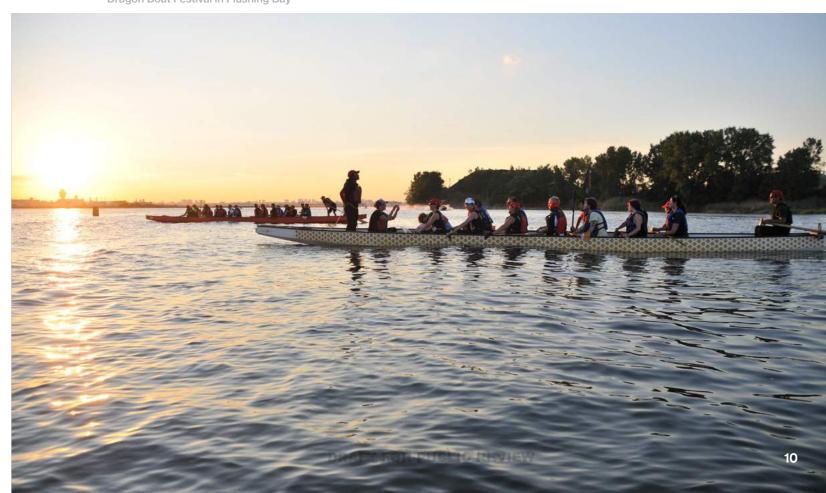
Enforcement Response Plan

The City has developed an Enforcement Response Plan (ERP), which establishes methods and procedures for responses to potential violations of the IDDE, Construction and Post-Construction, and Industrial and Commercial Programs. The ERP is a protocol for investigating and documenting violations of the regulatory requirements of these three programs and, where appropriate, enforcing against the violators.

Possible enforcement responses include a range of techniques to address various levels of non-compliance, such as verbal warnings, written notices of violation (NOVs), citations with civil and administrative penalties, criminal penalties, stop work orders, cease and desist orders, and withholding plan approvals or permits. When issuing an enforcement response, the City will consider the violator's history, and the violation's severity and type. For persistent non-compliance, repeat, or escalating violations, the City will issue progressively stricter responses.

Reliance on Third Parties

Third-party entities (i.e., contractors) sometimes perform work on behalf of the City. In cases where a third-party entity works on developing or implementing any portion of the SWMP, that entity must comply with applicable MS4 Permit requirements.


Each City agency contracting with a third party is responsible for providing the third party with a copy of the MS4 Permit and confirming that the third party complies with applicable MS4 Permit requirements.

Notification of Entities Regulated Under the MS4 Permit

Many of the new or enhanced programs that will be initiated as part of the SWMP will affect specific stakeholders. In order to ensure that these stakeholders are well informed of their new requirements, the City will send out formal notifications to the following entities:

- Industrial and Commercial Facilities that are currently covered by the NYSDEC Industrial Activities Multi-Sector General Permit
- Industrial and Commercial Facilities that do not currently have coverage under the Multi-Sector General Permit but may require coverage
- Construction Sites currently covered by the NYSDEC Construction Activities General Permit

Dragon Boat Festival in Flushing Bay

2.0 Public Education and Outreach

The City has many existing education and outreach initiatives that inform a broad range of stakeholders about stormwater, the sources of pollutants associated with stormwater, and their potential impacts on water quality. Collectively, these programs lay the foundation for the Public Education and Outreach Program for the SWMP. Key programs include the Annual Art and Poetry Contest, NYC Park Stewardship, Community Clean-ups, Cease the Grease, Adopt-a-Highway/Greenway, 311, and many more.

The Public Education and Outreach Program educates New Yorkers on the proper management and disposal of used oil and grease, toxic materials, pharmaceuticals, household cleaners, pet wastes, pathogens, floatables, and nutrients. The target audiences for this program include but are not limited to students, educators, residents, business community, community groups, and environmental advocates. The City uses several strategies to educate the public:

- Information and reporting hotline
- City MS4 website, agency websites, and social media
- Public signage
- Cooperative efforts with local organizations and environmental advocates
- Curriculum development and other resources for teachers
- Electronic communication
- Informational materials
- Public access to waterbodies
- Paid media

11

- Special programming
- Stewardship and volunteerism
- Workshops, trainings, presentations and other events

In addition to educating New Yorkers on proper management and disposal practices, the City encourages the public to report the presence of illicit discharges or water quality impacts associated with discharges from the MS4 using the 311 service. 311 is accessible in many languages and through several platforms. The public can report or seek information related to catch basins, illegal dumping, dirty conditions, dry weather discharges, and other issues.

The City will assess ongoing programs and continue to develop and implement new strategies. The key measures to be reported on and evaluated include number of events, participants, and materials distributed.

NYC students participate in a DEP education program

311 is New York City's main source of government information and non-emergency services.

It provides the public with quick, easy access to all New York City government services and information. The public may connect with 311 by:

- Visiting 311 online;
- Calling 311 or (212) NEW-YORK, (212) 639-9675, from outside New York City;
- Texting 311-692; or
- Downloading the mobile app.

311 is accessible to non-English speakers, available online in over 50 languages and by phone in over 170 languages.

311 facilitates transparency and accountability. Service requests and agency responses are available to the public as open data online.

Currently, the public is able to use 311 to access information on many topics relevant to stormwater pollution and water quality. The public is also encouraged to use 311 to report information relevant to stormwater pollution. Through 311, the public can report:

- Waterway Complaint—Report floatables, trash, oil, gasoline, sewage, or an unusual color in a waterway. This can also be used to report a potential illicit discharge from an MS4 outfall.
- Dry Weather Sewage Discharge Complaint— Report of water flowing through a sewer outfall pipe during dry weather.
- Dumping in Catch Basin or Sewer—Report grease, gasoline, natural gas, cement, oil, sewage, chemicals, or other liquids going into a sewer or catch basin.
- Oil Spill—Report an oil spill.
- Illegal Dumping Complaint—Report the dumping of large amounts of trash.
- Catch Basin Complaint—Report a storm drain that is missing its cover, clogged, sunken, raised, damaged, or defective.

3.0 Public Involvement and Participation

Involving the public in the development of this Plan and implementation of its programs is a fundamental requirement in the City's MS4 Permit. Whether it's NYC residents who recreate in local waterbodies, real-estate developers who build in MS4 areas, groups who organize waterbody cleanups, or environmentalists who advocate for a healthier harbor, there are a variety of stakeholders who participate in the City's efforts to improve water quality.

The City identified key stakeholders through their demonstrated interest in the MS4 Permit, participation in other water quality programs, and/or their potential to be affected by SWMP implementation. These stakeholders fall into several categories:

- Students and educators
- General public and residents
- Environmental stakeholders
- Neighborhood associations and other communitybased groups
- Governmental entities (e.g., New York City Housing Authority, Metropolitan Transit Authority, School Construction Authority)
- Elected officials and Community Boards
- Industrial and commercial business community
- Design, construction, and development community

The City created a robust engagement strategy with support and input from the key stakeholders. This strategy included:

- Identifying communication methods to reach stakeholders such as emails, press releases, mailed letters, flyers, media campaigns, website updates, and social media;
- Holding stakeholder meetings to keep stakeholders informed and to solicit feedback;
- Listening, acknowledging, and responding to public input:
- Creating informational and educational materials;
- Working with stakeholders to create public programs and events;
- Providing draft documents to obtain public feedback before final submission to NYSDEC;
- Leveraging other water quality related engagement efforts to reach a broader audience; and

• Reducing potential conflicts among stakeholders by seeking to build consensus around issues.

At the request of the public, the City formed a Stormwater Advisory Group (SAG). The SAG was open to the general public and enabled participants to provide substantive feedback throughout the drafting of this Plan. At SAG meetings, the City provided the following for each provision of the SWMP:

- Progress on the development of the City's legal authority to administer all permit requirements;
- Summary of ongoing stakeholder engagement; and
- Detailed review of specific SWMP programs as they were developed.

These focused meetings created a space for participants to engage with the latest planning and analysis completed by the City. The City evaluated and responded to comments and suggestions received during these meetings.

The City will continue to engage the public as it implements the SWMP. In addition to administering the programs listed in Chapter 2: Public Education and Outreach, the City will also conduct outreach and accept public input throughout the rulemaking process as described in Chapter 1: Legal Authority and Program Administration, and continue to facilitate public reporting on stormwater related concerns through 311. Each year the City will publish and publicly present a draft Annual Report for public review and comment. Additional information about the SWMP is available on the DEP website; the public is also encouraged to email MS4@dep.nyc.gov for more information.

Key measures to be reported include a summary of comments received on the draft Annual Reports and SWMP implementation, and a list of involvement and participation programs and activities.

East River

4.0 Mapping

The City has many programs to document and map important information about NYC. Much of the information gathered by these programs is available to the public through NYC Open Data. As part of the SWMP, the City is mapping MS4 outfalls and drainage areas.

Over the past decade, DEP developed a Sewer Network Geodatabase, which digitally captures important information about DEP's water and sewer network in a Geographic Information System (GIS). DEP has also conducted extensive analysis and modeling of the City's combined sewer system as part of an effort to reduce CSOs. As a result, DEP has a good understanding of the areas draining to combined sewer outfalls.

When the MS4 Permit was issued in 2015, the City used these existing DEP data sets to create the Historical MS4 Map. This map represented the City's best understanding of the MS4 area and outfalls at that time and has been used throughout the development of the SWMP. However, the Historical MS4 Map is unrefined, may contain some inaccuracies, and does not incorporate sewer infrastructure of other City agencies. The City is therefore in the process of updating the MS4 Map by refining and identifying the MS4 drainage area and outfalls.

A Preliminary MS4 Map showing the MS4 drainage area and outfalls confirmed as of August 1, 2018 will be available

to the public at the DEP website. The Preliminary MS4 Map will also contain supplemental information that may be relevant to stormwater management. The City aims to complete the MS4 mapping effort by August 1, 2020, after which point the map will be updated once every five years.

The success of the mapping program will be measured by the percent of MS4 outfalls mapped and the submission of the Final MS4 Map.

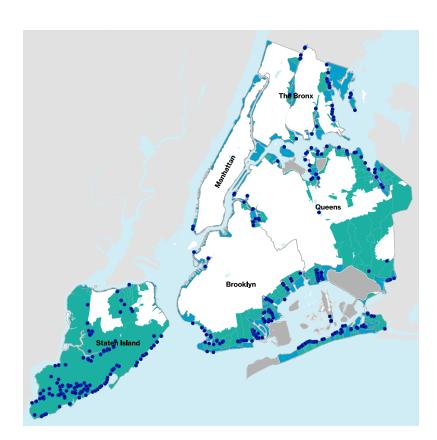
What is an outfall?

An **MS4 outfall** is any point where a separate storm sewer system owned or operated by the City of New York discharges either to Surface Waters of New York State or to another MS4. Outfalls include discharges from pipes, ditches, swales, and other points of concentrated flow.

Historical MS4 Map (as of 8/1/15)

MS4 Outfalls

Waterbody


Drainage Area Type

Direct Drainage

Municipal Separate Storm Sewer System

Combined Sewer System

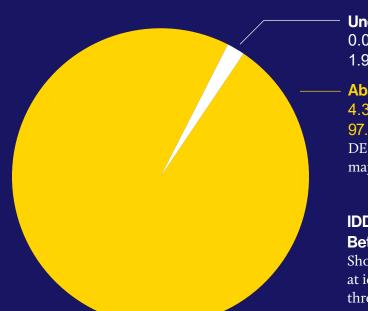
Federal Land and/or Airports

Paerdegat Basin and Jamaica Bay

5.0 Illicit Discharge Detection and Elmination (IDDE)

An illicit discharge is an unauthorized non-stormwater discharge to the storm sewer system. Examples of illicit discharges include sanitary connections to storm sewers, illegal dumping, and spills that enter the sewer. These discharges can include POCs such as pathogens and oil that can degrade water quality.

The City has several long-standing programs that together comprise our efforts to detect, identify, and eliminate illicit discharges:


The **Shoreline Survey Program** is an outfall reconnaissance inventory that identifies and characterizes shoreline outfalls in NYC. Under this program, DEP surveys 50 percent of the shoreline every five years, with progress made each year. If DEP observes a dry weather discharge, which could be an illicit discharge, it conducts an investigation to track down the source and take steps to abate the problem.

The **Sentinel Monitoring Program** monitors waterbodies throughout NYC for pathogens. Under this program, DEP collects samples at 80 monitoring stations on a quarterly basis. DEP compares sampling results to a NYSDEC-established water quality baseline. If sampling results are above the baseline, DEP investigates the adjacent shoreline through a mini-shoreline survey to determine whether there is a contaminated dry weather discharge that would require source trackdown and abatement actions.

The **Harbor Survey Program** samples ambient waterbody stations to assess the health of waterbodies throughout NYC. DEP coordinates the review and analysis of this data among the various monitoring programs and it may be used to initiate a mini-shoreline survey.

311 provides a mechanism for the public to report illicit discharges to the City. Waterway complaints, illegal dumping, and oil spills are examples of reports the public can make through 311. The City responds to 311 reports based on the type of complaint. Typically, a City employee will go to the location of a complaint, look for evidence, and try to identify the source.

The Emergency Spill Response Units in DEP and FDNY respond to spills citywide. DEP responds to spills that enter the sewer system 24 hours a day/7 days a week. Throughout NYC, the FDNY Hazmat Unit and the DEP Division of Emergency Response and Technical Assessment respond to hazardous materials spills. DSNY may assist in spill response when requested to do so by emergency response personnel.

Under Investigation

0.03 million gallons per day (MGD)

1.94%

Abated

4.35 million gallons per day (MGD) 97.57%

DEP has successfully abated the overwhelming majority of discovered illicit discharges

IDDE Program Effectiveness Between 1998-2017

Shows the effectiveness of existing DEP programs at identifying and eliminating illicit discharges through the Shoreline Survey and Sentinel Monitoring Programs

Illicit Discharge Trackdown and Elimination

Once a potential illicit discharge is identified, DEP initiates a trackdown to find the source and take steps to eliminate it. The trackdown process is a series of complex steps both in the office and in the field. DEP uses sewer maps to identify areas that drain to the suspected outfall; pulls manholes in the streets to look for flow; samples discharges present in storm sewers to test for pollutants; and conducts dye tests.

Each trackdown investigation is unique; some can take a few hours, while others can take days or months depending on the location, the number of sources, and the logistics and complexity of the drainage area.

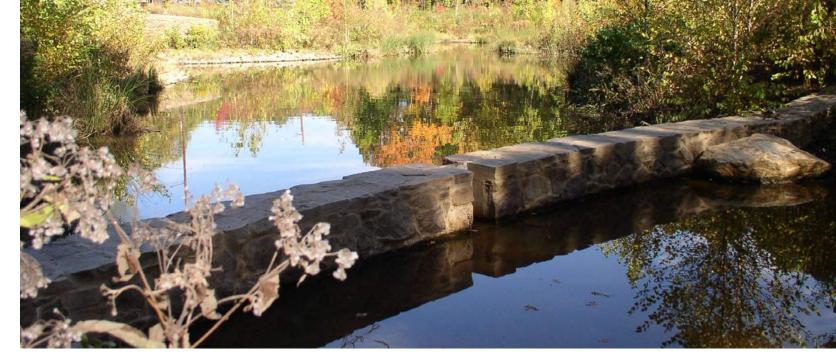
If the source of an illicit discharge is found, DEP issues a Commissioner's Order requiring the responsible party to take corrective action. DEP works with the responsible party, which can range from homeowners to industrial facilities, to ensure corrective action is taken as quickly as possible. DEP also revisits the site to ensure compliance.

DEP reports to NYSDEC when an illicit discharge is detected and again when the source is confirmed. DEP also notifies Community Boards, elected officials, and community groups when illicit discharges are confirmed. The public can also be notified through the NYSDEC NY-Alert System and community leaders.

DEP will publish on the DEP website the Integrated Sentinel Monitoring Report, which will be submitted annually to NYSDEC, and include water quality data; field investigation status and results; and monthly summaries of spills and illegal dumping to the sewer system.

IDDE Education, Outreach, and Training


The City conducts outreach to inform the general public, businesses, and City employees about illicit discharges and how to properly dispose of waste.


- General public: The City provides information on illicit discharges through the DEP website. DSNY SAFE disposal events and Special Waste Drop-off Sites are a resource for the public to properly dispose of waste and ensure it does not enter the MS4.
- Industry and businesses: The City conducts targeted outreach on illicit discharges through meetings, doorto-door visits, workshops, mailers, and on-site visits to educate the business community on proper waste disposal.
- City employees: The City trains operational staff on preventing and identifying illicit discharges during routine work activities through the Pollution Prevention and Good Housekeeping (PP/GH) Program.

The City also trains employees implementing the IDDE Program on illicit discharge identification, proper procedures for reporting and responding, and applicable health and safety guidelines.

Annual key measures of the IDDE Program include number of MS4 outfalls inventoried; number of illicit discharges detected and number eliminated; number of outreach programs and activities; and number of staff trained.

Wildlife in Bowery Bay

Woodrow Bluebelt, Staten Island.

6.0 Construction and Post-Construction

Construction is part of the fabric that supports the growth and change of NYC. Development of new sites and redevelopment of old sites redefine the City every day.

To reduce the impact that construction and development may have on stormwater runoff, NYSDEC administers the State Pollution Discharge Elimination System (SPDES) General Permit for Stormwater Discharges from Construction Activity (GP-0-15-002) (NYSDEC CGP). The MS4 Permit requires the City to develop and administer an enhanced regulatory program based on the existing NYSDEC CGP program. The City has developed the Construction and Post-Construction Program (C/PC Program) which is applicable in the MS4 area.

SWPPP Review and Approval

A stormwater pollution prevention plan, or SWPPP, is a plan prepared by a developer to manage stormwater runoff from a construction site. SWPPPs include elements that prevent pollution both during construction and after a project is completed. The NYSDEC CGP requires developers to prepare SWPPPs; the MS4 Permit requires the City to review and approve these SWPPPs.

Stormwater Permits

To ensure developers follow their approved SWPPPs, the City will issue Stormwater Construction Permits and Stormwater Maintenance Permits. The Stormwater Construction Permit requires that the people who work on the project manage the construction site according to the SWPPP so that eroded soil and other construction wastes do not become a source of stormwater pollution. During construction, DEP may inspect a site to verify compliance with the SWPPP.

For many projects, in addition to practices that control stormwater during the construction process, the SWPPP also includes stormwater management practices (SMPs) that will be implemented to reduce the pollutants being washed from the site after construction is complete. When construction is complete, the owner must apply for and maintain a Stormwater Maintenance Permit, which requires long-term operation and maintenance of the SMP(s) that have been constructed. DEP may periodically inspect sites to verify that SMPs are properly maintained and functioning.

Threshold Study

The MS4 Permit required the City complete a Lot Size Soil Disturbance Threshold Study for Construction and Post-Construction Stormwater Management (Threshold Study) to determine the appropriate size of soil disturbance that should trigger the need for review, approval, and permitting under the C/PC Program in the MS4 area. The City has completed the Threshold Study and recommends adoption of a 20,000 square foot soil disturbance threshold for both construction and post-construction requirements for public and private development and redevelopment projects on tax lots within the MS4 area.

Key measures to be annually reported for the C/PC Program include number of SWPPPs reviewed and approved; number and type of permits issued; and number and type of enforcement actions.

7.0 Pollution Prevention/Good Housekeeping for Municipal Operations and Facilities

The City has an extensive network of municipal facilities and operations that serve New Yorkers and keep vital infrastructure functioning properly. Most City agencies with municipal facilities and operations already have existing practices that help prevent stormwater pollution. Building off these existing practices, the City has developed a comprehensive Pollution Prevention/Good Housekeeping (PP/GH) Program that:

- Maintains an inventory of municipal facilities and assesses these facilities and operations for the potential to contribute pollution to stormwater runoff
- Provides guidance on stormwater control measures (SCMs) to reduce stormwater pollution from municipal facilities and operations
- Trains key staff on pollution prevention and good housekeeping practices
- Considers the feasibility of incorporating runoff reduction techniques and green infrastructure in planned municipal upgrades

This program is standardized for consistency across facilities and operations, both on-site and off-site, and equips City staff with the necessary information and tools for each agency to implement the program.

Self-Assessments of Municipal Facilities and Operations

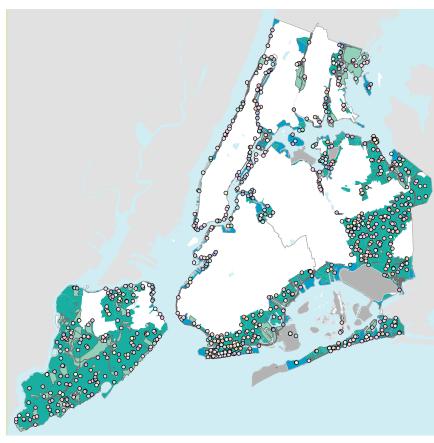
As part of the PP/GH Program, the City will assess municipal operations and facilities in the MS4 area with the potential to contribute pollutants to stormwater runoff. The City prepared an initial inventory of 846 municipal facilities based on the Historical MS4 Map. The City categorized these facilities and operations using a standardized prioritization protocol that evaluates their potential to contribute to stormwater pollution, referred to as pollution potential. Facilities and operations were given priority ratings of high, medium, or low, which determine the frequency of self-assessments: high priority site assessments happen every two years, medium every five years, and low every seven years.

A facility or operation may increase or decrease in priority with each assessment based on the pollution potential at that time, and will then be subject to the timeline for the next self-assessment based on the revised priority. The standardized self-assessment protocol aids agencies in determining sources of POCs potentially generated by their facilities and operations; evaluating the adequacy of their current PP/GH practices; and identifying management practices, policies, and procedures that may be implemented.

Initial Inventory and Pre-Assessment Priority Rating of Municipal Facilities to date

A		Number of Cites		
Agency	Low Priority	Medium Priority	High Priority	Number of Sites
DCAS	2	3	-	5
DEP	16	115	-	131
DOC	-	-	2	2
DOE	DOE 14		-	160
DOT	55	21 2		78
DPR	172	91	-	263
DSNY	26	34	3	63
FDNY	FDNY 35		1	76
NYPD	NYPD 22		2	68
Total	342	494	10	846

Map of Municipal Facilities in the PP/GH inventory to date


- O DCAS
- O DE
- DOC
- O DOE
- DOT
- O DPR
- O DSNY
- O NYPD

DPR Parks

Drainage Area Type

Direct Drainage

Municipal Separate Storm Sewer System

The City developed guidance on additional PP/GH practices, referred to as stormwater control measures (SCMs). Agencies can select appropriate actions from this suite of SCMs for implementation at their facilities and operations. SCMs include options with a range of solutions and effectiveness, which may involve both structural and non-structural controls. Structural controls include oil and water separators, grit chambers, or other devices that remove pollutants. Non-structural controls include operational practices, signage, staff education, and other procedures. The appropriate controls are subject to agency decision making, which will consider potential effects on agency operations and individual circumstances at each facility. The list of the SCMs, which incorporated interagency and public feedback, will be available at www.nyc.gov/dep.

City Staff Training

The City developed PP/GH training for agency staff that addresses ways to reduce the discharge of pollutants from municipal facilities and operations. The City will deliver training to agency-identified staff responsible for the implementation of SCMs in day-to-day municipal operations; agency trainers responsible for providing in-person trainings on pollution prevention; and agency site assessors responsible for conducting the self-assessments.

Green Infrastructure Feasibility for Planned Municipal Upgrades

Each individual agency will consider and, if feasible and cost-effective, incorporate runoff reduction techniques and green infrastructure (Gl) during planned municipal upgrades, including within municipal rights-of-way. Examples of Gl include bioswales, green streets, grass swales, rain gardens, curb cuts to reroute flow to belowgrade infiltration areas, or other low-cost improvements that provide runoff treatment or reduction. Consideration of feasibility includes physical site conditions, hydrogeological and environmental analyses, costs, and expected life cycles of available technologies. The City has developed criteria for agencies to use during municipal upgrade planning as a consistent method for assessing feasibility of Gl implementation.

Key measures of the PP/GH Program include training of agency staff, completion of selfassessments, and implementation of SCMs and green infrastructure projects.

8.0 Industrial and Commercial Stormwater Sources

NYSDEC requires certain industrial facilities to obtain coverage for stormwater discharges under the State Pollution Discharge Elimination System (SPDES) Multi-Sector General Permit for Stormwater Discharge from Industrial Activities (GP-o-I7-oo4) (MSGP). While NYSDEC will continue to administer the MSGP program, DEP will implement an Industrial and Commercial (I/C) Program in the MS4 area through the following actions:

- Maintain a facility inventory
- Assess unpermitted facilities for contributions of POCs to impaired waters
- Inspect both publicly and privately owned facilities with MSGP coverage and take enforcement actions, if appropriate
- Develop a database tracking system
- Train inspection staff

Industrial and Commercial Facility Inventory

Using the Historical MS4 Map, various databases, and information from NYSDEC, DEP created an Industrial and Commercial Facility Inventory (I/C Facility Inventory). The I/C Facility Inventory included all publicly and privately owned industrial and commercial sites that may conduct activities within the industrial sectors covered by the MSGP permit, and other industrial/commercial facilities that might generate a significant amount of POCs. DEP screened the facilities in the I/C Facility Inventory, and categorized the facilities for DEP action. The inventory serves as the basis for the I/C Program, and will be updated every five years.

I/C Facility Inventory Categories

Category	Facility Characteristics
Category 1: No Further Action	Not subject to MSGP; not draining to the MS4; covered under individual SPDES permit; or filed a Notice of Termination (NOT) with NYSDEC
Category 2: Facilities with NYSDEC No Exposure Certification	NYSDEC No Exposure Certification
Category 3: On-Site Assessment for Potential Referral to NYSDEC	Classified as an industrial site or source meeting the criteria set forth in Part IV.H.1.a.iii of the MS4 Permit; discharges stormwater to the MS4; not covered under an existing MSGP or individual SPDES permit; and aerial photos show evidence of industrial and commercial activity
Category 4: Ongoing MSGP Inspections Based on Priority Rating	NYSDEC MSGP coverage

Unpermitted Facility Assessments

DEP will assess the approximately 1,300 unpermitted facilities in the I/C Facility Inventory (Category 3). DEP expects to begin facility assessments in early 2019; however, the exact start date of the assessments is dependent on NYSDEC approval of this Plan.

PRE-ASSESSMENT

.

Review Site Specific Information

Aerial maps

Schedule Assessment

- Data from screening process
- MS4 Map
- Any other available information

Notify Facilities

 Send follow-up notification letter with DEP contact information and information on what to expect during the assessment

Introduction

- Offer Credentials
- Communicate reason for and extent of assessment

ASSESSMENT

Facility Walkthrough

- Confirm/update facility information
- Assess drainage
- Assess the presence of pollution sources
- Evaluate potential stormwater impact

Wrap-Up Meeting

- Discuss preliminary findings
- Explain next steps in the process

Complete Facility Assessment

 Verify checklist completed and necessary information collected

POST-ASSESSMENT

Notify Facilities

Report

- Summary of assessment findings
- Information on SPDES applicability, if necessary
- DEP's required referral to NYSDEC, if applicable

Notify NYSDEC (if applicable)

- DEP will periodically notify NYSDEC of assessment findings
- NYSDEC will work with each facility to issue an appropriate permit
- I/C measures will be included in Annual Reports

Update I/C Facility Inventory

- Upload all documents to the I/C System
- Assign facility appropriate category

Permitted MSGP Facility Inspections

DEP will inspect publicly and privately owned facilities with MSGP coverage in the I/C Facility Inventory based on information and prioritization provided by NYSDEC (Category 4). For each facility, DEP will use findings from the initial inspection, and other available information, to determine potential water quality impacts and to prioritize the facility for future inspections. DEP will inspect high priority facilities every year; medium priority facilities every three years; and low priority facilities every five years.

DEP will review on-site SWPPPs and related records as part of the inspection. If DEP determines that a facility is not in compliance with the MSGP, DEP could take enforcement action.

Key measures of the I/C program include number of MSGP facilities inspected by priority, status of unpermitted assessment program, and number and type of enforcement actions completed.

PRE-INSPECTION

Review Site Specific Information

- Priority Rating
- Latest facility MSGP data from NYSDEC
- Five-year violation record
- Any other available information

ON-SITE INSPECTION

Introduction

- Offer credentials
- Communicate reason and extent of inspection

On-site Record Review

- Facility Stormwater
 Pollution Prevention Plan
 (SWPPP)
- Self-inspection/monitoring reports
- Training materials
- Any other available information

Facility Walkthrough

- Visual inspection of industrial areas
- Confirm activities described in SWPPP
- Check if controls defined in SWPPP are implemented and effective

Wrap-Up Meeting

- Discuss preliminary findings
- Resolve outstanding questions
- Explain next steps in the process

POST-INSPECTION

Complete Facility Assessment Report

 Verify checklist completed and necessary information collected

Notify Facilities

- Follow-up letter on compliance status
- Send a copy of the Facility Inspection Report, if appropriate
- Summary of infractions and corrective actions, if applicable

Confirm or revise priority for future inspections

 Use the prioritization factors for facilities in the I/C Facility Inventory with MSGP Coverage

Update I/C System

Upload all documents

Notify NYSDEC

- DEP will send information to NYSDEC throughout the year
- I/C measures will be included in Annual Reports

DEP skimmer boat collects trash and debris

9.0 Control of Floatable and Settleable Trash and Debris

Trash and debris from urban areas can be transported by stormwater runoff into local waterbodies. Once waterborne, this trash and debris is often referred to as floatables. The SWMP relies on many existing programs to control trash and debris stemming from the MS4. Key programs to manage trash and debris include street sweeping, catch basin hoods and maintenance, and booms and nets that catch materials that come out of outfalls. The City-Wide CSO Floatables Plan of 1997¹ reported an estimated 96% capture rate of street litter citywide through these programs and treatment of combined sewage. The City has developed a work plan to determine the loading rate of trash and debris discharged from the MS4. Additionally, City facilities and operations within the MS4 will control trash and debris as part of their PP/GH practices.

The City also administers a variety of public participation programs that encourage the public to help manage trash and debris. This includes a suite of stewardship programs (e.g., Adopt-a-Bluebelt, Adopt-a-Highway/Greenway, and Adopt-a-Basket) and 311, which enables New Yorkers to report dirty conditions to the City. The City also implemented several public awareness campaigns in connection with the SWMP:

• B.Y.O. Campaign. Shorthand for "bring your own," the B.Y.O. Campaign encourages New Yorkers to live a less disposable lifestyle by using reusable bags, mugs, and bottles. By encouraging New Yorkers to use reusable items, the campaign helps reduce the initial generation of waste that may end up as floatable debris in the City's waterways.

More and more New Yorkers are carrying reusable bags. Join in! Remember to Bring Your Own bag when shopping.

 HydroQual, Inc. 1997. City-Wide CSO Floatables Plan, prepared for the City of New York, Department of Environmental Protection, Bureau of Environmental Engineering, June 1997

- #TalkTrashNewYork. The City developed a
 basketball-themed message that reminds New
 Yorkers that keeping NYC clean is a team effort.
 DSNY partnered with DPR and the New York Knicks
 for #TalkTrashNewYork, an anti-litter campaign
 promoting clean streets, sidewalks, beaches, and parks
 across the City.
- Don't Trash Our Waters. Seeking to raise public awareness of the connection between trash, litter, and water quality, the City developed the campaign message, "Don't Trash Our Waters." This campaign featured a series of charismatic underwater characters, designed to remind New Yorkers that trash on the street ends up in our harbor and hurts local wildlife such as dolphins, seals, whales, turtles, and oysters. In addition to raising awareness, the campaign also aimed to change littering behavior by imploring New Yorkers to "put it in the can."

Loading Rate Study

The City has developed a work plan to determine the loading rate of trash and debris discharged from the MS4 to waterbodies impaired by floatables. The work plan combines field measurements with model analysis to determine loading rates for specific waterbodies as well as the whole MS4. The City will measure trash and debris discharged from sample catch basins representing 21 site categories that are likely to have different trash loading rates. To enhance the field measurements, the City will use an existing model to check the results of the field monitoring and to account for downstream in-water controls such as booms. These data and model results will then be used to estimate a loading rate for the whole MS4. The work plan is included as Appendix 9.1.

Identifying and Selecting Additional Controls

As part of the SWMP, the City has also identified controls and technologies used by other municipalities. DEP surveyed eight municipalities to identify available types of technologies used for floatables control and assess which may be applicable in the MS4 area. The City is currently implementing or has previously evaluated nearly all of the controls used by other municipalities.

Following the results of the loading rate study, the City will propose a method to site, select, and size additional controls to reduce floatables from the MS4. This method will identify and prioritize areas for additional controls and may consider factors such as waterway characteristics, neighborhood characteristics, and existing controls.

Key measures of the floatables control program are the number of catch basins inspected, cleaned, and repaired as well as the results of the boom and netting program. The status of the loading rate study will also be reported.

10.0 Monitoring and Assessment of Controls

To assess the quality of stormwater runoff from the MS4, the City has developed an MS4 Monitoring Program that combines data collected from existing monitoring programs with additional MS4 outfall or manhole water quality and flow data. This program is designed to enable an adaptive management approach toward monitoring and assessing water quality in impaired waters.

The City's routine ambient water monitoring programs described below provided useful data for the development of the MS4 Monitoring Program. These monitoring programs will continue and the City will use the data to complement the MS4 Monitoring Program.

- Harbor Survey Program. DEP and predecessor City agencies began monitoring water quality in New York Harbor waters in 1909. Today, the Harbor Survey Program assesses changes in water quality in New York Harbor over long periods to measure the effectiveness of the City's various water pollution control programs. This program routinely measures dissolved oxygen (DO), fecal coliform, enterococci, secchi depth (transparency), chlorophyll "A," total suspended solids (TSS), and total nitrogen (TN).
- Sentinel Monitoring Program. DEP monitors waterbodies throughout NYC for pathogens in accordance with DEP's 14 WWTPs SPDES Permits. Under this program, initiated in 1998, DEP collects samples at 80 monitoring stations on a quarterly basis. DEP compares sampling results to the NYSDEC-established water quality baseline. If sampling results are above baseline criteria, DEP investigates the adjacent shoreline through a mini-shoreline survey to determine whether there is a contaminated dry weather discharge that would require source trackdown and abatement actions.
- Shoreline Survey. DEP identifies and characterizes shoreline outfalls in NYC. Under this program, DEP surveys 50 percent of the shoreline every five years, with progress made each year. If DEP observes a dry weather discharge, it conducts an investigation, which may include sampling, to track the source and take steps to abate the problem.

- Field Sampling Analysis Program (FSAP) Sampling Program. The FSAP is a citywide synoptic sampling program with the objective of evaluating the water quality of CSO-impacted waterbodies. This program is a temporary sampling program for DEP's CSO Long Term Control Plan (LTCP) program that targets wet weather events and takes simultaneous water quality samples at multiple locations in a short period. Each impacted waterbody is governed by a plan that addresses waterbody-specific considerations. The FSAP focuses on target bacteria (i.e., fecal coliform and enterococci), TSS, biochemical oxygen demand (BOD), temperature, conductivity/salinity, and DO associated with CSO and stormwater discharges.
- Beach Sampling. City bathing beaches are regulated, monitored, and permitted by the City and State. Under Article 167 of the City Health Code and Section 6-2.19 of the City Sanitary Code, DOHMH is responsible for beach surveillance and monitoring for all permitted City beaches. This monitoring includes routine enterococci measurements at beaches for compliance with water quality standards. DOHMH compiles the results of routine water quality monitoring and compliance inspections in an Annual Surveillance and Monitoring Beach Report.
- Community-Led Monitoring. Many schools, universities, citizen scientists, recreational water users, and environmental organizations conduct their own water quality testing in NYC waters. The City considers established community-led monitoring data in evaluations of long-term trends of water quality and comparisons. For example, during the development of several CSO LTCP's, organizations such as Riverkeeper, Bronx River Alliance, and the New York City Water Trail Association's Citizens Water Quality Testing Program conducted sampling and submitted data and analysis to the City. The City reviewed this information in relation to its own analyses, noted comparisons and differences, and in some cases used it for modeling calibration processes. DEP compared stakeholder data with City data and provided a summary of the comparison during public meetings, on the DEP website, and in the final CSO LTCP that DEP submitted to NYSDEC. Organizations besides those listed above that collect long-term water quality data are encouraged to notify the MS4 team with information on their monitoring program at MS4@dep.nyc.gov.

MS4 Monitoring Program

The MS4 Monitoring Program relies on a phased approach to assess the pollutant contribution from the MS4 area and its influence on New York Harbor water quality. In Phase 1, DEP will meter and sample at a set of MS4 outfalls during wet weather to assess the influence of land use on stormwater discharge and pollutant concentrations. In NYC, tidal flows influence the majority of outfalls with tidal waters sometimes reaching miles upstream. This influx of harbor water impedes stormwater discharges from outfalls and therefore, presents challenges for measuring stormwater impacts on receiving waterbodies. In order to avoid tidal influence in the sewer, DEP will collect some samples from manholes upstream of the representative MS4 outfalls. The Phase I monitoring strategy and work plan focuses on eight outfalls representative of six land use types within NYC: mixed; high-density residential; low-density residential; industrial; open space; and highway. Sampling will start by August 2020 and be performed once per quarter for two years for a total of 64 samples.

Using the data from Phase I, the City will develop a monitoring strategy for Phase 2. In Phase 2, DEP will target a second set of outfalls to determine which have the greatest pollutant loadings and evaluate long-term trends. Phase 2 will compare results from outfall monitoring stations with receiving water quality data collected at the Harbor Survey and/or Sentinel Monitoring stations nearest to the Phase 2 outfalls. For more detail on Phase I and 2 monitoring, refer to Appendix Io.I.

To track the implementation of the MS4 Monitoring Program, the City will report on the status of program development and implementation, as well as an assessment of the program results and recommended adjustments.

Summary of POC Source Categories and Control Measures for Coney Island Creek

Phase	Goal	Sampling Sites	Frequency	Monitoring Parameters	Anticipated Start
Phase 1	Assess the effect of land use on stormwater discharge and pollutant concentrations	8 MS4 outfalls representative of 6 land use types (1 mixed, 1 highdensity residential, 2 low-density residential, 2 industrial, 1 open space, and 1 highway)	Quarterly for 2 years	 Residue Pathogens Nutrients Metals Oil and grease Field in-situ Flow 	By August 2020
Phase 2	Evaluate long- term trends	MS4 outfalls to be determined based on Phase 1 results Nearest existing corresponding Harbor Survey and/or Sentinel Monitoring Stations	To be determined based on Phase 1 results	To be determined based on Phase 1 results	After analysis of Phase 1 data

11.0 Special Conditions for Impaired Waters

The City will administer the SWMP to reduce or remove pollutants in stormwater runoff from the MS4 area draining to Surface Waters of the State, including impaired waters. The MS4 Permit identifies special conditions for specific impaired waterbodies:

Impaired waters without Total Maximum Daily Loads (TMDLs)

The City will ensure no net increase of the pollutant of concern (POC) causing the impairment from non-negligible land use changes or changes to stormwater management practices within the MS4 area draining to the impaired waters. This will be achieved through SWMP implementation and the City's Stormwater Pollution Prevention Plan (SWPPP) review process as part of the C/PC Program.

Impaired waters with NYSDEC approved Combined Sewer Overflow Long Term Control Plans (CSO LTCPs)

Impaired waters with NYSDEC approved CSO LTCPs that do not predict compliance with applicable water quality standards, and where stormwater contributions from the MS4 are expected to be a significant contributor to the impairment, are Priority MS4 Waterbodies. The City will develop Priority MS4 Waterbody Plans (PWPs) for each of the qualifying waterbodies.

Based on the data in the Coney Island Creek CSO LTCP, DEP proposed to designate Coney Island Creek as a Priority MS4 Waterbody and, in December 2017, DEC agreed to the designation. The PWP for Coney Island Creek, summarized below, includes the source categories for POCs causing impairment, additional or customized best management practices, and opportunities for GI pilots. Currently, no other Priority MS4 Waterbodies have been identified. If other Priority MS4 Waterbodies are identified in the future, additional waterbody-specific PWPs will be developed and summarized in Annual Reports.

Coney Island Creek PWP

The two POCs causing impairments for Coney Island Creek are floatables and pathogens. The table below shows the targeted sources of these POCs in relation to the MS4 area draining to Coney Island Creek, and proposed control measures. In addition, DEP has identified potential GI opportunities in Coney Island Creek MS4 areas, and is collaborating with other agencies (e.g., DPR, NYCHA, DOE) to evaluate the feasibility of adding GI pilot projects at these sites.

Summary of MS4 Monitoring Program Phases

Pollutant of Concern	Targeted MS4 Source Categories	Proposed Control Measures and Projects for CIC
Floatables	Highly impervious area (littering)	 Catch basin marking Signage deployment Source control Public education and outreach
Pathogens	Illicit dischargesPet waste	 Pet waste management Signage deployment Source control Sentinel Monitoring Source tracking Public education and outreach

Coney Island Creek aerial view

12.0 Recordkeeping and Reporting

Each agency will maintain their own records generated while implementing the SWMP. To consolidate information for MS4 reporting and information requests, the City is developing a Consolidated Information Tracking System. This system will allow each agency to input data and supporting documentation about SWMP activities. The public can request SWMP-related records by emailing MS4@dep.nyc.gov.

Each year, the City will prepare an Annual Report to document the SWMP activities for the reporting year. DEP will publish a draft of the Annual Report on the DEP website and present it to the public by July 1 of every year. The draft Annual Report will generally include a brief description of the SWMP activities completed during the reporting year, measurable goals, and specific reporting requirements included in the MS4 Permit. The draft Annual Report will also include activities planned for the next year, and, if applicable, any proposed changes to this Plan. Once the City addresses the public comments and edits the draft report, the City will submit the final Annual Report to NYSDEC and publish it on the DEP website.

The City will include an Annual Effectiveness Assessment in each Annual Report. This assessment will evaluate the effectiveness of the overall SWMP and progress towards reducing stormwater pollution from the MS4. The City will review effectiveness of the SWMP through achievement of its measurable goals.

Conclusion

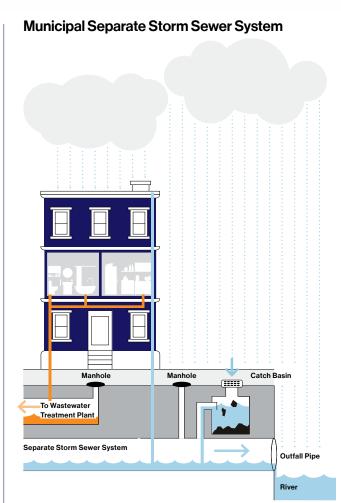
The SWMP builds upon coordination between City agencies to leverage existing programs and develop new initiatives for stormwater management. The SWMP was created in collaboration with the general public who are encouraged to continue supporting the City's efforts in implementing the SWMP. As one of the world's great waterfront cities, NYC is continuing to lead the way in innovative programs to protect and improve water quality in the twenty-first century and beyond. To read the full Stormwater Management Program Plan visit www.nyc.gov/dep/MS4.

Introduction

Newtown Creek

The character of New York City, as one of the world's great waterfront cities, is connected to the waterbodies that surround it. The City of New York (the City) has long been at the cutting-edge of innovative practices to improve water quality including upgrades at our wastewater treatment plants, construction of the award-winning Staten Island Bluebelts, and a \$1.5 billion commitment to construct green infrastructure (GI) that naturally collects stormwater across our urban landscape. As a testament to the City's substantial investments over the last four decades, New York City's waterbodies are cleaner than they have been in more than a century of testing. The City remains committed to protecting the overall health of our harbor while working to improve conditions in impaired waterbodies.

In 1972, Congress passed the Clean Water Act to protect and restore the health of the waters of the United States by regulating the discharge of pollutants to waterbodies across the country. The Clean Water Act requires cities and other urbanized areas with municipal separate storm sewer systems (MS4s) to obtain permits for stormwater discharges which are intended to reduce pollution from stormwater.


Separate storm sewers, carry stormwater runoff directly to a local waterbody. In a dense, urban environment, stormwater runoff can absorb and convey pollutants such as trash, pathogens, oil, and grease.

A **Municipal Separate Storm Sewer System (MS4)** is a separate storm sewer system that is owned by a municipality, in this case the City of New York.

A municipal separate storm sewer system (MS4) is a conveyance or system of conveyances (including roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, manmade channels, or storm drains) that:

- is owned or operated by a state, city, town, village, or other public entity that discharges to Surface Waters of the State;
- is designed or used to collect or convey stormwater;
- is not a combined sewer; and
- is not part of a publicly owned wastewater treatment plant.

Combined Sewer System Combined Sewer System Combined Sewer System Combined Sewer Overflow Outfall Pipe

How do sewer systems handle stormwater?

The City has two types of sewer systems that keep stormwater from flooding streets and homes: a combined sewer system and a separate storm sewer system. While these systems look the same at the street level, there are some important differences.

In a **Combined Sewer System**, both wastewater and stormwater are carried by a single pipe to a wastewater treatment plant (WWTP). During times of heavy precipitation, the combined sewer system may be overwhelmed and discharge into waterbodies. This discharge is known as a combined sewer overflow (CSO).

In a **Separate Storm Sewer System**, wastewater and stormwater are carried by separate pipes. Wastewater is conveyed to a WWTP where it is treated, while untreated stormwater is discharged into a waterbody.

A Municipal Separate Storm Sewer System (MS4) is a separate storm sewer system that is owned by a municipality, in this case the City of New York.

New York City (NYC)

Land Area. The total area of NYC is approximately 305 square miles organized into five boroughs: Manhattan, the Bronx, Queens, Brooklyn, and Staten Island.

Population. According to the Census Bureau, the July 1, 2017 estimated population of NYC is 8,622,698. NYC is expected to reach about 9 million people by 2040.

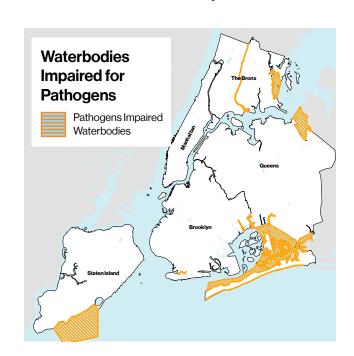
Sewer System. About 60 percent of NYC uses a combined sewer system to convey stormwater runoff. The rest of NYC uses either the municipal separate storm sewer system, a private sewer system, or no sewer system at all (often referred to as direct drainage or overland flow).

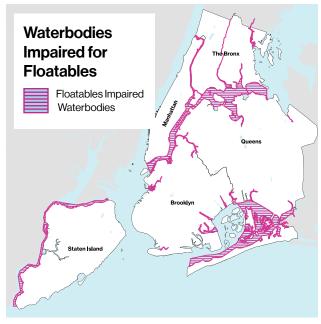
Impervious Area. Impervious surfaces cover approximately 72% of NYC's land area and generate a significant amount of stormwater runoff.

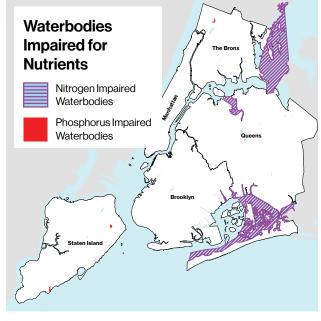
The City of New York MS4 Permit

On August 1, 2015, the City received a State Pollutant Discharge Elimination System (SPDES) Municipal Separate Storm Sewer System Permit (MS4 Permit) (No. NY-0287890) from the New York State Department of Environmental Conservation (NYSDEC). This permit requires the City to implement measures to reduce pollution in stormwater runoff. The MS4 Permit significantly expands the City's previous obligations to reduce pollutants discharging to the MS4. The Permit includes robust requirements in the form of minimum control measures and best management practices (BMPs) to reduce the discharge of pollutants to the maximum extent practicable (MEP), and includes timelines for key deliverables to NYSDEC. Numerous City agencies have significant responsibilities under the MS4 Permit. The New York City Department of Environmental Protection (DEP) is responsible for coordinating the interagency efforts to meet the City's MS4 Permit requirements.

The MS4 Permit regulates drainage areas (collectively called the MS4 area) where one or more of the following statements apply:


- Stormwater drains to separate storm sewers owned or operated by the City that discharge to Surface Waters of the State through MS4 outfalls, or that connect to combined sewer overflow outfalls downstream of a CSO regulator (a device used in NYC's combined sewers to control the diversion of sewage flow to the treatment plants during dry and wet weather);
- Stormwater drains to high-level storm sewers and Bluebelts that ultimately discharge to Surface Waters of the State through MS4 outfalls; or
- Stormwater drains by overland flow from a City operation or facility directly to Surface Waters of the State.


Impaired Waters and Pollutants of Concern


The MS4 Permit identifies certain bodies of water in the NYC area as impaired. A waterbody is considered impaired when it fails to meet its NYSDEC-designated use (e.g., swimming, fishing, or recreational boating). In Appendix 2 of the MS4 Permit, NYSDEC identifies impaired waters as well as the relevant pollutants of concern for each waterbody listed. Pollutants of concern (POCs) are pollutants that might reasonably be expected to be present in stormwater runoff in quantities that can cause or contribute to a violation of water quality standards. The POCs that have been identified for waterbodies in NYC are:

- **Pathogens** are disease-producing agents such as bacteria, viruses, or other microorganisms.
- Floatables are manmade materials such as plastics, papers, or other products, which have made their way to a waterbody.
- Nutrients, including phosphorus and nitrogen, can lead to algae blooms that deplete oxygen in the water, which kills aquatic life.

Refer to Chapter II: Special Conditions for Impaired Waters for more information on impaired waterbodies.

Existing Stormwater Management Efforts

The City has several existing programs to manage stormwater runoff, which improve and protect water quality in local waterbodies.

Jamaica Bay Watershed Protection Plan

In response to local legislation, DEP created a protection plan for the Jamaica Bay watershed. The Jamaica Bay Watershed Protection Plan was completed in October 2007, and established a pathway towards restoring and maintaining the water quality and ecological integrity of the Bay by evaluating threats and coordinating environmental remediation and protection efforts in a focused and cost-effective manner. The protection plan also included the design, construction, and monitoring of several GI pilot projects.

Bluebelt Initiatives

The Bluebelt initiative began in Staten Island over 20 years ago and has expanded into the Bronx and Queens. The award-winning Bluebelt Program preserves natural drainage corridors such as streams, ponds, and wetlands and optimizes them to control and filter stormwater runoff. Managed by DEP, the program includes Bluebelt construction and drainage system maintenance and management.

Sustainable Stormwater Management Plan

Released in December 2008, the Sustainable Stormwater Management Plan was the product of an interagency task force and provided a foundation for improving water quality in New York Harbor, increasing recreation opportunities, and restoring coastal ecosystems. The plan consisted of three primary objectives: to implement the most cost-effective and feasible source controls; to resolve the feasibility of promising technologies; and to explore funding options for source controls. Developed with significant input from environmental stakeholders, the plan set clear milestones for the strategic implementation of cost-effective stormwater source controls and laid a framework for GI in NYC.

Jamaica Bay Restoration

NYC Green Infrastructure Program

Building upon the successes and lessons of earlier efforts, the City established the NYC Green Infrastructure Program (GI Program). GI practices such as green roofs and rain gardens, collect, treat, and infiltrate stormwater runoff. The goal of the GI Program is to reduce CSOs into the waterbodies of NYC by using GI technologies to manage stormwater from impervious surfaces. DEP works with partner agencies to design, construct, and maintain GI on City streets, sidewalks, and other public property. The GI Program also offers grants to private property owners to install various types of GI.

The GI Program includes a research and development effort, which reviews GI performance over time, ensures performance-based maintenance and operations, and conducts cost-benefit analyses of various GI designs. The data analysis supports the City's water-quality related compliance programs and fills data gaps that DEP has identified through previous monitoring activities. This work is critical to the success of GI implementation in both combined and separate sewer areas of NYC.

Combined Sewer Overflow Mitigation Program and the Long Term Control Plans

As part of the SPDES Permits for all 14 DEP WWTPs located in NYC, the City undertakes CSO BMPs to address operation and maintenance procedures, maximize use of existing systems and facilities, and conduct planning efforts to maximize CSO capture to mitigate the impact of CSOs on water quality. DEP annually reports on its progress in implementing CSO BMPs. Since the 1980s, DEP has invested in infrastructure projects that have reduced CSO volumes by 82%.

In 2012, a consent order between DEP and NYSDEC initiated development of 11 Long Term Control Plans (LTCPs), which are comprehensive evaluations of long-term solutions to reduce the impacts of CSO events and to continue to improve water quality in NYC's waterbodies. Each LTCP is unique and seeks to develop approaches for each waterbody to achieve applicable State water quality standards. LTCPs are or will be implemented using a hybrid green and grey infrastructure approach to address, measure, and mitigate the effects of CSO events. The LTCP process has included robust community engagement with environmental stakeholders, neighborhood associations, recreational water users, elected officials, and community boards.

Green Infrastructure

38

Paerdegat Basin CSO facility

Stormwater Management Program Plan

The MS4 Permit requires the City to develop a Stormwater Management Program (SWMP), which includes numerous programs designed to protect the health of waterbodies. The draft SWMP Plan (Plan) is due to NYSDEC on August 1, 2018. This Plan describes the ways in which the City will satisfy the requirements of the MS4 Permit by managing stormwater discharges into and from the City's separate storm sewers. This Plan details the major components of the SWMP and the associated BMPs to reduce the discharge of pollutants from the MS4. The components described in this Plan satisfy the MS4 Permit requirements to meet the MEP standard.

What are these yellow boxes?

Keep an eye out for these yellow boxes that appear throughout the Plan. They include information about public engagement and how you can stay involved.

Most chapters of this Plan include a description of any relevant existing City programs; new initiatives and/or program enhancements; and measureable goals for future assessment of the program. The Plan also refers at times to Appendices, which include documents that either are required by the MS4 Permit or provide additional information.

This Plan consists of the following chapters:

Chapter 1: Legal Authority and Program Administration

Describes the City's legal authority and administrative processes to implement the SWMP including interagency coordination during SWMP development and implementation; legislative and regulatory authority; the City's enforcement response plan; reliance on third parties; fiscal analysis; and notification of entities regulated under the MS4 Permit. This chapter sets forth the City's plan for complying with Part III and Part IV.K of the MS4 Permit.

Chapter 2: Public Education and Outreach

Describes the City's Public Education and Outreach Program including existing programs; target audiences; pollutants and waterbodies of concern; education and outreach strategies; public reporting of illicit discharges or water quality impacts; proper management and disposal of pollutants of concern; and measurable goals for program assessment. This chapter corresponds to Part IV.A of the MS4 Permit.

Chapter 3: Public Involvement and Participation

Describes the City's Public Involvement and Participation Program including existing programs; key stakeholders; public engagement during SWMP development; public comments on the Progress Reports and this Plan; ongoing public involvement and participation; mechanisms for public reporting and stormwater related requests; Annual Report public review process; and measurable goals for program assessment. This chapter corresponds to Part IV.B of the MS4 Permit.

Chapter 4: Mapping

Describes the City's Mapping Program including existing programs; the Historical MS4 Map; delineation methods for the MS4 Map; the Preliminary MS4 Map; the Final MS4 Map; the MS4 Map update process; and measurable goals for program assessment. This chapter corresponds to Part IV.C of the MS4 Permit.

Chapter 5: Illicit Discharge Detection and Elimination (IDDE)

Describes the City's IDDE Program including existing programs; non-stormwater discharges; illicit discharge detection; illicit discharge trackdown, elimination, and notification; spill prevention and citywide containment and response; sanitary pipe seepage controls; public education and participation; staff training and measureable goals for program assessment. This chapter corresponds to Part IV.D of the MS4 Permit.

Chapter 6: Construction and Post-Construction

Describes the City's Construction and Post-Construction Program including the new Stormwater Pollution Prevention Plan (SWPPP) review and approval process; the process to obtain DEP-issued Stormwater Construction Permits and Stormwater Maintenance Permits; education, certification, training; results of the Threshold Study; and measureable goals for program assessment. This chapter corresponds to Part IV.E and IV.F of the MS4 Permit.

Chapter 7: Pollution Prevention/Good Housekeeping for Municipal Facilities and Operations

Describes the City's Pollution Prevention/Good Housekeeping Program including existing programs and controls for pesticide, herbicide, and fertilizer application; municipal operations/facilities self-assessment program; inventory and prioritization of municipal facilities and operations; self-assessments of municipal facilities and operations; City staff training program; Multi-Sector General Permit (MSGP) programs for municipal facilities; GI feasibility for planned municipal upgrades; requirements for third party contractors; and measureable goals for program assessment. This chapter corresponds to Part IV.G of the MS4 Permit.

Chapter 8: Industrial and Commercial Stormwater Sources

Describes the City's program to address industrial and commercial stormwater sources including existing programs; industrial and commercial facility inventory; no exposure facility inspections; unpermitted facility assessments; MSGP facility inspections; tracking system; inspection staff training; and measureable goals for program assessment. This chapter corresponds to Part IV.H of the MS4 Permit.

Chapter 9: Control of Floatable and Settleable Trash and Debris

Describes the City's Floatable and Settleable Trash and Debris Control Program including existing programs; evaluation of existing programs; loading rate work plan; available technologies and controls; methodology for selecting technologies and controls; media campaigns; and measureable goals for program assessment. This chapter corresponds to Part IV.I of the MS4 Permit.

Chapter 10: Monitoring and Assessment of Controls

Describes the City's Monitoring and Assessment Program including existing programs; MS4 monitoring program; MS4 monitoring procedures; assessment of the MS4 monitoring program; measurable goals for program assessment. This chapter corresponds to Part IV.J of the MS4 Permit

Chapter 11: Special Conditions for Impaired Waters

Describes the City's program for Impaired Waters including identification of impaired waterbodies and POCs; special conditions for impaired waterbodies without total maximum daily loads; special conditions for impaired waterbodies with approved CSO LTCPs; Priority MS4 Waterbody Plans; and measureable goals for program assessment. This chapter corresponds to Part II of the MS4 Permit.

Chapter 12: Recordkeeping and Reporting

Describes recordkeeping and data management for the SWMP; the Annual Report process and schedule; the Annual Effectiveness Assessment; and measurable goals for program assessment. This chapter corresponds to Part IV.J, Part IV.L, and Part IV.M of the MS4 Permit.

Legal Authority and Program Administration

Jamaica Bay

On August 1, 2015, the City of New York (the City) received a State Pollutant Discharge Elimination System (SPDES) permit that authorizes the discharge of stormwater from the Municipal Separate Storm Sewer System (MS4 Permit) (No. NY-0287890) from the New York State Department of Environmental Conservation (NYSDEC). The MS4 Permit requires the City to implement measures to reduce pollution in stormwater runoff, which protect and improve water quality.

Part III of the MS4 Permit requires the City to develop and implement a Stormwater Management Program (SWMP) Plan. The City's draft SWMP Plan (Plan) is due to NYSDEC on August 1, 2018. This Plan describes the SWMP and associated best management practices (BMPs) the City will perform to reduce, to the maximum extent practicable (MEP), the discharge of pollutants from the MS4. The federal Clean Water Act and the New York State Environmental Conservation Law established the MEP standard as the appropriate compliance standard for MS4s because of the unique nature of stormwater. Implementation of the SWMP achieves the MEP requirement.

Part III of the MS4 Permit also requires the City to:

- Develop adequate legal authority to implement and enforce the SWMP
- Establish enforcement measures and tracking
- Ensure adequate resources to comply with the MS4

 Permit
- Notify entities regulated under the MS4 Permit

This chapter outlines the development of the SWMP including administrative documents; delineates City agency roles and responsibilities; describes the collaborative planning process; details the City's legal authority to implement the SWMP; and includes the Enforcement Response Plan (ERP) (Appendix 1.1), third party certification requirements, fiscal analysis, and requirements for notification of entities regulated under the MS4 Permit.

1.1 Stormwater Management Program Administration

The City's SWMP planning efforts began during MS4 Permit negotiations with NYSDEC. There was coordination among agencies throughout SWMP development, and it will continue throughout SWMP implementation. The strategies designed to develop and implement the SWMP emphasize roles and responsibilities, legal structures, and collaborative efforts to ensure MS4 Permit compliance.

1.1.1 SWMP Development

In 2013, under Executive Order 429, the Mayor charged the New York City Department of Environmental Protection (DEP) with responsibility for coordinating efforts among City agencies with respect to all matters relating to the MS4 Permit requirements. Executive Order 429 also directed all mayoral agencies and the Department of Education (DOE) to collaborate with DEP. This collaboration included requirements that agencies:

- provide to DEP all information necessary for permit compliance;
- implement controls included in the SWMP that fall within their responsibilities and work with the New York City Office of Management and Budget (OMB) to identify funding for SWMP implementation;
- create and maintain adequate records and prepare any reports required by the MS4 Permit; and
- provide technical assistance and support to DEP within their areas of expertise, including training and education of agency staff and other parties.

Before NYSDEC issued the permit, the Mayor's Office initiated the Stormwater Controls Working Group, a team of representatives from the following New York City agencies that collaborate on MS4 programs. A subset of these agencies have obligations under the MS4 Permit.

- Department of Citywide Administrative Services (DCAS)
- Department of City Planning (DCP)
- Department of Design and Construction (DDC)
- Department of Environmental Protection (DEP)
- Department of Buildings (DOB)
- Department of Corrections (DOC)
- Department of Education (DOE)
- Department of Health and Mental Hygiene (DOHMH)
- Department of Transportation (DOT)
- Department of Parks and Recreation (DPR)
- Department of Sanitation (DSNY)
- Fire Department (FDNY)
- Police Department (NYPD)
- Small Business Services (SBS)
- NYC Law Department (LAW)
- Economic Development Corporation (EDC)
- Mayor's Office of Management and Budget (OMB)
- Mayor's Office of Recovery and Resiliency (ORR)

This group regularly met to discuss permit-related matters during the City's negotiations with NYSDEC. After NYSDEC issued the MS4 Permit, DEP led the overall development of the SWMP, and the Stormwater Controls Working Group continued to meet regularly to discuss stormwater program development. The City also created technical sub-teams comprised of interagency staff with relevant responsibilities for program elements of the SWMP.

MEP

Because of the unique nature of stormwater (an MS4 has limited control of its inputs and cannot treat them as a wastewater treatment plant can treat its influent before discharging it to a waterbody), the Clean Water Act¹ established the MEP standard as the appropriate compliance standard for the MS4s. The New York State Environmental Conservation Law also establishes the same standard.² Rather than requiring strict compliance with water quality standards through traditional end-of-pipe control techniques or numeric effluent limits, the MEP standard requires that the City implement all technically-feasible and cost-effective best management practices (BMPs) that will reduce the discharge of pollutants to the MS4.

- 1 33 U.S.C. ∫ 1342(p)(3)(B)(iii)
- 2 ECL § 17-0808(3)(c)

DRAFT FOR PUBLIC REVIEW

DRAFT FOR PUBLIC REVIEW

DRAFT FOR PUBLIC REVIEW

There are eight sub-teams for different SWMP requirements: three within DEP—Industrial and Commercial, Illicit Discharge Detection and Elimination (IDDE), and Monitoring; and five in collaboration among various City agencies—Public Outreach & Participation, Mapping, Pollution Prevention/Good Housekeeping, Construction & Post-Construction, and Floatables. The sub-teams convened as necessary to decide on approaches, policies, and specific program elements.

Additionally, the City met regularly with NYSDEC to provide updates on the status of SWMP development. The City submitted multiple deliverables prior to SWMP submittal, as documented in Appendix 1.2. The City also coordinated with NYSDEC regarding the transfer of necessary data and information related to the Industrial and Commercial and Construction and Post-Construction programs, particularly related to NYSDEC SPDES Multi Sector General Permit for Stormwater Discharges associated with Industrial Activity, Permit No. GP-0-17-004 (MSGP), and SPDES General Permit for Stormwater Discharges from Construction Activity GP-0-15-002 (Construction General Permit or CGP).

Further, throughout SWMP development, the City solicited input from stakeholders through regular public meetings, informal discussions, and targeted outreach meetings. Refer to Chapter 3: Public Involvement and Participation for more information or Appendix 3.1: Stakeholder Meeting Log with Summary of Public Comments and City Responses.

1.1.2 SWMP Implementation

Local Law 97 of 2017 (NYC Stormwater Law) revised section 1403 of the New York City Charter and codified DEP's role in coordinating the City's compliance with the MS4 Permit. DEP administers the overall SWMP, while each City agency is responsible for implementing specific SWMP components applicable to its own activities, facilities, and/or operations. Each Chapter of this Plan identifies the agencies responsible for implementing the initiatives and programs described. Figure 1.1 lists agencies and their corresponding roles in SWMP development and implementation. Appendix 1.3 provides an organizational chart specifying the agencies and key personnel. Email questions, comments, and suggestions for this Plan to MS4@dep.nyc.gov.

Some agencies have entered into Memoranda of Understanding (MOUs) with DEP, delineating responsibilities under the Permit. Additionally, some agencies have New York City Charter-required stormwater management responsibilities relevant to the MS4 Permit. These agencies have a more substantial role in stormwater management by virtue of their obligations and duties under the New York City Charter:

- DEP is responsible for providing water, disposing of sewage, and controlling water pollution. These responsibilities include responding to emergencies caused by releases or threatened releases of hazardous substances and managing the location, construction, alteration, repair, maintenance and operation of DEP-owned sewers, including intercepting sewers.
 DEP is also responsible for planning, managing, and maintaining DEP's sewer and drainage systems, and for the management and control of discharges and runoff from public and private property, including stormwater discharges. In addition, DEP is authorized to coordinate the actions of City agencies in complying with the MS4 Permit.
- DPR is responsible for managing and caring for all parks, squares, public spaces, playgrounds, playground fixtures, and other recreation properties, except those within the jurisdiction of DOE or other agencies.
 Maintenance and care of these areas extends to the sidewalks that immediately adjoin them. DPR is also responsible for planting and maintaining trees and other plantings in public places belonging to the City.
- DOB is responsible for enforcing provisions of the building code, zoning resolution, multiple dwelling law, labor law and other laws, rules and regulations that relate to the construction, alteration, maintenance, use, occupancy, safety, sanitary conditions, mechanical equipment, and inspection of buildings or structures in NYC.
- DOT is responsible for constructing, maintaining and repairing public roads, streets, highways, parkways, bridges and tunnels. These responsibilities include regulating, grading, curbing, flagging and guttering of streets; designing, constructing and repairing of public roads, streets, highways and parkways. These responsibilities also include paving, repaving, resurfacing and repairing all public roads, streets, including marginal streets and places, highways and parkways, and the relaying of pavement.

- DSNY is responsible for keeping streets clean and disposing of waste. These responsibilities include sweeping, cleaning, sprinkling, flushing, washing and sanding streets; removing and disposing of street sweepings, recyclables, organics, garbage, refuse, rubbish and waste; and removing ice and snow from the streets. DSNY is also responsible for planning, constructing, operating and maintaining transfer stations, garages, salt sheds, and other facilities necessary for performing its responsibilities.
- SBS is responsible for all functions and operations of the City relating to business and economic development; the enhancement of economic development and financial opportunity for minority and women owned business enterprises; and ensuring equal employment opportunity by City contractors. These responsibilities include the power and duty to exercise the functions of the City relating to the development, redevelopment, construction, reconstruction, operation, maintenance, management, administration and regulation of public markets, wharf property, water front property and airports within NYC.

Agency Roles and Responsibilities Matrix Figure 1.1

★ Lead ✓ Participating	Authority and Administration	Program Administration	Legal Authority	Enforcement Respsonse Plan	Fiscal Analysis	Reliance on Third Parties	Stormwater Management Program	Public Education and Outreach	Public Involvement and Participation	Mapping	IDDE	Construction and Post Construction Controls	PP/GH	Industrial/ Commercial Sources	Control of Floatable and Settleable Trash and Debris	Monitoring and Assessment	Special Conditions for Imparied Waters	Recordkeeping and Reporting
City Law		✓	*	✓	*	*		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
DCAS					✓	✓			✓	✓	✓		✓					✓
DCP					✓	✓			✓	✓		✓						✓
DDC					✓	✓		✓	✓		✓		✓					✓
DEP		*	✓	*	✓	✓		*	*	*	*	*	*	*	*	*	*	*
DOB					√	√			✓			✓						✓
DOC					√	√			✓	√	√		✓					✓
DOE					✓	✓		✓	✓	✓	✓		✓		✓		✓	√
DOHMH					√	√			✓		√		✓			✓		√
DOT					√	√		✓	✓	√	√		✓		✓		√	√
DPR					✓	✓		✓	✓	✓	√		✓		✓		✓	✓
DSNY					✓	✓		✓	✓	✓	√		✓		✓		✓	✓
FDNY					✓	✓			✓	✓	✓		✓					✓
NYPD					✓	✓			✓	✓	✓		✓		✓			✓
SBS					√	✓			✓	✓	✓	✓	✓					✓

1.2 Legal Authority

This section describes the City's legal authority to **implement and enforce the SWMP.** The City provided to NYSDEC two prior submissions (dated February 1, 2016 and August 1, 2017), which detailed the City's existing legal authority and included a timeline to complete the remaining elements of the legal authority necessary to implement the MS4 Permit requirements.

1.2.1 Existing Legal Authority as of Permit Issuance

Pursuant to MS4 Permit Part III.B.1., within six months of August 1, 2015, the City was required to provide a description of its existing legal authority to control discharges to the MS4. On February 1, 2016, the City fulfilled this permit requirement by submitting a description to NYSDEC of the City's existing legal authority as of that date. The City provided an update to NYSDEC on August 1, 2017. Both of these submissions are available on the DEP website. The City concluded that the structure of government established in the New York City Charter provides adequate legal authority to the Mayor and mayoral agencies to manage their operations and facilities, and to ensure coordination and sharing of information for the City's compliance with the MS4 Permit.

1.2.2 Enhanced Legislative Authority

In the February 2016 submission to NYSDEC, the City identified three programs, which the MS4 Permit requires the City to administer, that required supplemental legislation in order to complete the development of the legal authority necessary to the City meeting its permit obligations:

- Illicit Discharge Detection and Elimination (IDDE)
- Construction Site Stormwater Runoff Control and Post-Construction Stormwater Management
- Industrial and Commercial Stormwater Sources

For all three programs, the City is required to act in a regulatory capacity to oversee and/or enforce requirements regarding activities in the MS4 area that have the potential to contribute pollutants to stormwater runoff and the waterbodies surrounding NYC. Both the Industrial/Commercial and Construction/Post-Construction programs involve the City's assumption of responsibility for administering, within the MS4 area, portions of existing New York State stormwater programs. The IDDE program continues, with minor updates, DEP's robust existing program to detect and address citywide, illicit discharges to the sewer system.

Accordingly, in its February 2016 submission, the City proposed a plan to design a comprehensive legislative

I http://www.nyc.gov/html/dep/html/stormwater/ms4.shtml

and regulatory program tailored to enable the City to implement fully these Permit-required programs.

On May 10, 2017, the New York City Council approved comprehensive legislation that consolidates, clarifies, and supplements the City's legal authority to regulate stormwater discharges, to enable the City to act in a regulatory capacity to control pollutant discharges into and from its MS4. The Mayor signed the legislation on May 30, 2017. NYC Stormwater Law is also available on the City website.2

1.2.3 Enhanced Regulatory Authority

The NYC Stormwater Law provides the City sufficient legal authority to complete the rulemaking necessary for the three regulatory programs. The rule making process is described on the next page. The City is proceeding with rulemaking in phases:

• IDDE

- » DEP published proposed IDDE rules on September 26, 2017 and held the public hearing on October 25, 2017.
- » DEP published the final rule³, titled Regulation of Discharges into Storm Sewers and Catch Basins, on February 28, 2018. The rule took effect Friday, March 30, 2018. These rules are equivalent to the State's model IDDE law, as required by the MS4 Permit.
- Construction Site Stormwater Runoff Control and **Post-Construction Stormwater Management**
 - » DEP expects to publish proposed rules for the Construction/Post-Construction program in June 2018.
 - » DEP expects to publish final rules within 30 days of Plan approval. The final rules will establish the effective date for the Construction/Post-Construction program, which must be between 45 and 180 days after Plan approval, as provided in the NYC Stormwater Law.

• Industrial and Commercial Stormwater Sources

- » DEP expects to publish proposed rules for the Industrial and Commercial program in June 2018.
- » DEP expects to publish final rules in December, 2018. The final rules will establish the effective date for the Industrial/Commercial program, which must be between 45 and 180 days after Plan approval, as provided in the NYC Stormwater Law. DEP expects an effective date at the earlier end of this time range.

Rulemaking Process

Step 1: Agency drafts rule

The New York City Charter gives certain agencies the authority to propose rules. When an issue arises, agencies analyze the problem and investigate various solutions. If it is determined that a new rule would be the best course of action, a proposal will be drafted. Agencies also sometimes propose rules because they are mandated by law to do so.

Step 2: Agency notifies public of proposed rule

Before an agency can pass a rule into law, the public must be given the opportunity to review the proposed rule and provide commentary, either by submitting suggestions in writing or by speaking at a public hearing.

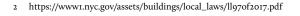
To that end, the agency must submit official notice to the City Record, the City Council, community boards, media outlets, and civic organizations, as well as the NYC Rules website.

The official notice must include:

- Purpose and completed text of the proposed rule
- Explanation of the legal authority given to the agency
- Time and place of public hearing
- Deadline for submitting comments on NYC Rules web site or in writing

Agencies are required to distribute notice of the rule at least 30 days prior to the scheduled public hearing, or the end of the comment period, whichever comes first.

Step 3: Agency holds public hearing


A public hearing is held by the agency to discuss the proposed rule and review all of the testimony that has been submitted. Testimony includes any written comments submitted on the NYC Rules web site or, through the mail, and spoken testimony provided at the public hearing.

Step 4: Agency publishes final rule

Once all of the testimony has been reviewed, the agency will modify the rules based on the public's feedback, if necessary, then draft a final version. A copy is posted on NYC Rules, published in the City Record, and submitted to the City Council.

Step 5: Final rule is adopted and becomes law

The rule takes effect 30 days after the final version is published.

https://rules.cityofnewyork.us/content/regulation-discharges-storm-sewers-and-catch-basins-0 47

1.3 Enforcement Response Plan

As required by MS4 Permit Part III.C, the City has developed an enforcement response plan (ERP), which sets out the permittee's potential responses to violations, as needed to achieve compliance with requirements of the following programs (Permit Parts IV.D, IV.E, IV.F and IV.H, respectively):

- IDDE
- Construction Site Stormwater Runoff Control and Post-Construction Stormwater Management
- Industrial and Commercial Stormwater Sources

The ERP (Appendix I.I) is a protocol for investigating, documenting and, where appropriate, enforcing against unauthorized discharges into the MS4. As the agency responsible for administering the above-referenced programs on behalf of the City, DEP will implement the ERP in cooperation with other City agencies, including DCP, DOB, DOT, and SBS.

DEP has based its approach on progressive enforcement, as required by the permit Part III.C.I, addressing "persistent non-compliance, repeat or escalating violations, or incidents of major environmental harm" through "progressively stricter responses," taking into consideration the violator's responsiveness and history of violations, as well as the severity and type of violation. Enforcement responses include verbal warnings, written notices of violation (NOVs), citations with civil and administrative penalties, criminal penalties, stop-work orders, cease and desist orders, and withholding of plan approvals or permits.

1.4 Reliance on Third Parties

Pursuant to the MS4 Permit, the City must provide adequate assurance, through a signed certification statement, that any third party entity (e.g., consulting firms, construction contractors, etc.) that develops or implements any portion of the SWMP complies with the MS4 Permit requirements applicable to the work performed. The MS4 Permit also requires any third-party entities performing municipal operations, including but not limited to street sweeping, snow removal, and lawn/grounds care, to comply with relevant MS4 Permit provisions.

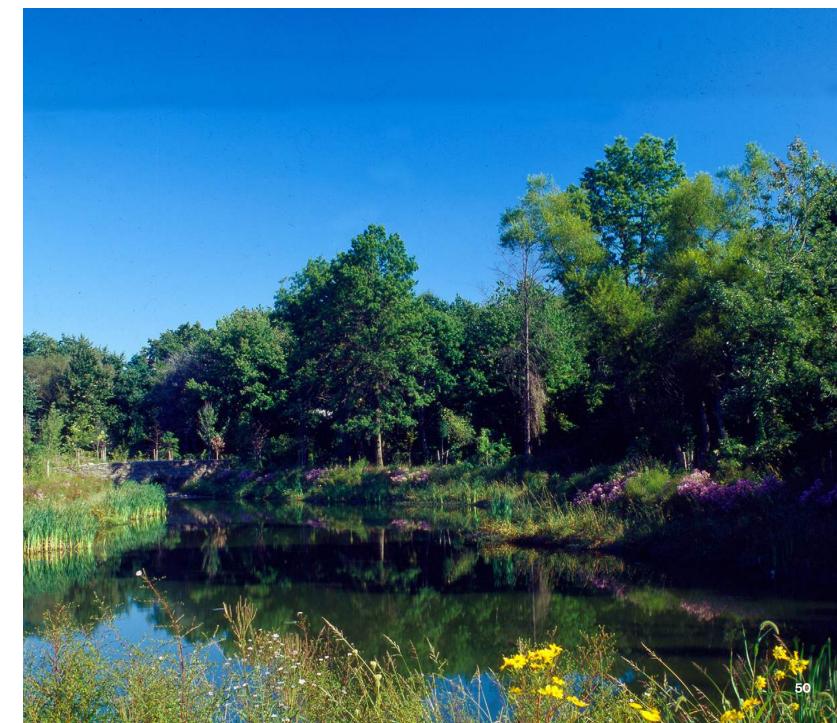
Each City agency using a third-party entity to develop or implement any portion of the SWMP or to perform any municipal operation must provide the third party with a copy of the MS4 Permit and must ensure that the third-party entity complies with MS4 Permit requirements.

The City has developed two boilerplate certifications, a General Certification and a Certification of Deliverable, for use with third-party entities that perform, on behalf of City agencies, contracted services to develop or implement any portion of the SWMP. These certifications are also to be used by third-party entities that perform pollution prevention and good housekeeping for municipal operations, which include "any operation or facility serving a New York City governmental purpose and over which New York City has operational control."

• Certifications for Existing Contracts

For existing contracts with such third parties, City agencies have provided the third parties with a copy of the MS4 Permit and have obtained a signed General Certification from each third-party contractor stating that the third party will comply with applicable MS4 Permit requirements. The General Certification also identifies the deliverables that will be subject to individual certification and for which the third party entity will need to provide a Certification of Deliverable to the agency. The Certification of Deliverable confirms that the third party developed the relevant deliverable in compliance with all applicable requirements of the MS4 Permit.

Certifications for Future Contracts


For all future contracts with such third parties, City agencies will include appropriate language in each contract that requires the third party to certify that it will comply with applicable MS4 Permit requirements. Each contract will also delineate the deliverables for which the third party must provide a Certification of Deliverable.

1.5 Fiscal Analysis

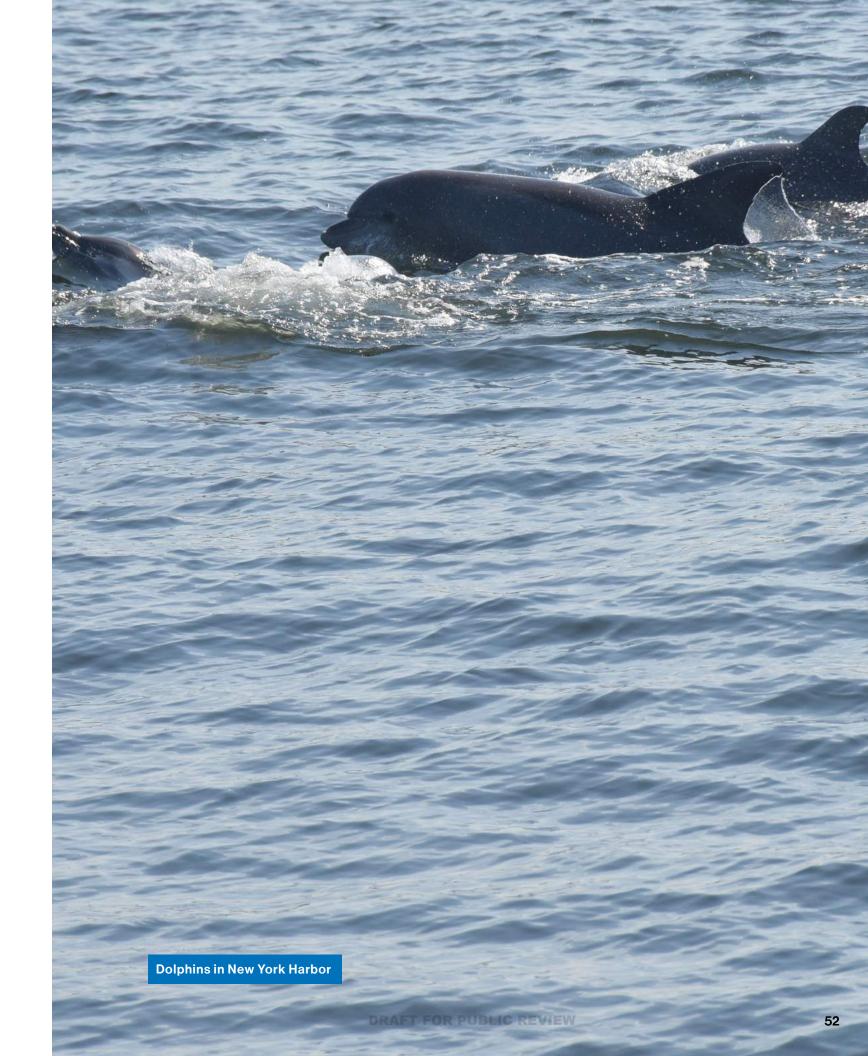
Part III.D of the MS4 Permit requires the City to secure the resources necessary to meet all requirements of the permit. In addition, the Plan must include an analysis of the capital and operational and maintenance expenditures necessary to meet such requirements during the five-year permit term, including costs related to developing and implementing the SWMP. This analysis must include a description of the source of funds that are proposed to meet the necessary expenditures, including any legal restrictions on the use of such funds.

Each agency is completing its own analysis of the resources needed to implement the MS4 Permit obligations applicable to that agency. Most agencies will implement their obligations through existing staff and capital and operational budgets. When an agency identifies the need for additional resources, it will work with OMB to ensure sufficient funding is available. The City is confident that it has adequate resources to comply with the Permit's terms, and will include a more detailed fiscal analysis in the Plan submittal in August 2018.

New Creek Bluebelt, Staten Island

1.6 Notification of Entities Regulated Under MS4 Permit

Part III. E of the MS4 Permit requires the City to provide notice to entities that are subject to two new regulatory programs the City will administer under the SWMP. For both programs, one relating to industrial facilities and the other to certain construction activities, the City must provide such notice within three months of submission of this Plan to NYSDEC.


Industrial and Commercial Stormwater Sources. DEP will commence implementation of its program to inspect industrial and commercial sites and to enforce the MSGP a minimum of 45 days and a maximum of six months after NYSDEC approves this Plan. In connection with this program, DEP will provide the following notifications:

- Existing MSGP-permitted facilities. DEP used existing facility data obtained from NYSDEC's Dropbox to obtain facility contact information and will mail a notification letter to each owner/operator indicating that DEP will be inspecting the facility for compliance with MSGP requirements. DEP will send these notifications within three months of submission of this Plan.
- Unpermitted facilities that may require SPDES permits for stormwater discharges from industrial activities. DEP created a list of industrial and commercial sites, as described in Chapter 8: Industrial and Commercial Stormwater Sources. DEP will send an initial notification to each facility on this list within three months of submission of this Plan. This notification states that DEP will inspect to determine for each facility whether DEP should refer it to NYSDEC for possible SPDES MSGP or individual SPDES permit coverage and whether it observed illicit discharges during the assessment. For each facility, DEP will send a subsequent notification closer to the date of DEP's assessment. DEP will send these notifications approximately every quarter.
- Notification to facility owners of the inspection results. After the inspections, DEP will mail letters to unpermitted facilities notifying them of the findings of the inspections. If a facility potentially needs SPDES coverage, DEP will inform that facility that it should contact NYSDEC to determine appropriate coverage. In addition, DEP will notify NYSDEC of that facility's potential need for SPDES coverage. If NYSDEC confirms that the facility needs MSGP coverage, the facility will have to file a Notice of Intent (NOI) with NYSDEC and meet the other requirements to obtain coverage under the MSGP.

 Newly MSGP-permitted facilities. NYSDEC will provide information on newly covered MSGP facilities to DEP, and, thereafter, DEP will include those facilities in its notifications to MSGP-permitted facilities indicating that DEP will be inspecting them for MSGP compliance.

Construction Site Stormwater Runoff Control. DEP is developing a new program to regulate stormwater discharges from construction activities, which will take effect between 45 and 180 days after NYSDEC approves this Plan, as determined by the associated rule. Once NYSDEC approves this Plan, DEP will also conduct complaint-based inspections of CGP-covered construction activities.


- Existing CGP-permitted properties. DEP will contact, via email or by ordinary mail if email is not available, owners and operators with coverage under the CGP, as provided by NYSDEC, to inform them that all new construction projects in the MS4 area will require them to obtain a Construction Stormwater Permit from DEP. To facilitate this requirement, DEP will offer a Fact Sheet with a general location map of the MS4 area, information to access the online application system, and information about the general requirements of the permit. Refer to Chapter 6: Construction and Post-Construction for details about this new program.
- Future owners and operators. DEP will offer sewer connection applicants information on obtaining a Stormwater Construction Permit in the MS4 area. By notifying applicants making storm sewer connections, DEP will confirm that future owners or operators of construction sites within the MS4 area have the information they need about the new requirements.

Public Education and Outreach

Participating Agencies

DDC · DEP · DOE · DOT · DPR · DSNY

DEP partners with NYCHA for Earth Day

Part IV.A of the MS4 Permit requires the City to develop and implement an ongoing public education and outreach program.

This chapter describes the City's Public Education and Outreach Program designed to provide information about the following topics, both to the general public and also to identified target audiences:

- Impacts of stormwater discharges on waterbodies
- Pollutants of concern and their sources
- Actions to reduce pollutants in stormwater runoff
- Ways to report illicit discharges and water quality issues
- Hazards associated with illicit discharge and improper disposal of waste

Existing City education and outreach initiatives inform a broad range of stakeholders about stormwater management, sources of pollutants associated with stormwater, and the potential impact of pollutants carried in stormwater on water quality. These initiatives empower the public to take measures to reduce sources of pollutants that adversely impact water quality. The Public Education and Outreach Program builds upon numerous public education programs with a long record of accomplishments in support of stormwater education.

2.1 Existing Programs

The City has multiple education and outreach programs that seek both to increase the general environmental literacy of New Yorkers, and to educate them specifically about issues related to stormwater. Collectively, these programs lay the foundation for the Public Education and Outreach Program for the SWMP. The City has several distinct programs that include and address stormwater, water quality, illicit discharges, pollution sources, and pollution prevention. The City will continue to engage the public and seek to target residents, students, educators, businesses, and community groups. Table 2.1 further describes these programs.

DEP Commissioner Vincent Sapienza with students

Summary of Existing Education and Outreach Programs Table 2.1

Program Name	Agency	Description						
311	DOITT	311 provides the public with quick, easy access to all City services and information; it is the City's main source of government information and non-emergency services.						
Adopt-a-Basket	DSNY	Local businesses or community groups monitor local litter baskets. When the baskets are three-quarters full, adopters remove plastic liners tie them, leave them next to the basket and insert a new liner. This effort helps prevent trash from piling on top of the basket and spilling onto side walks and streets.						
Adopt-a-Bluebelt	DEP	Local community groups, companies, and individuals enhance Staten Island's open spaces by acting as sponsors who adopt parts of the Bluebelt. http://www.nyc.gov/html/dep/html/stormwater/bluebelt.shtml						
Adopt-a-Catch Basin	DEP	Local organizations participate in a volunteer program that helps keep neighborhood catch basins clear of trash and debris. This effort helps reduce localized flooding and keeps trash and debris out of waterbodies.						
Adopt-a-Highway/Greenway	DOT	Sponsors adopt highway or greenway segments and perform litter removal and beautification.						
Adopt-a-Tree	DPR	Residents, community groups, and companies adopt and care for local trees. Volunteers receive training on MS4-related topics such as managing waste and litter, soil management, and watering.						
Annual Art and Poetry Contest	DEP	Second through twelfth grade students in New York City and in the upstate watersheds of the City's drinking water supply create original art and poetry that reflect an appreciation for water resources. Recently highlighted themes include water quality, green infrastructure, stormwater, and pollution prevention. DEP honors participants at a celebration where notable entries are displayed. http://www.nyc.gov/html/dep/html/environmental_education/artpoetry.shtml						

Table 2.1

Program Name	Agency	Description				
Automotive Associations	DEP	DEP provides automotive associations with information on proper waste disposal as well as vehicle washing and refueling.				
Business Outreach	DEP	DEP reaches out to various businesses through meetings, door-to-door visits, workshops, mailers, and on-site visits. DEP also works with its primary partners and their members (Local Development Corporations, Business Improvement Districts, Chambers of Commerce, Merchant Associations and Trade Associations) to distribute materials.				
Catch Basin Marking	DEP	Catch basin markers inform the public that the catch basins drain directly to local waterbodies and that nothing should be dumped into them. DEP's current sewer design standards require the cast iron curb pieces of new catch basins to be stamped with a message that reads: "Dump No Waste! Drains to Waterways." Additionally, in the Staten Island Bluebelt drainage areas, DEP installs "no dumping" medallions on the catch basins without the stamp in the curb piece.				
Cease the Grease	DEP	DEP distributes information to food service establishments, businesses, as well as residences throughout the City on how to properly dispose of used cooking oil.				
Clean Streets = Clean Beaches	DEP & DSNY	This annual educational initiative aims to improve the cleanliness and aesthetic of City beaches by reducing littering on streets and in parks.				
Community Clean-ups	DSNY	DSNY supports local community groups and block associations in their volunteer efforts to keep their neighborhoods clean through local block and street area clean-ups by offering free loans of clean-up tools and equipment.				
Community Right-to-Know Workshops	DEP	DEP conducts annual workshops for facilities regulated under DEP's Community Right-to-Know (RTK) Program. Facilities regulated under the RTK program must annually report any chemicals that they handle or store on their premises and which meet the reporting thresholds. DEP provides participants at these workshops with an overview of the MS4 Program as well as literature and web resources pertaining to the program.				
Environmental Education	DEP	A vast array of educational resources are available online, via electronic mailing lists and email, and by personal requests from teachers and other educators, students, parents, curriculum specialists, and administrators who wish to learn and teach about the City's water cycle. Resources include, but are not limited to, class lessons with inquiry-based activities, professional development opportunities, funding, student research and curriculum development assistance, presentations and tours, online education modules and print materials, and theatrical performances. http://www.nyc.gov/html/dep/html/environmental_education/index.shtml				
Forgot your bag?	DPR	DPR is installing dog bag dispensers with signage throughout NYC Parks including sites in MS4 areas. Dispensers with signage will be placed to improve cleanliness and educate the public about pet waste cleanup based on DPR inspections. Helping to ensure that we provide New Yorkers and visitors alike with clean, green, and safe parks.				

Table 2.1

Program Name	Agency	Description			
IDDE Outreach and Education	DEP	DEP partners with local organizations, elected officials, and community boards to educate the public on DEP's IDDE Program. This engagement includes efforts in Coney Island Creek such as Community Workshops and an MS4 Outfall Sign Pilot to educate the public on how to report potential illicit discharges. For more information see Chapter 11: Special Conditions for Impaired Waters.			
Newtown Creek Visitor Center	DEP	Located at the Newtown Creek Wastewater Treatment Plant, the Visitor Center provides a space for public education and activities. At the center, visitors learn about the New York City water cycle, water quality, distribution, consumption, wastewater treatment, stormwater management, harbor water quality, and stewardship (such as water conservation, proper disposal of litter, and care for the urban forest). DEP is developing an additional exhibit to highlight MS4 information.			
Park Stewardship	DPR	DPR coordinates volunteer opportunities that enable volunteers to help restore natural areas, care for street trees, clean and beautify parks, and monitor wildlife. These activities can include the care and restoration of natural areas through removal of invasive plants and floatable debris along coastlines. In addition, the program provides training to dedicated Super Stewards, to advance their independent care of local community green spaces. https://www.nycgovparks.org/reg/advanced-stewardship			
SAFE Disposal Events	DSNY	DSNY hosts SAFE (Solvents, Automotive, Flammables, and Electronics) Disposal Events throughout the year in all five boroughs, to help residents dispose of harmful household products safely.			
Special Waste Drop-Off Sites	DSNY	DSNY maintains a special waste drop-off site in each borough. The sites are open from 10 am to 5 pm every Saturday and the last Friday of the month. Residents can drop off harmful household products including batteries, latex paint, and electronics.			
School Sustainability Coordinator Trainings	DOE	The DOE Office of Sustainability hosts borough-based trainings annually for school Sustainability Coordinators, teachers, and other school staff. Workshops address an array of topics such as waste reduction/recycling, energy conservation, green space and infrastructure, water quality and current issues, environmental education, and stewardship in partnership with City agencies and nonprofit organizations. These trainings provide an opportunity to promote educational resources/programs to educators.			
The Natural Classroom	DPR	Teachers use City parks as outdoor classrooms. The Urban Park Rangers support and facilitate this effort by offering programs on climate change adaptation, urban forestry, water quality testing, conservation, ecology, and ichthyology. https://www.nycgovparks.org/programs/rangers/natural-classroom			
Weekend, Pop-up, and Custom Adventures	DPR	Residents participate in programs that connect them to and educate them about nature. Example programs include canoeing, fishing, and opportunities to contribute to conservation, restoration and environmental stewardship of local parks and waters. https://www.nycgovparks.org/programs/rangers			

2.2 Pollutants and Waterbodies of Concern

This Public Education and Outreach Program will educate New Yorkers on the proper management and disposal of POCs. The City education and outreach programs focus on actions the public can take to reduce these POCs at the source. Table 2.2 describes these pollutants, their potential impact, and desired behaviors that can reduce those impacts in more detail.

The City cares about the quality and health of all of its bodies of water. In this Plan, the City puts particular focus on, as waterbodies of concern, those listed as impaired in Appendix 2 of the MS4 Permit, which also identifies their associated POCs. For more information on impaired waters, refer to Chapter II: Special Conditions for Impaired Waters.

Addressing Pollutants of Concern (POC) through the Public Education and Outreach Program Table 2.2

Pollutants of Concern	Impact to Waterbodies	Targeted Sources	Desired Behaviors
Floatables	Trash and debris may carry toxins and pathogens that pose a risk to human health. Fish and wildlife may be harmed by becoming entangled or ingesting trash and debris. Trash and debris are also unsightly and may deter recreational use of waterbodies.	Littering Illegal Dumping Improper disposal of waste	Choose reusable items (bags, bottles, mugs) over single use items Keep streets clean Report illegal dumping Follow DSNY guidelines for proper disposal including recycling and waste reduction.
Nutrients (Nitrogen and Phosphorus)	Excessive amounts of nitrogen and phosphorus can cause harmful algae blooms and create low oxygen conditions that harm aquatic life.	Lawn/plant fertilizer Illicit discharges of sanitary waste Pet waste Green waste	Use fertilizer sparingly and never before storms Always apply fertilizer in accordance with the manufacturer's product label Follow DEP rules to properly connect sanitary waste to the sanitary sewer Properly dispose of pet waste Never dump anything in a catch basin
Pathogens	Pathogens can cause disease and make waters unfit for recreation. Pathogens can also contaminate fish and shellfish, causing illness in people who eat them.	Pet waste Illicit discharges of sanitary waste	 Follow DEP rules and regulations to properly connect sanitary waste to the sanitary sewer Properly dispose of pet waste Report illegal dumping
Oil and Grease	Oil and grease can be toxic to plants, aquatic life and wildlife that live in or near contaminated waterbodies. Oil and grease can also have a negative effect on the sewer system.		 Properly maintain vehicles Properly store materials Follow DSNY guidelines for proper disposal of waste Follow DEP guidelines for proper disposal of oil and grease Report illegal dumping
Toxic or harmful substances	Toxic or other harmful substances can harm and kill plants, aquatic life, and wildlife that live in or near contaminated waterbodies. These substances are also hazardous to recreational users of waterbodies.	Improper disposal of materials, such as household cleaners, paint, chemicals, and pharmaceuticals	Follow DSNY guidelines for proper disposal of waste Report illegal dumping

2.3 Target Audiences

The Public Education and Outreach Program includes initiatives that target specific audiences as identified below.

Students

Pre-kindergarten through college-level students gain the knowledge, skills, attitudes, and commitment to work individually and collectively toward solutions for current environmental problems. Students can take home lessons learned from programs in school to inform family and friends, thereby having a greater impact on their own neighborhoods and the City as they continue their education, make career choices, and other important decisions.

Educators

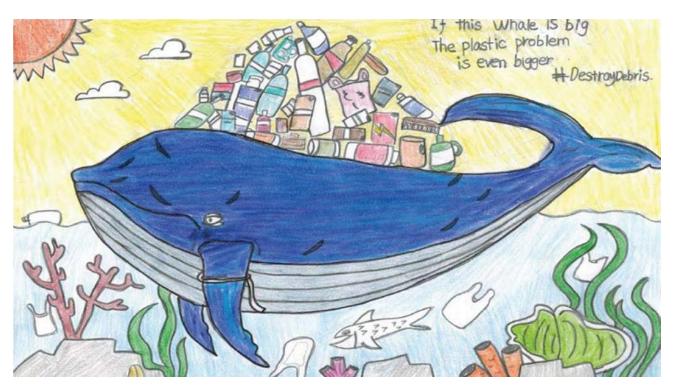
Teachers and other educators (e.g., environmental organizations, youth groups, and cultural institutions) play a key role in helping reduce sources of pollutants of concern (POCs). Through ongoing professional development opportunities, DEP programs help to provide knowledge, skills, curriculum support, and partnership opportunities. Educator trainings include topics such as climate change, wastewater treatment, green infrastructure, stormwater management, the NYC water cycle, and lessons and activities aligned with New York State learning standards.

Residents

Residents can have a tangible impact on NYC and local waterbodies. Residents are an ideal group to receive education about the importance of keeping streets clean and properly disposing of household waste.

Business Community

Businesses have the potential to be a source of pollutants including litter, oil, grease, and toxic materials. The business community is an ideal group to receive education about proper storage and disposal of materials, and serve as potential partners in educating their customers.


Community Groups

Community groups, such as neighborhood organizations, cultural organizations, elected officials, and religious organizations, can play a big role in keeping NYC communities clean and healthy. They provide another avenue to reach local residents and businesses.

Community groups provide an excellent forum for education on general environmental literacy, and the ways in which communities can help reduce the presence of POCs in NYC waterbodies.

Environmental Advocates

Environmental advocates are important partners in the mission to protect and restore waterbodies. The City will continue to engage environmental advocates to get feedback on programs as they are developed.

Artwork by Brian, 6th grade student at the Bay Academy I.S. 98, Brooklyn, for DEP's 31st Annual Water Resources Art & Poetry Contest

2.4 Education and Outreach Strategies

The City has identified several strategies to conduct education and outreach to target audiences.

Information and Reporting Hotline

In New York City, 311 is the best way to connect with the City on stormwater related issues. 311 provides the public with quick, easy access to all NYC government services and information while also helping agencies improve service delivery.

Agency Websites and Social Media

Many City agencies maintain websites and social media presence (i.e., Twitter, Instagram, Facebook, and Flickr) that communicate important information to the public. DEP developed a designated MS4 webpage at www.nyc.gov/dep/ms4 to ensure permit related submittals, reports, and materials are easily accessible. This webpage also contains a schedule of public meetings. In addition, DSNY's website¹ contains information on proper set-out collection and disposal of trash, debris and waste material, and sidewalk/street cleaning. DPR² posts information on park facilities, events, and activities.

Public Signage

Various signs are posted throughout the City in open display to educate the public. Some examples of public signs are catch basin markings, outfall signs, and Newtown Creek Nature Walk signs.

Cooperative Efforts with Local Organizations and Environmental Advocates

Local organizations and environmental advocates are effective and innovative public educators. The City's support of local organizations may include providing guidance and professional development training, or staff time and materials, depending on the type of partnership.

Curriculum Development and Other Resources for Teachers

The City provides educators with a variety of multidisciplinary resources related to stormwater, harbor water quality, wastewater treatment, and stewardship. These resources include online educational modules and background information, teacher lessons, student activities and worksheets, as well as additional resources such as websites, bibliographies, and organizational support. These online curriculum resources, along with other educational program information and materials are available on the DEP website. DEP also assists educators with the development of their own curricula, designed for their specific needs.

Electronic Communication

The City maintains an email account (MS4@dep.nyc. gov) for the public to report and request stormwater-related information. This email account is included in public presentations and listed on distributed educational material.

Informational Materials

The City has developed and will maintain a variety of materials, such as fact sheets and brochures, designed to educate the public on the MS4 Permit, stormwater pollutants, and steps to reduce pollutants. DEP makes these materials available through the DEP website³.

Public Access to Waterbodies

The City has public access locations, which are essential for outdoor recreation such as hiking, fishing, boating, and scenic viewing. For example, the DPR Urban Park Rangers conduct tours and programming through the Natural Classroom, Ranger Conservation Corps, Weekend Adventures and Adventure Course & Custom Adventures. DEP's Newtown Creek Nature Walk allows young people and adults to learn about the City's water resources, located at the Newtown Creek Wastewater Treatment Plant in Greenpoint, Brooklyn.

Paid Media

The City uses paid media, including advertising on buses, subways, and billboards, as well as digital advertisements for select communications related to stormwater, water quality, pollution prevention, and sewer operations.

3 http://www.nyc.gov/html/dep/html/stormwater/ms4.shtml

 ${\tt 4} \quad http://www.nyc.gov/html/dep/html/environmental_education/index.shtml$

62

Special Programming

The City has several special programs that seek to educate

water quality, pollution sources, and pollution prevention.

Example programs include Clean Streets = Clean Beaches

and the annual Water Resources Art and Poetry Contest.

The City encourages and supports public stewardship

and volunteerism. Depending on the activity, this can

Workshops, Trainings, Presentations, and

to help educate target audiences on the SWMP

The City conducts workshops, trainings, and presentations

implementation; stormwater management; and pollutant

impacts, sources, and prevention. DEP does outreach at

to specific audiences. For additional information, please

also partners with other City agencies, including DOE, to

provide training programs for their staff to support and

enhance their own stormwater outreach and education

the request of the public and customizes the messages

visit the DEP environmental education website⁴. DEP

range from providing guidance and staff time, to training

Stewardship and Volunteerism

volunteers and providing resources.

Other Events

efforts.

and communicate information relevant to stormwater,

Clean Streets = Clean Beaches event at MCU Park

I http://wwwi.nyc.gov/assets/dsny/site/home

2 https://www.nycgovparks.org/
DRAFT FOR PUBLIC REVIEW

The City engaged targeted stakeholders on public education and outreach related to the SWMP.

These stakeholders included:

- General Public
- Stormwater Advisory Group
- Educators and DOE Sustainability Coordinators
- Environmental Organizations
- Community-based Groups

The public suggested that the City focus education efforts on schools and teachers located in the MS4 area; use social media platforms to raise awareness of MS4 issues; and incorporate more graphics in presentations and education materials. The City:

- Provided resources to schools and teachers interested in teaching about stormwater
- Increased social media posts on MS4 related content
- Created MS4 specific graphics to be included in progress reports, presentations, and the Plan.

2.5 Public Reporting of Illicit **Discharges or Water Quality Impacts**

The City encourages the public to report the presence of illicit discharges, or water quality impacts associated with discharges from the MS4, using 311. 311 is accessible in many languages and through several platforms. The public can report or seek information related to fire hydrants, catch basins, illegal dumping, dirty conditions, dry weather discharges, and other issues.

The public can make illicit discharge or water quality reports by calling 311 or by visiting 311 online. The City is continually improving 311 and will work to better facilitate public reporting of issues relevant to water quality. Refer to Appendix 2.1 for 311 Complaints related to MS4/Stormwater Management Issues. All 311 service requests since 2010 are available to the public through NYC Open Data.¹

Throughout the development of the SWMP, the City regularly engaged the public on the topics of preventing and reporting illicit discharges. This engagement included status updates on IDDE investigations. In response to public input, the City began posting the Sentinel Monitoring Program² quarterly data and the Annual Sentinel Monitoring Reports, which summarize IDDE field investigations. The City also created new guidance on how to report potential illicit discharges through 311, and began notifying elected officials, community boards, and community leaders when it identified illicit discharge sources.

- https://data.cityofnewyork.us/ Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
- 2 http://www.nyc.gov/html/dep/html/harborwater/sentinel-monitoring-

2.6 Proper Management and **Disposal of Pollutants of** Concern

The City conducts a variety of educational activities aimed at residents, businesses, schools, and non-profits to facilitate the proper management of waste, including used oil, toxic materials, pharmaceuticals, household cleaners, and pet waste. Information on these efforts is available on the DSNY website and through 311.

Additionally, DSNY helps residents dispose of harmful household products safely. These efforts include organizing and promoting SAFE (Solvents, Automotive, Flammables, and Electronics) Disposal Events and directing residents to businesses or recyclers that take back harmful products such as batteries, electronics, motor oil, and pharmaceuticals.

Students from the New York Harbor

NYC 311 is New York City's main source of government information and non-emergency services.

It provides the public with quick, easy access to all New York City government services and information. The public may connect with 311 24 hours a day, 7 days a week, 365 days a year by:

- Visiting 311 online at nyc.gov/311;
- Calling 311 or (212) NEW-YORK, (212) 639-9675, from outside New York City;
- Texting 311-692;
- Downloading the NYC 311 mobile app for Apple or Android devices; or
- Tweeting to @nyc311

311 is accessible to non-English speakers, available online in over 50 languages and by phone in over 170 languages.

311 facilitates transparency and accountability. Service requests and agency responses are available to public as open data online.

Currently, the public is able to use 311 to access information on many topics relevant to stormwater pollution and water quality. The public is also encouraged to use 311 to report information relevant to stormwater pollution. Through 311, the public can report:

- Waterway Complaint—Report floatables, trash, oil, gasoline, sewage, or an unusual color in a waterway; report a potential illicit discharge from an MS4 outfall.
- Dry Weather Sewage Discharge Complaint—Report water flowing through a sewer outfall pipe during dry weather.
- Dumping in Catch Basin or Sewer—Report grease, gasoline, natural gas, cement, oil, sewage, chemicals, or other liquids going into a sewer or catch basin.
- Oil Spill—Report an oil spill.
- Illegal Dumping Complaint—Report the dumping of large amounts of trash.
- Catch Basin Complaint—Report a storm drain that is missing its cover, clogged, sunken, raised, damaged, or defective.

2.7 Measurable Goals and Program Assessment

Table 2.3 lists measurable goals and measures for identified Public Education and Outreach BMPs. Annual Reports will use these measures to detail the status of each measurable goal and BMP. Part IV.M.4.j.i of the MS4 Permit requires an Annual Effectiveness Assessment in each Annual Report, as described in Chapter 12: Recordkeeping and Reporting. The City will base the Annual Effectiveness Assessment on its achievement of the stated measureable goals for each chapter of this Plan, including this program. The City will also refine these measurable goals with information gained from program planning and implementation, interagency working groups, and public input. Continuing to refine and update the measureable goals will allow the City to better quantify and accurately represent the effectiveness of each one.

Students participate in a DEP education program

Summary of BMPs, Measurable Goals, and Measures for Public Education and Outreach Table 2.3

Best Management Practice (BMP)	Measurable Goals	Measures				
	Develop, implement, and assess an	List of education and outreach programs/events and relevant metric(s) for each (e.g., number of participants, events, or materials distributed)				
Provide an ongoing public education	ongoing public education and outreach program	List of planned educational and outreach programs/activities to be undertaken in the next reporting cycle				
and awareness program	Develop and implement educational and informational activities related to illicit	List of education and outreach programs/events and relevant metric(s) for each (e.g., number of participants, events, or materials distributed)				
	discharges for businesses and the general public	List of planned educational and outreach programs/activities to be undertaken in the next reporting cycle				
Facilitate public reporting of illicit discharges	Promote, publicize, and facilitate public reporting of illicit discharges and potential water quality impacts	Summary of public reports received by 311				

Public Involvement and Participation

Participating Agencies

DCAS · DCP · DDC · DEP · DOB · DOC · DOE · DOH · DOT · DPR · DSNY · FDNY · NYPD · SBS

Stakeholders at an LTCP meeting where SWMP updates were shared

Whether it is NYC residents who recreate in local waterbodies, real-estate developers who build in the MS4 area, groups who organize waterbody cleanups, or environmentalists who advocate for a healthier harbor, there are a variety of stakeholders who can participate in the City's efforts to improve water quality. In accordance with Part IV.B of the MS4 Permit, the City is implementing a public involvement and participation program designed to:

- Seek input from key individuals and groups in development, implementation, review and major revision of the Stormwater Management Program (SWMP);
- Provide opportunities for the public to participate in development and implementation of the SWMP;
- Provide opportunities for, and response to, public comments on this Plan and future Annual Reports;
- Provide opportunities for public involvement and participation in stormwater-related activities;
- Provide a mechanism for the public to report and request stormwater-related information; and

This chapter outlines the City's Public Involvement and Participation strategies during the development of this Plan, and identifies goals for involving the public during SWMP implementation.

3.1 Existing Programs

The City has existing programs that encourage public involvement and participation in improving water quality. Examples include the Long Term Control Plan's Public Participation Plan, legislative processes and rulemaking, and 311 for reporting concerns and requesting information. Additionally, the City offers several stewardship programs that encourage public involvement and participation such as Adopt-a-Bluebelt, Adopt-a-Catch Basin, the Natural Classroom, NYC Parks Stewardship, Adopt-a-Highway/ Greenway, Adopt-a-Basket, and SAFE Disposal Events. All of these programs enable New Yorkers to actively contribute to cleaner waterbodies. Refer to Chapter 2: Public Education and Outreach for details.

3.2 Key Stakeholders

The City identified key stakeholders through their demonstrated interest in the MS4 Permit, participation in other water quality programs, and/or their potential to be affected by the SWMP implementation. These stakeholders fall into several categories:

- Students and educators
- General public and residents
- Environmental stakeholders
- Neighborhood associations and other community-based groups
- Governmental entities (e.g., New York City Housing Authority, Metropolitan Transit Authority, School Construction Authority)
- Elected officials and Community Boards
- Industrial and commercial business community
- Design, construction, and development community

3.3 Public Engagement during SWMP Development

Public involvement in this Plan's development began during MS4 Permit negotiations. Several organizations and individuals submitted comments on the draft MS4 Permit, requested briefings from the City, and actively sought to contribute to this Plan. Beginning in August 2015 and continuing through this Plan's submittal, the City held stakeholder meetings, responded to public comments, and created a plan to encourage ongoing participation.

The City created a robust engagement strategy with support and input from the key stakeholders identified in Section 3.2. This strategy included:

- Identifying communication methods to reach stakeholders such as emails, press releases, mailed letters, flyers, media campaigns, website updates, and social media;
- Holding meetings to keep stakeholders informed and to solicit feedback:
- Listening, acknowledging, and responding to public input:
- Creating informational and educational materials;
- Working with stakeholders to create public programs and events:
- Providing draft documents to obtain public feedback before final submission to NYSDEC;
- Leveraging other water quality related engagement efforts to reach a broader audience; and
- Reducing potential conflicts among stakeholders by seeking to build consensus around issues.

Throughout SWMP development, stakeholders submitted questions and provided input through a variety of means:

- Verbal comments and questions at stakeholder meetings and events;
- Written responses received during formal comment periods; and
- Emails received at MS4@dep.nyc.gov.

Trash Free NYC Waters Working Group

At the request of the public, the City formed a Stormwater Advisory Group (SAG). The SAG was open to the general public and enabled them to provide substantive feedback throughout the drafting of this Plan. At SAG meetings, the City provided the following for each element of the SWMP:

- Progress on the development of the City's legal authority to administer all permit requirements;
- Summary of ongoing stakeholder engagement; and
- Detailed review of specific SWMP programs as they were developed.

These focused meetings created a space for participants to engage with the latest planning and analysis completed by the City. Comments and suggestions received during these meetings were evaluated and responded to by the City. The City's responses to the public's comments and suggestions will be summarized in Appendix 3.1.

The City began each Stormwater Advisory Group meeting with a brief update on Public Involvement and Participation.

The City frequently met with the Stormwater Infrastructure Matters (SWIM) Coalition on specific permit provisions. Comprised of environmental stakeholders, SWIM is "a coalition dedicated to ensuring swimmable waters around New York City through natural, sustainable stormwater management practices in our neighborhoods." These smaller meetings gave the City an opportunity to receive detailed feedback from environmental advocates who organize around stormwater management and water quality issues.

The City also conducted targeted outreach to stakeholder groups that expressed specific interest in this Plan's development, may have responsibilities under the MS4 Permit, or are located in a Priority MS4 Waterbody. These groups include:

- Environmental stakeholders represented by the SWIM Coalition;
- Industrial and commercial business community;
- Design, construction, and private development community; and
- Elected officials, community boards, and neighborhood associations that represent Coney Island Creek.

More information on the City's targeted outreach is provided in the "Public Involvement" call-out boxes located throughout this Plan.

Appendix 3.1 will include a list of stakeholder meetings held between MS4 Permit issuance and submittal of this Plan

3.4 Public Comments on the Progress Reports and the Plan

The City submitted annual Progress Reports to NYSDEC in 2016 and 2017. These reports summarized the progress made on SWMP development to date. Prior to each annual submission to NYSDEC, the City released a draft report to the public online and presented the content at a public meeting. The City accepted feedback from stakeholders through verbal comments at the meeting and written comments by email. The final annual Progress Reports submitted to NYSDEC included City responses to the public comments received. Appendix 3.1 will summarize the City's responses for each of the annual Progress Reports. The City published the final 2016 and 2017 Annual Progress Reports on the DEP website.

The City released a draft of this Plan on the DEP website for public review and comment. The City will present the content of the draft Plan at multiple stakeholder meetings, and accept public feedback on the draft. The public can provide verbal comments during the meetings or submit written comments to MS4@dep.nyc.gov during the public review period. The City will incorporate feedback from the public into the final Plan. Appendix 3.1 will summarize the City responses to public comments received on the draft Plan.

3.5 Ongoing Public Involvement and Participation

In addition to its efforts to include the public in the development of the SWMP, the City's existing programs, described in more detail in Chapter 2: Public Education and Outreach, provide robust opportunities for both public involvement and participation. These programs (listed in Table 2.1) include Adopt-a-Bluebelt, Adopt-a-Catch Basin, Shoreline and Bluebelt Cleanups, the Natural Classroom, NYC Parks Stewardship, Adopt-a-Highway/ Greenway, Adopt-a-Basket, SAFE Disposal Events, and Community Cleanups. The City will also continue to engage the public throughout the rulemaking process associated with this Plan, described in Chapter 1: Legal Authority and Program Administration. The public will have the opportunity to review the proposed rules and provide input either in writing or by speaking at public meetings and hearings.

3.6 Mechanisms for Public Reporting and Stormwater Related Requests

The City facilitates public reporting using various strategies. These include, but are not limited to 311, City agency websites, electronic communication, workshops, and presentations. These strategies are also part of the Public Education and Outreach Program and are described in further detail in Chapter 2: Public Education and Outreach. To report stormwater related concerns or receive information about stormwater, the public can contact 311. The public may also obtain stormwater related information by visiting the DEP website or emailing the MS4 team at MS4@dep.nyc.gov.

DEP staff present at SWIM Meeting

3.7 Annual Report Public Review Process

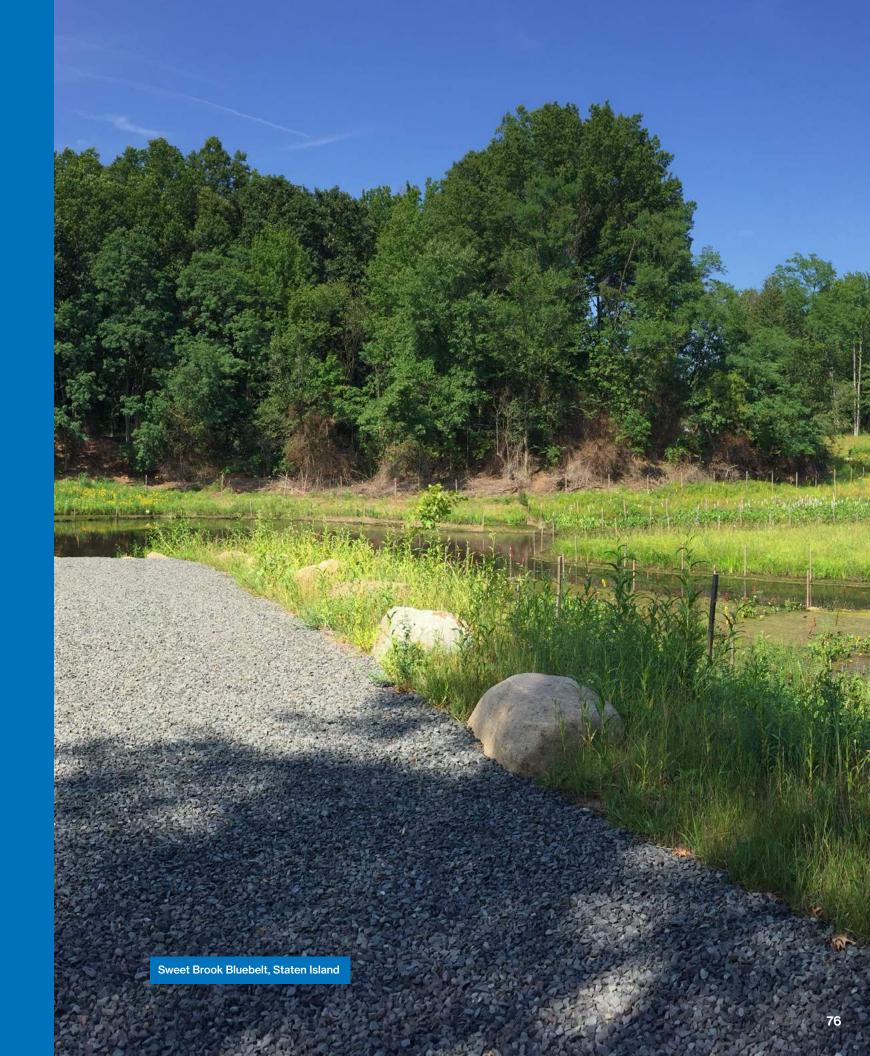
Annual Reports that summarize activities performed during the MS4 Permit reporting period (January I-December 31) will be submitted to NYSDEC by September 30th of the following year. Prior to submission, a draft report will be published online for public review and comment. In addition, by July 1st of each year, the City will hold a meeting for the public to present on the draft Annual Report and receive public input. The City will notify the key stakeholders through an email announcement that the draft Annual Report is available online and will include the date, time, and location of the meeting. The City will also comply with requirements of Article 7 of the New York State Public Officers Law.

The final Annual Report will include a summary of all public comments received, the City's responses, and a description of any changes the City will incorporate into the SWMP as a result of the public's input. Once submitted to NYSDEC, the final Annual Report will be made available to the public on DEP's website and at DEP's office. For comments received after the City has submitted an Annual Report to NYSDEC, the City will provide responses to the commenter, and will include a summary of these comments and responses in the following draft Annual Report.

3.8 Measurable Goals and Program Assessment

Table 3.I lists measurable goals and measures for identified Public Involvement and Participation BMPs. Annual Reports will use these measures to detail the status of each measurable goal and BMP. Part IV.M.4.j.i of the MS4 Permit requires an Annual Effectiveness Assessment in each Annual Report, as described in Chapter 12: Recordkeeping and Reporting. The City will base the Annual Effectiveness Assessment on its achievement of the stated measureable goals for each chapter of this Plan, including this program. The City will also refine these measurable goals with information gained from program planning and implementation, interagency working groups, and public input. Continuing to refine and update the measureable goals will allow the City to better quantify and accurately represent the effectiveness of each one.

Summary of BMPs, Measurable Goals, and Measures for Public Involvement and Participation Table 3.1

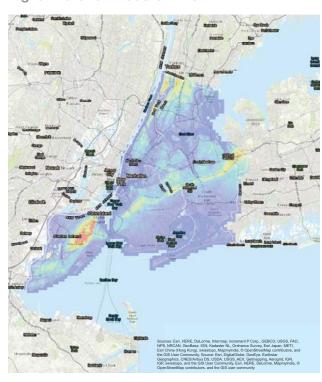

Best Management Practice (BMP)	Measurable Goals	Measures	
Provide and promote the	Comply with public notice requirements	Summary of public notices posted	
opportunity to report and receive stormwater information	Identify mechanism for public to report and request stormwater related information including contact process to receive and respond to requests	Summary of public reports and requests received by MS4@dep.nyc.gov	
		Date and location of draft Annual Report posted for public review and comment period	
		Date and time of draft Annual Report stakeholder meeting and number of participants	
Provide public opportunity	Seek public input on SWMP imple-	Summary of comments received on draft Annual Report and City responses	
to participate in SWMP implementation	mentation and provide public access to Annual Reports	List of involvement and participation activities (e.g., programs, events, key stakeholder meetings)	
		Status and location of final Annual Report and the Plan	
		List of planned participation and involvement programs/ activities to be undertaken in next reporting cycle	

74

Mapping

Participating Agencies

DCAS · DCP · DDC · DEP · DOB · DOC · DOE · DOHMH · DOT · DPR · DSNY · FDNY · NYPD · SBS



Under Part IV.C of the MS4 Permit, the City must provide a Geographic Information Systems (GIS)based map of the MS4 area and outfalls. This chapter describes the City's Mapping Program to satisfy the following MS4 Permit requirements:

- Identify and map the MS4 area, MS4 outfalls, and other supplemental information such as zoning and land use, locations of facilities handling municipal waste, and locations of parks and open space within the MS4 area;
- Submit to NYSDEC a Preliminary MS4 Map in 2018 and Final MS4 Map in 2020; and
- Update the Final MS4 Map every 5 years.

DEP is the coordinating agency for the City's Mapping Program. Each agency is responsible for identifying its outfalls, points of connection to DEP's separate storm sewers, or direct drainage by overland flow, and for mapping corresponding drainage areas. DEP is responsible for compiling the MS4 Map based on information received from other City agencies regarding City-owned or operated sites and infrastructure.

Digital Elevation Model of NYC

The MS4 Permit regulates drainage areas (collectively called the MS4 area) where one or more of the following statements apply:

- Stormwater drains to separate storm sewers owned or operated by the City that discharge to Surface Waters of the State through MS4 outfalls, or that connect to combined sewer overflow outfalls downstream of a CSO regulator (a device used in NYC's combined sewers to control the diversion of sewage flow to the treatment plants during dry and wet weather);
- Stormwater drains to high-level storm sewers and Bluebelts that ultimately discharge to Surface Waters of the State through MS4 outfalls; or
- Stormwater drains by overland flow from a City operation or facility directly to Surface Waters of the State.

A MS4 outfall is any point where a separate storm sewer system owned or operated by the City discharges to Surface Waters of the State or to another MS4. Outfalls include discharges from pipes, ditches, swales, and other points of concentrated flow.

DRAINAGE AREA

Combined Area

City Combined Sanitary and Storm Sewers

Sanitary Area

City Sanitary Sewer

Discrete Storm Sewered Area

City Separate Storm Sewer connected to CSO outfall upstream of regulator

Separate Storm Sewered Area

City Separate Storm Sewer connected to CSO outfall downstream of regulator

S4 Permit

MS4 Permit

Separate Storm Sewered Area

City Separate Storm Sewer connected to MS4 Outfall

High Level Storm Sewered AreaCity High Level Storm Sewer

City Direct Drainage AreaOverland Flow On City Property

Not Covered by MS4 Permit

Private Separate Storm Sewered Area

Private Separate Storm Sewer

Private Direct Drainage Area Overland Flow On Private Property

4.1 Existing Programs

The City has many existing programs that document and map information relevant to NYC. These existing programs are used and referenced in the City's efforts to develop the GIS-based map of MS4 outfalls and corresponding drainage areas. Various City agencies maintain and provide these data sets. For informational purposes, a description and explanation of each data set and how it supports development of the MS4 Map is provided below. Additional data sets provided by the U.S. Geological Survey, Coastal and Marine Geology Program, and the New York State Digital Orthoimagery Program are also used by City agencies to delineate drainage areas. As the data sets described below were not developed for MS4 Permit compliance, they may be amended or eliminated in the future, and the MS4 mapping process will adjust accordingly.

Sewer Network Geodatabase

Over the last decade, DEP has developed a GIS-based Sewer Network Geodatabase to maintain and provide detailed information about DEP's water and sewer infrastructure, including pipes, catch basins, and outfalls. A component of the geodatabase is a geometric network that models the connectivity and flow directions of the sewer network. DEP uses this data set to delineate drainage areas for each MS4 outfall under DEP's jurisdiction.

DEP regularly updates the Sewer Network Geodatabase as new infrastructure is built and inaccuracies in existing data are discovered and corrected. The GIS data set represents the best information available, but should not be perceived as a completely accurate representation of actual field conditions. The information contained in GIS data is dynamic, changing over time as updates are received and processed. This data set is maintained by DEP for internal use.

Combined Sewer Overflow Delineation

DEP has conducted extensive analysis and modeling of the City's combined sewer system as part of an effort to reduce CSOs. DEP has delineated sub-catchments tributary to each CSO outfall. DEP used these data sets to create the Historical MS4 Map. These data sets are maintained by DEP for internal use.

Shoreline Survey Program

The Shoreline Survey Program is an outfall reconnaissance inventory that identifies and characterizes shoreline outfalls in NYC. Under this program, 50 percent of the shoreline is surveyed every five years, with progress made each year. DEP catalogues observed outfalls and provides an updated list of outfalls to NYSDEC annually. DEP and other City agencies can use this information to help identify MS4 drainage areas and locations of outfalls. This data set is maintained by DEP and is publicly available through NYC Open Data.

MapPLUTO

MapPLUTO merges Property Land Use Tax Lot Output (PLUTO) data with tax lot features from the NYC Department of Finance's Digital Tax Map. The MapPLUTO data set contains more than 70 fields derived from data maintained by City agencies, including extensive land use and geographic data at the tax lot level. Agencies can use this data set to identify the boundaries of agency facilities for drainage area delineations and to provide supplementary information such as land use and borough-block-lot (BBL) parcel numbers. This data set is maintained by DCP and is publicly available through NYC Open Data.

NYC Integrated Property Information System

The Integrated Property Information System (IPIS) is a real estate database of City-owned properties and private properties the City leases. Agencies can use this data set to identify the boundaries of their owned or leased property for drainage area delineations. This data set is maintained by DCAS and DoITT and is publicly available through NYC Open Data.

NYC City-Owned and Leased Properties

City-Owned and Leased Properties (COLP) is a comprehensive list of uses on City-owned and leased properties that includes geographic information as well as other related information. This data set is updated biennially. COLP is produced from data in the IPIS, described above. Similar to IPIS, agencies can use COLP to identify the boundaries of their owned or leased property for drainage area delineations. This data set is maintained by DCAS and DCP and is publicly available through NYC Open Data.

NYC Planimetric Database

Planimetric data capture geographic features from aerial photography to map in plan view. Example geographic features found in planimetric data include curbs, elevations, hydrography, open spaces, parking lots, and sidewalks, among others. Often referred to as planimetric features or simply planimetrics, these geographic features, in total, can provide context and location information for a specific area. The planimetric data set can be used to aid in the estimation of drainage areas and to georeference paper maps and drawings. Geo-referencing is a process by which an image is referenced to a place in geographic space using common features from aerial imagery, such as DCP's MapPLUTO, other available data such as planimetric data, building footprints, or known coordinates. This data set is maintained by DolTT and is publicly available through NYC Open Data.

NYC Building Footprints

The NYC Building Footprint data set contains all buildings with well-defined walls and roofs that are greater than 400 square feet in area and taller than 12 feet. Agencies can use this data set to geo-reference site paper maps and drawings. This data set is maintained by DoITT and is publicly available through NYC Open Data.

Zoning

This data set comprises six classes of zoning features: zoning districts, special purpose districts, special purpose district sub-districts, limited height districts, commercial overlay districts, and zoning map amendments. The City can use this data set to satisfy the MS4 Permit requirement to describe zoning districts and related land uses within the MS4 area. This data set is maintained by DCP and is publicly available through NYC Open Data.

Contours

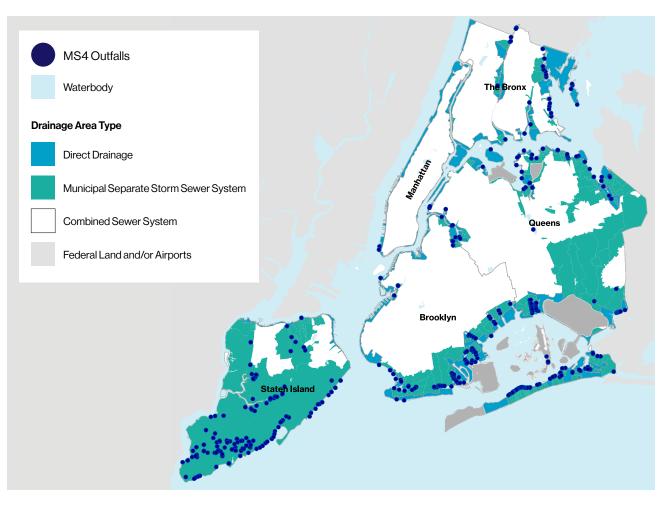
This data set consists of a basemap layer containing citywide 2-foot contour lines. Contour lines show the topography of an area by joining points of equal elevation above a given reference point, such as sea level. Agencies can use this data set to delineate drainage areas based on topography. This data set is maintained by DoITT and is publicly available through NYC Open Data.

NYC 1-foot Digital Elevation Model (DEM)

The NYC DEM is derived from Light Detection and Ranging (LiDAR) data collected in the spring of 2010. This DEM, created by the City of New York and University of Vermont Spatial Analysis Laboratory, models the elevation of the ground surface, and does not include above ground features such as trees and buildings. Agencies can use this data set to delineate drainage areas using software such as ESRI® ArcGIS. This data set was created by DEP and DoITT and is publicly available through NYC Open Data.

4.2 Historical MS4 Map

DEP created the Historical MS4 Map prior to permit issuance in 2015. To create this map, DEP used the CSO outfall drainage area delineation, described in Section 4.1, and supplemented it with additional information about DEP's existing sewer system, planned infrastructure, land use data, and information about state- and federallyowned land such as open space along the waterfront. Unless this additional information indicated otherwise, DEP identified areas not draining to a CSO outfall as MS4 in the Historical MS4 Map. While the Historical MS4 Map is unrefined and contains some inaccuracies, it represented the City's best understanding of the MS4 area at that time. In developing the SWMP, the City has relied upon the Historical MS4 Map to define the MS4 area.


The City engaged targeted stakeholders on mapping activities related to the SWMP. These stakeholders included:

- General Public
- Stormwater Advisory Group
- Development Community
- Environmental Stakeholders

A frequent request from the public was to provide the MS4 Map and associated data in an interactive digital format. In response, the City will post the Preliminary MS4 Map online in a format that enables the public to:

- Explore the MS4 drainage area and MS4 outfalls
- Determine if a property is located within the MS4 area
- Access attribute tables to view supplemental information
- Download data sets in formats that best suit their needs

Historical MS4 Map (as of 8/1/15)

4.3 Delineation Methodologies for Preliminary and Final MS4 Maps

Agencies operating sites that discharge stormwater via agency MS4 outfalls, via a connection to DEP's separate storm sewers, or via overland flow directly to waterbodies, are responsible for providing a geographic depiction of each site's drainage area and agency MS4 outfalls. Agencies may use several different methods to delineate the MS4 area. These methods are summarized in Table 4.1. As agencies complete the delineations of agency sites, this data will be sent to DEP for inclusion in the MS4 Map. DEP provided technical guidance to agencies in order to assist in MS4 area delineation.

DEP has identified areas draining to DEP's MS4 using the ESRI® Arc Hydro extension. Arc Hydro is a set of data models and tools that operates within ESRI® ArcGIS and

enables users to delineate and characterize watersheds. This method relies on topographic and stormwater infrastructure information. DEP has used the NYC I-foot DEM, DEP Sewer Network Geodatabase and locations of outfalls from the Shoreline Survey Program, all described in Section 4.I, to delineate the drainage area of DEP MS4 outfalls. In some instances where existing data from these programs was unclear, DEP conducted field investigations to confirm outfall and sewer connection locations.

Progress in delineating the MS4 drainage area was presented during SWMP development at public meetings and in the annual Progress Reports.

Overview of Drainage Area Delineation Methods Table 4.1

#	Option	Complexity	Data Needs	Skill Level	Best Use or Application
1	Lot Boundaries	Simple	Minimal	Basic	Sites with known discharge point and little other data available, or known to drain via overland flow directly to a waterbody
2	Manual Digitization	Medium	Moderate	Intermediate	Sites with some stormwater drainage system data available
3	Spatial Analyst	High	Moderate	Intermediate	Sites with drainage features, pipes, inlets, and site specific topography available
4	Arc Hydro	High	High	Advanced	Complex sites with many drainage features, pipes, inlets, and site specific topography available

4.4 Preliminary MS4 Map and Associated Information

The Preliminary MS4 Map will represent the MS4 area and outfalls confirmed by the City at the time of submission of this Plan to NYSDEC on August 1, 2018. The map will also include supplemental information available at the time of submission, as required by Part IV.C.1 of the MS4 Permit. The City will provide this information to NYSDEC in the form of an ArcGIS Geodatabase as required by the MS4 Permit; the map will be available to the public in an interactive format through the DEP website. The information that will be provided in the Preliminary MS4 Map is described below.

4.4.1 MS4 Drainage Areas and Outfalls

The City has provided polygons representing areas confirmed as draining to Surface Waters of the State through MS4 outfalls or by overland flow from a City operation or facility. Stormwater outfalls confirmed as owned by the City have been provided as a point data set.

4.4.2 Borough, Block, and Lot (BBL)

The Preliminary MS4 Map includes annotations that define the blocks and lots within the MS4 area. This data set was obtained through MapPLUTO, described in Section 4.1.

4.4.3 Zoning Districts and Related Land Uses

The Preliminary MS4 Map presents publicly available data' on zoning and land use, as described above in Section 4.1. NYC is divided into three broad zoning districts: Residence (R), Commercial (C), and Manufacturing (M). These three districts are further divided into a range of lower, medium- and higher- density residence, commercial and manufacturing districts. Additionally, use groups denote the permitted uses within each zoning district. Table 4.2 summarizes the zoning districts and related land uses found within the historical MS4 area.

4.4.4 Estimates of Impervious Surface Coverage in the MS4 Area

Using the Historical MS4 Map and previous analysis of impervious surface coverage in NYC, the City preliminarily estimates impervious surface coverage within the MS4 area to be 53 percent. While the Historical MS4 Map contains inaccuracies, it represents a more complete depiction of the MS4 area than the Preliminary MS4 Map, which will only include areas confirmed as MS4 as of August 1, 2018. The previous analysis of impervious surface coverage in NYC used satellite imagery from 2009 to identify areas with vegetation, bare soil, and sand. These areas were mapped as pervious surface area, while remaining areas were mapped as impervious. To estimate

I https://wwwi.nyc.gov/site/planning/zoning/about-zoning.page

impervious surface coverage in the MS4 area, the City calculated the total pervious and impervious area within the historical MS4 area, including all direct drainage areas. The City will revise this estimate of impervious surface coverage once the City has completed delineating the MS4 area. This revised estimate will use the most recent analysis of impervious surface available and will be submitted with the Final MS4 Map in August 2020.

4.4.5 Treatment, Storage, and Disposal Facilities for Municipal Solid Waste

The Preliminary MS4 Map will include locations of City facilities and operations within the MS4 area that treat, store, or dispose of municipal solid waste (MSW). For the purposes of the SWMP, these are municipally owned or operated facilities that handle everyday items that are used and disposed of. MSW includes a vast range of items, such as product packaging, grass clippings, furniture, clothing, bottles, food scraps, newspapers, appliances, paint, and batteries.

NYC has several types of facilities that currently handle MSW: waste transfer stations, composting facilities, and household special waste drop-off sites. NYC has no operating disposal facilities such as landfills or incinerators. However, the City does have MSW-related regulatory responsibilities at the closed Edgemere and Fresh Kills Landfills. Two facilities-the Fresh Kills Landfill and the Staten Island Transfer Station- have other State Pollutant Discharge Elimination System (SPDES) Permits that address stormwater discharges and are therefore not subject to the MS4 Permit. They are, however, included in the Preliminary MS4 Map for informational purposes.

The City also has multiple other sites in the MS4 area that previously received MSW as a fill material pursuant to the City's former Land Reclamation Program, which started in the 1930's and lasted until 2001, when the last City landfill closed. These other closed landfills are generally under the jurisdiction of the NYC Department of Parks and Recreation or the National Parks Service Gateway Recreation Area. The City will map these sites using the list of closed landfills DSNY published in the City's 1992 Solid Waste Management Plan.

The information that will be presented in the Preliminary MS4 Map is being derived from publicly available data sets (i.e., IPIS, COLP, and MapPLUTO) described in Section 4.1, and other publicly available documents and vetted with City agencies. This information will be coordinated with the Pollution Prevention/Good Housekeeping (PP/GH) Program described in Chapter 7. New data will be included in future updates to the MS4 Map.

Summary Zoning Districts Present in the MS4 Area and Associated Land Use Table 4.2

	Land Use									
Zoning Districts	1&2 Family Residential	Multi-family Residential	MixedUse	Open Space & Outdoor Recreation	Commercial & Office Buildings	Public Facilities & Institutions	Industrial	Parking	Transportation/ Utilities	Vacant Lots
		Reside	ntial Dis	tricts						
R1R2 Single-family detached	✓			✓		✓			✓	✓
R3A* R3X* R4A* Single- & two-family detached	✓			✓		√		√	✓	✓
R3-1* R4-1* Single- & two-family Detached & semi-detached	✓			✓		√		✓	✓	✓
R4B* Single- & two-family Detached, semi-detached & attached						√			✓	✓
R3-2 R4 R5 R5B* R5D* R6-R10 Single-, two-, & multi-family Detached, semi-detached, & attached	✓	✓	√	✓	✓	✓	✓	√	✓	✓
		Comme	ercial Dis	stricts						
C3 C3A Waterfront & recreation				✓	✓				✓	✓
C4 General commercial				✓	✓	✓	√	√	✓	✓
C6 Central commercial (general)				✓	✓	✓		✓		✓
C7 Commercial amusements				✓					✓	✓
C8 General services						✓		√	✓	✓
Manufacturing Districts										
M1 Light manufacturing	√			✓	✓	✓	✓	√	✓	✓
M2 Medium manufacturing				✓	✓	✓	✓		✓	✓
M3 Heavy manufacturing					✓		√	✓	✓	✓

^{*}Contextual districts regulate the height and bulk of new buildings, their setback from the street line, and their width along the street frontage, to produce buildings that are consistent with existing neighborhood character. Residential and commercial districts with an A, B, D or X suffix are contextual zoning districts, per the NYC Zoning Resolution.

Treatment, Storage, and Disposal Facilities for MSW and Associated Activities in the MS4 Area Table 4.3

Name	Borough	Туре	Activities					
Landfills								
Fresh Kills Landfill	Staten Island	Closed Landfill	Landscape/Grounds Care; Landfill Runoff					
Edgemere Landfill	Queens	Closed Landfill	Landscape/Grounds Care; Landfill Runoff					
	Waste Transfer Stations							
Hamilton Avenue Marine Transfer Station	Brooklyn	Waste Transfer Station	Waste Management; Waste Transfer Station					
Southwest Brooklyn Marine Transfer Station	Brooklyn	Waste Transfer Station	Waste Management; Waste Transfer Station					
East 91st Street Marine Transfer Station	Manhattan	Waste Transfer Station	Waste Management; Waste Transfer Station					
North Shore Marine Transfer Station	Queens	Waste Transfer Station	Waste Management; Waste Transfer Station					
Staten Island Transfer Station	Staten Island	Waste Transfer Station	Waste Management; Waste Transfer Station					
Pier 99 (West 59th St) Marine Transfer Station	Manhattan	Waste Transfer Station/ Recyclables	Waste Management; Waste Transfer Station					
	C	Compost Facilities						
Staten Island Composting Facility	Staten Island	Compost Facility	Material Stockpiles					
Soundview Park Composting Facility	Bronx	Compost Facility	Material Stockpiles					
Rikers Island Composting Facility	Bronx	In-vessel Compost Facility (indoors)	Material Stockpiles					
Gowanus Community Composting Facility (2 Second Avenue)	Brooklyn	Compost Facility (under cover)	Material Stockpiles					
	Household 9	Special Waste Drop-Off S	Sites					
Bronx Sanitation Household Special Waste Drop-Off Site	Bronx	Household Special Waste Drop-Off Sites	Waste Management; Waste Transfer Station					
Brooklyn Sanitation Household Special Waste Drop-Off Site	Brooklyn	Household Special Waste Drop-Off Sites	Waste Management; Waste Transfer Station					
Queens Sanitation Household Special Waste Drop-Off Site	Queens	Household Special Waste Drop-Off Sites	Waste Management; Waste Transfer Station					
Staten Island Sanitation Household Special Waste Drop-Off Site	Staten Island	Household Special Waste Drop-Off Sites	Waste Management; Waste Transfer Station					

83 DRAFT FOR PUBLIC REVIEW BRAFT FOR PUBLIC REVIEW 8

Table 4.3 summarizes activities at current MSW treatment, storage, or disposal facilities within the MS4 area, and closed municipal landfills where DSNY retains control or regulatory responsibilities.

4.4.6 Parks, Recreational Areas, and Open Lands

The Preliminary MS4 Map will include data on publiclyowned parks, recreational areas, and other open space or lands from publicly available sources, as described in Section 4.1.

4.4.7 State Pollutant Discharge Elimination System (SPDES) Permits

The NYSDEC SPDES Permit Program is designed to eliminate or prevent the pollution of waterbodies in New York State. Under this program, certain private or public facilities, operations, or activities must obtain a SPDES permit before discharging any pollutant to a water of the State. For more information on the NYSDEC SPDES Permit Program, refer to http://www.dec.ny.gov/permits/96312.html.

The Preliminary MS4 Map includes data on SPDES-permitted discharges to the MS4, as provided by NYSDEC.

4.4.8 Major Structural Controls for Stormwater Discharge

Major structural controls for stormwater discharge (or major structural controls) are City-owned or -operated controls located within the MS4 area that are designed to retain, detain, or infiltrate stormwater and that, if they were to fail, would potentially cause damage or harm to adjacent or downstream areas. The City has identified the controls from the DEP Bluebelt Program as the only major structural controls. The DEP Bluebelt Program restores, preserves, and enhances natural drainage corridors through a series of structural controls such as constructed wetlands, sand filters, and detention basins.

The Preliminary MS4 Map includes locations of these major structural controls draining to the MS4 known to date. Any new data will be included in future updates of the MS4 Map.

4.4.9 Roles and Responsibilities of Agencies within the MS4 Area

Under the internal division of responsibilities agreed on by the City, each agency is responsible for the MS4 area and infrastructure internal to agency sites or otherwise within drainage areas that are under agency jurisdiction, as set forth by the NYC Charter. For more information about agency roles and responsibilities within the MS4 area, refer to Chapter 1: Legal Authority and Program Administration. These responsibilities include mapping the MS4 area and outfalls as detailed in this chapter; complying with Construction and Post-Construction requirements as detailed in Chapter 6: Construction and Post-Construction; and implementing the PP/GH Program as detailed in Chapter 7: Pollution Prevention/Good Housekeeping.

4.5 Final MS4 Map and Associated Information

In compliance with Part IV.C.2 of the MS4 Permit, City agencies will continue to identify their MS4 outfalls and corresponding drainage area with the goal of completing their portion of the MS4 Map in 2020. DEP will compile information provided by City agencies into the Final MS4 Map submission for this permit cycle.

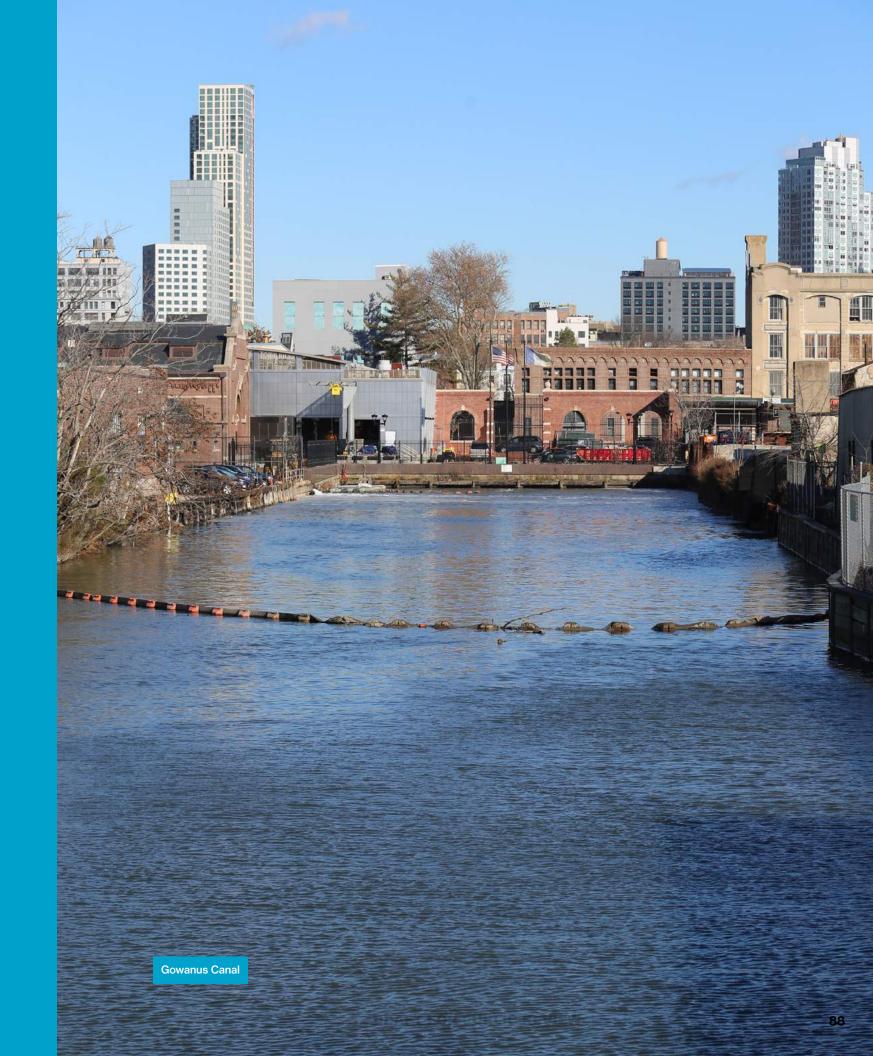
On August I, 2020, the City will submit to NYSDEC the Final MS4 Map of this permit cycle, based on the best available information. If necessary, this submission will be accompanied by updated associated information. GIS data sets are dynamic and change over time as updates are received and processed. As a result, the MS4 Map will be updated as new information becomes available.

4.6 MS4 Map Update Process

Following submission of the Final MS4 Map to NYSDEC in 2020, the City will update the online MS4 Map periodically, as new information becomes available. In compliance with Part IV.C.3 of the MS4 Permit, DEP will provide a geodatabase containing the MS4 Map with all available updates to NYSDEC every five years following submission of the Final MS4 Map in 2020 as long as the MS4 Permit is in effect. These updates will include any additions or deletions to the MS4 drainage area and any newly constructed or discovered MS4 outfalls. Additionally, the updates will include any changes to land use as provided in the MapPLUTO data set.

4.7 Measurable Goals and Program Assessment

Table 4.4 lists measurable goals and measures for identified Mapping best management practices (BMPs). Annual Reports will use these measures to detail the status of each measurable goal and BMP. Part IV.M.4.j.i of the MS4 Permit requires an Annual Effectiveness Assessment in each Annual Report, as described in Chapter 12: Recordkeeping and Reporting. The City will base the Annual Effectiveness Assessment on its achievement of the stated measureable goals for each chapter of this Plan, including this program. The City will also refine these measurable goals with information gained from program planning and implementation, interagency working groups, and public input. Continuing to refine and update the measureable goals will allow the City to better quantify and accurately represent the effectiveness of each one.

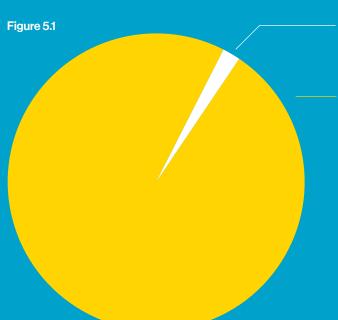

Summary of BMPs, Measureable Goals, and Measures for Mapping Table 4.4

ВМР	Measurable Goals	Measures
	Map in GIS-format, MS4 outfalls, and drainage areas (Preliminary	Status and location of the MS4 Map
Map the MS4 Area	MS4 Map to be submitted by August 1, 2018 and Final Map to be submitted by August 1, 2020)	Number and percent of MS4 outfalls mapped
	Update Final MS4 Map every 5 years	Date of latest MS4 Map update submittal

Illicit Discharge Detection and Elimination (IDDE)

Participating Agencies

DCAS · DEP · DOB · DOC · DOE · DOT · DPR · DSNY · FDNY · NYPD · SBS


Under Part IV.D of the MS4 Permit, the City must develop, implement, and enforce a program to detect and eliminate illicit discharges into the MS4. Illicit discharges are non-stormwater, unauthorized discharges to the MS4. This chapter describes the City's Illicit Discharge Detection and Elimination (IDDE) Program, which can rely on existing programs, to satisfy the following MS4 Permit requirements:

- Prohibit illicit discharges into the MS4 through appropriate enforcement procedures and actions;
- Establish a procedure for determining whether non-stormwater discharges are significant contributors of pollutants to Surface Waters of the State;
- Detect and eliminate unauthorized nonstormwater discharges into the MS4, including spills and illegal dumping;
- Conduct a routine outfall reconnaissance inventory;
- Prioritize waterbodies that are shown through sampling activities to have fecal coliform levels over 200 colonies/100 (milliliters) mL for mini-shoreline investigations;

- Educate public employees, businesses, and the general public about the hazards associated with illegal discharges and improper disposal of waste;
- Describe procedures to prevent, contain, and respond to spills that may discharge to the MS4:
- Describe controls to limit infiltration of seepage from municipal sanitary sewers to the MS4; and
- Train staff that implement IDDE tasks.

Chapter I: Legal Authority and Program Administration discusses the City's legal authority for the IDDE Program; and details the City's regulatory mechanisms to prohibit illicit discharges into the City's sewer system. Appendix I.I: Enforcement Response Plan (ERP) describes procedures for investigating, documenting, and enforcing against illicit discharges pursuant to Part III.C of the MS4 Permit.

All City agencies that own and/or operate facilities within the MS4 area conduct IDDE activities on their property, while DEP conducts IDDE activities citywide. To assist agencies, DEP is developing a NYC IDDE Agency Guidance Manual on how to track, eliminate, and report illicit discharges.

Under Investigation

0.03 million gallons per day (MGD) 1.94%

Abated

4.35 million gallons per day (MGD) 97.57%

DEP has successfully abated the overwhelming majority of discovered illicit discharges

IDDE Program Effectiveness Between 1998-2017

Shows the effectiveness of existing DEP programs at identifying and eliminating illicit discharges through the Shoreline Survey and Sentinel Monitoring Programs

5.1 Existing Programs

The City has long-standing, effective programs for detecting, identifying, and eliminating illicit discharges citywide:

The *Shoreline Survey Program* is an outfall reconnaissance inventory that identifies and characterizes shoreline outfalls in NYC. Under this program, 50 percent of the shoreline is surveyed every five years, with progress made each year. If a dry weather discharge is observed, DEP conducts an investigation to track down the source and take steps to abate the problem.

The Sentinel Monitoring Program monitors waterbodies throughout NYC for pathogens. Under this program, DEP collects samples at 80 monitoring stations on a quarterly basis. DEP compares sampling results to a NYSDEC-established water quality baseline. If sampling results are above the baseline limit of 200 colonies/100 mL, DEP investigates the adjacent shoreline through a mini-shoreline survey to determine whether there is a contaminated dry weather discharge that would require source trackdown and abatement actions. Figure 5.1 shows the results of the DEP Shoreline Survey and Sentinel Monitoring Programs over the past 19 years.

The *Harbor Survey Program* samples ambient waterbody stations to assess the health of waterbodies throughout NYC. DEP coordinates the review and analysis of this data among the various monitoring programs and it may be used to initiate a mini-shoreline survey. Chapter 10: Monitoring and Assessment of Controls, Section 10.1, describes the City's other existing water quality monitoring programs.

311 provides a mechanism for the public to report illicit discharges to the City. Waterway complaints, illegal dumping, and oil spills are examples of reports the public can make through 311. The City responds to 311 reports based on the type of complaint. For more information on 311, refer to Chapter 2: Public Education and Outreach.

The *Emergency Spill Response* units in DEP and FDNY respond to spills citywide. DEP responds to spills that enter the City's sewer system 24 hours a day/7 days a week. The FDNY Hazmat Unit and the DEP Division of Emergency Response and Technical Assessment (DERTA) respond to hazardous materials spills. DSNY may assist in spill response when requested to do so by emergency response personnel.

5.2 Non-Stormwater Discharges

Non-stormwater discharges into the MS4 are generally not authorized and are considered illicit. However, certain non-stormwater discharges into the MS4 are allowed. Allowable non-stormwater discharges into the MS4 include those from firefighting activities, and discharges determined by DEP not to be significant contributors of pollutants to Surface Waters of the State. Pursuant to 15 R.C.N.Y. Section 19-02(j), DEP makes the determination of whether a non-stormwater discharge is a significant contributor of pollutants on a case-by-case basis, and the discharge must be approved by the DEP Commissioner. Discharges DEP considers to be significant sources of pollutants and any other non-stormwater discharges into the MS4 such as sanitary connections to storm sewers, illegal dumping, and spills that enter the sewer are considered illicit.

The City engaged targeted stakeholders to discuss the IDDE Program.

These stakeholders included:

- General Public
- Stormwater Advisory Group
- Community Boards and Elected Officials in the Coney Island Creek watershed
- Neighborhood Associations in the Coney Island Creek watershed
- Environmental organizations
- Community groups and non-profit partners

The public requested access to additional water quality data and information on IDDE investigations; information on how to report potential illicit discharges; information on how to receive notifications of illicit discharges. The City:

- Began posting the Sentinel Monitoring Program quarterly data and the annual Sentinel Monitoring Reports which summarize IDDE field investigations
- Created new guidance on how to report potential illicit discharges through 311
- Began notifying elected officials, community boards, and community leaders when illicit discharge sources are confirmed.

5.3 Illicit Discharge Detection

DEP is continuing its Shoreline Survey and Sentinel Monitoring Programs in order to meet the outfall reconnaissance inventory and water quality sampling requirements of the MS4 Permit.

5.3.1 The Shoreline Survey

DEP's 14 existing Wastewater Treatment Plants (WWTPs) State Pollutant Discharge Elimination System (SPDES) Permits require DEP to complete a Shoreline Survey of at least 50 percent of the NYC shoreline every five years. DEP's existing Shoreline Survey Program includes inland waters such as Van Cortlandt Lake (Bronx), Grasmere Lake (Staten Island), Arbutus Lake (Staten Island), and Wolfes Lake (Staten Island). During the Shoreline Survey, DEP conducts outfall reconnaissance to identify the attributes and location of outfalls; assess outfalls for evidence of dry weather discharges; and, if necessary, initiate illicit discharge field investigations, as described in Section 5.4.

Since the MS4 Permit requires the City to inventory 50 percent of the MS4 outfalls every five years, the City will utilize its existing Shoreline Survey Program to meet the MS4 Permit requirements. However, because the number of MS4 outfalls inventoried under the existing Shoreline Survey Program is not exactly 50 percent in each five-year period, the City will satisfy the MS4 Permit requirement by inventorying 100 percent of the MS4 outfalls every 10 years. DEP will satisfy the MS4 Permit requirement for an annual updated MS4 outfall list in each Annual Report.

5.3.2 The Sentinel Monitoring Program

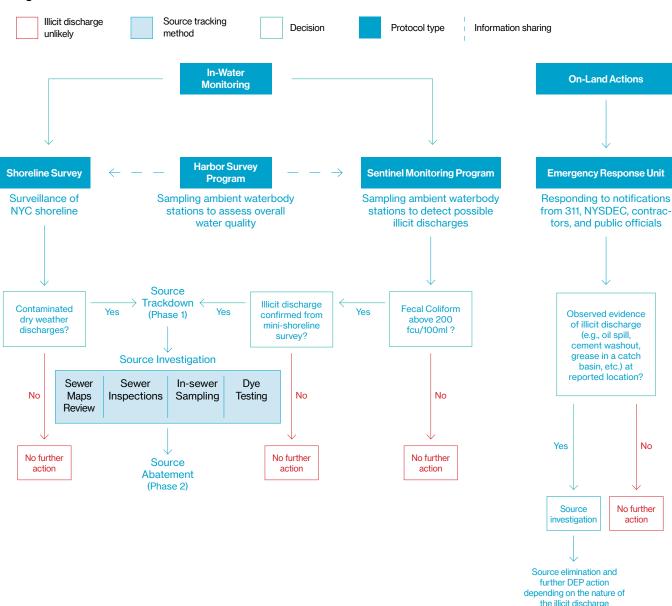
Established as an enhancement to the Shoreline Survey, the DEP Sentinel Monitoring Program entails the regular monitoring and sampling of waterbodies throughout NYC. The purpose of the program is to detect continuous, intermittent, and/or transitory illicit discharges. Using a set list of Global Positioning System (GPS) coordinates, DEP goes to 80 sentinel stations, collects water for samples, and analyzes for pathogens on a quarterly basis. To ensure data integrity, DEP conducts sampling after a dry weather period of 48 hours and during various tidal cycles and seasons. Refer to Appendix 5.1 for the DEP Shoreline Survey and Sentinel Monitoring Program Standard Operating Procedures.

The current water quality standard set by NYSDEC, and stated in the MS4 Permit, is 200 fecal coliform/100 mL. If a station's sampling result exceeds this threshold, then its adjacent shoreline is prioritized for a mini-shoreline investigation, which includes field investigations and surveillance to determine the source and cause of the contamination. In addition, DEP collects evidence of other types of dry weather discharge during mini-shoreline investigations, if observed.

The Integrated Sentinel Monitoring Report, which DEP will submit to NYSDEC by June 30, 2018 and then annually thereafter, includes information on waterbodies with fecal coliform levels over 200 colonies/100 mL and unauthorized non-stormwater discharges to the MS4. This report satisfies the IDDE annual reports listed in Part IV.O, Table 2, of the MS4 Permit.

Illegal dumping occurs when material, including but not limited to bags, litter, oil, unused concrete, concrete wash waters, construction debris, and appliances, is dumped onto surface drainage ways, open channels, storm inlet/catch basins, or storm manholes on public or private property. It is illegal for any person to dump, deposit, or otherwise dispose of any dirt, sand, gravel, clay, loam, stone rocks, rubble, building rubbish, sawdust, shavings, trade or household waste, ashes, manure, garbage, rubbish, or debris of any sort being transported in a dump truck or other vehicle in or upon any street, lot, park, public place, or other area whether publicly or privately owned. In addition, no person may allow anyone under his/her control (agent or employee) to engage in illegal dumping. Penalties for this offense include a fine and vehicle impoundment.

5.4 Illicit Discharge Trackdown, Elimination, and Notification


The City conducts an IDDE investigation if a potential illicit discharge is identified through one of the following three mechanisms:

- An outfall discharging dry weather flow is discovered during the Shoreline Survey.
- A prioritized mini-shoreline investigation is triggered by the Sentinel Monitoring Program.
- Complaint of a potential illicit discharge is received from the public.

When one of these mechanisms triggers an IDDE investigation, the City conducts appropriate in-sewer and/ or aboveground inspections to identify the source of any dry weather discharge entering the City's sewer system, and take abatement actions. Figure 5.2 summarizes the processes of the main DEP programs to identify and eliminate illicit discharges.

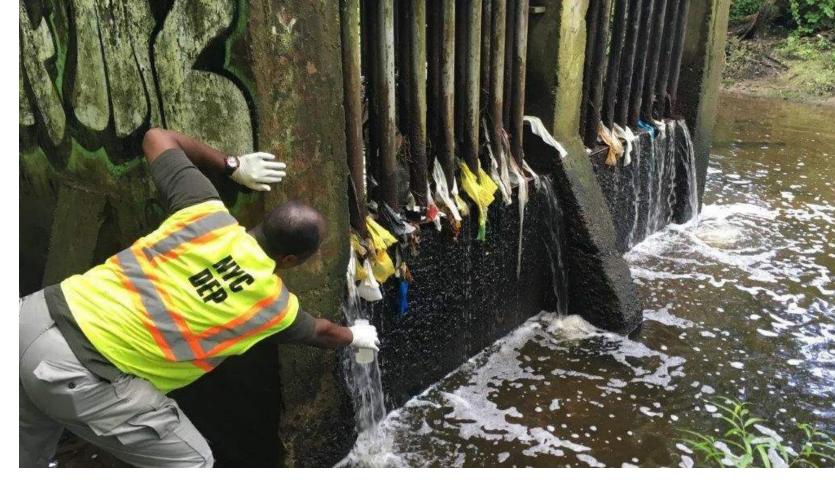
Main DEP IDDE Programs

Figure 5.2

5.4.1 Source Trackdown

DEP Shoreline Survey crews have standard operating procedures (SOPs) for illicit discharge investigations. These SOPs include sewer map reviews, field inspections, sampling procedures, and dye testing procedures. See Appendix 5.1 for the DEP Shoreline Survey and Sentinel Monitoring Program Standard Operating Procedures, which include safety requirements, available equipment, and supporting information.

In response to public reports of potential illicit discharges, DEP goes to the location of a complaint and looks for evidence based on the description of the complaint (e.g., oil, paint, sewage, etc.). DEP's field investigation includes looking for any type of illicit discharge, attempting to identify the source, and initiating a trackdown if necessary.


DEP staff begins sewer investigation

DEP staff conduct in-sewer investigation

Shoreline sampling

Field sampling

5.4.2 Elimination

If DEP identifies the source of the illicit discharge and/or the responsible party, it typically issues a DEP Commissioner's Order. The Commissioner's Order requires the responsible party to cease the discharge and begin abatement. If the responsible party does not make a concerted effort to comply with the Commissioner's Order, DEP then issues a notice of violation (NOV) for failure to comply. DSNY may also impose penalties for the unlawful discharge of a noxious liquid (which can include concrete wash water) under the Sanitation Code.

For 3II complaints, if DEP witnesses someone discharging, or sees clear evidence of an illicit discharge (e.g., a cement facility next to a catch basin with evidence of concrete washout), it will issue an NOV. Refer to Appendix I.I: Enforcement Response Plan for details on enforcement actions.

5.4.3 Notification

Within 30 days of the discovery of an illicit discharge, the City notifies NYSDEC and provides a written schedule to conduct the necessary investigative work to determine the source of the discharge and to propose an abatement program (Phase I Schedule). On or before the end of the schedule in Phase I, the City submits an illicit discharge abatement plan to NYSDEC, including milestone dates (Phase II Schedule). This procedure complies with Part IV.D.4 of the MS4 Permit.

In addition, under the NYS Sewage Pollution Right to Know Law, the City contacts NYSDEC within two hours of confirming a sewage discharge, who then notifies the public and adjoining municipalities within four hours of sewage discharges from municipal outfalls. Notifications to NYSDEC, DOHMH, adjoining municipalities, and the public are all made through the NY-Alert system. The public can sign up to receive NY-Alerts about illicit discharges in their area at the NYSDEC website.

In further coordination with NYSDEC, if the City discovers a dry weather discharge that falls under the State's jurisdiction (e.g., from a private outfall), the discharge is reported to NYSDEC. The City reports illicit discharges that are not sewage-related (e.g., chemicals, gas, cement) to NYSDEC through the NYS Spill Hotline and/or email correspondence.

5.5 Spill Prevention and Citywide Response

In addition to outfall reconnaissance, water quality sampling, and source trackdowns, there are citywide spill prevention and response programs involving various agencies with different levels of responsibilities.

5.5.1 Spill Prevention

The NYC Community Right-to-Know Law authorizes the DEP DERTA to regulate the storage, use, and handling of hazardous substances. As part of the enforcement of the law, DERTA oversees the use and storage of hazardous substances that pose a threat to public health and the environment in NYC. This program manages the reporting and storage of hazardous substances by requiring businesses and facilities throughout the five boroughs to file a report annually detailing the quantity, location, and chemical nature of hazardous substances stored within their facilities.

After Hurricane Sandy, DERTA prepared and distributed brochures to facilities in storm-prone locations. The brochure provides recommendations for proper storage and handling of their chemicals to prevent spillage during adverse weather conditions.

Additionally, through the Pollution Prevention and Good Housekeeping (PP/GH) Program, City agencies implement stormwater control measures (SCMs) designed to prevent and contain spills at municipal facilities/operations. For further details, refer to Chapter 7: Pollution Prevention/Good Housekeeping.

5.5.2 Spill Containment and Response

The DEP Industrial Pre-Treatment Program regulates discharges of specific pollutants from certain facilities into the City's sewer system. In the MS4 area, DEP inspects regulated facilities to evaluate industrial processes; to ensure compliance with Federal and City wastewater regulations; and to assess outdoor storage, handling, and transferring areas. DEP assesses these facilities for proper containment of substances to ensure the prevention of future spills.

The City responds to spills in a number of ways, including taking and ordering actions to:

- Minimize or mitigate the release of substances discharged into the City's sewer system.
- Clean up or remove released substances from the environment.
- Implement security measures, when appropriate, to protect the public.

DEP's Bureau of Wastewater Treatment has an Industrial Waste Emergency Response Unit (ERU) that responds to spills of all types that enter the sewer system. Spills of hazardous substances are covered under the NYC Hazardous Substances Emergency Response Law (also known as the Spill Bill), which authorizes DERTA to respond to chemical release emergencies. In addition, under the Citywide Incident Management System, DERTA remediates conditions caused by releases or threatened releases of hazardous substances into the environment. FDNY also responds to spills; its Hazardous Materials Unit responds to hazardous materials incidents throughout NYC, and its Fuel Unit responds to FDNY-related fuel spills. Other agencies, such as DSNY, may also assist in spill response when requested to do so by emergency response personnel.

DEP DERTA responders

5.6 Sanitary Pipe Seepage Controls

The City utilizes administrative and operational controls to limit infiltration of seepage from municipal sanitary sewers to the MS4. Appendix 5.2 describes the Rules, Sewer Design Standards, and Standard Sewer and Water Main Specifications for the City. DEP is responsible for maintaining the majority of existing City sewers to keep them operational and in structurally sound condition. DEP's Capacity Management Operation and Maintenance (CMOM) compliance unit investigates complaints and responds to inquiries regarding sewer conditions throughout NYC. Some of these complaints are related to cracks, fractures, open joints, deformation, collapses, missing bricks, and erosion.

Additionally, DEP investigates sewer structural conditions for damage to the sewer walls through closed circuit television inspections for smaller pipes, and walkthrough inspections by specially trained personnel for large trunk lines. The results of these inspections are compiled in a report based on the Pipe Assessment Certification Program (PACP), an industry standard grading system for sewer defects. DEP uses a combination of the PACP grading system and other criteria to determine sewer condition and need for rehabilitation. Various methods, such as lining, uniting, and replacement, are used to restore pipes to eliminate seepage.

5.7 Public Education and Participation

The City conducts robust public education, outreach, and participation programs associated with stormwater management, as described in Chapters 2 and 3 of this Plan. This section provides a summary of education, outreach, and participation measures targeted at illicit discharge detection and elimination.

5.7.1 General Public

- The DEP website provides information on stormwater and the City's sewer system.
- DSNY holds SAFE disposal events throughout the year in all five boroughs to help residents dispose of harmful household products safely.
- 311 provides information and assistance, and allows residents to report water quality issues including dry weather discharges, illegal dumping, and spills (refer to Chapter 2: Public Education and Outreach, Section 2.5).

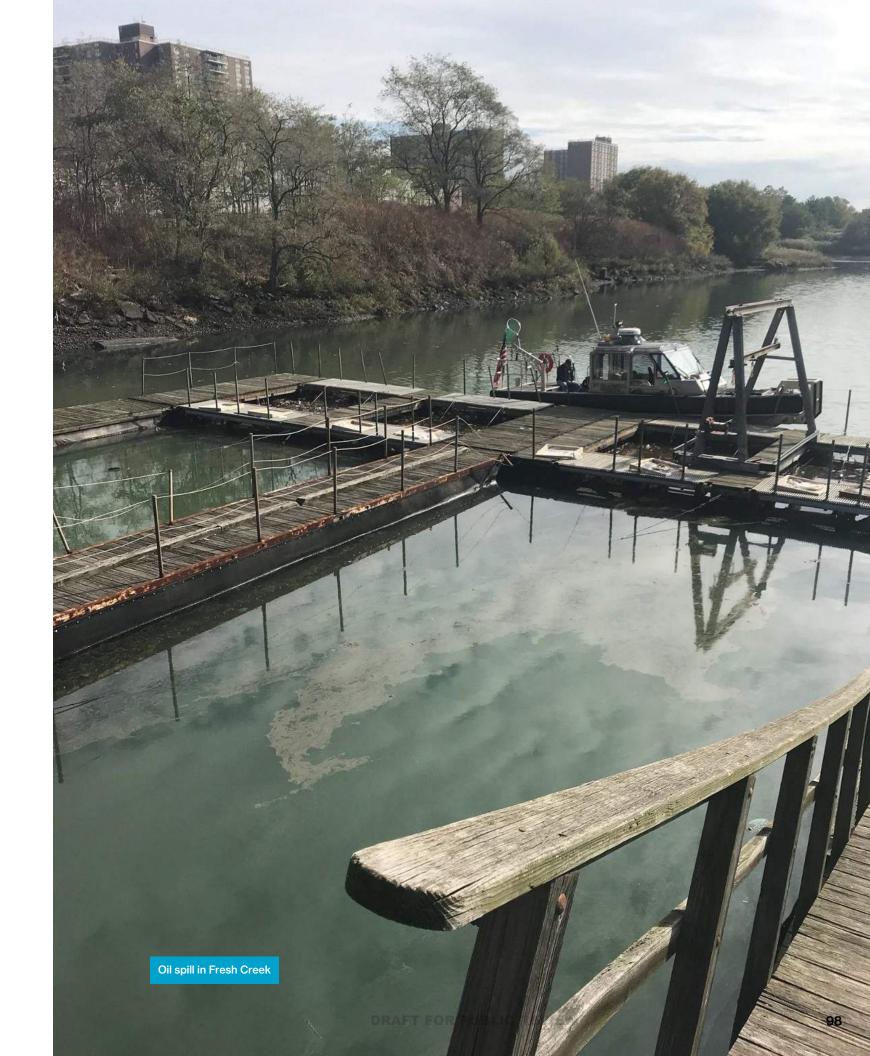
5.7.2 Industrial and Commercial Businesses

- The DEP Cease the Grease program distributes information to food service establishments throughout NYC about proper grease disposal and the sewer system.
- DEP reaches out to various businesses through meetings, door-to-door visits, workshops, mailers, and/ or on-site visits.
- DEP works with its primary partners (and their members) including Local Development Corporations, Business Improvement Districts, Chambers of Commerce, Merchant Associations, and trade associations to distribute materials that includes information on proper waste disposal.
- DEP provides automotive associations with information on proper waste disposal as well as vehicle washing and refueling.

DEP Cease the Grease program

5.8 Staff Training

Agencies with obligations under the MS4 Permit train staff on identifying and preventing illicit discharges, spills, and illegal dumping during routine work activities at municipal facilities/operations. This is done in coordination with the PP/GH Program. Each agency documents and maintains records of their staff trained and the training provided. Refer to Chapter 7: Pollution Prevention/Good Housekeeping for details on the PP/GH Program. Further, to support agencies with MS4 Permit obligations, DEP is developing a NYC IDDE Agency Guidance Manual to assist agency staff detect, track, eliminate, and report illicit discharges.


DEP staff implementing the IDDE Program receive training on illicit discharge identification, proper procedures for reporting and responding, and applicable health and safety guidelines. DEP Shoreline Survey crew members are trained in accordance with DEP's SOPs (Appendix 5.1). New employees for the DEP ERU that respond to spills and 311 complaints are trained by experienced staff in the field. These staff training programs comply with Part IV.D.6 and Part IV.D.11 of the MS4 Permit.

5.9 Measurable Goals and Program Assessment

Table 5.1 lists measurable goals and measures for identified IDDE best management practices (BMPs). Annual Reports will use these measures to detail the status of each measurable goal and BMP. Part IV.M.4.j.i of the MS4 Permit requires an Annual Effectiveness Assessment in each Annual Report, as described in Chapter 12: Recordkeeping and Reporting. The City will base the Annual Effectiveness Assessment on its achievement of the stated measureable goals and measures for each chapter of this Plan, including this program. The City will also refine these measurable goals with information gained from program planning and implementation, interagency working groups, and public input. Continuing to refine and update the measureable goals will allow the City to better quantify and accurately represent the effectiveness of each one.

Summary of BMPs, Measureable Goals, and Measures for the IDDE Program Table 5.1

BMPs	Measurable Goals	Measures	
		Number of illicit discharges detected	
	Detect and eliminate illicit discharges including illegal dumping	Number of illicit discharge abatements	
Detect and eliminate illicit discharges		Number of and type of enforcement actions and penalties issued	
	Conduct an outfall reconnaissance inventory with	Date updated outfall spreadsheet submitted to NYSDEC	
	100% completed every 10 years	Percent of known MS4 outfalls inventoried	
Prepare reports	Special Report for waterbodies with fecal coliform above 200 colonies/100 ml and for unauthorized non-stormwater discharges within 3 years of August 1, 2018 and annually thereafter	Date Integrated Sentinel Monitoring Report submitted to NYSDEC	
		List of education activities for public employees and businesses	
Provide an ongoing public education	Implement a public education program on potential	List of education/outreach events on IDDE for selected waterbodies of concern to provide regular updates to the community	
and awareness program	hazards of illicit discharges	List of education & outreach materials developed and distributed	
		List of planned educational and outreach programs/activities to be undertaken in next reporting cycle	
Duovido tuninina for stoff	landomento etaff tusining program en IDDE	Number of staff training opportunities/events	
Provide training for staff	Implement a staff training program on IDDE	Number of DEP staff trained on IDDE	

Construction and Post-Construction Construction

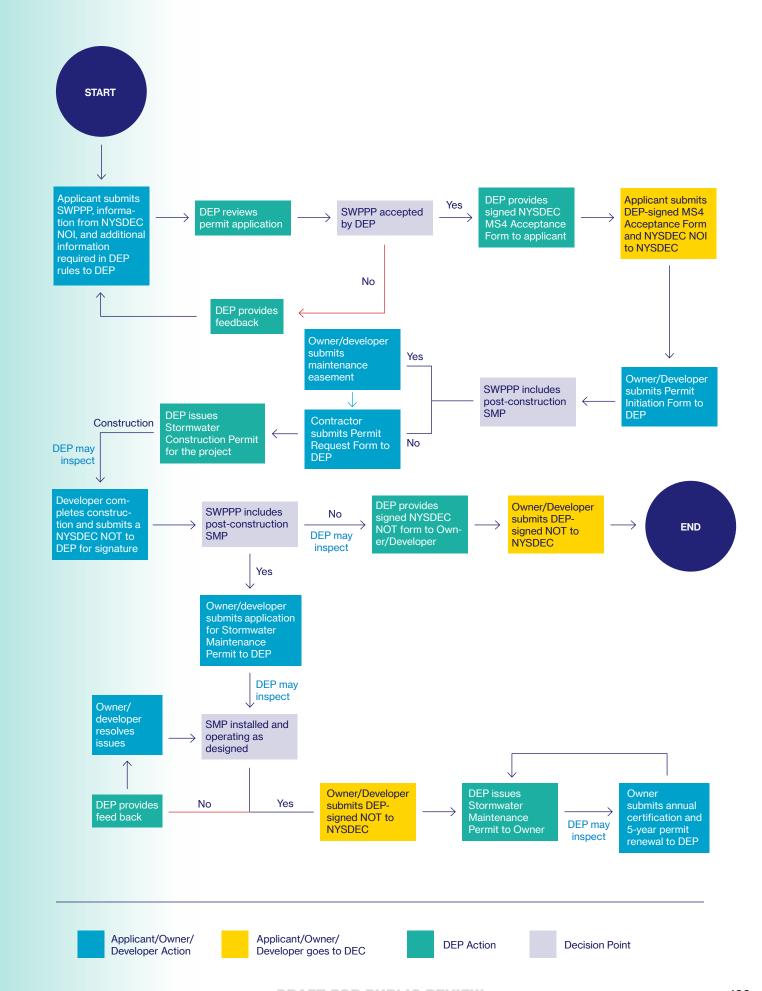
Participating Agencies

DCP · DEP · DOB · SBS

NYSDEC requires projects disturbing an acre or more of soil to obtain coverage for stormwater discharges under the State Pollution Discharge Elimination System (SPDES) General Permit for Stormwater Discharges from Construction Activity (GP-0-15-002)(NYSDEC CGP). The City will complement the NYSDEC CGP program in the MS4 area by reviewing and approving stormwater pollution prevention plans (SWPPPs), and inspecting construction activities for stormwater impacts and post-construction stormwater management practices (SMPs).

Parts IV.E and F of the MS4 Permit require the City to:

- Review and approve Stormwater Pollution Prevention Plans (SWPPPs);
- Maintain an inventory of active construction sites;
- Conduct site inspections during construction and enforce proper erosion and sediment control measures as well as proper SMP installation;
- Maintain an inventory of post-construction SMPs;
- Conduct SMP inspections and enforce long-term maintenance of SMPs;


- Train DEP staff who will perform SWPPP reviews and site inspections during and after construction;
- Verify that construction managers and site operators have received erosion and sediment control training from NYSDEC or other qualified entities;
- Educate relevant stakeholders about the Construction and Post-Construction (C/PC) Program; and
- Conduct a study to determine an appropriate reduction in the lot size soil disturbance threshold for triggering the regulatory requirements of the C/PC Program.

Chapter I: Legal Authority and Program Administration discusses the City's rulemaking process and legal authority for the C/PC Program. DEP will administer the C/PC Program by reviewing SWPPPs; issuing stormwater construction and maintenance permits; inspecting and enforcing during and after construction; and responding to public complaints. The C/PC Program includes measures to ensure no net increase of the pollutants of concern (POCs) for which a waterbody is impaired, as required by Part II.B.I of the MS4 Permit. The C/PC Program applies only to certain new and redevelopment projects, referred to as *covered development projects*. Figure 6.I provides an overview of the program.

Overview of C/PC Permitting Process Figure 6.1

The C/PC Program requires two types of stormwater permits for covered development projects: Stormwater Construction Permits for all covered development projects, and Stormwater Maintenance Permits for projects requiring post-construction SMPs. The first step in applying for these stormwater permits is submittal of a permit application to DEP. The permit application consists of the information required in NYSDEC's Notice of Intent (NOI) form, additional information required in DEP's rules, and the plans and reports that together make up the Stormwater Pollution Prevention Plan (SWPPP). DEP will review and approve SWPPPs; refer to Section 6.1 for details. If DEP approves the SWPPP, the developer then submits the Permit Initiation Form and a copy of the maintenance easement to DEP, and the contractor with primary responsibility for the project site submits the Permit Request Form to DEP for a Stormwater Construction Permit; refer to Section 6.2.1 for details. DEP may inspect a site during construction.

After construction, the developer or owner submits a completed NYSDEC Notice of Termination (NOT) form to DEP for review and signature. If post-construction SMPs are required for the covered development project, then the developer or owner must also submit a Stormwater Maintenance Permit application with the completed NYSDEC NOT to DEP; refer to Section 6.2.2 for details. DEP may inspect post-construction SMPs. If DEP issues a Stormwater Maintenance Permit, then the owner must submit an annual certification and renew the permit every five years.

6.1 SWPPP Review and Approval

For a covered development project, an applicant must submit a permit application to DEP that includes all of the elements required in the NYSDEC notice of intent (NOI) for coverage under the NYSDEC CGP; a complete SWPPP; and the additional information required by the City's rules. A SWPPP is a plan prepared by a developer to manage stormwater runoff from a construction site. SWPPPs include elements that prevent pollution both during construction and after a project is completed.

DEP will host the Stormwater Permitting and Tracking System (SWPTS), an online application system, for developers to input their applications and follow the status of DEP's review. DEP will ensure each permit application meets the conditions of the NYSDEC CGP and the additional requirements under the City's rules.

Upon approval of an application, DEP will provide the developer with a downloadable MS4 SWPPP Acceptance Form. Developers will then submit both items to the NYSDEC main office in Albany to obtain coverage

under the NYSDEC CGP. If DEP does not approve the application, it will provide notice to the applicant that delineates the deficiencies of the SWPPP. The applicant may re-submit the SWPPP for DEP approval.

Contents of SWPPPs will depend on the individual covered development project. All SWPPPs require an erosion and sediment control component for construction activities detailed in Section 6.I.I. Some SWPPPs will also require post-construction SMPs that the property owner must implement and maintain following construction, as detailed in Section 6.I.2. SWPPPs for covered development projects draining to impaired waterbodies must meet the no net increase requirement detailed in Section 6.I.3. Finally, SWPPPs for covered development projects that are flood management projects must meet the requirements in Section 6.I.4. The City is developing a NYC Stormwater Design Manual to provide technical guidance for creating SWPPPs that meet the C/PC Program requirements. This manual will be available on the DEP website.

Construction at Avenue V pump station

Covered development project means development activity, private or public, that involves or results in a soil disturbance within the MS4 area in an amount greater than or equal to one acre, including disturbances of less than one acre that are part of a larger common plan of development or sale that will ultimately disturb one or more acres of soil. The one acre threshold that triggers construction and post construction stormwater management requirements will be reduced in the future, as described in Section 6.4.

6.1.1 SWPPP Construction Erosion and Sediment Control Component

All SWPPPs must include an erosion and sediment control component. The erosion and sediment control component must meet the requirements in the NYS Standards and Specifications for Erosion and Sediment Control.¹ The SWPPP must include practices to avoid erosion and control sedimentation for each step in the construction process. The SWPPP should also include site plans that show the location of each process; the practices associated with that process; and the details specifying size, materials, and endurance of each practice.

6.1.2 SWPPP Post-Construction Stormwater Management Component

Depending on the covered development project, a SWPPP must also include post-construction SMPs that the property owner must implement and maintain to manage stormwater runoff from the developed site after construction is completed. The NYSDEC CGP establishes which covered development projects require only an erosion and sediment control component and which also require post-construction SMPs.

The stormwater management component must describe post-construction SMPs that prevent or reduce pollution from stormwater runoff to waterbodies. SMPs must meet the performance standards in the NYS Stormwater Design Manual.² DEP is also developing a NYC Stormwater Design Manual to address City-specific requirements and preferred practices for covered development projects. This NYC manual will be available on the DEP website.

SWPPPs with stormwater management components should include site plans showing both the preconstruction and the proposed post-construction condition of the site. The developer must show the locations, materials, sizes, and inlet and outlet conditions of all SMPs. In supporting documentation, the developer must include calculations demonstrating that the size and operation of the SMP are adequate, and results of any field-testing performed to locate and size the SMP. An operation and maintenance manual must also be included to address the requirements for the long term maintenance of the SMPs.

6.1.3 No Net Increase Requirement

Covered development projects involving a non-negligible change in land use (i.e., land disturbances greater than or equal to one acre where there is an increase in impervious cover) draining to impaired waters are required to include a pollutant load analysis in the SWPPP. This analysis should demonstrate that there will be no net increase of the POC(s) for which a waterbody is impaired. NYSDEC provided the list of impaired waters in Appendix 2 of the MS4 Permit and specified the particular pollutant(s) causing the impairment for each listed waterbody segment. The City's Draft Procedures for No Net Increase Pollutant Load Analysis is available on the DEP website.³

The POCs listed in Appendix 2 of the MS4 Permit are floatables, nitrogen, phosphorus, and pathogens. Refer to Chapter II: Special Conditions for Impaired Waters for more information on NYC impaired waters and POCs.

The SWPPP pollutant load analysis must consist of a narrative that identifies each POC causing impairment in the waterbody and the potential sources of those pollutants; and the management practices that will be used to ensure no net increase of those pollutants to impaired waters. Projects in areas draining to an impaired waterbody must demonstrate compliance for the individual pollutant(s) for which the waterbody is impaired as follows:

- **Floatables**: Design and implement SMPs in accordance with the NYS Stormwater Design Manual.
- **Nitrogen**: Design and implement practices to show no net increase in total nitrogen load. Provide pollutant calculations using the loading and removal data provided in the NYC Stormwater Design Manual.
- Phosphorus: Design and implement SMPs in accordance with Chapter 10 of the NYS Stormwater Design Manual.
- Pathogens: Design and implement SMPs in accordance with the NYS Design Manual, with added enhancements and site management practices to reduce the potential for pathogens to enter the MS4, as detailed in the NYC Stormwater Design Manual.

The NYC Stormwater Design Manual will detail how to determine whether a site drains to an impaired waterbody and how to demonstrate no net increase for the POC(s) causing the impairment.

i http://www.dec.ny.gov/docs/water_pdf/2016nysstanec.pdf

² http://www.dec.ny.gov/chemical/29072.html

 $^{{\}it 3} \quad http://www.nyc.gov/html/dep/pdf/water_sewer/deliverable_ms4-permit-ll-b-i-d.pdf}$

6.1.4 SWPPP Requirements for Flood Management Projects

Covered development projects that meet the MS4 Permit definition of a flood management project are required to assess in the SWPPP the impacts on the water quality of the receiving water.

Flood management projects refer exclusively to projects designed and functioning to capture, detain, or convey overland flow from a large drainage area to prevent downstream flooding associated with a 100-year or greater storm event. The MS4 Permit excludes projects such as installation and maintenance of storm sewers, high-level storm sewers, Bluebelt storm sewers, drainage inlets, and other projects to improve drainage, alleviate localized flooding, or reduce coastal flooding.

Additionally, SWPPPs prepared for major maintenance or rehabilitation of City-owned structural flood control devices in flood management projects shall, if feasible and cost effective, incorporate the recommended controls resulting from the facility assessments conducted under the Pollution Prevention/Good Housekeeping provisions of the MS4 Permit. Refer to Chapter 7: Pollution Prevention/Good Housekeeping for more details on facility assessments. The City has not identified any existing flood management devices within the MS4 area that meet the MS4 Permit definition.

The City engaged targeted stakeholders to discuss the development of the Construction/ Post-Construction Program. These stakeholders included:

- General Public
- Stormwater Advisory Group
- Design, construction, and development community
- Environmental organizations

In addition, the City entered into a partnership with the Urban Green Council (UGC) and the Real Estate Board of New York (REBNY) to bring together a broader audience of professionals who will be impacted by the Construction/Post-Construction provisions.

In response to comments received on this program, the City has:

- Included Owner as the defined person to submit annual certifications for Stormwater Maintenance Permits instead of a Qualified Professional.
- Altered the threshold analysis by:
 - changing the life cycle analysis from a20-year to 30-year life cycle.
 - » adding 7,500 and 12,500 square foot lot size thresholds into the analysis (the initial analysis included lot sizes in 5,000 square foot increments up to and including 1 acre).
- Revised cost estimates per input from developer workshops held in conjunction with REBNY and UGC.

6.2 DEP Issued Stormwater Permits

After the rulemaking process is complete and DEP's rules go into effect, DEP will begin accepting applications for two types of stormwater permits for covered development projects: Stormwater Construction Permit and Stormwater Maintenance Permit.

DEP may periodically inspect permitted sites. Appendix I.I: Enforcement Response Plan includes DEP's protocol for investigating, documenting and, where appropriate, enforcing against unauthorized discharges from construction and post-construction pollution sources into the MS4.

6.2.1 Stormwater Construction Permit

Stormwater Construction Permits are required for all covered development projects. A developer must obtain a Stormwater Construction Permit prior to construction. Before issuing the permit, DEP must receive two forms through the SWPTS:

- 1. The Permit Initiation Form that requires the developer to submit the names of the Qualified Inspector, the Contractor, and where required, a fully executed and recorded maintenance easement, as described below; and
- 2. The Permit Request Form that requires the Contractor to complete a Contractor's Certification, and provide the Trained Contractor information and the NYSDEC SPDES number received with the NYSDEC Acknowledgement after filing an NOI.

The purpose of these forms is to identify the individuals responsible for SWPPP implementation. These roles and responsibilities include:

- The Qualified Inspector, who is responsible for weekly inspections of the construction site.
- The Contractor, who is the construction manager or the primary contractor responsible for the development activity. The Contractor must also provide the information for at least one Trained Contractor.
- The Trained Contractor, who is responsible for the daily erosion and sediment control inspection. This individual must have taken the NYSDEC erosion and sediment control 4-hour class within the last three years and be employed by the contractor responsible for the job.

Except as noted below, covered development projects that require a post-construction SMP(s) are required to execute and record a maintenance easement and submit a copy to DEP to receive a Stormwater Construction Permit from DEP. The purpose of the maintenance easement is to ensure that future owners of the property are aware of the post-construction SMPs and their ongoing obligation to operate and maintain them in accordance with the operation and maintenance manual in the approved SWPPP. The easement also puts the property owner on notice that DEP may inspect post-construction SMPs to confirm that the operation and maintenance meets applicable standards. Public properties with SMPs, public projects, and projects that only require erosion and sediment controls during construction do not require a maintenance easement. However, if a public entity later transfers a public property with an SMP to a private entity, the NYC Corporation Counsel may require a maintenance easement at that time. The maintenance easement must be recorded with the Office of the City Register or, if applicable, the County Clerk, after approval by the NYC Corporation Counsel.

In addition, DEP requires a Contractor's Certification that ensures that the Contractor has reviewed and agrees to implement the approved SWPPP. Subcontractors that are responsible for specific parts of a development activity will need to sign certifications and provide Trained Contractor information as well. Subcontractor certifications and Trained Contractor credentials must be kept with the SWPPP on the site. In order to receive a permit, a developer must also have a DEP-approved SWPPP, and an NYSDEC-acknowledged notice of intent (NOI) for coverage under the NYSDEC CGP.

Green Roof at Zerega EMS Station

Permit Issuance

DEP will issue a Stormwater Construction Permit once all of the required submittals have been entered in the SWPTS, and DEP's review is completed. Stormwater Construction Permits will be valid for 2 years from the date of issuance. A renewal of the Stormwater Construction Permit may be submitted through SWPTS, and follows the same process as the original application. Once DEP issues the permit and receives a 7-day notification of the construction start date from the contractor or developer, DEP will add the project to DEP's inventory of active construction sites in the MS4 area.

Permit Conditions

The applicant and all contractors and subcontractors are responsible for implementing the approved SWPPP, complying with DEP rules, and complying with the terms and conditions of the Stormwater Construction Permit. A Stormwater Construction Permit must be renewed every two years from date of issuance.

During construction, unforeseen issues may make it necessary for the developer to amend the SWPPP. Major amendments that require changes to structural components (such as a sediment basin or dam for an impoundment), changes that require new stormwater modeling, or changes to modeling methodology will require review and approval by DEP.

If construction begins, but is not completed, the developer must submit a closure plan to DEP as an amendment to the SWPPP. The closure plan must demonstrate that the site will remain stable and that all completed SMPs are operating as designed and in compliance with DEP rules. The developer is also responsible for submitting a Notice of Termination (NOT) to NYSDEC.

If construction is temporarily halted and the site is closed down, the developer must continue to maintain the site and the SMPs. The developer must also notify DEP at least 7-days before an anticipated temporary shutdown through the SWPTS. Inspections must be performed by a Qualified Inspector at least once every 30 days to assure that the site is stable and that installed erosion and sediment control practices or completed SMPs are maintained during the shutdown. The developer must immediately fix any issues identified by the Qualified Inspector.

Construction Inspections

During construction, DEP staff will perform inspections to evaluate compliance with the approved SWPPP. DEP will prioritize active construction sites for inspection considering factors such as the extent of soil disturbance, distance to the receiving waterbody, impairments to the receiving waterbody, land slope, soil erodibility, and past performance of the contractor and developer. DEP will conduct construction site inspections as part of a routine program and in response to public complaints.

The City currently responds to a variety of public complaints related to construction activities such as excessive debris, noise or dust; work without a permit or outside approved plans; and illegal dumping of construction materials in catch basins. Refer to Chapter 2: Public Education and Outreach, Section 2.5, for details on how to report illicit discharges and other potentially harmful water quality impacts through 311.

Enforcement

When a DEP inspector identifies non-compliance with the SWPPP or the New York City Administrative Code Chapter 5-A of Title 24, the inspector may utilize a number of measures to require correction of the condition. The measure taken will depend upon the severity of the condition and the impact or potential impact on water quality. DEP will follow the Enforcement Response Plan (Appendix I.I) that identifies each potential enforcement measure. The penalty associated with each enforcement action will be determined based on the identified noncompliance, the number of times a similar issue has been identified on the site, and the ability of those responsible for the covered development project to correct the problem.

Permit Termination

A Stormwater Construction Permit expires if the permitted work is not substantially underway within one year or is not completed by a date specified in the permit. This permit also expires if work is suspended or abandoned for a continuous period of 12 months unless the permit expires earlier.

Once the project is constructed, the Qualified Inspector for erosion and sediment control and the developer must sign a NYSDEC NOT stating that the project is complete and the site is stable. Projects that include post-construction SMPs also require the signature of a Qualified Inspector who has inspected the SMP for conformance to the approved SWPPP.

A developer working on a project that does not include post-construction SMPs will submit a completed NYSDEC NOT to DEP for signature through the SWPTS. If the project includes post-construction SMPs, the developer will submit the NOT with the application for the Stormwater Maintenance Permit. See Section 6.2.2 for details on Stormwater Maintenance Permit application. DEP will review the NYSDEC NOT and may choose to inspect a site prior to DEP signing the NYSDEC NOT. DEP will provide the developer with a downloadable copy of the DEP-signed NYSDEC NOT and will remove the project from DEP's inventory of active construction sites.

This ends the process for projects without post-construction SMPs with DEP; however, the developer must submit the DEP-signed NYSDEC NOT to the NYSDEC State Office in Albany to terminate coverage under the NYSDEC CGP.

Owners of covered development projects with postconstruction SMPs are required to submit an application for a Stormwater Maintenance Permit at the time of submitting the completed NYSDEC NOT to DEP for signature. See Section 6.2.2 for details and Figure 6.1 for a summary of the permitting process.

6.2.2 Stormwater Maintenance Permit

Projects that require post-construction SMPs require an application for the Stormwater Maintenance Permit, which may be submitted through SWPTS. The NYSDEC CGP establishes which covered development projects require only an erosion and sediment control component and which also require post-construction SMPs.

Permit Issuance

The application for the Stormwater Maintenance Permit must include the completed NYSDEC NOT; as-built plans showing constructed SMPs with the invert elevations identified; and up-to-date operation and maintenance manual for each SMP on the site. Additionally, the owner must include the DEP sewer certification with the permit application. Stormwater Maintenance Permits will be valid for five years from the date of issuance and will require renewals every five years and an annual certification from the property owner that the practices are operating as designed. Once a Stormwater Maintenance Permit is issued, DEP will add the practice to its inventory of post-construction SMPs.⁴ DEP will issue the Stormwater Maintenance Permit to the developer/owner, along with a signed copy of the NYSDEC NOT for the developer/owner to submit to NYSDEC.

SMP Modifications

In order to modify an SMP after DEP issues a Stormwater Maintenance Permit, the owner must submit through the SWPTS an application for the modification of the SMP. The application to modify the SMP must include design calculations and supporting documentation to demonstrate that the proposed practice is at least as protective of water quality as the existing practice and that it controls stormwater flows as required by the stormwater maintenance component of the SWPPP.

Maintenance Inspections

Projects that require a Stormwater Maintenance Permit will be subject to inspection by DEP staff. DEP will perform inspections as necessary to ensure compliance with the Stormwater Maintenance Permit and to make sure that the SMP is operated and maintained as designed. DEP may

prioritize sites for inspection based on the soils, land use, and the location of the site relative to waterbodies. DEP will also perform inspections in response to public complaints.

Enforcement

If an inspection reveals non-compliance with the Stormwater Maintenance Permit, such as failure to properly maintain SMPs, the property owner may be subject to penalties and sanctions, as authorized in New York City Administrative Code Chapter 5-A of Title 24. The response will depend upon the severity of the condition and the impact or potential impact on water quality, and will follow the Enforcement Response Plan (Appendix I.I). The penalty associated with each enforcement action will be determined based on the identified non-compliance, the number of times a similar issue has been identified on the site, and the ability of those responsible for the operation and maintenance of the SMP to correct the problem.

Annual Certification and Permit Renewal Every year on the anniversary date of the Stormwater

Maintenance Permit, the owner must submit to DEP, through the SWPTS, a signed certification that the SMPs are operating as designed. Every five years, the owner of the site must renew the Stormwater Maintenance Permit by submitting an application for renewal with a report certified by a Qualified Professional that the SMPs are operating as designed. If any post-construction SMPs include structural components, such as a dam for an impoundment, a Professional Engineer licensed in New York must perform the inspections and certification.

6.3 Education, Certification, and Training

DEP SWPPP reviewers and site inspectors will be Qualified Professionals or work directly under the supervision of a Qualified Professional. DEP staff who review SWPPPs and perform inspections will receive annual training in review and inspection and may attend the NYSDEC-endorsed 4-hour training at least once every three years. Additionally, DEP will offer its staff opportunities to take professional development classes in designing, reviewing, and inspecting construction practices for stormwater management.

DEP will develop a training program for municipal staff, industry professionals, and other stakeholders on the implementation of the regulations and the use of the SWPTS. Opportunities for the NYSDEC-endorsed 4-Hour Erosion and Sediment Control (E&SC) Training can be found on NYSDEC,⁵ the NYC Soil and Water Conservation District,⁶ and the Nassau Soil and Water Conservation District⁷ websites.

- 5 http://www.dec.ny.gov/chemical/8699.html
- 6 http://www.soilandwater.nyc/4-hr-esc-training.html

This inventory also includes City-owned SMPs and SMPs approved by NYSDEC since 2003.

http://www.nassauswcd.org/4-hour-esc-training.html

6.4 Results of the Threshold Study

The City has conducted an analysis to shape the C/PC Program for typical development projects in NYC. The purpose of the Lot Size Soil Disturbance Threshold Study for Construction and Post-Construction Stormwater Management (Threshold Study) was to determine an appropriate reduction, in the MS4 area, of the oneacre soil disturbance threshold that currently triggers the applicability of construction and post-construction stormwater management requirements at new development and redevelopment sites. By reducing the threshold in the MS4 area to include more development and redevelopment projects, the C/PC Program will help further reduce pollution in local waterbodies.

In accordance with Part IV.F.4 of the MS4 Permit, the Threshold Study took into consideration a number of metrics including:

- the number of potentially affected public and private properties
- types of development/zoning
- DEP's administrative resource needs for permitting and inspections
- total lot area managed
- impervious surface coverage
- site and soil conditions and constraints
- compliance costs
- expected water quality improvements

The Threshold Study evaluated different threshold sizes, ranging from 5,000 square feet to 1 acre, to assess potential costs to the City and developers and the anticipated water quality benefits associated with each threshold size. The Threshold Study can be found in Appendix 6.1.

The study recommends future adoption of a 20,000 square foot soil disturbance threshold for both construction and post-construction requirements for public and private development and redevelopment projects on tax lots within the MS4 area. This recommendation is supported by a majority of the metrics analyzed (i.e., number of permits, number of managed acres, cost/ benefit) and takes into account costs to individuals and borough-specific impacts; considers staffing resources needed to accommodate permit review and inspections; and provides flexibility with respect to site constraints (e.g., soil suitability, site availability) through a hierarchy of SMPs. DEP will implement this hierarchy (Figure 6.2), by incorporating it into the NYC Stormwater Design Manual, as the basis for developers' selecting postconstruction SMPs. Once NYSDEC approves the proposed reduction, the City will work to implement the reduced soil disturbance threshold through future rulemaking to redefine covered development project, expected to be initiated in the City's second MS4 Permit cycle.

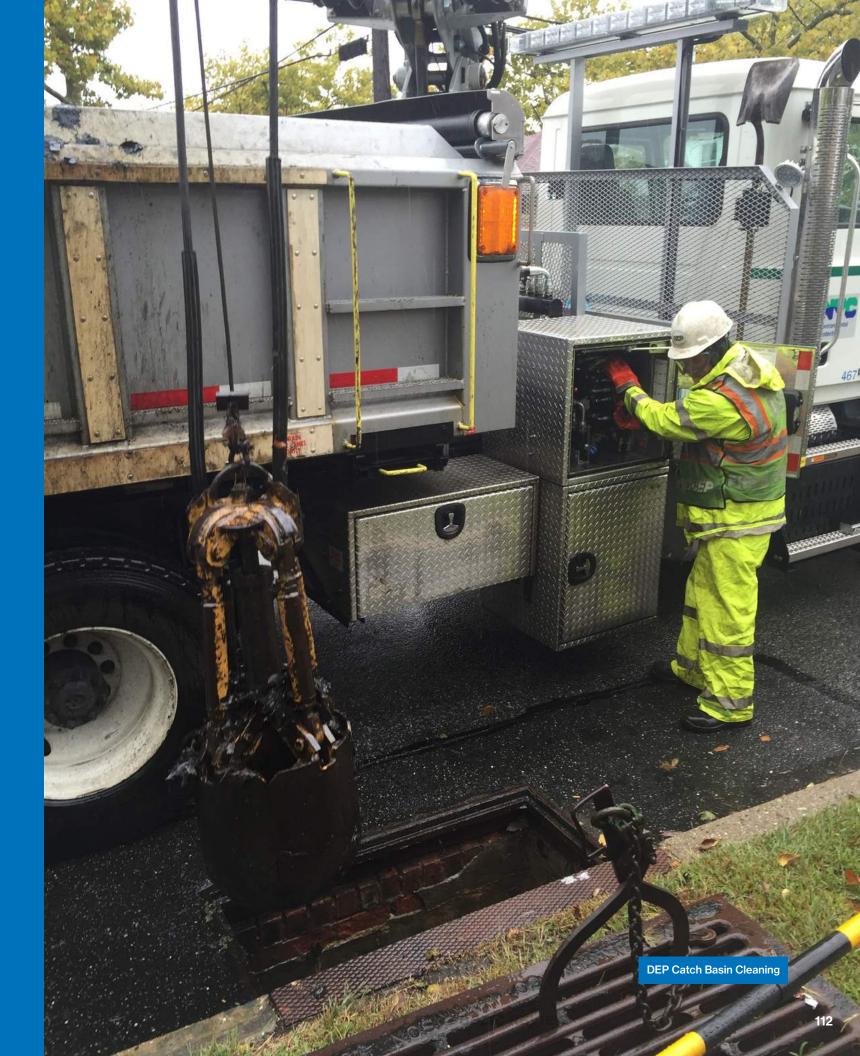
Preliminary SMP¹ Hierarchy 6.2 Figure

Low Priority **High Priority** Sub-Surface Infiltration **On-Site Vegetated Vegetated Detention** Infiltration and Green Roof with Treatment Rain Gardens and Permeable Pavement, Vegetated Open Swales, Sand Filters, Green Roof, Infiltration Trenches, Turf Constructed Wetlands, Other Approved Filtration Bioretention Fields, Green Roof **Technologies** Bioretention with Underdrains, Ponds, Sheet Flow to Riparian Area Soil Suitability High High Low Low **Space Availability** High Low High Low

6.5 Measurable Goals and Program Assessment

Table 6.1 lists measurable goals and measures for identified Construction and Post-Construction best management practices (BMPs). Annual Reports will use these measures to detail the status of each measurable goal and BMP. Part IV.M.4.j.i of the MS4 Permit requires an Annual Effectiveness Assessment in each Annual Report, which is described in Chapter 12: Recordkeeping and Reporting. The City will base the Annual Effectiveness Assessment on its achievement of the stated measureable goals for each chapter of this Plan, including this program. The City will also refine these measurable goals with information gained from program planning and implementation, interagency working groups, and public input. Continuing to refine and update the measureable goals will allow the City to better quantify and accurately represent the effectiveness of each one.

Summary of BMPs, Measureable Goals, and Measures for the C/PC Program Table 6.1


BMPs	Measurable Goals	Measures
		Number of SWPPPs reviewed
	Review and Approve SWPPPs	Number of SWPPPs approved with and without post-construction stormwater management facilities
		Number of Stormwater Construction Permits issued
Construction		Number of active construction sites
Site Stormwater Runoff Control		The percent of active Stormwater Construction Permit sites inspected once
	Inspect construction sites and enforce Stormwater Construction Permits	The percent of active Stormwater Construction Permit sites inspected more than once
		Number and type of enforcement actions and penalties issued
		Number of construction site stormwater control trainings planned or completed
		Number of Stormwater Maintenance Permits issued
		Number of Flood Management Projects and existing structural flood control devices evaluated
	Inspect post-construction	Number and type of enforcement actions and penalties issued
Post-Construction Stormwater Management	sites and enforce Stormwater Maintenance	Number of post-construction SMPs, including type of practice and contributing impervious area
	Permits	Number and type of SMPs inspected
		Number and type of SMPs properly maintained as determined by inspections
		Number of individuals trained in inspection of long-term operation and maintenance of post-construction SMPs

I in appendix 6.1. SMPs are referred to as SCMs DRAFT FOR PUBLIC REVIEW 110

Pollution Prevention/ Good Housekeeping for Municipal **Operations** and **Facilities**

Participating Agencies

DCAS · DDC · DEP · DOC · DOE · DOHMH · DOT · DPR · DSNY · FDNY · NYPD · SBS

DOT Staten Island Ferry

Pursuant to Part IV.G of the MS4 Permit, the City must develop a Pollution Prevention/Good Housekeeping (PP/GH) Program to manage municipal facilities and operations in ways that reduce or control stormwater pollution. The MS4 Permit requires that the City:

- Address municipal operations and facilities that contribute or potentially contribute pollutants of concern (POCs) to Surface Waters of the State from the MS4 area:
- Include a program to control and reduce pollutants in stormwater runoff from the MS4 area associated with the application of pesticides, herbicides, and fertilizers from municipal facilities and operations;
- Prepare an inventory of municipal operations and facilities with initial prioritization of operations and facilities into high, medium, and low categories;
- Prepare a procedure for self-assessment of municipal operations and facilities;
- Identify management practices, policies, and procedures that will be implemented to reduce or prevent the discharge of POCs;
- Prioritize PP/GH efforts based on receiving waters, facilities, or operations;
- Include an employee training program;

- Require third-party entities performing municipal operations as contracted services to meet the MS4 Permit requirements;
- Indicate if municipal facilities otherwise subject to a NYSDEC Multi-Sector General Permit (MSGP) will instead be covered under the MS4 Permit; and
- Consider and, if feasible and cost effective, incorporate runoff reduction techniques and green infrastructure (GI) during planned municipal upgrades.

This chapter details the City's PP/GH Program for municipal facilities and operations to address the MS4 Permit requirements above. This program includes an inventory of municipal operations and facilities, a priority rating of these facilities and on-site or off-site operations, and a standardized protocol for agency self-assessments. In addition, the City will implement training to educate staff on stormwater pollution prevention. The City developed guidance for stormwater control measures (SCMs) that agencies can implement to reduce their potential to contribute pollution to the MS4. City agencies will also consider the feasibility and costs of green infrastructure for planned municipal upgrades in order to identify additional opportunities to help improve water quality. Lastly, this chapter describes the status of municipal facilities in the MS4 area subject to the MSGP that may opt for coverage under either the MS4 Permit or the MSGP.

7.1 Existing Practices

Most City agencies with municipal facilities and operations have existing practices that help prevent stormwater pollution.

7.1.1 Existing Operations and Facilities

Existing operations relevant to the PP/GH Program include, but are not limited to, the following:

- Street and bridge maintenance;
- Winter road maintenance including de-icing activities and road salt storage facilities;
- Catch basin inspection, hooding, and maintenance;
- Vehicle and fleet maintenance;
- Park and open space maintenance;
- Municipal building maintenance;
- Solid waste management (i.e., operating or closed municipal landfills or other exposed treatment, transfer, storage, or disposal facilities for municipal waste);
- Erosion and sediment control associated with new construction and land disturbances not subject to Part IV.E of the MS4 Permit;
- Right-of-way maintenance;
- Marine operations; and
- Hydrologic habitat modification.

The City will assess and enhance these existing practices, if necessary, through the implementation of the PP/GH Program. This program is standardized for consistency across facilities, equips City staff with the necessary information and tools for each agency to implement the program, and prioritizes PP/GH efforts based on receiving waters and facilities or operations most in need of modification or improvement.

7.1.2 Existing Controls for Pesticide, Herbicide, and Fertilizer Application

City agencies conduct operations in accordance with all existing regulations related to fertilizer, pesticide, and herbicide use. DPR, the largest fertilizer applicator among City agencies, conducts operations in accordance with the NYS Dishwasher Detergent and Nutrient Runoff Law, NYS Environmental Conservation Law, and NYS Agriculture and Markets Law. The NYS Dishwasher Detergent and Nutrient Runoff Law addresses fertilizer application to reduce the quantity of nutrients entering the surface waters of the State; it specifies the legal limits of phosphates allowed in lawn fertilizers, the time of year when application of certain fertilizers is prohibited, and under what conditions fertilizer applications are restricted. Reduction and control of fertilizers entering the environment are also achieved through compliance with §18-44 of Title 15 of the Rules of the City of New York and Local Law 37 of 2005.

Local Law 37 of 2005 addresses the use of pesticides and herbicides by requiring the reduction, management, notification, recordkeeping, and reporting of pesticide use. In conjunction with Local Law 37 of 2005, the City implements Integrated Pest Management (IPM) at its facilities and operations. IPM is an approach that gives preference to physical, mechanical, cultural, biological, and educational methods to control pests by restricting or eliminating resources to pests; and if necessary, prudent use of the least hazardous pesticides. Existing pesticide regulations and IPM educational programs provided by the City promote awareness of safer pest control methods to municipal staff, pest management professionals, and the

Under Local Law 37 of 2005, annual reporting of City agencies' pesticide usage allows the City Council and the Interagency Pest Management Committee to identify areas of concern, and to provide guidance on proper management to curtail hazardous pesticide use. In following the requirements under local laws and IPM, the City has controlled the use of pesticides, herbicides, and fertilizers on municipal-use grounds, thereby reducing the amount of those substances entering MS4 waterbodies and directly discharging into the environment. As a whole, the regulatory requirements in place will help the ongoing efforts to reduce the use of pesticides and fertilizers, which satisfies Part IV.G.I.b of the MS4 Permit.

7.2 Inventory and Prioritization of Municipal Facilities and Operations

The City prepared an initial inventory of municipal facilities and operations located in the MS4 area based on the Historical MS4 Map. This inventory will change over time as described in Section 7.2.2. The City categorized these facilities and operations as high, medium, or low priority using a standardized prioritization protocol based on their potential to contribute to stormwater pollution, referred to as pollution potential. The priority rating of a facility or operation determines the frequency of on-site self-assessments and will be revised based on these assessment findings. Table 7.1 summarizes the number of facilities to date included in the inventory by agency and pre-assessment priority rating. Figure 7.1 shows a map of the municipal facilities in the inventory to date.

The City of New York has an extensive network of municipal facilities and operations that serve New Yorkers and keep vital infrastructure functioning properly. The MS4 Permit addresses the City's facilities and operations that drain to the MS4 or contribute overland flow in direct drainage areas. A number of these facilities and operations, such as those related to vehicle and equipment cleaning, may have the potential to be sources of stormwater pollution (pollution potential). Through this PP/ GH Program, agencies will assess their facilities and operations to understand their pollution potential and implement appropriate SCMs to help reduce pollution to the MS4 and Surface Waters of the State.

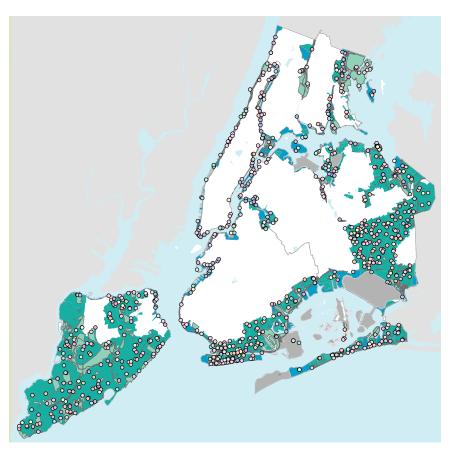
Initial Inventory and Pre-Assessment Priority Rating of Municipal Facilities to date Table 7.1

Agency	Low Priority	Medium Priority	High Priority	Number of Sites
DCAS	2	3	-	5
DEP	16	115	-	131
DOC	-	-	2	2
DOE	14	146	-	160
DOT	55	21	2	78
DPR	172	91	-	263
DSNY	26	34	3	63
FDNY	35	40	1	76
NYPD	22	44	2	68
Total	342	494	10	846

Figure 7.1

Map of Municipal Facilities in the PP/GH inventory to date

Agency O DCAS O DEP O DOC O DOE O DOT O DPR



O NYPD

DPR Parks

Municipal Separate Storm Sewer System

7.2.1 Initial Inventory and Pre-Assessment Prioritization

The City developed an initial inventory of 846 municipal facilities in the MS4 area. The City determined the pre-assessment priority rating for these facilities using the standardized prioritization protocol. This protocol included identifying relevant operations known or expected to occur at each facility by gathering site specific information from agencies (Table 7.2); using readily available tools such as Esri ArcGIS[®] (Geographic Information System), aerial photos, and Google Street View[©]; using an Excel-based prioritization tool; and applying best professional judgment. The City used this information to evaluate the pollution potential for a facility and assigned each a pre-assessment priority rating of high, medium, or low. The pre-assessment priority rating considered factors such as the existence and quantities of POCs, material exposure, frequency of activity, and proximity to impaired waterbodies listed in Appendix 2 of the MS4 Permit. A facility with a high priority rating does not necessarily mean the facility is a contributor of pollutants, but rather that the facility has an inherent risk of contributing pollutants given the location, types and quantities of materials, and frequency of activities taking place.

The City also evaluated the pollution potential of common off-site operations relevant to the PP/GH Program using the standardized prioritization protocol. Relevant off-site operations evaluated include sidewalk repair; storm sewer system maintenance; winter pavement maintenance; pavement cleaning (sweeping); herbicide, pesticide, and fertilizer application; roadway resurfacing; and curbside garbage removal. Some of these off-site operations provide stormwater quality benefits by removing or controlling potential pollution sources, which reduces their inherent risk of contributing pollutants. Additionally, few of these off-site operations include large volume material storage or occur frequently at any specific site, which also reduces their inherent risk of contributing pollutants. Therefore, the City determined these off-site operations have a low pre-assessment priority rating. The City will update offsite operations' priority rating, as appropriate, based on results of the on-going self-assessments. Table 7.3 lists typical off-site operations conducted by the City that may occur away from agency facilities in the MS4 area.

7.2.2 Inventory Updates and Post-Assessment Prioritization

The inventory is dynamic in nature and agencies are responsible for including inventory updates as part of the Annual Report. Agencies may add or remove facilities from the inventory due to property acquisitions or relocations. Facilities may also be added or removed from the inventory as the MS4 area is confirmed and the MS4 Map is updated, as detailed in Chapter 4: Mapping. The City will refine priority ratings for facilities and a representative sample of off-site operations using the prioritization tool based on site-specific data from the on-going self-assessments as the PP/GH Program continues, as described in Section 7.3.

DOT trucks under cover and within secondary containment

Typical On-Site Operations at City-owned Facilities

Table 7.2

Vehicle/Equipment Operations

- Vehicle/Equipment Maintenance and Repair
- Vehicle/Equipment Cleaning
- Vehicle/Equipment Fueling
- Truck Bed Management
- Vehicle/Equipment Storage

Material Storage Facilities

- General Outdoor Storage
- Above-Ground Storage Tanks
- Underground Storage Tanks
- Drum Storage and Management
- Material Stockpiles

Waste Management Facilities

- Waste Transfer Stations
- Landfills
- Shooting Ranges

Building Maintenance and Repair

- Building Repair and Remodeling
- Painting

Other Types of Facilities

- Golf Courses
- Animal Recreational Facilities/Stables
- Swimming Pools
- Marine Operations

Typical Off-Site City Operations Table 7.3

Stormwater Collection System Maintenance

- Catch basin/inlet cleaning and repair
- Storm sewer/underground facility cleaning/repair
- Ditch/open channel cleaning and repair
- Green infrastructure/open facility maintenance
- Hydrologic habitat maintenance

Paved Surface Maintenance

- Pavement Cleaning
- Winter Pavement maintenance
- Pavement/Sidewalk resurfacing and repair
- Spill prevention and response
- Bridge/elevated structure maintenance

Landscaping and Open Space Maintenance

- Herbicide/pesticide/fertilizer application
- Landscape/ground care
- Turf management

Other Types of Operations

Solid Waste Collection

7.3 Self-Assessments of Municipal Facilities and Operations

The priority rating of high, medium, or low, based on pollution potential for a facility or operation, determines the frequency of self-assessments. Facilities and operations with a higher pollution potential are rated as a higher priority. The City is assessing facilities in the inventory and operations according to their pre-assessment priority ranking utilizing a standardized checklist based on a portfolio of stormwater control measures (SCMs). Following the initial assessment, each agency will conduct self-assessments of their own facilities and operations as required by the MS4 Permit. High priority self-assessments will occur every two years, medium every five years, and low every seven years. A facility or operation may increase or decrease in priority with each assessment, based on the pollution potential evaluated at that time, and will then be subject to the timeline for the next assessment based on its revised priority.

The City developed a standardized self-assessment protocol to ensure consistency across all types of municipal facilities and operations, both on-site and offsite. This protocol allows agencies to determine sources of POCs potentially generated by their facilities and operations, and evaluate the adequacy of their current PP/GH practices. The City also developed guidance on additional PP/GH practices consistent with the NYS Pollution Prevention and Good Housekeeping Assistance Document and EPA MS4 guidance manuals. Agencies can select appropriate practices from this suite of SCMs for implementation at their facilities and operations. The list of the SCMs, which incorporated interagency and public feedback, will be available at www.nyc.gov/dep. After each self-assessment, agencies will complete an assessment report with findings, select options from applicable SCMs, and determine timelines for implementation.

The Stormwater Control Measures (SCMs) developed by the City include options with a range of solutions and effectiveness, which

may involve both structural and non-structural

separators, grit chambers, or other devices that

and other procedures. The appropriate controls

individual circumstances at each facility.

are subject to agency decision-making, which will

consider potential effects on agency operations and

controls. Structural controls include oil and water

remove pollutants. Non-structural controls include operational practices, signage, staff education,

Agency staff who conduct the self-assessments will determine the appropriate timelines to follow up with the facility or operation and re-assess the effectiveness of recommendations and selected SCMs.

The MS4 Permit requires that the City evaluate the feasibility and cost-effectiveness of retrofitting structural flood control devices owned or operated by the City in the MS4 area to provide additional pollutant removal from stormwater. However, the City has determined that the City does not currently own or operate any structural flood control devices as defined in the MS4 Permit. As such, the City has not included this evaluation in the self-assessment protocol, but will in the future if any Cityowned structural flood control devices are constructed. Refer to Chapter 6: Construction and Post-Construction, Section 6.1.4 for details on structural flood control devices.

As required by the MS4 Permit, the City completed initial assessments of the facilities and operations with a high priority pre-assessment rating prior to August 1, 2018. The majority of these on-site operations included material stockpile management, waste management, and vehicle management activities. Of the 10 sites with a pre-assessment high priority rating, 3 were re-classified as medium priority as a result of the assessments. The assessments revealed that these facilities had lesser quantities of materials, less exposure of materials, or lower frequency of use, and as a result, have a lower pollution potential than originally estimated with the prioritization protocol. Based on these completed assessments, the City is refining the prioritization tool and self-assessment protocol for future use, and conducting a high-level cost estimate for implementing preferred actions listed in the SCMs.

DSNY salt shed

7.4 City Staff Training

The City developed PP/GH training for agency staff that addresses ways to reduce the discharge of pollutants from municipal facilities and operations. The MS4 Permit requirement for employee training will be met by taking any of the trainings listed below. Each agency will track its own staff trainings and summarize this data for each Annual Report. The City will deliver training to the following personnel through a combination of computer-based and in-person trainings:

- Agency Staff. Agencies will identify staff who are responsible for the implementation of SCMs in day-to-day municipal operations, both at municipal facilities and off-site. The City will provide computer-based training for these agency-identified staff on stormwater pollution prevention. The computer-based training will remain accessible online to enable agencies to train or retrain staff, as needed. The computer-based training includes a quiz to gauge comprehension and provides certificates to employees upon completion. In addition to computer-based training, agencies may offer in-person trainings provided by agency trainers, described below.
- Agency Trainers. Agencies will identify staff who will provide in-person trainings for employees who do not have computer access or prefer in-person training. DEP will provide initial train-the-trainer sessions for agency trainers on stormwater pollution prevention, the implementation of SCMs, options for training field personnel, and recordkeeping requirements. These trainers are also responsible for training future staff who will conduct in-person trainings.
- Agency Site Assessors. Agencies will identify site
 assessors who will be responsible for conducting the
 self-assessments, reprioritizing agency facilities and
 operations, evaluating SCMs and recommendations,
 and as necessary, re-assessing the effectiveness of
 recommendations and selected SCMs. DEP will provide
 initial in-person classroom trainings for the designated
 site assessors for each agency. In the future, agency site
 assessors will train newly-designated site assessors on
 the self-assessment protocol.

Self-Assessment Protocol Figure 7.2

PRE-ASSESSMENT

Preparation

- Gather information about facilities and on-site operations
- Select representative off-site operations
- Engage facility managers and operational supervisors
- Schedule self-assessments based on priority

SELF-ASSESSMENT

On-site Orientation

- Review available records
- Map the facility and/or operational areas
- Identify locations of interest (e.g., stock piles, chemical storage, oil tanks)

Facility and Operational Area Walkthrough

- Confirm facility operations and maintenance activities
- Assess activities using standardized checklist

Wrap-up meeting

 Discuss preliminary findings with facility managers and operational supervisors

POST-ASSESSMENT

Complete Assessment Report

- Identify applicable SCMs
- Revise priority rating using the standardized prioritization tool
- Keep checklists on record and update as needed

Share Assessment Results

 Notify appropriate agency personnel of assessment results

Agency Staff Implement SCMs and Assessment Recommendations (where appropriate)

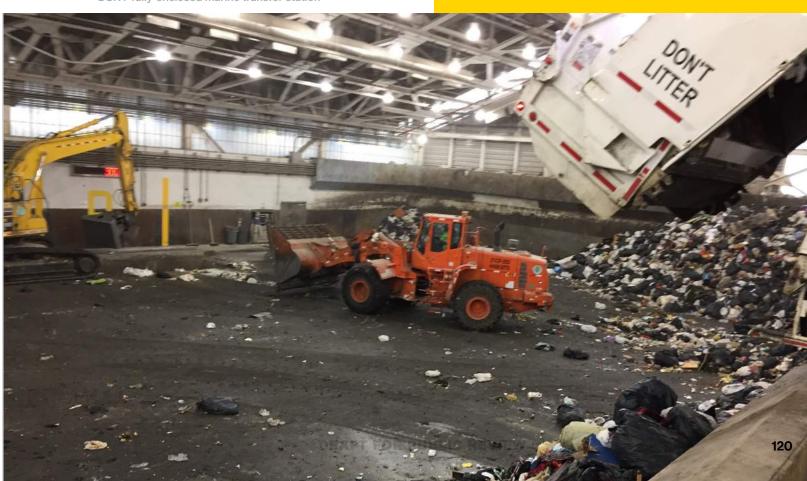
Schedule Next Self-Assessment based on Priority

- High priority every 2 years
- Medium priority every 5 years
- Low priority every 7 years

7.5 NYSDEC Multi-Sector General Permit for Municipal Facilities

Municipal facilities in the MS4 area that conduct industrial activities subject to the MSGP may opt for coverage under the MS4 Permit or the MSGP. Currently, the municipal facilities in the MS4 area with existing coverage under the MSGP for stormwater discharges from industrial activities will maintain such coverage. Refer to Chapter 8: Industrial and Commercial Stormwater Sources for details on the NYSDEC MSGP program.

During assessments, the City may identify additional municipal facilities that conduct industrial activities subject to the MSGP. Agencies that own or operate these facilities may seek coverage under the MSGP or continue coverage under the MS4 Permit. Those agencies will notify NYSDEC of their preference for coverage. The City will indicate any changes in permit status in each Annual Report and will update the inventory. In the event that municipal facilities opt for coverage under the MS4 Permit, but would otherwise be subject to MSGP, these facilities will comply with certain requirements of the MSGP and attach their MSGP annual certification and discharge monitoring reports to the Annual Report.


The City engaged targeted stakeholders to discuss the development of the Pollution Prevention and Good Housekeeping Program. These stakeholders included:

- General Public
- Stormwater Advisory Group
- Environmental organizations

Stakeholders suggested that the City summarize the factors used for facility prioritization in the Plan and consider flood zones as a factor, and publish the stormwater control measures (SCMs) online. As a result, the City:

- Held public meetings on the PP/GH Program and the prioritization protocol
- Provided a summary of the prioritization process of facilities and off-site operations in Section 7.2
- Revised the prioritization tool to consider flood zones
- Will publish the SCMs on the DEP website

DSNY fully-enclosed marine transfer station

7.6 Green Infrastructure Feasibility for Planned Municipal Upgrades

Each individual agency will, as required by Part IV.G.2 of the MS4 Permit, consider and, if feasible and cost-effective, incorporate runoff reduction techniques and green infrastructure (GI) during planned municipal upgrades, including within municipal rights-of-way. Examples of GI include bioswales, green streets, grass swales, rain gardens, curb cuts to reroute flow to below-grade infiltration areas, or other low-cost improvements that provide runoff treatment or reduction. Consideration of feasibility includes physical site conditions, hydrogeological and environmental analyses, costs, and expected life cycles of available technologies.

The City has developed criteria for agencies to use during municipal upgrade planning as a consistent method for assessing feasibility of GI implementation. Agencies will incorporate GI if all of the following assessments indicate it may be appropriate and feasible.

- Evaluation of planned municipal upgrade. For the PP/GH Program, a municipal upgrade is a capital project as defined by the NYC Charter. If a capital project meets the NYC Charter § 224.1 (b)(1) cost threshold, and if the project will generate stormwater runoff and POCs after construction is completed, the agency will evaluate the feasibility of GI.
- Evaluation of project site. A preliminary assessment of physical site conditions, hydrogeological analysis, and an environmental analysis will determine feasibility of GI implementation for planned municipal upgrade projects. Physical site conditions will determine specific siting and space constraints, such as the presence of utility lines or adjacent structures that would make the location unsuitable for GI. Hydrogeological analysis determines site suitability, including soil conditions, for GI pursuant to the NYS Stormwater Management Design Manual. Environmental analysis will determine whether potential implementation of GI could exacerbate existing environmental contamination conditions and if there are existing institutional or engineering controls.
- Evaluation of cost-effectiveness. Agencies will evaluate construction, operation, and maintenance costs to determine whether it is cost-effective.

This approach to determine the feasibility of GI implementation will complement current municipal GI programs by developing more consistent and integrated methodologies to citywide planning and implementation. Incorporating GI into City projects can additionally help meet the post-construction Stormwater Pollution Prevention Plan (SWPPP) requirements of the Stormwater Maintenance Permit. Chapter 6: Construction and Post-Construction describes the permit requirements for post-construction stormwater management, which will be required for private and public development and re-development projects that meet the applicable soil disturbance thresholds. If the GI feasibility analysis described above shows that GI is not feasible or costeffective, then the agency will use other approaches described in the City's Stormwater Management Design Manual to meet the Stormwater Maintenance Permit requirements for those projects.

Green Roof at Parks Department's Five Borough Administrative Building

7.7 Requirements for Third-Party Contractors

The City requires contractors working at City facilities and conducting operations to meet PP/GH Program requirements. Refer to Chapter 1: Legal Authority and Program Administration for information on reliance on third parties.

7.8 Measurable Goals and Program Assessment

Table 7.4 lists measurable goals and measures for identified PP/GH best management practices (BMPs). Annual Reports will use these measures to detail the status of each measurable goal and BMP. Part IV.M.4.j.i of the MS4 Permit requires an Annual Effectiveness Assessment in each Annual Report, as described in Chapter 12: Recordkeeping and Reporting. The City will base the Annual Effectiveness Assessment on its achievement of the stated measureable goals for each chapter of this Plan, including this program. The City will also refine these measurable goals with information gained from program planning and implementation, interagency working groups, and public input. Continuing to refine and update the measureable goals will allow the City to better quantify and accurately represent the effectiveness of each one.

Summary BMPs, Measurable Goals, and Measures for the PP/GH Program Table 7.4

BMPs	Measurable Goals	Measures
	Maintain an inventory of municipal	Number of facilities
	operations and facilities	Number of off-site operations
		Acres of parking lots swept
Provide program		Miles of street swept
for pollution prevention and good		Number of catch basins inspected, cleaned, and/or maintained
housekeeping for municipal operations and facilities	Implement the PP/GH Program	Miles of storm sewers inspected
		Miles of storm sewers cleaned
		Number of self-assessments completed, by priority ranking
		Percent of self-assessments completed of the total number of sites in the inventory, by priority
		Number of facilities electing MS4 coverage that would otherwise be subject to MSGP
Provide for staff		Number of staff trained in-person
training	Implement a PP/GH training program	Number of staff trained computer based
Consider runoff	Consider runoff reduction techniques	Number of runoff reduction/green infrastructure opportunities evaluated
reduction and green infrastructure	and green infrastructure	Number of runoff reduction/ green infrastructure opportunities implemented

Industrial and Commercial Stormwater Sources

Participating Agencies

DEP

NYC Waterfront Industrail Site

NYSDEC requires certain industrial facilities to obtain coverage for stormwater discharges under the State Pollution Discharge Elimination System (SPDES) Multi-Sector General Permit for Stormwater Discharge from Industrial Activities (GP-0-17-004) (MSGP). While NYSDEC will continue to administer the MSGP program, DEP will be responsible for the inspection and enforcement portions of the program at both publicly and privately owned MSGP-covered facilities in the MS4 area. Through the MS4 Industrial and Commercial Stormwater Program (I/C Program), DEP will also assess unpermitted facilities to determine their potential need for SPDES permit coverage.

In accordance with Part IV.H of the MS4 Permit, the City will:

- Prepare and maintain a facility inventory of all publicly and privately owned industrial and commercial sites that could discharge pollutants of concern (POCs) in stormwater to the MS4. The inventory includes unpermitted facilities that will be assessed for SPDES applicability and facilities currently permitted under the NYSDEC MSGP program;
- Develop a plan to assess and inspect unpermitted industrial and commercial facilities to determine if they are significant contributors of POCs to impaired waters
- Develop a program to inspect industrial and commercial facilities that are permitted by the NYSDEC MSGP program;
- Use the approved Enforcement Response Plan per Part III.C of the MS4 Permit for all enforcement actions; and
- Implement a training program for all staff conducting facility inspections.

This chapter describes the I/C Program, which includes the facility inventory, unpermitted and MSGP-permitted facility inspection processes, the database tracking system, and inspection staff training. Chapter 1: Legal Authority and Program Administration discusses the City's rulemaking process and legal authority for the I/C Program. The Enforcement Response Plan in Appendix 1.1 describes DEP's enforcement response protocol for investigating, documenting, and enforcing against unauthorized or potential discharges to the MS4 as well as failure to comply with the facility's Stormwater Pollution Prevention Plan (SWPPP).

The NYSDEC Industrial Stormwater Multi-Sector General Permit

The Clean Water Act provides that stormwater discharges to waters of the United States (including discharges through the MS4) associated with certain industrial or commercial activities are unlawful, unless authorized by a National Pollutant Discharge Elimination System (NPDES) permit.

In New York, EPA has approved the state program enacted through the administration of the State Pollutant Discharge Elimination System (SPDES) program. Industrial facilities engaged in certain industrial activities must obtain permit coverage for stormwater discharges to waters of the United States (including through the MS4)

through either an individual industrial SPDES permit or the SPDES Multi-Sector General Permit; or they must provide certification, using the No Exposure Exclusion, that industrial activities are not exposed to stormwater.

- Table 8.1 lists the industrial sectors subject to MSGP permitting.
- Permits are required for discharges from a conveyance that is used for collecting and carrying stormwater, and that is directly related to manufacturing, processing or raw materials storage areas.

Sectors of Industrial/Commercial Facilities Subject to NYSDEC's MSGP Table 8.1

Table 8.1			
Sector	Name	Sector	Name
Α	Timber Products	Q	Water Transportation
В	Paper and Allied Products	R	Ship and Boat Building or Repairing Yards
С	Chemical and Allied Products	S	Air Transportation
D	Asphalt Paving and Roofing Materials and Lubricants	T	Treatment Works
		U	Food and Kindred Products
E	Glass Clay, Cement, Concrete, and Gypsum Products	V	Textile Mills, Apparel, Other Fabric Product Manufacturing
F	Primary Metals	W	Furniture and Fixtures
G	Metal Mining (Ore Mining and Dressing)	X	Printing and Publishing
Н	[Reserved]		Finding and Fublishing
ı	Oil and Gas Extraction and Refining	Y	Rubber, Miscellaneous Plastic Products, and Miscellaneous Manufacturing Industries
J	Mineral Mining and Dressing		
K	Hazardous Waste Treatment, Storage, or	Z	Leather Tanning and Finishing
K	Disposal Facilities	AA	Fabricated Metal Products
L	Landfills and Land Application Sites	AB	Transporation Equipment, Industrial or Commercial Machinery
M	Automobile Salvage Yards		
N	Scrap Recycling Facilities	AC	Electronic, Electrical, Photographic, and Optical Goods
0	Steam Electric Generating Facilities		
P	Land Transportation		

8.1 Existing Programs

Industrial and commercial facilities citywide are subject to various environmental regulations, including the following DEP programs to inspect certain facilities and enforce relevant regulations.

Industrial Pre-Treatment Program

The Industrial Pre-Treatment Program regulates discharges of specific pollutants from certain facilities into the City's sewer system. This program is implemented citywide covering approximately 300 facilities. In the MS4 area, the City currently inspects 14 facilities to evaluate industrial processes; to ensure compliance with Federal and City wastewater regulations; and to assess outdoor storage, handling, and transferring areas.

Right-to-Know Program

The NYC Community Right-to-Know Law authorizes the DEP Division of Emergency Response and Technical Assessment (DERTA) to regulate the storage, use, and handling of hazardous substances. As part of the enforcement of the Law, DERTA oversees the use and storage of hazardous substances that pose a threat to public health and the environment in NYC. This program manages the reporting and storage of hazardous substances by requiring businesses and facilities throughout the five boroughs to file a report annually detailing the quantity, location, and chemical nature of hazardous substances stored within their facilities.

8.2 Industrial and Commercial **Facility Inventory**

Using the Historical MS4 Map, various databases and information from NYSDEC, DEP created a facility inventory of all publicly and privately owned industrial and commercial sites that may conduct activities within

Industrial Facility

the industrial sectors covered by the MSGP permit, and other industrial/commercial facilities that might generate a significant amount of POCs. Table 8.1 lists the industrial

The Industrial and Commercial Facility Inventory (I/C Facility Inventory) includes the following information:

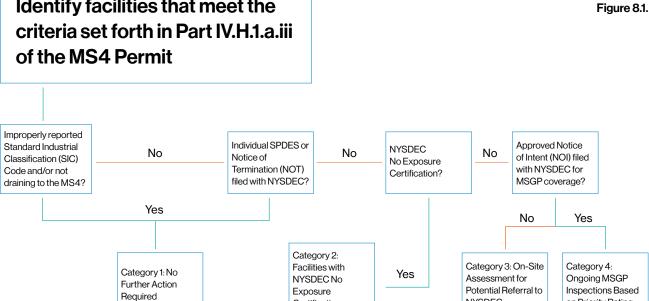
- General facility information (e.g., name, address, contact information, block and lot, etc.)
- Applicable North American Industry Classification System (NAICS) and Standard Industrial Classification (SIC) codes
- Information regarding products made or services provided at the facility
- Receiving waterbodies and any associated impairments
- Whether the facility generates POCs for which the receiving waterbody is impaired

DEP screened the facilities in the I/C Facility Inventory through a process illustrated in Figure 8.1, and categorized the facilities for DEP action as a result.

Category 1: No Further Action

In accordance with the screening process illustrated in Figure 8.1, DEP classified facilities with one or more of the following characteristics as requiring no further action:

- Improperly reported Standard Industrial Classification (SIC) Codes and not subject to MSGP
- Not draining to the MS4
- Individual SPDES permit coverage
- Notice of Termination (NOT) filed with NYSDEC


These facilities will remain in the I/C Facility Inventory for comparison with future inventory updates. DEP will add to this category unpermitted facilities assessed by DEP (Category 3) and found not to require referral for MSGP coverage or not to be draining to the MS4.

Category 2: Facilities with NYSDEC No Exposure Certification

According to the information in the NYSDEC Dropbox,¹ there are currently four facilities in the I/C Facility Inventory with NYSDEC No Exposure Certifications. According to NYSDEC, "No Exposure" means all industrial materials and activities are protected by a storm resistant shelter to prevent exposure to rain, snow, snow melt, and/or runoff. DEP will update the I/C Facility Inventory as NYSDEC issues more No Exposure Certifications. Section 8.3 describes how the I/C Program addresses facilities with No Exposure Certifications.

https://www.dropbox.com/sh/hz3spt98h4d88ue/ AADmNLcYxcpZQFeWUNAxGMi9a?dl=o

Identify facilities that meet the criteria set forth in Part IV.H.1.a.iii of the MS4 Permit

Certification

Category 3: On-Site Assessment for **Potential Referral to NYSDEC**

Based on the screening process illustrated in Figure 8.1, DEP classified facilities with all of the following characteristics as requiring an on-site initial assessment:

- Meets the criteria set forth in Part IV.H.I.a.iii of the MS4 Permit;
- Discharges stormwater to the MS4;
- Not covered under an existing MSGP or individual SPDES permit; and
- Photographic evidence of industrial and commercial activity.

DEP will perform inspections at these facilities to assess industrial activity exposure to stormwater and to determine whether the facilities generate significant contributions of POCs to impaired waters. If DEP determines that a facility is not a significant contributor, DEP will categorize the facility for no further action (Category 1). If DEP determines that a facility is a significant contributor, then DEP will refer the facility to NYSDEC to determine if SPDES permit coverage is required. After referral, NYSDEC may direct the facility to apply for an individual SPDES permit, or may direct the facility to seek coverage under the MSGP by filing a Notice of Intent (NOI) or a Certificate of No Exposure application. Facilities that receive MSGP coverage will be part of the ongoing inspections under the I/C Program (Category 4). Facilities that receive an individual SPDES

permit will be categorized as no further action (Category 1), as NYSDEC will inspect those facilities. Facilities that receive No Exposure Certification will be in Category 2.

NYSDEC

DEP screening process to categorize facilities

listed in the I/C Facility Inventory

on Priority Rating

If DEP observes an illicit discharge at the facility site, it will be addressed per Chapter 5: Illicit Discharge Detection and Elimination. Section 8.4 details the assessment process for unpermitted facilities in the I/C Facility Inventory.

Category 4: Ongoing MSGP Inspections Based on Priority Rating

In accordance with the screening process illustrated in Figure 8.1, DEP identified facilities with MSGP coverage. Facilities with MSGP coverage are prioritized into high, medium, and low categories based on their potential for water quality impact. Inspection frequency is based on the priority rating. Section 8.5 details prioritization, inspection frequency, and the inspection process for permitted facilities with MSGP coverage in the I/C Facility Inventory.

The I/C Facility Inventory will be updated with MS4 Map development and on-site assessments. In addition, DEP will update the I/C Facility Inventory every five years after submittal of this Plan using new information from source databases and through NYSDEC coordination. Facilities assessed during this permit cycle as part of Category 3 assessments will not be included in the inventory updates if DEP determines they are not significant contributors of POCs. Further, facilities classified as Category I during this permit cycle will not be part of the inventory updates for future Category 3 assessments.

DRAFT FOR PUBLIC REVIEW DRAFT FOR PUBLIC REVIEW 128 127

8.3 No Exposure Facility Inspections (Category 2)

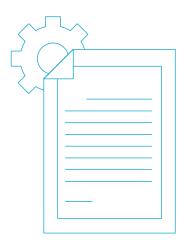
There are currently four facilities with a NYSDEC No Exposure Certification in the MS4 area. If DEP receives a public complaint about potential stormwater pollution, and determines that the facility is in Category 2, DEP will conduct an inspection. If DEP determines that the facility is a significant contributor of POCs, it will refer the facility to NYSDEC.

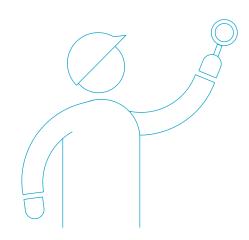
The City currently responds to a variety of public complaints related to industrial activities such as air quality, noise, odor, waste management, and toxins and hazards. As part of the new I/C Program, DEP inspectors may also respond to stormwater pollution complaints at facilities in the I/C Inventory. Refer to **Chapter 2: Public Education** and Outreach, Section 2.5, for details on how to report illicit discharges or potentially harmful water quality impacts.

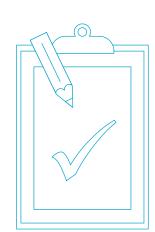
8.4 Unpermitted Facility Assessments (Category 3)

Over a five-year period, DEP will assess approximately 1,300 facilities without MSGP coverage listed in the I/C Facility Inventory. The on-site assessments serve three main purposes:

- Confirm the facility is categorized under the proper SIC Code,
- Assess the presence of industrial activities that could contribute significant amount of POCs to stormwater, and
- Determine the level of exposure to stormwater and potential for pollution.


Based on the on-site assessments, DEP will determine whether to refer a facility to NYSDEC. If DEP refers a facility, NYSDEC will then determine whether SPDES permit coverage is required. Figure 8.2 is a summary of DEP's assessment procedures.


Within three months of submission of this Plan, DEP will send initial notifications to facilities without MSGP coverage in the I/C Facility Inventory that explain the I/C Program and the DEP facility assessment process. DEP will send a followup notification closer to the anticipated assessment date. DEP will perform assessments following the Standard Operating Procedures for the Unpermitted Facility Assessments for the I/C Program. DEP developed these procedures to provide a standard protocol for assessing facilities without MSGP coverage in the I/C Facility Inventory, and the procedures will be accessible on the DEP website. DEP expects to begin facility assessments in early 2019; however the exact start date of the assessments is dependent on NYSDEC's approval of this Plan. DEP will encourage the facility manager or owner to participate in the inspection to provide information, answer questions, and learn about permit applicability.


At the end of the assessment, DEP will discuss preliminary findings, identify next steps, answer questions, and provide educational materials. DEP will also describe how to seek SPDES permit coverage from NYSDEC.

After the on-site assessment, DEP will prepare a Facility Assessment Report with information on its findings regarding the facility's stormwater exposure. If DEP determines that the facility is a significant contributor or potential significant contributor of POCs to impaired waters, DEP will refer the facility to NYSDEC and share its Facility Assessment Report with NYSDEC. DEP will also send a follow-up letter to the facility to inform the facility of its referral to NYSDEC, to summarize findings of the assessment, and to share the Facility Assessment Report.

DEP Assessment Process for Unpermitted Facilities in the I/C Facility Inventory Figure 8.2

PRE-ASSESSMENT

Schedule Assessment

Review Site Specific Information

- Aerial maps
- Data from screening process
- MS4 Map
- Any other available information

Notify Facilities

 Send follow-up notification letter with DEP contact information and information on what to expect during the assessment

ASSESSMENT

Offer Credentials

Introduction

 Communicate reason for and extent of assessment

Facility Walkthrough

- Confirm/update facility information
- Assess drainage
- Assess the presence of pollution sources
- Evaluate potential stormwater impact

Wrap-Up Meeting

- Discuss preliminary findings
- Explain next steps in the process

POST-ASSESSMENT

Complete Facility Assessment Report

 Verify checklist completed and necessary information collected

Notify Facilities

- Summary of assessment findings
- Information on SPDES applicability, if necessary
- DEP's required referral to NYSDEC, if applicable

Notify NYSDEC (if applicable)

- DEP will periodically notify NYSDEC of assessment findings
- NYSDEC will work with each facility to issue an appropriate permit
- I/C measures will be included in Annual Reports (Table 8.3)

Update I/C Facility Inventory

- Upload all documents to the I/C System
- Assign facility appropriate category

8.5 SPDES MSGP Facility Inspections (Category 4)

MSGP-permitted facilities in the I/C Facility Inventory are prioritized through a process to determine the frequency of inspections. Table 8.2 indicates how often DEP will inspect a facility based on its priority rating.

NYSDEC will provide an initial priority rating for the currently permitted MSGP facilities for the I/C Program. DEP will inspect these facilities to determine MSGP compliance and will prioritize them for future inspections. Using findings from the inspections to determine the facilities' potential water quality impact, DEP will prioritize the facilities as high, medium, or low priority. DEP will also prioritize newly permitted MSGP facilities based on their potential water quality impact.

The factors contributing to potential water quality impacts include:

- Pollutant sources on site
- Proximity to a waterbody
- Potential for POC discharges or other water quality impacts to impaired waters
- Violation history

Inspection frequency criteria for MSGP facilities Table 8.2

Priority / Criteria	Inspection Frequency
High Priority	Annual
Medium Priority	Every 3 years
Low Priority	Every 5 years
Failed Previous Inspection	Within one year following pre- vious inspection or as per the conditions in the enforcement action until compliance is achieved

Figure 8.3 summarizes the characteristics of permitted facilities with MSGP coverage that determine its potential water quality impact and priority rating for inspection frequency.

Characteristics of High, Medium, and Low Priority MSGP FacilitiesFigure 8.3

High Priority							
Significant exposed sources of pollutants of concern	Adjacent to an impaired water- body listed in Appendix 2 of the MS4 Permit	Limited control of exposed sources	Repeated major violations				
Medium Priority							
Moderate exposed sources of pollutants of concern Less than 2,000 feet from an impaired waterbody listed in Appendix 2 of the MS4 Permit		Effective control of exposed sources	Occasional minor violations				
Low Priority							
Limited exposed sources of pol- lutants of concern	Greater than 2,000 feet from an impaired waterbody listed in Appendix 2 of the MS4 Permit	Effective control of exposed sources	No violations				

Within three months of submission of this Plan, DEP will send a one-time notification to facilities with MSGP coverage in the I/C Facility Inventory that DEP will conduct inspections on behalf of NYSDEC. The inspections include conducting visual observations to identify any unauthorized discharges, illicit connections, and potential discharges of pollutants to stormwater; evaluating the facility's compliance with applicable MSGP requirements; and evaluating the facility's compliance with any other relevant local stormwater requirements. For these inspections, DEP will follow the Standard Operating Procedures for MSGP Inspections for the I/C Program, which will be available on the DEP website. DEP expects to begin facility inspections in early 2019; however the exact start date of the inspections is dependent on NYSDEC's approval of this Plan. DEP encourages the facility manager or owner to participate in the inspection to provide information, answer questions, and learn about permit compliance.

At the end of the inspection, DEP will review preliminary findings, resolve outstanding questions, and explain the next steps to the facility manager or owner. DEP will then complete a Facility Inspection Report, which will

include inspection date and time, name and signature of inspector, weather information, information about any discharge observed or previously observed at the site, any incidents of non-compliance, control measures needing maintenance, failed control measures, and new control measures needed. The facility will receive a follow-up letter on MSGP compliance status; this letter may include a copy or summary of the Facility Inspection Report, information on a follow-up inspection, and/or potential enforcement actions.

Facilities will continue to submit their MSGP annual reports to NYSDEC, and, in addition, will send copies of these submittals to DEP. Details on how to submit the annual reports to DEP will be provided on the DEP website.

DEP may issue verbal warnings, orders, and/or notices of violation (NOVs) with penalties and compliance schedules if a facility is not in compliance with the MSGP. Refer to Appendix 1.1 Enforcement Response Plan for more details. DEP will confirm or revise the facility's potential water quality impact for future inspections after an inspection is completed. Figure 8.4 summarizes the inspection process for permitted facilities with MSGP coverage.

DEP Inspection process for facilities with MSGP coverage listed in the I/C Facility Inventory Figure 8.4

PRE-INSPECTION

Review Site Specific Information

- Priority Rating
- Latest facility MSGP data from NYSDEC
- Five-year violation record
- Any other available information

ON-SITE INSPECTION

Offer credentials

Introduction

 Communicate reason and extent of inspection

On-site Record Review

- Facility Stormwater Pollution Prevention Plan (SWPPP)
- Self-inspection/monitoring reports
- Training materials
- Any other available information

Facility Walkthrough

- Visual inspection of industrial areas
- Confirm activities described in SWPPP
- Check if controls defined in SWPPP are implemented and effective

Wrap-Up Meeting

- Discuss preliminary findings
- Resolve outstanding questions
- Explain next steps in the process

POST-INSPECTION

 Verify checklist completed and necessary information collected

Notify Facilities

Follow-up letter on compliance status

Complete Facility Assessment Report

- Send a copy of the Facility Inspection Report, if appropriate
- Summary of infractions and corrective actions, if applicable

Confirm or revise priority for future inspections

 Use the prioritization characteristics of facilities in the I/C Facility Inventory with MSGP Coverage (Figure 8.3)

Update I/C System

• Upload all documents

Notify NYSDEC

- DEP will send information to NYSDEC throughout the year
- I/C measures will be included in Annual Reports (Table 8.3)

8.6 Industrial and Commercial Tracking System

DEP developed a database tracking system for the I/C Facility Inventory (I/C System) to store facility information; generate assessment and inspection schedules; schedule assessments and inspections; track assessment and inspection results; store facility enforcement history; and track enforcement actions.

DEP will use the I/C System to schedule assessments and inspections, and to manage responses to public complaints. DEP will store information about each facility in the I/C System and will use that information to create partially pre-filled inspection checklists. DEP will record inspection results and any violations, enforcement actions, and follow up-activities in the I/C System. Based on the inspection results, the system will generate follow-up notifications to DEP for the next inspection.

The City engaged with the business community to raise awareness of the new MS4 Permit requirements and to encourage the business community to engage in the rulemaking process for the I/C Program.

The City completed the following during I/C Program development:

- Created an I/C Program fact sheet for distribution at public meetings and on the DEP website
- Contacted all 1,300 facility owners beginning in June 2017 to invite them to a series of informational meetings in Staten Island, Brooklyn, Queens, and the Bronx to describe the Industrial Commercial Program. The City used the following methods to contact owners:
 - » Letters and mailings
 - » Door-to-door outreach
 - » Phone calls
 - » Social media posts
 - » Notification letters to NYC City Council Members and local Community Boards to enlist their support in notifying facilities

8.7 Inspection Staff Training

DEP will train all staff engaged in the I/C Program on how to properly conduct inspections, prepare reports, and issue violations. Training will continue as the program evolves and staff gains experience. DEP will base training on real case studies and will provide the opportunity for staff to learn from experienced industrial stormwater professionals. Initial training will include the following elements:

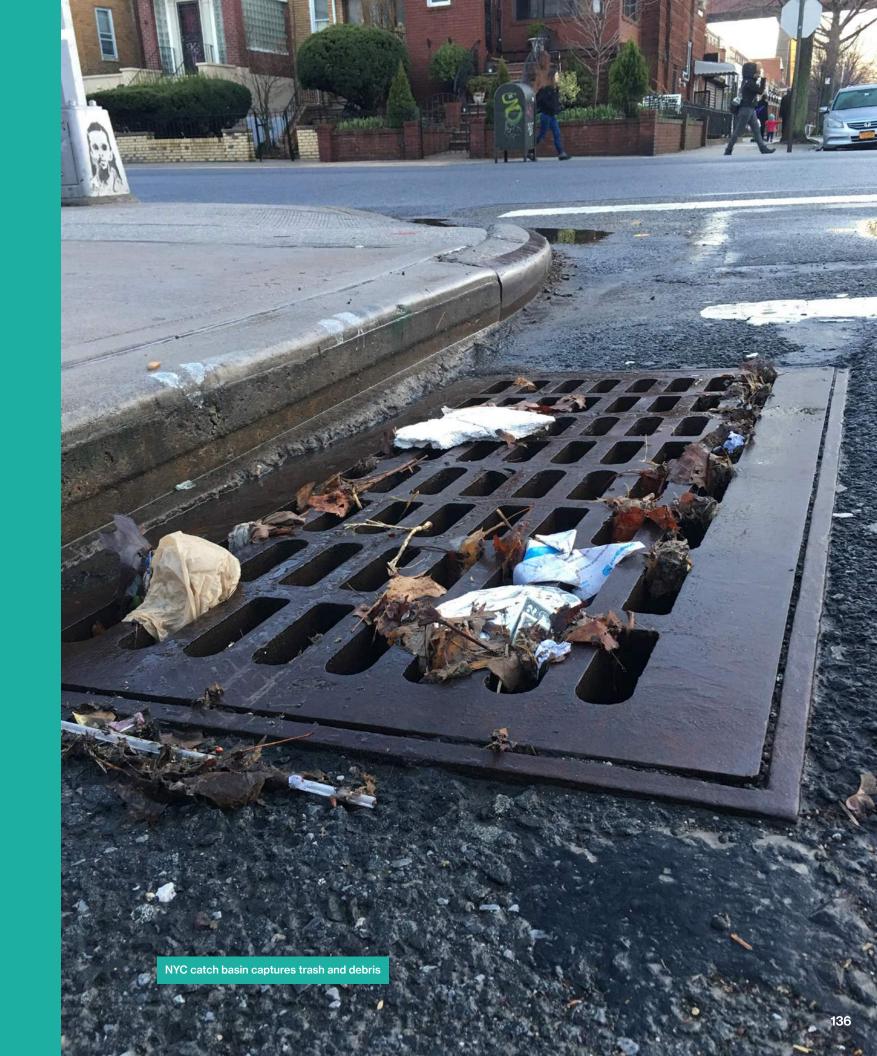
- Introduction to EPA's Clean Water Act and industrial stormwater pollution;
- Overview of I/C Facility Inventory development;
- Case studies of industry inspections;
- Field inspection best practices for accessing facilities;
- Field inspection process and checklists;
- Use of the I/C System;
- Site inspections with examples on how to review best management practices (BMPs) ranging from nonstructural to structural;
- Requirements of other stormwater general permits or related local requirements;
- Post-inspection procedures and inspection tracking;
 and
- Enforcement

Training will also include case studies of successful and inadequate stormwater control measures (SCMs) and considerations for inspecting a broad range of SCMs—from simple to complex. The training will be provided in both classroom and field environments, including having new inspectors shadow more experienced inspectors. Follow up training will be provided every other year to address changes in procedures, techniques, and staffing. DEP will certify that training has been completed by providing a signed training certification to NYSDEC two years after NYSDEC approves the MSGP inspection program, and every other year thereafter.

8.8 Measurable Goals and Program Assessment

Table 8.3 lists measurable goals and measures for identified Industrial and Commercial Stormwater Sources BMPs. Annual Reports will use these measures to detail the status of each measurable goal and BMP. Part IV.M.4.j.i of the MS4 Permit requires an Annual Effectiveness Assessment in each Annual Report, as described in Chapter 12: Recordkeeping and Reporting. The City will base the Annual Effectiveness Assessment on its achievement of the stated measureable goals for each chapter of this Plan, including this program. The City will also refine these measurable goals with information gained from program planning and implementation, interagency working groups, and public input. Continuing to refine and update the measureable goals will allow the City to better quantify and accurately represent the effectiveness of each one.

Summary of BMPs, Measurable Goals, and Measures for the I/C Program Table 8.3


BMPs	Measurable Goals	Measures
Provide an industrial and commercial pollution control program	Implement an inspection and assessment program for unpermitted industrial and commercial sources by August 1, 2018	Status of the inspection program and stormwater controls for unpermitted industrial and commercial facilities
	Implement an inspection program for MSGP Permit holders based on priority by August 1, 2018	Number of SPDES MSGP facilities inspected, by priority
		Number of noncompliant SPDES MSGP facilities
		Number of repeat noncompliant SPDES MSGP facilities
		Number and type of enforcement actions completed and penalties issued

133 DRAFT FOR PUBLIC REVIEW DRAFT FOR PUBLIC REVIEW 134

Control of Floatable and Settleable Trash and Debris

Participating Agencies

DEP · DOE · DPR · DSNY · NYPD · SBS

DEP skimmer boat collecting trash and debris from the boom

Pursuant to Part IV.I of the MS4 Permit, the City must develop a program to manage floatable and settleable trash and debris, also referred to as floatables. The MS4 Permit requires that the City:

- Develop and implement a work plan to determine the loading rate for floatables discharged from the MS4 to waterbodies listed as impaired for floatables;
- Assess and implement strategies to reduce floatables from the MS4 to waterbodies listed as impaired for floatables;
- Continue to implement existing controls (e.g., DEP catch basin hooding, inspection and maintenance program); and
- Implement an interim media campaign to further educate the public on trash and debris control issues.

Consistent with prior studies conducted by DEP, the City defines floatables as manmade materials, such as plastics, papers, or other products, which when improperly disposed of can ultimately find their way to local waterbodies. Floatables include materials that are settleable, floatable, or are neutrally buoyant; such materials may float or sink depending on the ambient conditions to which they are subject. Floatables can create nuisance conditions with regard to aesthetics, recreation, navigation, and waterbody ecology.¹

This chapter details the City's existing programs to reduce floatables and the proposed methodology for determining the floatable loading rate from the MS4. The loading rate work plan, in addition to past and ongoing evaluations of the City's programs, will inform the further development of floatables management, including methods for selecting technologies and controls. This chapter also describes the City's various media campaigns to raise awareness of trash and debris issues.

9.1 Existing Programs

The City has a variety of long-standing, effective programs that control floatables.

9.1.1 Rules and Regulations Enforcement

The City administers a variety of rules and regulations to keep the streets clean and free of litter. These statutory controls, which help prevent floatables from reaching local waterbodies through the MS4, include prohibitions of and fines for littering and illegal dumping. The rules and regulations also require property owners to clean the sidewalks, gutters, backyard areaways, and alleys surrounding their properties. DSNY enforces these rules and regulations through the DSNY Enforcement Routing Program.

Under the DSNY Enforcement Routing Program, enforcement agents patrol all areas including commercial, industrial, manufacturing, and residential blocks daily during the two specified one-hour time periods² focusing on violations for dirty sidewalks, dirty areas, and failure

2 http://wwwi.nyc.gov/nyc-resources/service/2455/ sidewalk-cleaning-enforcement-or-sticker-request to clean 18 inches into the street. During these specified enforcement routing times, enforcement agents will issue notices of violation (NOVs) for observed dirty sidewalks, dirty areas, or 18-inch violations in front of or adjacent to a residential or commercial premise. While these violations are only issued during enforcement routing times, enforcement agents may issue NOVs for other types of violations at any time.

9.1.2 Public Education, Outreach, and Stewardship

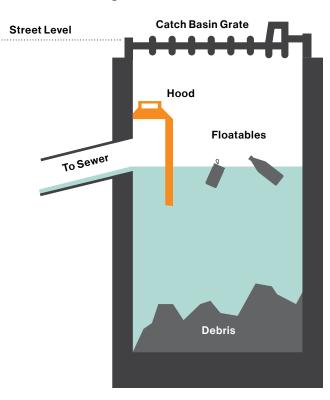
The City has multiple education and outreach programs that target the issue of litter and floatables. A summary of litter and floatable specific programs is included in Table 9.1. Other education and outreach programs such as DOE's School Sustainability Coordinator Program may also include information related to trash and debris. For a complete list of relevant education programs refer to Chapter 2: Public Education and Outreach.

Summary of Litter and Floatables Education, Outreach, and Stewardship Programs Table 9.1

Controls	Responsible Agencies	Description
Adopt-a-Bluebelt	DEP	DEP invites local community groups, companies, and individuals to enhance open spaces by acting as sponsors who adopt parts of the Bluebelt.
Adopt-a-Catch Basin	DEP	DEP invites local organizations to keep their catch basins clear of debris.
Shoreline and Bluebelt Cleanups	DEP	DEP organizes, supports, and sponsors various shoreline cleanup events throughout NYC.
NYC Park Stewardship	DPR	DPR coordinates volunteer opportunities that enable volunteers to help restore natural areas, care for street trees, clean and beautify parks, and monitor wildlife. These activities can include the care and restoration of natural areas through removal of invasive plants and floatable debris along coastlines.
Adopt-a-Highway/ Greenway	DOT	DOT invites sponsors to adopt highway or greenway segments to perform litter removal and beautification.
Adopt-a-Basket	DSNY	DSNY invites local businesses or community groups to monitor and maintain local litter baskets.
Community Clean-ups	DSNY	DSNY supports local community groups and block associations in their volunteer efforts to keep their neighborhoods clean through local block and street area clean-ups by offering free loans of clean-up tools and equipment.
311	Various Agencies	311 enables the public to report issues, such as heavily littered streets or clogged catch basins, which are referred to the appropriate agency for inspection and follow-up. Refer to Chapter 2: Public Education and Outreach for more information.
Agency Websites and social media	Various Agencies	Various agencies provide educational information on webpages and through outreach campaigns which aim to improve cleanliness and aesthetics of City streets, beaches, and the harbor.
Clean Streets = Clean Beaches	DEP, DSNY	The City distributes educational literature, places posters, and conducts events to raise awareness of litter and floatable issues.

^{1 &}quot;Citywide Comprehensive Floatables Plan - Modified Facility Planning Report," prepared by HydroQual Engineers & Scientists, P.C. for the City of New York Department of Environmental Protection, Bureau of Environmental Engineering, July 29, 2005.

9.1.3 DEP Catch Basin Hooding, Inspection, and Maintenance Program


DEP administers a catch basin inspection, hooding, and maintenance program, which helps prevent trash and debris from reaching waterbodies. Under this program, DEP is responsible for approximately 148,000 catch basins, which are regularly inspected, and if necessary, cleaned or repaired, in both the combined sewer and MS4 area.

DEP has been inspecting catch basins every three years and in response to 311 complaints. However, pursuant to Local Law 48 of 2015, DEP is currently inspecting catch basins on an annual basis from July 1, 2016, through July 1, 2019. After July 1, 2019, the local law will be reevaluated.

As of 2010, DEP has installed hoods in all catch basins that DEP identified as requiring a hood. DEP replaces any missing or damaged hoods within 90 days of discovery. If a catch basin requires extensive repairs before a hood can be installed, DEP will make necessary repairs and install a hood within 24 months.

DEP reports annually on catch basins inspected, cleaned, and repaired or re-hooded in the Combined Sewer Overflow Best Management Practices (CSO BMP) Annual Report. Additionally, DEP reports the number of catch basins inspected, identified as clogged or malfunctioning, unclogged or repaired, and the average response time to resolve catch basin complaints to City Council on a semi-annual basis.

Catch Basin Diagram

9.1.4 End-of-Pipe and In-Water Containment Systems

DEP operates and maintains a number of end-of-pipe/in-water controls that intercept floatables from combined and separate sewer systems. End-of-pipe/in-water controls located at the mouth of the waterbodies, such as the Bronx River boom, provide a watershed-wide benefit by capturing floatables from upstream CSO and MS4 sources. In 2015, these controls included a total of 23 nets/booms that drain approximately 60,000 acres via 33 CSO outfalls and 25 MS4 outfalls. DEP also operates four specialized skimmer vessels that collect floatables from these booms and/or from surface waters, as needed and as feasibility permits. DEP reports annually on materials collected from nets/booms and open water skimming in the CSO BMP Annual Report.

DEP skimmer boat

9.1.5 DEP Bluebelt Program

The Bluebelt program preserves natural drainage corridors such as streams and ponds, and optimizes them through the design and construction of stormwater controls to filter stormwater before it empties into the New York Harbor. DEP regularly inspects, maintains, and removes litter from both booms and natural areas in the Bluebelts. To assist in these efforts, DEP offers public stewardship opportunities through clean-up events and the Adopt-a-Bluebelt program. To raise public awareness, catch basins in Bluebelt drainage areas are marked with either a medallion or stamped iron curb piece to inform the public that the catch basins drain directly to local waterbodies and that nothing should be dumped into them.

9.1.6 Catch Basin Marking

Catch basin markers inform the public that the catch basins drain directly to local waterbodies and that nothing should be dumped into them. DEP's current sewer design standards require that the cast iron curb pieces of new catch basins citywide be stamped with a message that reads: "Dump No Waste! Drains to Waterways."

9.1.7 Public Litter Baskets

Litter baskets provide pedestrians with receptacles to encourage proper disposal of trash that could otherwise become street litter. DSNY services 23,500 litter baskets. Through the Adopt-A-Basket program, DSNY invites local businesses or community groups to monitor local litter baskets, and when baskets are three-quarters full, adopters tie up the bags, leave them next to the basket, and insert a new plastic bag liner, provided by DSNY. This helps prevent trash from spilling over or being blown by wind onto sidewalks and provides more space in the basket before the next DSNY collection.

9.1.8 Street Sweeping

DSNY street sweeping helps remove street litter before it can enter the sewer system. DSNY street sweeping operations include 435 mechanical broom trucks to address a weekly average of 9,732 routed miles. This is achieved with a daily average deployment of about 185 mechanical brooms. Street sweeping effectiveness is improved by the enforcement of alternate side parking regulations.

9.1.9 SAFE Disposal Events and Special Waste Drop-Off Sites

DSNY hosts SAFE (Solvents, Automotive, Flammables, and Electronics) Disposal Events throughout the year in all five boroughs to help residents safely dispose of harmful household products that cannot otherwise be thrown out with regular household waste. In addition, DSNY operates five Special Waste Drop-Off Sites that accept many harmful household products. By providing ways to properly dispose of waste, DSNY discourages illegal dumping.

9.1.10 Zero Waste

In 2015, Mayor De Blasio released OneNYC, the City's plan for a Strong and Just City. Vision 3 of OneNYC focuses on sustainability and commits the City to sending zero waste to landfills by 2030. This goal is being pursued through several initiatives including reducing the use of plastic bags and other non-compostable waste; increasing recycling by all New Yorkers; diverting organic waste (food scraps and yard waste) to be turned into compost or renewable energy; and increasing textile and e-waste reuse and recycling. Initiatives to reduce waste all serve to reduce sources of floatables.

9.1.11 Business Improvement Districts

Business Improvement Districts (BIDs) are geographical areas where local stakeholders oversee and fund the maintenance, improvement, and promotion of their commercial district; this often includes supplemental sanitation services such as litter removal and litter basket maintenance. In 2017, there were more than 70 BIDs in operation, providing sanitation services to over 4,000 block faces and servicing nearly 6,000 waste receptacles. Currently, at least six BIDs are located in the MS4 area. SBS provides oversight and support to existing BIDs and to communities interested in creating new BIDs.

9.1.12 Park Maintenance

DPR regularly cleans parks, playgrounds, and beaches to maintain these public spaces in clean and good condition. Additionally, DPR works closely with several groups to promote park stewardship, including removing litter from parks and other DPR properties. The Partnership for Parks, a joint program of DPR and the City Parks Foundation, works to boost community involvement in City parks. Each year it organizes numerous events including beach clean-ups, community garden maintenance, and regular litter removal activities.

DSNY mechanical broom truck

9.2 Evaluation of Existing Programs

As part of past initiatives to reduce floatables citywide, DEP has assessed many floatables control technologies and estimated the efficiency of those used in NYC. Additionally, the City continually evaluates litter and floatables conditions in NYC through several ongoing monitoring programs.

9.2.1 Past Evaluations

DEP conducted various field studies to estimate the removal efficiency of various floatables controls as part of its previous Citywide Comprehensive Floatables Facility Planning Project. Based on these studies, DEP developed estimates showing that current practices, including street sweeping, catch basin hooding, end-of-pipe netting/booming/skimming operations, and combined-sewage treatment at WWTPs capture or remove approximately 96 percent of citywide floatables originating from street litter.

Citywide, DEP estimated that existing street sweeping practices remove approximately 55 percent of litter from the streets. DEP also found that street sweeping removal efficiency is dependent on public adherence to alternate side parking regulations as well as on mechanical broom operations. DEP's studies indicated that, compared to no sweeping, sweeping once per week reduces floatables by approximately 50 percent, and sweeping twice per week reduces floatables by approximately 70 percent.

Citywide, DEP estimated that catch basins capture approximately 34 percent of floatables originating as street litter. This estimate reflects DEP's implementation of a citywide catch basin hooding program, which was enacted after DEP determined that the floatables-capture efficiency of each catch basin improves 70 to 90 percent when a missing hood is installed.

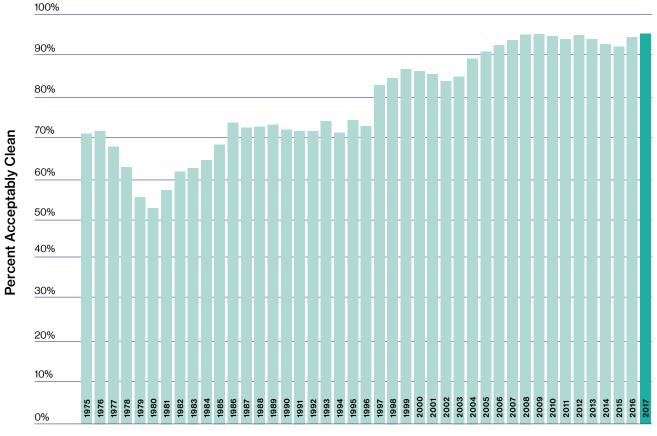
Citywide, DEP estimated that end-of-pipe and in-water containment systems (i.e., nets, booms, and skimming operations) capture or remove approximately three percent of floatables originating as street litter. The floatables-capture efficiency of end-of-pipe and in-water containment systems can be 75 to 95 percent, dependent upon weather conditions and operational considerations, such as properly operating tide slides (equipment that allows booms to rise and fall with the tides) and timely deployment of specialized skimmer vessels to collect floatables captured by the booms.

The remaining four percent of citywide floatables originating from street litter (in combined sewer areas) is captured at WWTPs.

9.2.2 Ongoing Evaluations

In addition to the past studies that evaluated the efficiency of various controls, the City has several ongoing monitoring programs to help assess trash and debris conditions. The Mayor's Office of Operations tracks street and sidewalk litter levels on a continuous basis, through the Street Cleanliness Rating program. This program visually monitors trends in street and sidewalk litter on a monthly basis throughout the City.

Figure 9.1 presents the percent of acceptably clean streets under this program from 1975 to 2017. DSNY monitors the Street Cleanliness Ratings as a check on trends and the effectiveness of its street cleaning operations. The rating program indirectly reduces floatables by providing DSNY with feedback to help the agency allocate its resources more efficiently.

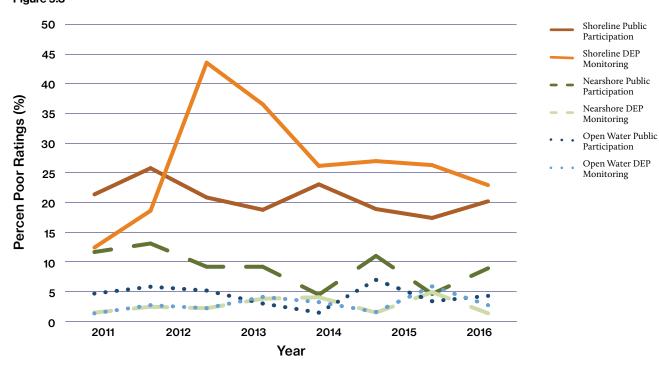

Similarly, DEP monitors floatables in waterbodies and on beaches citywide through its Floatables Monitoring Program. The Floatables Monitoring Program utilizes visual ratings to document floatables levels at monitoring sites throughout NYC (Figure 9.2). Visual ratings collected by DEP staff through the Harbor Survey Program are supplemented by citizen scientists who conduct similar inspections through the Volunteer Survey Program. DEP analyzes the datasets collected by both groups and conducts source investigations at sites with the poorest ratings. DEP summarizes the results of these inspections and source investigations in its annual Floatables Monitoring Program Progress Report. Findings from the program indicate that the floatables condition is typically worse along the shoreline and that floatables tend to accumulate in tributaries and flow-restricted waterbodies. Figure 9.3 shows the variation of observed floatables conditions over a five-year period.

DEP also monitors the volume of floatable materials recovered through booms, nets, and open water skimming. This information is reported in the Annual CSO BMP Report³ and is summarized in **Figure 9.4**. The quantity of floatables reaching the in-water containment system has decreased over the last decade.

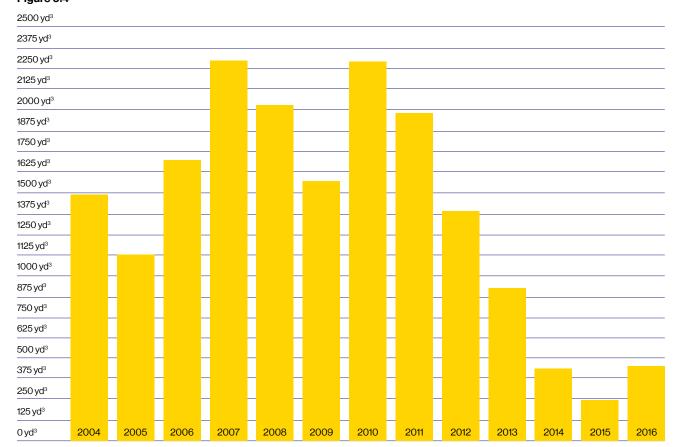
3 http://www.nyc.gov/html/dep/html/harborwater/spdes_bmp_report_2010. shtml

Percent of Acceptably Clean Streets between Fiscal Years 1975-2017 Figure 9.1

Fiscal Year


Location of Floatables Monitoring Program Sites Figure 9.2

Harbor Survey Program Sites


Volunteer Survey Program Sites

Percent of Floatables Monitoring Program Sites Rated Poor, 2011-2016. Figure 9.3

Total Floatables Collected by Boom and Skim Program Figure 9.4

CalendarYear

9.3 Loading Rate Work Plan

The MS4 Permit requires the City to develop a work plan to determine the loading rate of floatable and settleable trash and debris discharged from the MS4 to waterbodies listed as impaired for floatables. This loading rate will quantify the amount of trash and debris leaving the MS4 over a period of time. The draft work plan was submitted to NYSDEC for review on August 1, 2017. DEP posted the draft work plan on its website4 on August 1, 2017 and presented it publicly at a Stormwater Advisory Group Meeting on October 4, 2017. The public was encouraged to review the draft work plan and submit comments through October 16, 2017. In response to comments from both the public and NYSDEC, the City has prepared the final work plan, which is described briefly below. As required by the MS4 Permit, the complete Work Plan to Determine Loads of Floatable and Settleable Trash and Debris from the MS4 to Impaired Waterbodies is included with this Plan as Appendix 9.1.

As described in the final work plan, the City has reviewed loading rate methodologies employed by other municipalities, as well as those used in the City's existing floatables control program. Based on this review, the City has selected a hybrid approach that combines field measurements and model analysis. Using this approach, the City proposes to take field measurements of floatables discharged from catch basins representing various categories of sites that comprise the MS4 area. These datasets will then be used to extrapolate a floatables loading rate by MS4 outfall and for each waterbody designated as impaired due to floatables. In conjunction with field measurements, the City will use an updated version of DEP's existing floatables model to check the results of the field monitoring and to account for downstream in-water controls such as booms and weather conditions.

4 http://www.nyc.gov/html/dep/pdf/water_sewer/draft-floatables-work-plan.pdf

In summary, the methodology detailed in the final work plan involves the following steps:

- Selection of catch basins representing various categories of sites that comprise the MS4 area;
- 2 Field monitoring to measure floatables discharge rates from the catch basin sites into the separate storm sewer:
- Analysis of field measurements to determine unit loading rates by site category;
- 4 Establishment of rainfall patterns and other conditions suitable for calculation of floatables loadings from the MS4 area; and,
- 5 Application of unit loading rates (by site category) to individual catch basins, and summation of the results by MS4 outfall and by waterbody, for each waterbody designated as impaired due to floatables.

In order to represent the full range of factors affecting floatables generation, interception, and loading in the MS4 area, the City has developed 21 site categories to be included in the field monitoring program. Each site category represents a unique combination of several different representative classes of catchment characteristics and catch basin attributes, or a unique land use. The City will use mesh strainer baskets deployed in MS4 manholes to capture floatables discharged from catch basins to the MS4. Field crews will collect samples to characterize accumulated amounts in dry periods and in wet periods. Floatables collected from each site will be separately sorted to remove sediment and vegetation, quantified, and recorded. The City proposes to express floatables quantity in terms of volume and rates in terms of annual average periods.

Within three months of NYSDEC's approval of the final work plan, the City will submit a schedule for completing the floatables loading rate determination. Pursuant to the Program Development Compliance Schedule in Part IV.O of the MS4 Permit, the loading rate study will commence within two years of the work plan approval and will be completed within three years of the study's commencement.

143 DRAFT FOR PUBLIC REVIEW DRAFT FOR PUBLIC REVIEW 144

9.4 Review of Available Technologies and Controls

In early 2017, DEP surveyed eight municipalities to identify available technologies used for floatables control and which ones may be successful and applicable in the MS4 area. The surveyed municipalities were Los Angeles, Baltimore City and County, Washington D.C., San Francisco, Philadelphia, London, and Melbourne.

The surveyed municipalities employ a number of different actions that serve to control floatables discharges. Controls reported by other municipalities included anti-litter laws and fines, item bans, item fees and deposits, public education and outreach activities, signage, litter basket programs, community cleanups, street sweeping, catch basin cleaning, beach and shoreline cleaning, monitoring efforts, catch basin inserts and screens, hydrodynamic separation, and end-of-pipe booms and nets. **Table 9.2** summarizes the controls implemented by each municipality, with New York City shown for comparison at the far right.

The City is implementing, or has previously evaluated, nearly all of the floatables controls that are in use in the surveyed municipalities. As part of its previous Citywide Comprehensive Floatables Facility Planning Project, DEP assessed more than 100 technologies to control floatables, settleable solids and/or oil and grease from combined and separate sewer areas to determine which technologies might meet the requirements of the CSO program. This assessment is a helpful resource to understand what floatables reduction tools the City may want to expand or implement in the City's MS4 area. The controls listed in **Table 9.2** that the City is currently testing or attempting to implement are discussed below.

Floatables Controls Implemented by Other Municipalities in Separate Sewer Areas Table 9.2

Floatables Control	Baltimore City, MD	Baltimore County, MD	Los Angeles, CA	Melbourne, AU	Philadelphia, PA	San Francisco, CA	Washington, D.C.	London, UK	New York City, NY
Item Ban	-	-	Х	-	-	Х	X	-	X*
Item Fee/ Deposit	-	-	Х	-	-	Х	Х	Х	X*
Anti-Littering Laws/Fines	Х	Х	Х	Х	X	X	Х	Х	X
Public Education/Outreach	Х	Х	Х	Х	X	X	Х	Х	X
Litter Baskets	Х	-	Х	Х	Х	Х	Х	Х	X
Street Sweeping	Х	Х	Х	Х	X	X	Х	Х	X
Street Cleanups	Х	-	Х	-	Х	Х	Х	-	X
Curb Inlet Screen Covers	-	-	Х	-	-	-	-	-	-
Catch Basin Inserts	Х	-	Х	-	Х	-	-	-	-
Catch Basin Hoods	-	-	-	-	-	-	-	-	X
Catch Basin Cleaning	Х	Х	Х	-	Х	Х	-	-	X
Hydrodynamic Separation	-	-	Т	-	-	Х	-	-	Т
End-Of-Pipe Nets/Booms	х	-	Х	-	-	-	Х	-	X
In-Water System	х	Х	Х	-	Х	-	Х	Х	X
Shoreline Cleaning	Х	х	-	х	Х	-	Х	-	X
Monitoring	Х	Х	Х	-	-	Х	Х	-	Х

Notation: X = implemented, T = tested/testing, X* = attempting to implement

Item Bans, Fees, and Deposits

Item bans, fees, and deposits help eliminate or reduce the use of certain types of items, such as single-use plastic bags and non-recyclable food service products (containers and utensils). These controls can apply broadly to a whole municipality or more narrowly to targeted areas such as bans on certain items on city-owned property. The City has, or has attempted, to use these controls to reduce waste, litter, and floatables.

New York State currently has a five-cent deposit on individual, separate, sealed glass, metal, aluminum, steel, or plastic bottles, cans, or jars less than one gallon for a variety of beverages (i.e., carbonated soft drinks, soda water, beer and other malt beverages, mineral water, wine products, and water), which is in effect in NYC.

Starting November 13, 2017, NYC instituted a ban of singleuse food and beverage containers—cups, trays, plates, and take-out containers used at restaurants and delis and recognized by the public as items thrown out after one use—that are made of expanded polystyrene foam. This ban follows a May 12, 2017, determination by DSNY that expanded polystyrene foam could not be recycled by the City in a manner that is economically feasible or environmentally effective. The ban has been challenged by a lawsuit that is currently pending in state court.

The City Council also passed Local Law 63 of 2016 (NYC Carryout Bag Law), which imposed a fee of at least five cents on all carryout merchandise bags. However, in February 2017, the New York State legislature suspended the law and established a one-year moratorium on establishing new carryout bag fees in NYC.

Hydrodynamic Separation Technology

Hydrodynamic separation technologies use the flow of water to separate, capture, and retain trash and debris as well as other pollutants present in stormwater runoff. Hydrodynamic separators are commonly used to treat stormwater from smaller, single-parcel catchment areas, and are employed at several City facilities and operations. The City is considering this technology for stormwater applications and plans to pilot hydrodynamic vortex separators in connection with high-level sewer separation.

The controls listed in **Table 9.2** that the City is not currently implementing are discussed below:

Catch Basin Inserts

Catch basin inserts are designed to detain floatables until the catch basin is cleaned. Although these devices can be effective, past DEP studies did not recommend them for widespread application in NYC streets. The inserts typically require substantial maintenance and increase the potential for clogging and associated street flooding, especially during the autumn season when leaf litter is at its maximum levels.

Curb Inlet Screen Covers

Curb inlet screen covers are designed to prevent trash and debris from entering catch basins through the curb opening. This trash and debris would remain in the street for removal by adjacent property owners or street sweeping. Curb inlet screen covers can consist of vertical or diagonal bars or perforated or mesh screens, which are installed outside or immediately within the curb opening. DEP's current Sewer Design Standards do not contain a catch basin curb inlet screen cover; however, older basins installed according to previous design standards may still feature a screen cover.

9.5 Methodology for Selecting Technologies and Controls

Following the floatables loading rate study, as described above in Section 9.3, the City will develop a methodology to site, select, and size best management practices (BMPs) and controls to reduce floatable and settleable trash and debris.

This methodology will utilize the results of the loading rate study to identify and prioritize areas for additional controls and may consider the following factors:

- Waterbody characteristics such as listed impairments, designated uses, and physical attributes that may influence floatables accumulation;
- Neighborhood characteristics such as concentration of litter, population density, and proportion of land uses associated with high litter levels; and,
- Existing controls such as BIDs, street sweeping, and booms and nets.

This methodology will also rely on the review of existing technologies, described in Section 9.4, to identify practicable additional controls and may consider the following factors:

- Effectiveness of controls and any ancillary benefits such as waste reduction or cleaner communities;
- Physical constraints of the site such as limited access for maintenance or space available for control; and,
- Cost of controls including construction, operation, and maintenance.

9.6 Media Campaigns

The MS4 Permit requires implementation of an interim public education media campaign on floatable and settleable trash and debris reduction, between the effective date of the MS4 Permit (August 1, 2015) and submittal of this Plan (August 1, 2018). On October 30, 2015, the City submitted the Trash Free NYC Waters Media Campaign Plan to NYSDEC. This document established the City's strategy to raise awareness and educate the public, first through an existing campaign and later through additional messaging. Between August 1, 2015 and August 1, 2018, the City implemented the three campaigns described below to meet this permit requirement.

B.Y.O. Campaign

Launched in 2015, the B.Y.O. (Bring Your Own) Campaign encourages New Yorkers to live a less disposable lifestyle by using reusable bags, mugs, and bottles. Based on research on the barriers and motivators related to using reusable items, the campaign paired the easily understood call-to-action "bring your own" with a message designed to inspire the desired behavior. By encouraging New Yorkers to use reusable items, the campaign helps reduce the initial generation of waste that may end up as floatable debris in the City's waterbodies.

This campaign was designed and implemented by GreeNYC, a public education program based in the Mayor's Office of Sustainability. This multi-media campaign was designed to strategically reach New Yorkers while they are both at home and out in NYC. The campaign included bus and subway ads, digital ads, radio public service announcements, billboards, and posters on DSNY trucks. GreeNYC also promoted the campaign at events throughout the City to spread the word and encourage New Yorkers to take the B.Y.O. pledge.

More and more New Yorkers are carrying reusable bags. Join in! Remember to Bring Your Own bag when shopping

Don't Trash Our Waters

Seeking to raise public awareness of the connection between trash, litter, and water quality, the City developed the campaign message "Don't Trash Our Waters." This campaign featured a series of charismatic underwater characters, designed to remind New Yorkers that trash on the street ends up in our harbor and hurts local wildlife like dolphins, seals, whales, turtles, and oysters. In addition to raising awareness, the campaign also aimed to change littering behavior by imploring New Yorkers to "put it in the can."

The "Don't Trash Our Waters" Campaign launched in May 2017 by DEP in coordination with Wildlife Conservation Society (WCS), DSNY, DPR, and the Mayor's Office of Sustainability. Implemented in neighborhoods near waterbodies where floatables are of particular concern, this multi-media campaign used bus shelter, subway station, and digital ads to spread the message. Posters were also displayed on DSNY trucks and nearby park comfort stations. For this campaign, the City worked closely with the WCS to organize an event at the New York Aquarium in Coney Island that would provide New Yorkers with an opportunity to learn more about the New York seascape and the impact of plastics in the ocean.

To assess the reach of the campaign, the City will count the number and reach of ads placed. To assess public engagement with the campaign, the City will track visits to the DEP Trash Free Waters webpage and engagement with social media posts. To understand better how the campaign was perceived by the public, the City will conduct opinion surveys to assess public awareness of the campaign, public sentiment regarding the campaign, and any self-reported behavior changes.

#TalkTrashNewYork

The City developed a basketball-themed message that reminds New Yorkers that keeping NYC clean is a team effort. DSNY partnered with DPR and the New York Knicks for #TalkTrashNewYork, an anti-litter campaign promoting clean streets, sidewalks, beaches, and parks across NYC. A public service announcement (PSA) aired locally and was promoted electronically, in print, and through social media. DSNY made the PSA material available at no cost for media outlets wishing to broadcast the message.

#TalkTrashNewYork launched at The Cage Basketball Courts in Manhattan in May 2017 and featured a free multi-station basketball clinic. Local children were invited to participate in the basketball clinic and learn the fine art of dribbling, shooting, lateral moves, strength, and flexibility, all while learning to keep their city clean. To draw attention to the anti-litter cause, DSNY worked with fashion designer Heron Preston to create a limited-edition, retro-style #TalkTrashNewYork basketball jersey for the first 200 children to play in the clinic. The campaign also announced that 500 hoop-themed litter baskets would be installed in City parks, to be distributed as the additional Talk Trash events are held. To date, the Department has provided a total of 100 baskets to Parks and will distribute the rest during the next Talk Trash events in Calendar Year 2018.

The City engaged targeted stakeholders on the control of floatable and settleable trash and debris related to the SWMP. These stakeholders included:

- General Public
- Trash Free NYC Waters Working Group
- Educators
- Environmental Stakeholders

The public was very engaged on this issue. In response to comments received on this program, the City has:

- Modified the artwork of the "Don't Trash Our Waters" Media Campaign to include recycling cans alongside litter baskets and include an Oyster character
- Modified the Loading Rate Study in response to public comments

9.7 Measurable Goals and Program Assessment

Table 9.3 lists measurable goals and measures for identified Control Of Floatable And Settleable Trash And Debris best management practices (BMPs). Annual Reports will use these measures to detail the status of each measurable goal and BMP. Part IV.M.4.j.i of the MS4 Permit requires an Annual Effectiveness Assessment in each Annual Report, which is described in Chapter 12: Recordkeeping and Reporting. The City will base the Annual Effectiveness Assessment on its achievement of the stated measureable goals for each chapter of this Plan, including this program. The City will also refine these measurable goals with information gained from program planning and implementation, interagency working groups, and public input. Continuing to refine and update the measureable goals will allow the City to better quantify and accurately represent the effectiveness of each one.

Summary of BMPs, Measurable Goals and Measures for the Control Of Floatable and Settleable Trash and Debris Program Table 9.3

ВМР	Measurable Goals	Measure	
Provide a Floatable and Settleable Trash and Debris Management Program	Determine Loading Rate of Floatable Trash and Debris discharged from MS4 to waterbodies impaired for floatables	Status of Loading Rate Study	
	Continue DEP's Catch Basin Inspection, Cleaning, and	Number of catch basins inspected, cleaned and retrofitted	
	Hood Replacement Program and reporting	Number of catch basin hoods repaired, installed or replaced	
	Continue DEP's boom and netting program	Date of Combined Sewer Overflows Best Management Practices Annual Report with Floatables Control Program results	
	Implement a public education program on floatables	List of education & outreach programs/ events and relevant metric(s) for each (e.g., number of participants, events, or materials distributed)	

Monitoring and Assessment of Controls

Participating AgenciesDEP

DEP staff survey the Bronx River

In accordance with Part IV.J of the MS4
Permit, the City must develop and implement
a monitoring and assessment program. This
chapter describes the MS4 Monitoring Program,
which can rely on existing programs, to satisfy
the following MS4 Permit requirements:

- Assess MS4 Permit compliance;
- Measure the effectiveness of the SWMP:
- Characterize and assess the quality of stormwater discharges at representative MS4 outfalls;
- Identify sources of specific pollutants;
- Detect and eliminate illicit discharges, including illegal connections, to the MS4; and
- Evaluate long-term trends in water quality.

The MS4 Monitoring Program includes evaluation of impaired waters as required under Part II.B of the MS4 Permit, and considerations for specific waterbodies, impairments, and pollutant sources. The program combines data collection from existing monitoring programs with multiple phases of outfall flow metering and water quality sampling. This multi-phase strategy is an adaptive management approach for monitoring and assessing water quality in impaired waters. Appendix 10.1 provides additional information about the MS4 Monitoring Program developed by the City to collect and analyze water quality data. Chapter 5 details the City's efforts to detect and eliminate illicit discharges.

10.1 Existing Programs

The City has collected water quality data in New York Harbor since 1909. Today the data sets are available on the DEP website and in the annual New York Harbor Water Quality Report.¹ Regulators, scientists, educators, and citizens use the data to assess impacts, trends, and improvements in the water quality of the harbor. According to the City's most recent report, the harbor is cleaner now than at any time in the last 100 years.

Approximately 60 percent of New York City is served by the combined sewer system where a single pipe carries both wastewater and stormwater to a wastewater treatment plant (WWTP). During times of heavy precipitation, the combined sewer system may be overwhelmed and discharge into waterbodies. This discharge is known as a combined sewer overflow (CSO). CSOs are among the largest non-MS4 contributors of pollutants of concern. Since the 1980s, over 80 percent of CSOs in NYC have been reduced due to billions of dollars of investment in projects such as sewer separation, CSO tanks that store combined flow until it can be pumped to the wastewater treatment plant for treatment, sewer system upgrades, wastewater treatment plant upgrades, and a \$1.5 billion green infrastructure program. DEP is currently developing and implementing II Long Term Control Plans (LTCPs) to build on these earlier investments. These LTCPs are comprehensive evaluations of long-term solutions to reduce CSO events and contribute to water quality improvements in New York City's waterbodies. In addition, the City's stormwater management efforts under the SWMP will further contribute to this positive water quality trend by

I http://www.nyc.gov/html/dep/html/harborwater/harborwater_quality_

taking steps to reduce stormwater pollution as part of a comprehensive integrated planning approach. For more information about the City's efforts to address combined sewer overflows² refer to the Introduction of this Plan.

The City's routine ambient water monitoring programs described below provided useful data for the development of the MS4 Monitoring Program. These monitoring programs will continue, and the City will use the data to complement the MS4 Monitoring Program.

Harbor Survey Program. DEP and predecessor City agencies began monitoring water quality in New York Harbor waters in 1909. Today, the Harbor Survey Program assesses changes in water quality in New York Harbor over long periods to measure the effectiveness of the City's various water pollution control programs. This program routinely measures dissolved oxygen (DO), fecal coliform, enterococci, secchi depth (transparency), chlorophyll "A," total suspended solids (TSS), and total nitrogen (TN).

Sentinel Monitoring Program. DEP monitors waterbodies throughout NYC for pathogens in accordance with DEP's 14 Wastewater Treatment Plants (WWTPs) SPDES Permits. Under this program, initiated in 1998, DEP collects samples at 80 monitoring stations on a quarterly basis. DEP compares sampling results to the NYSDEC-established water quality baseline. If sampling results are above baseline criteria, DEP investigates the adjacent shoreline through a mini-shoreline survey to determine whether there is a contaminated dry weather discharge that would require source trackdown and abatement actions.

Shoreline Survey. DEP identifies and characterizes shoreline outfalls in NYC. Under this program, DEP surveys 50 percent of the shoreline every five years, with progress made each year. If DEP observes a dry weather discharge, it conducts an investigation, which may include sampling, to track down the source and take steps to abate the problem.

Field Sampling Analysis Program (FSAP). The FSAP is a citywide synoptic sampling program with the objective of evaluating the water quality of CSO-impacted waterbodies. This program is a temporary sampling program for DEP's CSO LTCP program that targets wet weather events and takes simultaneous water quality samples at multiple locations in a short period. DEP developed a sampling plan for each impacted waterbody to address waterbody-specific considerations. The FSAP focuses on target bacteria (i.e., fecal coliform and enterococci), TSS, biochemical oxygen demand (BOD), temperature, conductivity/salinity, and DO associated with CSO and stormwater discharges.

Sampling in the Harlem River

Beach Sampling. City bathing beaches are regulated, monitored, and permitted by the City and State. Under Article 167 of the City Health Code and Section 6-2.19 of the City Sanitary Code, DOHMH is responsible for beach surveillance and monitoring for all permitted City beaches. This monitoring includes routine enterococci measurements at beaches for compliance with water quality standards. DOHMH compiles the results of routine water quality monitoring and compliance inspections in its Annual Surveillance and Monitoring Beach Report.

Community-Led Monitoring. Many schools, universities, citizens, scientists, recreational water users, and environmental organizations conduct their own water quality testing in NYC waterbodies. The City considers established community-led monitoring data when evaluating long-term trends and comparisons of water quality. For example, during the development of several CSO LTCPs, organizations such as Riverkeeper, Bronx River Alliance, and the New York City Water Trail Association's Citizens Water Quality Testing Program conducted sampling and submitted data and analyses to the City. The City reviewed this information in relation to its own analyses, noted comparisons and differences, and in some cases used it for modeling calibration processes. DEP compared stakeholder data with City data and provided a summary of the comparison during public meetings, on the DEP website, and in the final CSO LTCP that DEP submitted to NYSDEC. Organizations in addition to those listed above that collect long-term water quality data are encouraged to notify and provide information on their monitoring programs to DEP's MS4 team by emailing MS4@dep.nyc.gov.

² http://www.nyc.gov/html/dep/html/cso_long_term_control_plan/index. shtml

10.2 MS4 Monitoring Program

The MS4 Monitoring Program relies on a phased approach to assess pollutant contributions from stormwater runoff in the MS4 area, and their influence on overall New York Harbor water quality. To support scientific conclusions about pollutant sources and water quality trends in receiving waterbodies over time, DEP commissioned a peer review of the proposed MS4 Monitoring Program to evaluate the effectiveness of the two-phased monitoring and assessment approach. In addition, DEP received feedback from public and environmental organizations such as the Stormwater Infrastructure Matters (SWIM) Coalition. DEP incorporated the following recommendations:

- Implement the monitoring and assessment program in phases;
- Incorporate Phase I results for development of Phase 2 sampling plan;
- Increase the sampling frequency of Phase 1; and
- Add an outfall location in Staten Island for low residential land use to represent the variety of low residential land use in the MS4 area.

During Phase I, DEP will meter and sample at a set of MS4 outfalls during wet weather to assess the influence of land use on stormwater discharge and pollutant concentrations. In NYC, tidal flows influence the majority of outfalls with tidal waters sometimes reaching miles upstream. This influx of harbor water impedes stormwater discharges from outfalls and therefore, presents

challenges for measuring stormwater impacts on receiving waterbodies. In order to avoid tidal influence in the sewer, DEP will collect some samples from manholes upstream of the representative MS4 outfalls. Implementation of Phase I monitoring will begin by August 2020. DEP will analyze Phase I data to aid in developing the Phase 2 sampling plan. During the analysis of Phase I data, DEP will identify which of the pollutants of concern (POCs) listed in Table 10.I are present in significant concentrations. DEP will continue to monitor for those parameters in Phase 2. Phase 2 monitoring will also include pathogen and nutrient parameters, which the MS4 Permit lists as the cause of water quality impairment for specific waterbodies.

In Phase 2, DEP will target a second set of MS4 outfalls as described in Section 10.2.2 to evaluate long-term trends. DEP anticipates that Phase 2 monitoring will apply procedures similar to those in Phase 1, with the addition of water quality sampling in receiving waterbodies conducted at the nearest, existing Harbor Survey or Sentinel Monitoring station or other appropriate location. Phase 2 will start after the Phase 1 analysis is completed and DEP finalizes the Phase 2 sampling plan based on Phase 1 analysis.

The DEP Harbor Survey and Sentinel Monitoring Programs will continue concurrently with and as a complement to Phase 1 and 2 monitoring. DEP will use data from these programs and Phase 2 monitoring to analyze the influence of stormwater loads in receiving waterbodies. Refer to Appendix 10.1 for additional information.

Summary of MS4 Monitoring Program Phases Table 10.1

Phase	Goal	Sampling Sites	Frequency	Monitoring Parameters	Anticipated Start
Phase 1	Assess the effect of land use on stormwater discharge and pollutant concentrations	8 MS4 outfalls representative of 6 land use types (1 mixed, 1 high-density residential, 2 low-density residential, 2 industri- al, 1 open space, and 1 highway)	Quarterly for 2 years	ResiduePathogensNutrientsMetalsOil and greaseField in-situFlow	By August 2020
Phase 2	Evaluate long-term trends	 MS4 outfalls to be determined based on Phase 1 results Nearest existing correspond- ing Harbor Survey and/or Sentinel Monitoring stations 	To be determined based on Phase 1 results	To be determined based on Phase 1 results	After analysis of Phase 1 data

10.2.1 Phase 1 – Land Use-Based Outfall Monitoring

The objective of the land use-based outfall monitoring (Phase I) is to identify potential sources of specific pollutants, and characterize and assess the quality of stormwater discharges at representative MS4 outfalls, as required by Part IV.J.2 of the MS4 Permit. DEP will use the collected data to determine whether there is any correlation between land use type and pollutant loadings. Understanding this correlation can be useful for identifying and implementing pollutant reduction measures for a particular land use type. DEP may use results from Phase I monitoring to refine the current event mean concentrations (EMC) per land use type. The EMC is the flow weighted mean concentration, which is equivalent to collecting the entire stormwater runoff, completely mixing it and then determining the pollutant concentration. EMCs are used in pollutant load analysis to ensure no net increase of nitrogen contributions to nitrogen-impaired waterbodies. Refer to Chapter 6: Construction and Post-Construction for more information on no net increase requirements.

Pursuant to EPA stormwater sampling guidance³, consideration of land use patterns within a municipality should be a major factor in the selection of outfalls to monitor. Phase I will monitor eight outfalls that represent six land use types within NYC, as summarized in Table Io.2 below. DEP identified Phase I outfalls and corresponding monitoring locations feasible for metering and sampling through desktop surveys and field verifications based on the following characteristics:

- farthest downstream manhole or outfall pipe not influenced by tides;
- no dry weather flows; and
- safely accessible by sampling field crews.

Phase I monitoring will occur once per quarter for two years at each location for a total of 64 samples. After Phase I is complete, DEP will evaluate the collected data to determine next steps and may extend Phase I monitoring if the data suggest some correlation between land use and specific pollutants.

3 https://nepis.epa.gov/Exe/ZyPDF.cgi/20012RVG.PDF?Dockey=20012RVG. PDF

Phase 1 Monitoring Locations Table 10.2

	Target Sampling Location			Land Uses	Land Uses Per MapPLUTO Overlay		
Targeted Outfall ID	Borough	Land Use	Drainage Area to Anticipated Monitoring Location (acres)	ed Main Land Use		Receiving Waterbody	
HP-627	Bronx	Open Space	12.4	Open Space and Outdoor Recreation	86%	Bronx River	
HP-640	Bronx	Mixed	4.3	Multi-Family Residential, Commercial and Office Buildings, and Public Facilities and Institutions	83%	Hutchinson River	
NCQ-632	Queens	Industrial	87.2	Industrial and Manufacturing	63%	Newtown Creek	
OB-722	Staten Island	Low-Density Residential	45.3	One and Two Family Buildings	68%	Raritan Bay	
OH-607	Brooklyn	Industrial	5.1	Industrial and Manufacturing	82%	Gowanus Canal	
TI-604	Queens	Highway	16.4	Highway	63%	Flushing Creek	
TI-633	Queens	High-Density Residential	19.1	One and Two Family Buildings	66%	Little Neck Bay	
TI-658	Queens	Low-Density Residential	26.0	One and Two Family Buildings	69%	Little Neck Bay	

Water quality sampling for wet weather monitoring programs

One of the goals of this wet weather monitoring program is to better understand the correlation between water quality samples and stormwater runoff. DEP grabs samples from inside a storm sewer pipe at a manhole or an outfall, or in a receiving waterbody when it is raining. This information is important for linking specific water quality results directly to the stormwater runoff that may be carrying and discharging pollutants. Sampling programs must identify and assess predicted rain events in advance to determine whether an event will produce enough stormwater runoff to measure, and whether there was sufficient time between storms to allow pollutants to build up between rain events.

10.2.2 Phase 2 – Targeted Outfall Monitoring

After DEP evaluates the Phase I monitoring data, DEP will develop a targeted outfall monitoring program for Phase 2 to evaluate long-term trends. The Phase 2 program will target outfalls that generally meet one or more of the following criteria:

- **Discharge to impaired waterbodies:** Part IV.J.2.b of the MS4 Permit requires the monitoring program to assess the water quality of impaired waterbodies, including Priority MS4 Waterbodies.
- Discharge from large upstream areas: Outfalls with a large upstream drainage area convey the greatest stormwater volume and likely the largest pollutant load, and therefore have a greater impact on receiving water quality.
- **Discharge to sensitive areas:** Sensitive areas such as recreational beaches that have potential human health and safety hazards.
- Discharge from drainage areas where the SWMP was **implemented:** Outfalls with a drainage area where source controls such as education and outreach, green infrastructure, stormwater control measures (SCMs), and other SWMP-related programs are expected to be implemented will support evaluations of SWMP effectiveness.

DEP will analyze data from Phase 2 in comparison with data collected by the Harbor Survey, Sentinel Monitoring, and other publicly-led programs to evaluate the role stormwater plays as a potential pollutant source and analyze long-term trends in receiving water quality. To ensure the data are comparable, this analysis will account for the following factors:

- Proximity: DEP will identify and use Harbor Survey and Sentinel Monitoring stations closest to each Phase 2 outfall location.
- Timing: DEP will collect samples from these Harbor Survey and Sentinel Monitoring stations after a qualifying rain event.
- **Parameters:** DEP will measure the same Phase 2 parameters at the nearby Harbor Survey and/or Sentinel Monitoring stations.

DEP staff samples water quality

10.3 MS4 Monitoring **Program Procedures**

The MS4 Monitoring Program procedures will support DEP's characterization and assessment of the quality of stormwater discharges at representative MS4 outfalls, identification of sources of specific pollutants, and evaluation of long-term trends in receiving water quality. Appendix 10.1 describes in more detail the procedures summarized below.

10.3.1 Outfall Flow

In order to estimate the pollutant loading from each outfall, a measurement of volumetric flow is necessary (i.e., flow \times concentration = load). Because stormwater outfalls are only expected to have flow during and after rainfall events, automated flow meters will be used in manholes.

DEP may use manual measuring devices when collecting samples to corroborate automated flow meter readings. Flow measurements will be limited to a subset of the monitored outfalls and DEP will compare measurements to other data points or conditions including drainage area size, impervious cover, and precipitation data from the nearest City rain gauge.

10.3.2 Sample Collection and Field Measurements

Field activities will include collecting grab samples of water for laboratory analysis. DEP will deploy crews to collect samples for qualifying rain events. DEP defines a qualifying rain event as:

- 48 hours of relatively dry weather (no storm in excess of o.1 inch in the outfall catchment area) precedes rain
- predicted at least a day in advance by weather forecasts;
- predicted by weather forecasts with 80 percent probability of occurring; and
- predicted to result in greater than 0.2 inches of rain.

Field activities include collecting grab samples for laboratory analyses (as listed below) and measuring in-field parameters such as pH, DO, temperature, and salinity. DEP will obtain storm volume and duration data from the nearest or most appropriate rain gauge.

Because of shorter holding times, DEP will send samples collected for pathogen analysis via messenger to a nearby laboratory. DEP will obtain oil and grease measurements from a single grab sample (as opposed to a composited sample). For all other parameters, DEP will use timeweighted composites. All sampling is subject to DEP's established quality assurance and quality control (QA/ QC) procedures. DEP will use the appropriate standard methods to collect QA/QC samples based on the parameters measured.

DEP sampling in Coney Island Creek

Water samples at DEP's lab

10.3.3 Laboratory Analyses

DEP selected the parameters and types of laboratory analyses for the MS4 Monitoring Program based on one or more of following criteria:

- Listed as a POC in Appendix 2 of the MS4 Permit
- Listed as a cause for impairment in receiving waterbodies in the Clean Water Act Section 303(d) list
- Identified as being present at representative MS4 outfalls/manholes in the DEP Supplemental Discharge Characterization Report that was prepared for the WWTP SPDES Permits
- Commonly associated with land uses within an outfall's drainage area
- Historically associated with the City's MS4 discharges based on existing monitoring programs

Since the data collected under this program will be used for MS4 Permit compliance, samples will be analyzed by a laboratory certified by the New York State Environmental Laboratory Approval Program.

The MS4 Monitoring Program includes sampling for the following parameters identified by existing data sources, reports, and the MS4 Permit:

- Residue: Total Dissolved Solids (TDS); Total Suspended Solids (TSS)
- Pathogens: Fecal Coliform; Enterococci
- Nutrients: Total Phosphorus; Dissolved Phosphorus; Total Ammonia (as N); Total Kjeldahl Nitrogen (TKN as N, the sum of ammonia, and organic nitrogen); Total Nitrogen (TN, the sum of TKN, and nitrate-nitrite)

- Metals: Total Cadmium; Total Chromium; Total Copper; Total Lead; Total Nickel; Total Arsenic; Total Mercury; Total Zinc
- Miscellaneous: Oil and Grease

The parameters above include the POCs listed as the causes of impairment in the MS4 Permit with the exception of floatables, which this Plan addresses in Chapter 9: Control of Floatable and Settleable Trash and Debris. Phase 1 will include sampling for all above parameters. Parameters to be sampled as part of Phase 2 will be identified based on Phase 1 results.

DEP scientist analyzes water samples

10.4 Assessment of MS4 Monitoring Program

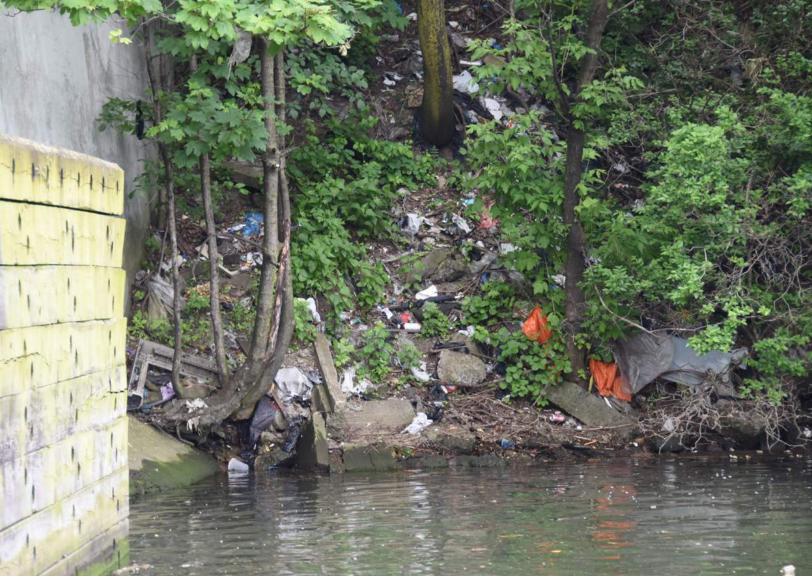
DEP will begin assessing the MS4 Monitoring Program approximately two years (i.e., eight quarterly sampling cycles) after Phase I monitoring begins. Assessments of, and recommended adjustments to, the MS4 Monitoring Program will be provided in the Annual Report, as appropriate. Assessments may include comparisons to historical City and national data, and State water quality standards.

Data collection will likely reveal opportunities for MS4 Monitoring Program improvements. This adaptability is essential to the City's meeting the goals of the SWMP. Accordingly, as DEP develops and implements the MS4 Monitoring Program, it will consider changing sampling frequency or locations to yield more meaningful results.

10.5 Measurable Goals and Program Assessment

As described in Chapter 12: Recordkeeping and Reporting, the City is developing a Consolidated Information Tracking System to track information required by the MS4 Permit for the Annual Report. Table 10.3 lists measurable goals and measures for identified Monitoring and Assessment of Controls best management practices (BMPs). Annual Reports will use these measures to detail the status of each measurable goal and BMP. Part IV.M.4.j.i of the MS4 Permit requires an Annual Effectiveness Assessment in each Annual Report, as described in Chapter 12: Recordkeeping and Reporting. The City will base the Annual Effectiveness Assessment on its achievement of the stated measureable goals for each chapter of this Plan, including this program. The City will also refine these measurable goals with information gained from program planning and implementation, interagency working groups, and public input. Continuing to refine and update the measureable goals will allow the City to better quantify and accurately represent the effectiveness of each one.

Summary of BMPs, Measureable Goals, and Measures for the MS4 Monitoring Program Table 10.3


ВМР	Measurable Goals	Measures
Monitoring and Assessment Program	Conduct wet weather sampling from outfalls/manholes	Results of monitoring data collected and analyzed

Special Conditions for Impaired Waters

Participating Agencies

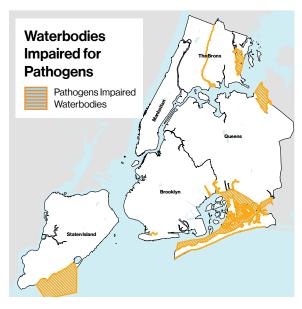
DEP · DOE · DOT · DPR · DSNY

Shoreline trash and debris

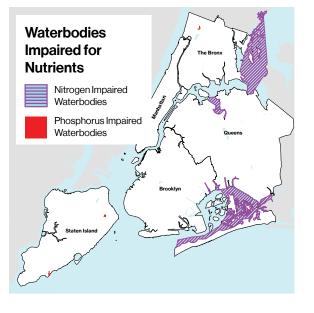
As described in previous chapters of this Plan, the City will administer existing and new programs and practices to reduce or remove pollutants in stormwater runoff from the MS4 area draining to Surface Waters of the State, including impaired waters. The MS4 Permit identifies special conditions for specific impaired waterbodies:

- Impaired waters without Total Maximum Daily Loads (TMDLs)
- Impaired waters with NYSDEC-approved Combined Sewer Overflow Long Term Control Plans (CSO LTCPs)

The waterbodies in these categories will receive targeted efforts. This chapter identifies impaired waters and pollutants of concern (POCs) in the NYC area, and details the City's policies and programming in addition to the SWMP that will be implemented for these waterbodies.


11.1 Impaired Waters and Pollutants of Concern

In Appendix 2 of the MS4 Permit, NYSDEC identified impaired waters as well as the relevant POCs for each waterbody listed. Waterbody impairments are based on the NYSDEC-designated use (e.g., swimming, fishing, or recreational boating). Table II.I summarizes the waterbodies and their associated impairments, as identified in Appendix 2 of the MS4 Permit. **Figure II.I**, from Appendix I of the MS4 Permit, are a map of the NYC impaired waterbodies.


POCs are pollutants that might reasonably be expected to be present in stormwater runoff in quantities that can cause or contribute to a violation of water quality standards. The MS4 Permit identifies impaired waters and the POCs for which they are impaired. The POCs that have been identified for waterbodies in NYC are:

- Pathogens are disease-producing agents such as bacteria, viruses, or other microorganisms. There are multiple potential sources of pathogenic bacteria in the City's recreational waters including and not limited to runoff from the MS4 area, runoff from surrounding jurisdictions, illegal sewer connections, and combined sewer overflows (CSOs). Pathogens can degrade water quality, and pose a risk for the local ecology and recreational users who may contract infectious diseases through water contact. The City has many longstanding programs to reduce pathogen pollution including a comprehensive CSO reduction program and robust illicit discharge detection and elimination efforts, as well as daily operations at 14 Wastewater Treatment Plants (WWTPs).
- Floatables are manmade materials, such as plastics, papers, or other products which, when improperly disposed of onto streets or into catch basins, can ultimately find their way to local waterbodies. Floatables include materials that are settleable as well as those that may float on the water surface or are neutrally buoyant; such materials may float or sink depending on the ambient conditions to which they are subject. Floatables can originate from multiple sources such as stormwater runoff, combined sewer overflows, and direct disposal to the water. If washed onto beaches, floatables can pose human health risks and degrade the aesthetic value of the shoreline in and around NYC. Floatables not washed onto the shoreline also degrade the aesthetics of NYC waterbodies, and can form slicks that may be a navigational hazard. Additionally, floatables threaten the health and lives of marine species and habitats. The City currently has a variety of programs in place to reduce floatables in local waterways. These are detailed in Chapter 9: Control of Floatable and Settleable Trash and Debris.
- Nutrients, including phosphorus and nitrogen, are natural parts of aquatic ecosystems that support the growth of algae and aquatic plants. Excess nutrients can cause nuisance algae blooms and aquatic weed growth, which reduce water clarity and dissolved oxygen (DO), and can harm aquatic life. Sources of nutrients include lawn/plant fertilizer, combined sewer overflows, WWTP effluent, illicit discharges of sanitary waste, pet and wildlife waste, and green waste such as leaves, branches, and yard clippings. The City has invested billions of dollars to reduce nitrogen in the Harbor through WWTP upgrades and CSO reduction strategies. For information on nutrient reduction at other municipal facilities and operations in MS4 areas see Chapter 7: Pollution Prevention/Good Housekeeping for Municipal Operations and Facilities.

Figure 11.1

Summary of waterbodies in NYC and their listed impairments in Appendix 2 of the MS4 Permit Table 11.1

	Impairment Pollutant of Concern					
Waterbody	Floatables	Pathogens	Nitrogen	Phosphorus		
Bronx River	х	Х				
Eastchester Bay		Х				
Hutchinson River	Х					
Long Island Sound			Х			
Van Cortlandt Lake				Х		
Westchester Creek	Х					
Coney Island Creek	Х	Х				
Gowanus Canal	Х					
Newtown Creek	Х					
East River	Х					
Harlem River	Х					
Alley Creek	Х					
Little Neck Bay		Х				
Flushing Creek/Bay	Х		Х			
Jamaica Bay	Х	Х	Х			
Hendrix Creek	Х	Х	Х			
Mill Basin	Х					
Paerdegat Basin	Х					
Bergen Basin	Х	Х	Х			
Shellbank Basin			Х			
Spring Creek	Х	Х				
Thurston Basin	Х					
Arthur Kill	X					
Grasmere, Arbutus, and Wolfes Lakes				Х		
Kill Van Kill	X					
Newark Bay	х					
Raritan Bay		Х				
Atlantic Ocean Coastline		Х				

11.2 Impaired Waters without Total Maximum Daily Loads

Under Part II.B.I of the MS4 Permit, in addition to implementing Parts IV.A through IV.J of the MS4 Permit (Chapters 2 through IO of this Plan), the City must ensure no net increase of the POC causing the impairment from non-negligible land use changes or changes to stormwater management practices within the MS4 area draining to the impaired waters.

The City will implement the stormwater management practices as described in Chapters 2 through 10 of this Plan. Also, the City's Stormwater Pollution Prevention Plan (SWPPP) review process under the Construction and Post-Construction Program will require adequate controls to ensure no net increase of the POC causing impairment. Refer to Chapter 6: Construction and Post-Construction for more information.

11.3 Impaired Waters with NYSDEC Approved Combined Sewer Overflow Long Term Control Plans

Impaired waters with approved CSO LTCPs that do not predict compliance with applicable water quality standards, and where stormwater contributions from the MS4 are expected to be a significant contributor to the impairment, are Priority MS4 Waterbodies.

The City will develop and implement a Priority MS4 Waterbody Plan (PWP) for each waterbody that meets the definition of a Priority MS4 Waterbody. The PWP will include:

- A summary of the source categories for POCs causing impairment (e.g., fertilizer use, illicit discharges, leaf litter, pet waste, industrial areas, construction, highly impervious area);
- A list of additional or customized non-structural best management practices (BMPs) for each control measure in Part IV.A thru Part IV.I of the MS4 Permit (Chapters 2 through 9 of this Plan) and an implementation schedule; and
- Opportunities for implementing green infrastructure (GI) pilot projects.

Based on the data in the Coney Island Creek CSO LTCP, DEP proposed to designate Coney Island Creek as a Priority MS4 Waterbody and, in December 2017, DEC agreed to the designation. The Coney Island Creek PWP is included below as Section 11.4. If other Priority MS4 Waterbodies are identified in the future, the City will develop additional waterbody-specific PWPs, and summarize them in Annual Reports and SWMP updates.

11.4 Coney Island Creek Priority MS4 Waterbody Plan

DEP is investing more than ever to improve water quality in New York Harbor. As of 2016, DEP committed nearly \$4.1B from the Waterbody/Watershed Facility Plans (\$2.6B) and the Green Infrastructure Program (\$1.5B) for water quality improvements throughout the City. Based on the data in the Coney Island Creek LTCP, DEP and NYSDEC agreed to designate Coney Island Creek a Priority MS4 Waterbody. Through the PWP, DEP will use an integrated watershed approach to build upon these investments. Table 11.2 summarizes the targeted POC source categories and the City's intended control measures for Coney Island Creek. The watershed characterization, pollutant source characterization, intended stormwater control measures (SCMs) to address the BMP requirements, and GI pilot projects within the Coney Island Creek MS4 area are further described below.

11.4.1 Watershed Characterization

The Coney Island Creek watershed, within the Borough of Brooklyn, NY, is highly urbanized. It is comprised primarily of residential areas with some commercial, industrial, institutional, and open space/outdoor recreation areas. As a residential community within NYC that is also an iconic recreational area for NYC residents, the Coney Island Creek area also has several large and notable transportation corridors that cross the watershed to provide access between industrial, commercial and residential areas. Table 11.3 summarizes the land use characteristics of the entire Coney Island Creek watershed, of which approximately 65-75% is in the MS4 area.

Summary of POC Source Categories and Control Measures for Coney Island Creek Table 11.2

Pollutant of Concern	Targeted MS4 Source Categories	Proposed Control Measures and Projects for Coney Island Creek
Floatables	Highly impervious area (littering)	Catch basin markingSignage deploymentSource controlPublic education and outreach
Pathogens	Illicit discharges Pet waste	 Pet waste management Signage deployment Source control Sentinel Monitoring Source tracking Public education and outreach

Existing Land Use within the Coney Island Creek Drainage Area Table 11.3

Land Use Category	Percent of Drainage Area (%)
Commercial	5
Industrial	1
Open Space and Outdoor Recreation	10
Mixed Use and Other	5
Public Facilities	6
Residential	59
Transportation and Utility	7
Parking Facilities	2
Vacant Land	4

11.4.2 Pollutant Source Characterization

This pollutant source characterization identifies possible sources of pollution from the MS4 area draining to Coney Island Creek. Appendix 2 of the MS4 Permit lists pathogens and floatables as the POCs causing impairment of Coney Island Creek. The City determined the source categories that potentially contribute these POCs using available information about land uses, and information from the LTCP and the 2013 Floatables Monitoring Report.

Pathogens include bacteria, viruses or other microorganisms that may be disease-producing. Bacteria found in feces is widespread in urban stormwater runoff and there are multiple sources within generalized land use groupings. The City identified the following as possible sources of pathogens in Coney Island Creek:

- Illicit connections from sanitary systems to storm drains or directly to the creek;
- Uncollected pet waste; and
- CSOs (these are addressed by the Coney Island Creek LTCP and are outside of the scope of this PWP).

Floatables, or trash and debris, have many possible sources within NYC. Trash and debris may carry toxins and pathogens that pose a risk to human and ecosystem health. Refer to Chapter 9: Control of Floatable and Settleable Trash and Debris for more information on floatables controls. The City identified the following as possible sources of floatables in Coney Island Creek:

- Street litter and debris (from pedestrians and vehicles) in stormwater runoff; and
- CSOs (these are addressed by the Coney Island Creek LTCP and are outside of the scope of this PWP).

11.4.3 Enhanced or Additional Stormwater Control Measures for Coney Island Creek

As described throughout this Plan, the City is implementing numerous SCMs to address floatables and pathogens. The City has identified ways to enhance these SCMs to target important pollutant sources, land uses, or drainage areas in the Coney Island Creek watershed. Pilot SCMs implemented as part of this Coney Island Creek PWP may be assessed for feasibility across the larger MS4 drainage area. The City will implement the following programs and projects to address the POCs for Coney Island Creek, with the intended start date for each listed below.

- Pet Waste Management: DPR placed new pet waste bag dispensers and signage as part of its "Forgot Your Bag?" Program, to minimize the presence of exposed pet waste. DEP partnered with DPR on this project in Coney Island to educate the public about the potential impacts of pet waste on water quality. DPR installed dispensers and signage in Calvert Vaux Park in late 2017, and will install them in Kaiser Park by spring 2018. DEP and DPR initiated planning for related public education and outreach efforts in early 2018.
- Catch Basin Marking: Images and text on catch basins help inform the public that the catch basins drain directly to local waterways and that nothing should be dumped into them. As discussed in Chapter 2: Public Education and Outreach, the City is gradually installing new and replacement catch basins in the MS4 area with a "no dumping" message stamped in the iron curb piece. To complement this program in the Coney Island Creek tributary area, DEP plans to partner with other City agencies and local organizations to stencil on or attach medallions to existing catch basins. DEP and partners will begin coordinating catch basin marking opportunities in the Coney Island Creek MS4 drainage area in fall 2018.

Pet waste dispenser

Coney Island Creek outfall signage

- **Signage Deployment:** DEP placed signage at key MS4 outfalls in Coney Island Creek with ID numbers and instructions on how to report dry weather discharges. This signage can help facilitate local community reporting of water quality concerns. Additionally, DEP partnered with DPR to install "No Swimming" signs at seven locations along the shoreline of Coney Island Creek. Brooklyn Community Board 13 helped identify the best locations for these signs. DEP began installing the outfall signs in February 2018, and installed the "No Swimming" signs in summer 2017.
- **Monitoring:** As described in Chapter 10: Monitoring and Assessment Program, existing and ongoing ambient water quality monitoring programs will be evaluated along with the MS4 monitoring program. Modifications to these sampling programs, which are focused on pathogens in Coney Island Creek, will increase the City's ability to identify illicit sewage discharges. DEP anticipates adding a new station in Coney Island Creek as part of its Sentinel Monitoring Program revisions, which are expected to be reviewed by NYSDEC by end of 2018.
- **Source Tracking:** DEP is developing a pilot project to evaluate additional source tracking tools beyond those that are currently used in the citywide IDDE program, such as physical tracers, biological tracers, chemical

- tracers, confirmation techniques, or infrared heat detection methods. These investigation techniques can help discern sources of pathogens as human, bird or domestic pet waste. Alternative methods of detection and source tracking will supplement DEP's existing programs in Coney Island Creek. DEP will identify and assess the feasibility of additional source tracking methods, and anticipates initiating the procurement process in 2018.
- **Public Education and Outreach:** The City has already prioritized Coney Island Creek for public education and outreach. DEP presented to community groups on MS4 issues and solicited input for potential projects or programs. DEP also launched the Don't Trash Our Waters Campaign in Coney Island Creek in partnership with the New York Aquarium. The City will continue to conduct education and outreach in this community on pollution source controls, including pet waste management and trash management. DEP launched the Don't Trash Our Waters Campaign in the Coney Island Creek MS4 area in May 2017.

The City will continue to engage partners such as local businesses, community groups, and other stakeholders to identify and assess the feasibility of additional opportunities to reduce POCs in stormwater runoff to Coney Island Creek.

11.4.4 Opportunities for Green Infrastructure **Pilot Projects**

DEP implements a successful Green Infrastructure Program in combined sewer areas through close coordination with other City agency partners. DEP identified potential GI opportunities in Coney Island Creek MS4 areas by prioritizing City-owned sites based on their potential to capture runoff. DEP is partnering with owner agencies and entities (e.g., DPR, NYCHA, DOE) to identify and evaluate the feasibility of adding GI pilot projects at these sites. GI pilot projects in the Coney Island Creek MS4 area will be designed to accommodate the 90th percentile storm (1.5" of rainfall). The City aims to implement GI pilot projects at select parks, schools, and NYCHA properties in the Coney Island Creek MS4 area. DEP initiated these efforts in 2017. The City will report on the progress of these GI pilot projects in each Annual Report.

"Don't Trash Our Waters" Coney Island Aquarium event

Coney Island Creek has been designated a Priority MS4 Waterbody. As such, the City has conducted targeted public engagement with the Coney Island Community, including the following efforts:

- The City partnered with the Coney Island Beautification Project, the SWIM Coalition, the Partnerships for Parks Catalyst Program, and the Wildlife Conservation Society's NY Aquarium for three community workshops on water quality in Coney Island Creek.
- The second workshop included a detailed presentation on Priority MS4 Waterbodies and the Illicit Discharge Detection and Elimination Program. Approximately 30 people from the Coney Island Community attended and participated in breakout sessions. The breakout sessions focused on: public notification of illicit discharges, education and outreach to prevent illicit discharges, community requests, and trash "hot spots" for floatables reduction. Each breakout group compiled a list of suggestions and requests for initiatives that DEP might implement in Coney Island Creek.
- Throughout the rest of 2017, DEP continued responding to the community's ideas and developing a series of strategies.
- The final workshop gave DEP an opportunity to share with the community the final results of its suggestions.

The City took the following actions after meeting with the public:

- Installed informational Signage:
 - » DEP initiated a pilot program to install signs at eight DEP-MS4 outfalls in Coney Island Creek. These signs inform the public on how to identify and report dry weather discharges.
 - » In partnership with DPR, DEP installed "No Swimming" signs at seven locations near the Creek. These locations were selected in consultation with Brooklyn Community Board 13.
- Provided the public with more information about discharges:
 - » DEP began posting the Sentinel Monitoring Reports on its website.
 - » DEP added Coney Island Creek to the CSO wetweather advisory notifications.
- Developed specific programs for Coney Island Creek:
 - » DEP launched the "Don't Trash Our Waters" Media Campaign in Coney Island.
 - » In partnership with DEP, DPR installed pet waste bag dispensers and strategically placed trash cans in Kaiser Park and Calvert Vaux Park.

Recordkeeping and Reporting

Participating Agencies

DCAS · DCP · DDC · DEP · DOB · DOC · DOE · DOHMH · DOT · DPR · DSNY · FDNY · NYPD · SBS

Annually, in accordance with Part IV.M of the MS4 Permit, the City will prepare a report documenting the status of compliance activities related to the MS4 Permit. The reporting year for each Annual Report will be the calendar year (January 1 to December 31). The City will submit Annual Reports in both electronic and paper formats to NYSDEC by September 30 following each reporting year.

12.1 Recordkeeping and Data Management

In accordance with Part IV.L of the MS4 Permit, each City agency is responsible for maintaining its own records generated in support of MS4 Permit compliance for at least five years after it generates those records. The City developed a Consolidated Information Tracking (CIT) System Framework to guide the building of the CIT System that will be used for the recordkeeping and reporting required by the MS4 Permit. The City will certify the development of the CIT System Framework with the submission of this Plan to NYSDEC on August 1, 2018.

The CIT System will store SWMP implementation and Annual Report information. The CIT System will allow agencies to upload information and supporting documentation on their measurable goals and other annual reporting items. These records include original paperwork, reports, electronic data and files, and other information regarding implementation of the SWMP. DEP will use this information for Annual Reports that describe SWMP implementation and effectiveness. The CIT System will also serve as a resource for providing information requested by NYSDEC and the public. The public can request information on the SWMP by emailing MS4@dep.nyc.gov.

12.2 Annual Report Process and Schedule

The City will produce the Annual Report in four stages:

Data Consolidation. As discussed in Section 12.1, DEP will collect data on agencies' activities completed during the reporting year through the CIT System. DEP will obtain additional information through the Construction and Post-Construction database, the Industrial and Commercial database, and additional reports prepared for other purposes. DEP will compile these materials for reporting on measurable goals and their associated measures.

Draft of the Annual Report. DEP will draft an Annual Report in compliance with Part IV.M of the MS4 Permit that summarizes the compiled data and reports, and describes the implementation of the SWMP. DEP will provide this draft to the participating agencies for internal discussion and review. The draft Annual Report will generally include a brief description of the SWMP-activities completed during the reporting year, measurable goals, and specific reporting requirements included in the MS4 Permit. The draft Annual Report will also include activities planned for the next year, and, if applicable, any proposed changes to this Plan.

Public Review of the Draft Annual Report. As described in Chapter 3: Public Involvement and Participation, the City will publish the draft Annual Report on the DEP website and present the draft Annual Report for public questions and comments by July I following each reporting year, and prior to submittal of the final Annual Report to NYSDEC.

Submittal to NYSDEC. In accordance with Part IV.M of the Permit, once the City addresses public comments and modifies the draft report accordingly, the City will submit the final Annual Report to DEC by September 30 following each reporting year.

12.3 Monitoring and Assessment of Controls

In accordance with Part IV.M.4.j.i of the Permit, the City will include an Annual Effectiveness Assessment in each Annual Report. This assessment will evaluate the effectiveness of the overall SWMP and progress towards reducing stormwater pollution from the MS4. The City will review effectiveness of the SWMP through achievement of its measurable goals. As data from the Monitoring Program become available, the City will also provide results from the information collected and analyzed.

The Annual Effectiveness Assessment will review:

- appropriateness of significant best management practices (BMPs);
- effectiveness of the implementation of the SWMP components; and
- progress towards reducing the discharge of pollutants of concern to the maximum extent practicable.

12.4 Measurable Goals and Program Assessment

Table 12.1 lists measurable goals and measures for identified Recordkeeping and Reporting BMPs. Annual Reports will use these measures to detail the status of each measurable goal and BMP. Part IV.M.4.j.i of the MS4 Permit requires an Annual Effectiveness Assessment in each Annual Report, as described above. The City will base the Annual Effectiveness Assessment on its achievement of the stated measureable goals for each chapter of this Plan, including this program. The City will also refine these measurable goals with information gained from program planning and implementation, interagency working groups, and public input. Continuing to refine and update the measureable goals will allow the City to better quantify and accurately represent the effectiveness of each one.

Summary of BMPs, Measurable Goals, and Measures for Recordkeeping and Reporting Table 12.1

ВМР	Measurable Goals	Measures
		Summary of annual effectiveness assessment
Provide annual reports to document compliance with the MS4 permit	Develop Annual Reports after submission of the Plan due September 30 following each reporting Year	Date of Municipal Compliance Certification submission

Definitions and Acronyms

Definitions

Annual Report: After submission of the Plan, DEP will publish a report by September 30th of each calendar year on SWMP implementation. The report will summarize activities performed throughout the reporting period (January 1 to December 31) by all agencies with obligations under the MS4 Permit; and will report on best management practices, measureable goals, and their measures stated in each chapter of the Plan, as well as Part IV.M of the MS4 Permit. It should be noted that for the first Annual Report (due September 30, 2019), the reporting year will be from submittal of the Plan (August 1, 2018) to the end of the calendar year.

Applicant: The term "applicant" means the person filing the online application. This may be the owner, developer, qualified professional, or other person that is a registered user in the online application system.

Best Management Practice (BMP): Schedules, activities, prohibitions of practices, maintenance procedures, and other management practices to prevent or reduce the pollution of waters of the State. BMPs also include treatment requirements (if determined necessary by the permittee), operating procedures, and practices to control runoff, spillage, and leaks; sludge or waste disposal; or drainage from areas that could contribute pollutants to stormwater discharges. BMPs are referred to in EPA fact sheets and other materials. BMPs are also referred to as "activities" or "management practices" throughout the MS4 requirements under this SPDES individual permit. As such, BMPs are a sub-element of the SWMP Plan that describe the specific actions that will be taken to achieve the requirements of one or more sub-paragraphs of the SWMP Plan Element (e.g., the BMP "Identify Target Audiences for the POCs to each waterbody/sewershed of concern" would address the requirements of paragraph IV.A.1 of the SPDES MS4 Permit).

Better Site Design (BSD): Better Site Design incorporates non-structural and natural approaches to new and redevelopment projects to reduce impacts on watersheds by conserving natural areas, reducing impervious cover and better integrating stormwater treatment. Better Site Design is a form of Green Infrastructure and is similar to Low Impact Development (LID).

Bluebelt: A Bluebelt is a collection of streams, ponds and wetlands that naturally convey, store, and filter stormwater runoff. The Bluebelt program preserves natural drainage corridors such as streams and ponds, and optimizes them through the design and construction of stormwater controls to filter stormwater before it empties into the New York Harbor.

Borough-block-lot: Parcel numbers used to identify the location of buildings or properties.

Combined Sewer Overflow (CSO): Sometimes, during heavy rain and snow storms, a combined sewer system receives higher than normal flows. Treatment plants are unable to handle flows that are more than twice their design capacity and when this occurs, a mix of excess stormwater and untreated wastewater discharges directly into the City's waterways at certain outfalls to prevent upstream flooding. This is called a combined sewer overflow (CSO).

Combined Sewer System: A sewer system used to convey both wastewater and stormwater in a single pipe to wastewater treatment plants (WWTPs). During times of heavy precipitation, the combined sewer system may discharge into surface waters. See Combined Sewer Overflow

CSO Outfall: The physical point where a municipally owned or operated combined sewer discharges to either surface waters of the state.

CSO Regulator: A flow control structure in a combined sewer system that diverts a controlled portion of flow from the collection system to an intercepting sewer and allows the remaining flow to discharge to nearby waters as a combined sewer overflow.

Compliance Activity: One or more specific actions taken to achieve a measurable goal, including a defined set of metrics that describe the activity.

Construction Activity: As defined by the SPDES General Permit for Stormwater Discharges from Construction Activity (GP-o-15-002). Construction activity means any clearing, grading, excavation, demolition, or stockpiling activity that results in soil disturbance. Clearing activities can include but are not limited to logging equipment operation, the cutting and skidding of trees, stump removal and/or brush root removal. Construction activity does not include routine maintenance that is performed to maintain the original line and grade, hydraulic capacity, or original purpose of a facility.

Covered development project: The term "covered development project" means development activity, private or public, that involves or results in an amount of soil disturbance within the MS4 area greater than or equal to one acre. Such term includes development activity that is part of a larger common plan of development or sale involving or resulting in soil disturbance within the MS4 area greater than or equal to one acre. Such term shall include all development activity within the MS4 area

that requires a SWPPP pursuant to the New York State Department of Environmental Conservation (NYSDEC) construction general permit.

Delineation: Procedure by which a map or geospatial dataset is prepared that depicts a drainage area and associated discharge point.

Developer: The term "developer" means a person that owns or leases land on which development activity that is part of a covered development project is occurring, and/or a person that has operational control over the development activity's construction plans and specifications, including the ability to make modifications to the construction plans and specifications.

Direct Drainage: Direct drainage is runoff that is discharged directly to waters of New York State without entering or passing through the MS4.

ESRI© ArcGIS: A company and mapping platform used to present geographical information.

Facility: A specific building/property where (a) an operation occurs (e.g., a municipal or commercial vehicle maintenance garage) and/or (b) the base of a unit performing an operation off-site in the field (e.g., the facility where a municipal or commercial landscape maintenance operation is based).

Floatables: Manmade materials, such as plastics, papers, or other products which, when improperly disposed of onto streets or into catch basins, can ultimately find their way to waterbodies and may create nuisance conditions with regard to aesthetics, recreation, navigation, and waterbody ecology.

Green Infrastructure (GI): Green infrastructure approaches essentially infiltrate, evapotranspire, or reuse stormwater, with significant use of soils and vegetation rather than traditional hardscape collection, conveyance, and storage structures. Common green infrastructure approaches include green roofs, trees and tree boxes, rain gardens, vegetated swales, pocket wetlands, infiltration planters, vegetated median strips, reforestation, and protection and enhancement of riparian buffers and floodplains. See also Low Impact Development and Better Site Design.

Grey Infrastructure: Grey infrastructure typically denotes end-of-pipe controls such as floatables control, CSO retention tanks, bending weirs, or sewer modifications designed to manage stormwater. Depending on context, may also include traditional collection and conveyance and storage practices.

Green Waste: The vegetative portion of the waste stream arising from various sources including waste from domestic and commercial premises and municipal operation.

Historical MS4 Map: DEP created the Historical MS4 Map prior to permit issuance in 2015. While the Historical MS4 Map is coarse and contains some inaccuracies, it represented the City's best understanding of the MS4 area at that time. In developing the SWMP, the City has relied upon the Historical MS4 Map to define the MS4 area. The Historical MS4 Map has also served as a starting point for the process of mapping the City's MS4 drainage area and MS4 outfalls required by the MS4 Permit.

Illicit Discharge: Illicit discharge is any discharge to an MS4 that is not composed entirely of stormwater, except allowable discharges pursuant to a SPDES permit and/or to DEP rules. Examples of illicit discharges are unauthorized sanitary sewage, garage drain effluent, and waste motor oil. However, an illicit discharge could be any other unauthorized discharge which the City or NYSDEC has determined to be a significant contributor of pollutants to the MS4.

Impaired Waters: A water is impaired if it does not meet its designated use(s) defined by the state, generally determined by violations of state water quality standards. For purposes of this permit, 'impaired' refers to waters for which Total Maximum Daily Loads (TMDL)have been established, for which existing controls such as permits are expected to resolve the impairment, or for which a TMDL is needed. Impaired water compilations are also sometimes referred to as 303(d) lists; 303(d) lists generally include only waters for which TMDLs have not yet been developed.

Industrial Activity: As defined by the SPDES Multi-Sector General Permit (MSGP) for Stormwater Discharges Associated with Industrial Activity (GP-0-12-001).

Larger Common Plan of Development or Sale: A contiguous area where multiple separate and distinct construction activities are occurring, or will occur, under one plan. The term "plan" in "larger common plan of development or sale" is broadly defined as any announcement or piece of documentation [including a sign, public notice or hearing, sales pitch, advertisement, drawing, permit application, State Environmental Quality Review Act (SEQRA) or City Environmental Quality Review (CEQR) Application, zoning request, computer design, or physical demarcation (including boundary signs, lot stakes, and surveyor markings)] indicating that construction activities may occur on a specific plot, but does not include area wide re-zonings or projects discussed in general planning documents.

For discrete construction projects that are located within a larger common plan of development or sale that are at least 1/4 mile apart, each project can be treated as a separate plan of development or sale provided any interconnecting road, pipeline, or utility project that is part of the same "common plan" is not concurrently being disturbed.

Level of Potential Impact: The actual or potential magnitude of the water quality impact presented by a certain type of pollutant-generating operation.

Long-Term Control Plan (LTCP): Prepared in response to a consent agreement with the US Environmental Protection Agency (EPA), developed using the EPA CSO Control Policy, an LTCP identifies and selects appropriate CSO controls to achieve applicable NYSDEC water quality standards consistent with the Federal CSO Policy and Clean Water Act.

Maximum Extent Practicable (MEP): MEP is a technology-based standard established by Congress in the Clean Water Act §402(p)(3)(B)(iii). Since no precise definition of MEP exists, it allows for maximum flexibility on the part of the MS4 operators as they develop their programs (40 CFR 122.2; see also: Stormwater Phase II Compliance Assistance Guide EPA 833-R-00-002, March 2000). When trying to reduce pollutants to the MEP, there must be a serious attempt to comply, and practical solutions may not be lightly rejected. A permittee would have met the standard if it employed all applicable BMPs except those it could demonstrate, if requested, were not technically feasible in the locality, or whose cost would exceed any benefit to be derived. Accordingly, MEP requires the permittee to choose effective BMPs, and to reject applicable BMPs only when other effective BMPs will serve the same purpose, the BMPs would not be technically feasible, or the cost would be prohibitive.

Measurable Goal: One or more statements characterizing the goals of the SWMP that reflect the needs and characteristics of the City and the areas served by its MS4. Furthermore, the goals were chosen using an integrated approach that addresses the requirements and intent of the provisions of the MS4 Permit. Goals may be qualitative or quantitative.

Multi-Sector General Permit (MSGP): Federal regulations at 40 CFR 122.26(b)(14)(i)-(xi) require stormwater discharges associated with specific categories of industrial activity to be covered under NPDES permits (unless otherwise excluded). Permit coverage for these specific activities can be obtained under a multi-sector general permit (MSGP) for eleven categories of industrial activities through either their state or through the USEPA.

Municipal Operations and Facilities: Any operation or facility serving a New York City governmental purpose and over which New York City has operational control.

Municipal Separate Storm Sewer System (MS4): A conveyance or system of conveyances (including roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, man-made channels, or storm drains):

- I. owned or operated by a state, city, town, village, borough, county, parish, district, association, or other public body (created by or pursuant to state law) having jurisdiction over disposal of sewage, industrial wastes, stormwater, or other wastes, including special districts under state law such as a sewer district, flood control district or drainage district, or similar entity, or an Indian tribe or an authorized Indian tribal organization, or a designated and approved management agency under Section 208 of the CWA, that discharges to surface waters of the state;
- 2. designed or used for collecting or conveying stormwater;
- 3. which is not a combined sewer; and
- 4. which is not part of a Publicly Owned Treatment Works as defined at 40 CFR 122.2

Municipal Upgrades: For the PP/GH Program, municipal upgrades are capital projects as defined by the NYC Charter and that meet the NYC Charter § 224.1 (b)(1) cost threshold.

MS4 Area: Those portions of the City of New York served by separate storm sewers and separate stormwater outfalls owned or operated by the City of New York and areas in which municipal operations and facilities drain by overland flow to waters of the state, as determined by the department and described on maps of the MS4 area.

MS4 Outfall: Defined as any point where a municipally owned or operated separate storm sewer system discharges to either surface waters of the state or to another MS4. Outfalls include discharges from pipes, ditches, swales, and other points of concentrated flow. However, areas of non-concentrated (sheet) flow which drain to surface waters of the state or to another MS4's system are not considered outfalls and should not be identified as such on the system map.

MS4 Permit: The New York State Pollutant Discharge Elimination System (SPDES) permit, issued to the City of New York on August 1, 2015, that defines the requirements to discharge stormwater from the City's MS4.

No Exposure: Used to describe facilities subject to the MSGP where all industrial materials and activities are protected by a storm resistant shelter to prevent exposure to rain, snow, snow melt, and/or runoff.

No-Net Increase: Special Condition II.B.I of the NYSDEC SPDES Discharge Permit NY-0287890 (SPDES Permit) allows the City to discharge stormwater runoff from the MS4 into receiving waterbodies. Part of this Special Condition requires DEP to ensure a no-net increase of a pollutant of concern (POC) into impaired waterbodies where that POC is causing the impairment (impaired waterbodies and POCs are identified in Appendix 2 of the MS4 Permit).

NYC Stormwater Law: Local Law 97 of 2017 that provides comprehensive legislation that consolidates, clarifies, and supplements existing legal authority to act in a regulatory capacity to control pollutant discharges into and from its MS4.

Off-Site Operation: An operation performed away from the facility where the personnel performing the operation are based.

On-Site Operation: A pollutant-generating operation performed at the facility where the personnel performing the operation are based.

Performance Criteria: One or more numeric and/or qualitative statements characterizing the desired outcome of one or more SCMs.

Pollutants: Dredged spoil, filter backwash, solid waste, incinerator residue, sewage, garbage, sewage sludge, munitions, chemical wastes, biological materials, radioactive materials, heat, wrecked or discarded equipment, rock, sand and industrial, municipal, and agricultural waste discharged into water which may cause or might reasonably be expected to cause pollution of the waters of the state in contravention of the standards or guidance values adopted as provided in 6 New York Code of Rules and Regulations (NYCRR) Part 750-1.2a.

Pollutant-Generating Operation: An operation that uses, handles, generates, stores, collects, disposes, transports, releases, or otherwise has the potential to generate one or more pollutants (e.g., could be performed by a resident, a business, a municipal agency, an institution, through atmospheric deposition, or through the deterioration of a product).

Pollutant of Concern (POC): A pollutant that might reasonably be expected to be present in stormwater in quantities that may cause or contribute to a water quality violation in waters of the State. These pollutants include but are not limited to nitrogen, phosphorus, silt and sediment, pathogens, floatables, petroleum hydrocarbons, heavy metals, and polycyclic aromatic hydrocarbons (PAHs).

Priority MS4 Waterbodies: Those waterbodies for which an approved CSO LTCP does not predict compliance with applicable water quality standards and where stormwater contributions from the City's MS4 are expected to be a significant contributor of the impairment identified in the CSO LTCP.

Qualified inspector: The term "qualified inspector" means a person who is knowledgeable in the principles and practices of erosion and sediment control, such as a licensed Professional Engineer, a Certified Professional in Erosion and Sediment Control (CPESC), or a Registered Landscape Architect.

Qualified professional: The term "qualified professional" means a person who is knowledgeable in the principles and practices of stormwater management and treatment such as a licensed Professional Engineer, or a registered landscape architect. Individuals preparing SWPPPs that require the post-construction stormwater management practice component must have an understanding of the principles of hydrology, water quality management practice design, water quantity control design, and, in many cases, the principles of hydraulics. All components of the SWPPP that involve the practice of engineering, as defined by the NYS Education Law (see Article 145), shall be prepared by, or under the direct supervision of, a professional engineer licensed to practice in the State of New York.

Regulator: See CSO Regulator.

Section 303(d) Listed Waters: Section 303(d) is part of the federal Clean Water Act that requires the Department to periodically prepare a list of all surface waters in the State for which beneficial uses of the water such as for drinking, recreation, aquatic habitat, and industrial use are impaired by pollutants. These are water quality-limited estuaries, lakes, and streams that fall short of state surface water quality standards, and are not expected to improve within the next two years. Refer to impaired waters for more information.

Settleable: Manmade materials that may sink depending on the ambient conditions to which they are subject. Floatables include settleable materials.

Standard Operating Procedure (SOP): A set of instructions for carrying out routine operations to achieve a specific outcome.

Stormwater Construction Permit: A stormwater construction permit is required prior to construction. This type of permit will be required for covered development projects.

Stormwater Control Measure (SCM): An action taken to reduce the actual or potential level of impact of a pollutant-generating operation or activity.

Stormwater Controls Working Group: An interagency group formed in 2013 shortly after receiving Executive Order Number 429. This group meets quarterly or as needed to discuss all updates involving the MS4 Permit and SWMP development.

Stormwater Maintenance Permit: A stormwater maintenance permit is required for projects that warrant post-construction stormwater management practices (SMPs). This type of permit will require for covered development projects.

Stormwater Management Program (SWMP): The suite of programs developed and implemented by the permittee which provides a comprehensive integrated planning approach involving public participation and, where necessary, intergovernmental coordination, to reduce the discharge of POCs and specified pollutants to the MEP, using management practices, control techniques and systems, design and engineering methods, and other appropriate provisions. Permittees are required, at a minimum, to develop, implement and enforce a SWMP designed to address POCs and reduce the discharge of pollutants from the MS4 to the MEP, to protect water quality, and to satisfy the appropriate water quality requirements of the ECL and the Clean Water Act.

Stormwater Management Program Plan (the Plan):

The Plan used by the City to document developed, planned, and implemented SWMP elements. The Plan describes the SWMP and how the City will control pollutants in stormwater runoff.

Stormwater Pollution Prevention Plan (SWPPP): A SWPPP is (i) a plan for controlling stormwater runoff and pollutants during construction and, when required, after construction is completed, or (ii) when used in connection with an industrial stormwater source, a plan, which is required by the MSGP, for controlling stormwater runoff and pollutants.

Surface Waters of the State: Includes lakes, bays, sounds, ponds, impounding reservoirs, springs, rivers, streams, creeks, estuaries, marshes, inlets, canals, the Atlantic ocean within the territorial seas of the State of New York, and all other bodies of surface water, natural or artificial, inland or coastal, fresh or salt, public or private (except those private waters that do not combine or effect a junction with natural surface or underground waters), which are wholly or partially within or bordering the state or within its jurisdiction. Waters of the state are further defined in 6 NYCRR Parts 800 to 941.

Storm sewers are not waters of the State unless they are classified in 6 NYCRR Parts 800 to 941. Nonetheless, a discharge to a storm sewer shall be regulated as a discharge at the point where the storm sewer discharges to waters of the state. Waste treatment systems, including treatment ponds or lagoons designed to meet the requirements of the Act and Environmental Conservation Law [other than cooling ponds as defined in 40 CFR 423.11(m) (see Section 750-1.24) which also meet the criteria of this definition are not waters of the state]. This exclusion applies only to manmade bodies of water which neither were originally created in Surface Waters of the State (such as a disposal area in wetlands) nor resulted from impoundment of Surface Waters of the State.

Total Maximum Daily Load (TMDL): A TMDL is the sum of the allowable loads of a single pollutant from all contributing point and nonpoint sources. It is a calculation of the maximum amount of a pollutant that a waterbody can receive and still meet water quality standards, and an allocation of that amount to the pollutant's sources. A TMDL stipulates waste load allocations for point source discharges, load allocations for nonpoint sources, and a margin of safety.

Water Quality Standard: Measure(s) of purity or quality for any waters in relation to their reasonable and necessary use as promulgated in 6 NYCRR Part 700 et seq.

Waterbody of Concern: A waterbody of concern is one for which either the USEPA or NYSDEC has determined that the waterbody is impaired for a pollutant of concern.

Acronyms

, 101 01	1,1110		
ASP	Alternate Side Parking	IDDE	Illicit Discharge Detection and Elimination
BBL	Borough, Block, and Lot	IPIS	Integrated Property Information System
BIDs	Business Improvement Districts	IPM	Integrated Pest Management
BMP	Best Management Practice	IPP	Industrial Pretreatment Program
BOD	Biochemical Oxygen Demand, 5-Day	LDCs	Local Development Corporations
BSD	Better Site Design	LiDAR	Light Detection and Ranging
CARP	Contamination Assessment and Reduction Project	LTCP	Long-Term Control Plan
CCTV	Closed Circuit Television	MCM	Minimum Control Measure
CFR	Code of Federal Regulations	MEP	Maximum Extent Practicable
CGP	Construction General Permit	ml	Milliliter
CIT System	Consolidated Information Tracking System	mg	Milligram
CM/SO	Construction Managers/Site Operators	MOO	Mayor's Office of Operations
COD	Chemical Oxygen Demand	MOU	Memorandum of Understanding
COLP	City Owned and Leased Properties	mpn	Most Probable Number
CPESC	Certified Professional in Erosion and Sediment Control	MS4	Municipal Separate Storm Sewer System
Сри	Channel Protection Volume	MSGP	Multi-Sector General Permit
CSO	Combined Sewer Overflow	MTA	Metropolitan Transportation Authority
CWA	Clean Water Act	NICE	Neighborhood Intensive Cleanup Effort
DDD	Dichlorodiphenyldichloroethane	NOI	Notice of Intent
DEM	Digital Elevation Model	NOT	Notice of Termination
DO	dissolved oxygen	NPDES	National Pollutant Discharge Elimination System
ECHO	USEPA Enforcement and Compliance History Online	NYBRP	New York Bight Restoration Plan
ECL	Environmental Conservation Law	NYC	New York City
ELAP	Environmental Laboratory Approval Program	NYCLL	New York City Local Law
eNOI	Electronic Notice of Intent	NYS	New York State
ERP	Enforcement Response Plan	NYSBA	New York State Builders Association
ERR	Environmental Release Report	NYSDEC	New York State Department of Environmental
ESC	Erosion and Sediment Control	ODL	Conservation
FC	Fecal Coliform	ORI	Outfall Reconnaissance Inventory
FSAP	Field Sampling Analysis Program	PACP	Pipe Assessment Certification Program
GI	Green Infrastructure	PLUTO	Primary Land Use Tax Lot Output
GIS	Geographic Information System	POC	Pollutant of Concern
GP	General Permit	PPE	Personal Protective Equipment
GPS	Global Positioning System	PP/GH	Pollution Prevention/Good Housekeeping
HEM	Hexane Extractable Material	Qf	Extreme Flood Control Criteria
HEP	New York/New Jersey Harbor Estuary Program	Qp	Overbank Flood Control Criteria
I/C	Industrial/Commercial	QP	Qualified Professional

QC	Quality Control
ROW	Right-of-Way
RRv	Runoff Reduction Volume
SAFE	Solvents, Automotive, Flammables, and Electronics
SARA	Superfund Amendments and Reauthorization Act
SCM	Stormwater Control Measure
SEQRA	State Environmental Quality Review Act
SIC	Standard Industrial Code
SLR	Scorecard Litter Rating
SMPs	Stormwater Management Practices
SOP	Standard Operating Procedure
SPDES	State Pollutant Discharge Elimination System
SWMP	Stormwater Management Program
SWPPP	Stormwater Pollution Prevention Plan
TDS	Total Dissolved Solids
TMDL	Total Maximum Daily Load
TN	Total Nitrogen
TP	Total Phosphorus
TRQ	Threshold Reporting Quantity
TSS	Total Suspended Solids
UPA	Uniform Procedures Act
USEPA	United States Environmental Protection Agency
wcs	Wildlife Conservation Society
WQv	Water Quality Volume
WWTP	Wastewater Treatment Plant

New York City Departments and Agencies

DCAS	Department of Citywide Administrative Services			
DCP	Department of City Planning			
DDC	Department of Design and Construction			
DEP	Department of Environmental Protection			
	BEC	Bureau of Environmental Compliance		

BEDC Bureau of Engineering Design and

Construction

BEPA Bureau of Environmental Planning and

Analysis

	BICA	Bureau of Intergovernmental and Community Affairs		
	BLA	Bureau of Legal Affairs		
	BPS	Bureau of Police and Security		
	BWS	Bureau of Water Supply		
	BWSO	Bureau of Water and Sewer Operations		
	BWT	Bureau of Wastewater Treatment		
	CMS	Compliance Monitoring Section		
	СМОМ	Capacity Management Operation and Maintenance Compliance		
	DERTA	Division of Emergency Response and Technical Assessment		
	ERU	Emergency Response Unit		
DOB	Department of Buildings			
DOC	Department of Correction			
DOE	Department of Education			
DOHMH	Department of Health and Mental Hygiene			
DOITT	Department of Information Technology and Telecommunications			
DOT	Department of Transportation			
DPR	Department of Parks and Recreation			
DSNY	Department of Sanitation			
EDC	Economic Development Corporation			
FDNY	Fire Department			
LAW	NYC Law Department			
NYPD	Police Department			
SWCD	Soil and Water Conservation District			
SBS	Small Business Services			
SCA	School Construction Authority			
OMB	Mayor's Office of Management and Budget			
МОО	Mayor's Office of Operations			

Mayor's Office of Recovery and Resiliency

Mayor's Office of Sustainability

SCA OMB MOO ORR

MOS

DRAFT FOR PUBLIC REVIEW DRAFT FOR PUBLIC REVIEW 183 184

Appendices

Appendix 1.1

187 Enforcement Response Plan

Appendix 1.2

195 Deliverables in the NYC MS4 Permit and Schedule

Appendix 1.3

197 Organizational Chart

Appendix 2.1

199 311 Complaints related to MS4/Stormwater Management Issues

Appendix 3.1

201 Stakeholder Meeting Log with Summary of Public Comments and City Responses

Appendix 5.1

202 DEP IDDE Standard Operating Procedures for the Shoreline Survey and Sentinel Monitoring Program

Appendix 5.2

207 Rules, Sewer Design Standards, and Standard Sewer and Water Main Specifications for the City

Appendix 6.1

208 Lot Size Soil Disturbance Threshold Study for Construction and Post-Construction Stormwater Management

Appendix 9.1

355 Work Plan to Determine Loads of Floatable and Settleable Trash and Debris from the MS4 to Impaired Waterbodies

Appendix 10.1

380 MS4 Monitoring Program

1.1 Enforcement Response Plan

. INTRODUCTION

A. Purpose

The New York State Department of Environmental Conservation (DEC) issued a Municipal Separate Storm Sewer System (MS4) permit to the City of New York on August 1, 2015, pursuant to the federal Clean Water Act. The purpose of the MS4 permit is to manage urban sources of stormwater runoff to protect the overall water quality and improve water quality in impaired waters.

As required by Part III.C of the permit, the City must develop an enforcement response plan (ERP), which sets out the potential responses to violations, as needed to achieve compliance with the following programs (Permit Parts IV.D, IV.E, IV.F and IV.H, respectively):

- (1) Illicit Discharge Detection and Elimination (IDDE);
- (2) Construction Site Stormwater Runoff Control;
- (3) Post-Construction Stormwater Management; and
- (4) Industrial and Commercial Stormwater Sources.

This document describes the City's enforcement response protocol for investigating, documenting and enforcing against illicit discharges and potential illicit discharges into the MS4 as well as violations of MS4-related rules and regulations, in order to ensure compliance with the City's MS4 permit. As the NYC Department of Environmental Protection (DEP) will administer the above-referenced programs on behalf of the City, it will implement this plan in cooperation with other city agencies, including the Environmental Control Board (ECB), and the Departments of Buildings (DOB), Transportation (DOT), Small Business Services (SBS) and City Planning (DCP).

B. Approach

DEP has based its approach on progressive enforcement, as required by the permit Part III.C.1, addressing "persistent non-compliance, repeat or escalating violations, or incidents of major environmental harm" through "progressively stricter responses," taking into consideration the violator's responsiveness and history of violations as well as the severity and type of violation. Enforcement responses include verbal warnings, written notices of non-compliance (NON), written notices of violation (NOVs or summonses), citations with civil and administrative penalties, criminal penalties, stop work orders, cease and desist orders, and withholding of plan approvals or permits.

II. DEFINITIONS

Authorized Inspection Agent. The term "authorized inspection agent" means_an individual authorized pursuant to a contract entered into by the Department to conduct inspections on behalf of the Department.

Chronic Violator. The term "chronic violator" means a person or facility that has continuing or repeated violations of the applicable stormwater requirements.

Commissioner's Order. The term "Commissioner's Order" means any order issued by the Commissioner of Environmental Protection that may be necessary for the enforcement of the rules for use of and discharges to the MS4.

Construction General Permit (CGP). The term "Construction General Permit" or "CGP" means the NYSDEC State Pollutant Discharge Elimination System (SPDES) General Permit for Stormwater Discharges from Construction Activity, GP-0-15-002 or its successor. The owner or developer of a construction project that will involve soil disturbance of one or more acres of soil must obtain coverage under the CGP before commencing any construction activity.

Covered development project. The term "covered development project" means development activity that involves or results in an amount of soil disturbance within the MS4 area greater than or equal to one acre. Such term includes development activity that is part of a larger common plan of development or sale involving or resulting in soil disturbance within the MS4 area greater than or equal to one acre or as established pursuant to these rules. Such term shall include all development activity within the MS4 area that requires a SWPPP pursuant to the New York State Department of Environmental Conservation (NYSDEC) construction general permit.

Department (DEP). The term "Department" or "DEP" means the New York City Department of Environmental Protection.

Industrial stormwater source. The term "industrial stormwater source" means any premises or facility that is subject to the MSGP.

Multi Sector General Permit (MSGP). The term "MSGP" means the NYSDEC State Pollutant Discharge Elimination System (SPDES) Industrial Stormwater Multi-Sector General Permit (MSGP), GP-0-17-004 or its successor, which covers discharges of stormwater to surface waters of the state from industrial activities.

Notice of Non-Compliance (NON). The term "NON" means a warning that a condition exists or an activity is being conducted that violates or may violate the rules for use of and discharges to the MS4.

Notice of Intent (NOI). The term "Notice of Intent" or "NOI" means the document submitted to NYSDEC to obtain coverage under the NYSDEC construction general permit or the MSGP.

Notice of Termination (NOT). The term "Notice of Termination" or "NOT" means the document submitted to NYSDEC to terminate coverage under the NYSDEC construction general permit or the MSGP.

Notice of Violation (NOV). The term "Notice of Violation" or "NOV" means a civil summons returnable before the ECB.

Stormwater Construction Permit. The term "Stormwater Construction Permit" means a permit issued by the Department authorizing development activity on land on which there is a covered development project in accordance with an approved stormwater pollution prevention plan (SWPPP).

Stormwater Maintenance Permit. The term "Stormwater Maintenance Permit" means a permit issued by the Department where maintenance of post-construction stormwater management facilities by owners of real property is required.

Stormwater pollution prevention plan or SWPPP. The term "stormwater pollution prevention plan" or "SWPPP" means (i) when used in connection with a covered development project, a plan for controlling stormwater runoff and pollutants during construction and, where required by Department rules, after construction is completed, or (ii) when used in connection with an industrial stormwater source, a plan, which is required by the MSGP, for controlling stormwater runoff and pollutants.

III. IDENTIFYING/INVESTIGATING NONCOMPLIANCE

The City may become aware of stormwater non-compliance or violations in a number of ways. Permit-required inspections or monitoring may reveal non-compliance: the City's programs include periodic or complaint-based compliance inspections of facilities subject to Construction/Post-Construction and Industrial/Commercial permitting programs and routine monitoring and inspections to support the IDDE program (as authorized by Ad Code §24-524(k) and Ad Code §24-589), as required by the MS4 permit and DEP's WWTP SPDES permits. Staff of other city agencies may also identify illicit connections or illicit discharges during the course of performing their regular job functions. Finally, there may be complaints from the public. This section discusses the City's plans for inspections in each of the three regulatory programs required by the MS4 permit: IDDE, Construction/Post-Construction, and Industrial/Commercial.

A. IDDE

DEP may receive a complaint concerning an illicit connection or discharge through the City's 311 system or from another City agency. When one of these mechanisms triggers an IDDE investigation, DEP conducts appropriate in-sewer and/or aboveground inspection(s) to identify the source of dry weather discharge/POCs entering the MS4, consistent with applicable law, and takes necessary enforcement action to require abatement of the discharge. When another City agency identifies an illicit connection or discharge on their property, the agency is responsible for tracking, eliminating, and reporting it.

B. Construction/Post-Construction

The MS4 permit Parts IV.E.1(h) and (i) and IV.F.1(g) require DEP to address stormwater runoff to the MS4 from new construction activities and new development and redevelopment projects that result in soil disturbance of 1 acre or more. DEP inspects sites that have received SWPPP approval and permits under the DEP MS4 construction/post-construction permitting, inspection and enforcement program, as well as those sites that have previously received SWPPP approval and permitting under the NYS Construction General Permit (CGP).

With respect to projects covered by the CGP with an active NOI at the time of SWMP approval and under active construction, DEP performs inspections triggered by complaints to DEC or the City, and refers violations to DEC for enforcement action. Other inspections in response to complaints may identify projects that are not covered by the CGP but may require coverage; these projects will also be referred to DEC for follow-up action.

With respect to Covered Development Projects, DEP uses announced and unannounced inspections, in accordance with applicable law, to determine whether projects have obtained appropriate permits under DEP's program and are complying with their SWPPPs. DEP prioritizes inspection sites that are most likely to have an adverse impact on water quality, based on the amount of exposed soil, the location of the site relative to a water body and the past performance of the responsible parties.

With respect to developed sites, DEP performs inspections based on complaints of discharges entering City sewers. Following the completion of construction, DEP performs, on a complaint basis and periodically, compliance verification inspections of sites with NYC stormwater maintenance permits to determine whether the owners are complying with their SWPPPs and maintaining their stormwater facilities.

C. Industrial Stormwater Sources

The MS4 permit Part IV.H.3 requires the City to inspect facilities subject to the MSGP for stormwater discharges from industrial activities. Those facilities are prioritized for inspection according to the following criteria that characterize their potential for POC discharges or other water quality impacts to impaired waters: POC discharges to impaired waters; nature of on-site pollutant sources; proximity to a waterbody; violation history of the facility; and inspection reports and sampling results. DEP inspects "high" priority facilities annually; "medium" priority, at least once every three (3) years; and "low" priority at least once every five (5) years. DEP re-inspects within one year, facilities that receive a written violation.

Facility inspection will include review of the facility's compliance with its SWPPP. Non-compliance with the provisions of the SWPPP may result in enforcement action.

IV. ENFORCEMENT RESPONSES

The City has the legal authority to utilize any combination of the following enforcement measures, and to escalate enforcement responses when necessary:

- 1. Verbal Warnings are "consultative" in nature and specify the non-compliance and required corrective action.
- 2. Written Notices explain the nature of the violation and a deadline for taking corrective action.
 - a. Commissioner's Orders (Ad Code §24-524(a) and Ad Code §24-581)
 - b. NONs with Commissioner's Order
 - c. NOVs that can incur civil penalties ((Ad Code §24-524(f) and Ad Code §24-585)) and may be accompanied by Commissioner's Orders that require cleanup and/or abatement of discharges,

- 3. DEP may issue stop work orders for construction/post-construction (Ad Code §24-558(a)), when DEP finds that development activity is in violation of chapter 5-a of the Administrative Code, DEP's implementing rules, the permit and/or the SWPPP and that the specified work being performed has or could have an effect on the discharge of pollutants, stormwater runoff volume or stormwater runoff velocity. In such a case, the specific work must cease (except work authorized or required by the Commissioner to ensure public safety or to stabilize the construction site, such as activities directed at cleaning up, abating discharge, and installing appropriate control measures).
- 4. Cease and Desist Orders DEP (Ad Code §24-524(b) and Ad Code §24-582(a)) and ECB (Ad Code §24-524(d) and Ad Code §24-583(a))
- 5. Halting or preventing a discharge (e.g., by terminating water supply to a facility) (Ad Code §24-582(c) and Ad Code §24-583(c))
- 6. Withholding plan approvals or revoking a permit (construction/post-construction) (Ad Code \$24-557)
- 7. Assessing recovery and remediation costs (Ad Code §24-524(h) and Ad Code §24-586)
- 8. Criminal penalties (DEP may refer to DA or federal prosecutors for prosecution) (Ad Code §24-524(g) and Ad Code §24-585).

A. Responsibilities of Enforcement Personnel

Employees of DEP and Authorized Inspection Agents have the following responsibilities:

- Reviewing, investigating, and tracking instances of noncompliance;
- Identifying suspected violations during facility inspections and sampling activities;
- Determining appropriate enforcement responses and ensuring timely action;
- Issuing verbal warnings, Orders, NOVs (with recommended penalties), and compliance schedules.

B. Overview of Enforcement Responses

Enforcement personnel consider a number of factors when determining the proper enforcement response:

- Severity of the violation, including duration, type of pollutant and quantity of pollutants
- Effect of the violation on receiving water or public health and safety,
- Effect of the violation on City infrastructure, and
- Violator's history of violations and enforcement actions.

All enforcement responses will specify the nature of the violation and the required corrective action as well as a deadline for completing that action. In some instances, DEP may initially issue a verbal warning or an NON, which may be accompanied by a Commissioner's Order. When there is continued non-compliance or the violator fails to timely take corrective action, DEP will respond with more severe enforcement responses such as civil summonses with fines and Commissioner's Orders.

When a condition exists in violation of the relevant provisions of the Administrative Code or DEP's implementing rules or orders, and such condition creates or may create an imminent danger to the sewer system or to the public health or to the life or safety of persons, the Commissioner may issue a cease and desist order. If there is continued or knowing violation of the relevant provisions of the Administrative Code or ECB's implementing rules or orders, or if ECB finds that the violation presents or may present a danger to the environment or threatens to interfere with the operation of the sewer system, ECB, after notice and the opportunity for a hearing, may issue a cease and desist order. If an entity does not comply with an order issued by DEP or ECB within the time specified, DEP may act to halt or prevent such discharge by:

- 1. sealing, blocking or otherwise inactivating any equipment, facility, or device;
- 2. terminating the water supply to the premises;
- 3. sealing, blocking or otherwise inactivating any private sewer or drain emptying directly or indirectly into the sewer system; or
- 4. any other means or method that is reasonable under the circumstances

In addition, failure to comply with a Cease and Desist Order may result in the NYC Corporation Counsel's maintaining an action to compel compliance with or restrain by injunction the violation of the Order (Ad Code §24-524(e) and Ad Code §24-584).

Any violation of the Administrative Code, Rules or an Order may result in a summons with civil penalties not to exceed \$10,000 for each violation (each day of a continuing violation constitutes a separate offense). The City may issue follow-up summonses with escalating fines. Continued and knowing violation of the Administrative Code, Rules or an Order may result in referral for criminal investigation. In addition, for any violation of the Administrative Code, Rules or an Order, an entity may be liable to the City for any expense (e.g., costs for response, remediation and emergency services) or any other loss or damage suffered by the City by reason of such violation.

C. Illicit Discharge Detection and Elimination (IDDE)

The MS4 permit Part IV.D requires NYC to develop, implement and enforce a program to detect and eliminate illicit discharges and illicit connections to the MS4. Working within the parameters of the MS4 permit, section 24-520.1 the Administrative Code prohibits any direct or indirect discharge into the MS4 that is not composed entirely of stormwater, except "allowable non-runoff," as defined in DEP's rules. DEP's rules define "allowable runoff" as non-stormwater discharges associated with firefighting activities or as otherwise authorized by the Commissioner pursuant to this chapter and provide a process by which a discharger may obtain approval for a non-stormwater discharge, consistent with the permit's requirements.

Enforcement against an entity responsible for an unauthorized non-stormwater discharge that the DEP Commissioner has not approved will be subject to enforcement as delineated in Section IV.B above.

D. <u>Construction Site Stormwater Runoff Control and Post-Construction Stormwater Management</u>

MS4 permit Parts IV.E and F require NYC to develop, implement and enforce a program, which addresses stormwater runoff from construction activities on new development and redevelopment projects that result in a land disturbance of greater than or equal to one acre.

DEP requires a Stormwater Construction Permit for any development activity on a covered development project located in the MS4 area, and a Stormwater Maintenance Permit for a covered development project that requires a SWPPP that includes post-construction stormwater management facilities.

Generally, enforcement proceeds as detailed above in Section IV.B. However, an additional measure available under the Construction/Post-Construction program is the Stop Work Order.

E. Industrial and Commercial Stormwater Sources

The MS4 permit requires NYC to address stormwater discharges from industrial sources in the separately-sewered portions of the City. The permit also requires NYC to inspect other facilities, including commercial entities, to determine whether they generate significant contributions of pollutants to stormwater discharges.

DEP will maintain and update every 5 years an inventory of all industrial and commercial facilities that could discharge pollutants of concern in stormwater to the MS4. DEP will inspect the MSGP-permitted facilities to determine whether they are complying with the MSGP and their SWPPs.¹ The MS4 permit requires the City to conduct enforcement activities as necessary to require compliance with the MSGP.

Generally, enforcement proceeds as detailed above in Section IV.B.

V. ENFORCEMENT TRACKING

As required by Part III.C.2 of the MS4 permit, DEP tracks instances of noncompliance through an online database. The database documents the following:

- Name of owner/operator of facility or site of violation
- Location and type of stormwater source (i.e., construction project, industrial facility)
- NOV number or case identification number
- Description of violation
- Required schedule for returning to compliance
- Description of enforcement response used, including escalated responses if repeat violations occur or violations are not resolved in a timely manner
- Accompanying documentation of enforcement response (e.g., notices of non-compliance, notices of violation)
- Any referrals to different Departments or agencies

¹ DEP will also inspect unpermitted industrial and commercial facilities in the inventory to provide NYSDEC the data necessary to determine whether such facilities require MSGP permitting or an individual SPDES permit.

Date violation was resolved

VI. RECIDIVISM REDUCTION

DEP will identify chronic violators of applicable stormwater requirements in order to reduce the rate of non-compliance recidivism. The MS4 permit defines a "chronic violator" as a "person or facility that has continuing or repeated violations of the applicable stormwater requirements."

DEP documents inspection results for these chronic violators and implements an increased inspection frequency or other disincentives. Examples of these measures include summonses with fines (up to \$10,000 per day per violation), cease and desist orders, referral for civil action, and/or referral for criminal investigation.

VII. ABBREVIATIONS

- DEC: New York State Department of Environmental Conservation
- DEP: New York City Department of Environmental Protection
- ECB: Environmental Control Board
- ERP: Enforcement Response Plan
- IDDE: Illicit Discharge Detection and Elimination
- MS4: Municipal Separate Stormwater Sewer System
- MSGP: Multi-Sector General Permit
- NON: Notice of Non-Compliance
- NOV: Notice of Violation
- OATH: Office of Administrative Trials and Hearings
- SPDES: State Pollutant Discharge Elimination System
- SWPPP: Stormwater Pollution Prevention Plan

1.2 Deliverables in the NYC MS4 Permit and Schedule

Deliverables in the NYC MS4 F	Permit and Schedule		
Deliverable	Permit Schedule	Status	Implemented
II.B Impaired Waters			
Development of draft of land use coefficients and pollutant removal efficiencies for practices required for developers as part of pollutant load analysis (Part II.B.1.d)	February 1, 2018	Complete	✓
III.B Legal Authority			
Provide description of existing legal authority to control discharges to the MS4 (Part III.B.1.a)	February 1, 2016	Complete	✓
Development of written certification statement (Part III.B.1.b)	August 1, 2017	Complete	✓
III.C.E Stormwater Program Administration			
Notification to entities regulated under MS4 permit (Part III.E)	November 1, 2018	After SWMP Submittal	
IV. Stormwater Management Program Plan			
Progress Reports on the development of the SWMP Plan, including public involvement/participation components (Part IV. Introduction)	August 1, 2016 August 1, 2017	Complete Complete	√
Submission of the complete draft SWMP Plan, including all components identified in Parts II.B, III.A through D, and IV. Introduction and IV.A through J (Part IV. Introduction)	August 1, 2018	Complete	√
IV.C Mapping			,
Preliminary map with information completed to date (Part IV.C.2)	August 1, 2018	Complete After SWMP	✓
Final map with information outlined in Part IV.C.1 (Part IV.C.2)	August 1, 2020	Submittal	
Updated MS4 Drainage Map (Part IV.C.3)	Every 5 years after EDP	After SWMP Submittal	
IV.D Illicit Discharge Detection and Elimination Updated outfall list (Part IV.D.2)	Every year after EDP	Ongoing	√
Illicit discharge trackdown (Phase I) schedule (Part IV.D.4)	vvitnin 30 days or discovery or	Ongoing	√
Illicit discharge abatement program (Phase II) schedule (Part IV.D.4)	On or perofe eha ਰਿਸ਼ੇਦ or Phase	Ongoing	1
Report of the location and ownership of illicit discharges to the MS4 where the MS4 discharges to waterbodies that are shown to have over 200 colonies/100 ml of fecal coliform and a schedule to eliminate those discharges (Part IV.D.5)	August 1, 2018 and every year thereafter	Complete	√
Report on the unauthorized non-stormwater discharges to NYC's MS4 or CSO outfalls downstream of the regulator (Part IV.D.5)	August 1, 2018 and every year thereafter	Complete	✓
IV.F Post-Construction Stormwater Management			
Establish and annually update an inventory of post-construction stormwater management practices within the MS4 storm sewershed area (Part IV.F.1.e)	August 1, 2018 and every year thereafter	Complete	✓
IV.G Pollution Prevention/Good Housekeping for Municipal Operations and Facilities			
Perform an initial self-assessment of highest priority municipal operations and facilities (Part IV.G.1.d.i)	August 1, 2018	Complete	✓
IV.H Industrial and Commercial Stormwater Sources			
Update inventory of industrial/commercial facilities that are possible sources (Part IV.H.1.a.i)	Every 5 years after preparation of initial inventory	After SWMP Submittal	
Develop interim reports on the development of the SPDES MSGP inspection	August 1, 2016	Complete	✓
program (Part IV.H.3.a.i)	August 1, 2017	Complete	✓
Submit certification that training to inspectors to conduct industrial stormwater facility inspections has been completed (Part IV.H.4)	Every 2 years after SPDES MSGP inspection program approval	After SWMP Submittal	
IV.I Control of Floatable and Settleable Trash and Debris			
Submit certification that an interim floatable and settleable trash and debris reduction media campaign has been developed with implementation schedule (Part IV.I.3)	November 1, 2015	Complete	✓
Submit draft work plan for determining the amount of floatable and settleable trash and debris discharged, including land-based sources, from the MS4 to waterbodies listed as impaired for floatables for Department review and approval (Part IV.I.3)	August 1, 2017	Complete	√
Submit a schedule for loading rate study for floatable and settleable trash and debris from the MS4 to waterbodies impaired for floatables in the MS4 areas (Part IV.I.3)	3 months after final work plan approval	After Work Plan Approval	

Commence study to determine loading rate of floatable and settleable trash and debris from the MS4 to waterbodies impaired for floatables in the MS4 areas (Part IV.I.3)	2 years after final work plan approval	After Work Plan Approval	
IV.J Monitoring and Assessment of Controls			
Submit certification that Program has been implemented (Part IV.J.3)	August 1, 2020	After SWMP Submittal	
IV.M, IV.N, & IV.O Annual Reporting			
Public Presentation of draft annual report (Part IV.B.4.a)	Every July 1st after ever annual reporting year	After SWMP Submittal	
Annual Report Submission (Part IV.M) and MCC Form (Part IV.N)	Every September 30th after every annual reporting year	After SWMP Submittal	
Annual effectiveness assessment (included in Annual Reporting Part IV.M.4.j.i) and associated review of activities or control measures (Part IV.M.4.j.iii)	4 years after EDP and annually thereafter	After SWMP Submittal	
Apply for Permit Renewal (Part IV.O)	180 days prior to permit expiration	After SWMP Submittal	

1.3 Organizational Chart

		Authority and Administration					Stormwater Management Program						
Responsible Agencies	Key Personnel Include:	Program Administra- tion	Legal Authority	Enforce- ment Respsonse Plan	Fiscal Analysis	Reliance on Third Parties	Public Education and Outreach	Public Involvement and Partici- pation					
City Law	Deputy Chief - Environmental Law Division	Yes	Lead	Yes	Lead	Lead	Yes	Yes					
DCAS	Deputy Chief of Staff	No	No	No	Yes	Yes	No	Yes					
DCP	City Planner	No	No	No	Yes	Yes	No	Yes					
DDC	Project Executive - Sustainable Infrastructure	No	No	No	Yes	Yes	Yes	Yes					
DEP	Stormwater Management Program Coordinator	Lead	Yes	Lead	Yes	Yes	Lead	Lead					
DOB	Administrative Architect	No	No	No	Yes	Yes	No	Yes					
DOC	Director of Compliance - Environmental Health Unit	No	No	No	Yes	Yes	No	Yes					
DOE	Water Treatment Manager	No	No	No	Yes	Yes	Yes	Yes					
ронмн	Chief of Environmental & Water Sciences	No	No	No	Yes	Yes	No	Yes					
DOT	Senior Executive Director	No	No	No	Yes	Yes	Yes	Yes					
DPR	MS4 Project Coordinator	No	No	No	Yes	Yes	Yes	Yes					
DSNY	Director, Regulatory Compliance and Career Development	No	No	No	Yes	Yes	Yes	Yes					
FDNY	Facilities Compliance Coordinator	No	No	No	Yes	Yes	No	Yes					
NYPD	Environmental Coordinator	No	No	No	Yes	Yes	No	Yes					
SBS	Executive Director	No	No	No	Yes	Yes	No	Yes					

2.1 311 Complaints related to MS4/Stormwater Management Issues

311 is New York City's main source of government information and non-emergency services. It provides the public with quick, easy access to all New York City government services and information. The public may connect with 311 24 hours a day, 7 days a week, 365 days a year by:

- Visiting 311 online at nyc.gov/311;
- Calling 311 or (212) NEW-YORK, (212) 639-9675, from outside New York City;
- Texting 311-692;
- Downloading the NYC 311 mobile app for Apple or Android devices; or
- Tweeting to @nyc311

311 is accessible to non-English speakers, available online in over 50 languages and by phone in over 170 languages.

311 facilitates transparency and accountability. Service requests and agency responses are available to general public as open data online.

Currently, the public is able to use 311 to access information on many topics relevant to stormwater pollution and water quality. The public is also encouraged to use 311 to report information relevant to stormwater pollution. Through 311 the public can report:

- Fire Hydrant Complaint -Report a hydrant that is damaged, missing, or being used inappropriately.
- Fire Hydrant Leaking or Running -Report a fire hydrant that is leaking, running, or running at full blast.
- Flooding Street or Highway -Report street or highway flooding or a manhole overflow.
- Water Leak Complaint Report water leaking into a public area or basement.
- <u>Water Main Break</u> Report a possible water main break
- Water Wasting Complaint -Report the use of too much water.
- <u>Waterway Complaint</u> -Report floatables, trash, oil, gasoline, sewage, or an unusual color in a waterway.
- <u>Dry Weather Sewage Discharge Complaint</u> Report of water flowing through a sewer outfall pipe during dry weather.
- <u>Dumping in Catch Basin or Sewer</u> Report grease, gasoline, natural gas, cement, oil, sewage, chemicals or other liquids going into a sewer or catch basin.
- Sewer Backup Report a sewer backup or get information about cleaning up after a flood.
- <u>Sewer Line Complaint</u> Report of a damaged sewer line.
- <u>Sewer Odor</u> Report a smell coming from a catch basin or sewer.
- Oil Spill Report an oil spill.
- <u>Chemical Complaint-</u> Report chemical odor or chemicals that are abandoned, not stored safely, or spilled on a roadway
 or sidewalk
- <u>Pesticide Use Without Notification Complaint</u> Report a person or business that uses pesticide without giving advance notice.
- Pigeon Droppings or Odor Complaint Report pigeon waste or odor for sidewalks and private property.

- <u>Dead Fish in Harbor or Bay</u> Group of dead fish in a harbor or bay (DEC).
- Dog or Animal Waste Complaint Report property that is unclean due to animal waste.
- <u>Bag of Garbage or Loose Debris in Street Complaint</u> Report a stray bag of garbage or loose debris in a driving or biking lane of a street.
- <u>Dirty Yard or Alley Complaint</u> Report of an unclean or untidy yard, alley, or court that is visible from the street.
- <u>Dumpster Complaint</u> Report a dumpster overflowing with garbage or construction debris.
- <u>Garbage Truck Spill Complaint</u> Report of waste leaking or spilling from a garbage truck or garbage that spilled onto the ground while being loaded into a truck.
- Garbage, Recycling, or Organics Storage Complaint Make a complaint about garbage or recycling stored or put out incorrectly.
- Illegal Dumping Complaint Report the dumping of large amounts of trash.
- <u>Litter Basket Request or Complaint</u> Request a public litter basket, report an overflowing or misused basket, donate litter baskets, or adopt a basket.
- <u>Littering Complaint</u> Report chronic littering of small amounts of trash and debris.
- Loose Trash Complaint Report garbage placed for pickup that has not been properly secured.
- Private Carter Sanitation Complaint Make a complaint about a commercial waste disposal company.
- <u>Chemical Complaint</u> Report a chemical safety problem including odors, abandoned or unsafely stored chemicals, and chemical spills.
- Waste Transfer Station Complaint Make a complaint about the condition of a private waste transfer station.
- <u>Dirty Sidewalk or Gutter Complaint</u> Report that a sidewalk or gutter, including 18 inches into the street, is unclean.
- Sidewalk Washing Complaint Report sidewalk washing when it is not allowed.
- <u>Catch Basin Complaint</u> Report a storm drain that is missing its cover, clogged, sunken, raised, damaged, or defective.
- <u>Clogged or Blocked Culvert Complaint</u> Report a drain underneath a road that requires cleaning or is blocked.
- <u>Street Not Swept Complaint</u> Report a poor or missed street cleaning.
- <u>Building Construction Complaint</u> Report a building construction violation.
- <u>Flyer or Poster Complaint</u> Report unwanted posters, advertisements, handbills, signs, menus, or stickers on public property, private property, or vehicles
- <u>Public Plaza Complaint</u> Report a public plaza that is poorly maintained or not open to the public during posted hours. Public plazas are also known as privately owned public spaces.
- Park Maintenance Complaint Report a park or park facility in need of cleaning or repair.
- <u>Beach, Pool, or Sauna Complaint</u> Report an unsanitary condition, missing or broken safety equipment, or improper maintenance at a beach, pool, or sauna.
- <u>Home Oil or Chemical Spill Complaint</u> Get information and assistance with a leaking or damaged home heating oil tank, or help with a chemical spill in your home or yard.

3.1 Stakeholder Meeting Log with Summary of Public Comments and City Responses

As described in Chapter 3: Public Involvement and Participation the City has led a robust program to involve the public in the development of this Plan. In the August 1, 2018 submission to NYSDEC, this appendix will summarize public comments received through the following means:

- Stakeholder Meetings and Events
- Written Responses Received During Formal Comment Periods
- Emails Received

The City anticipates that this appendix will be broken into four sub-sections:

- Stakeholder Meeting Log: This table will identify all MS4 stakeholder meetings that were held between the MS4 Permit Issuance in August 2015 and Plan submittal in August 2018.
- Response to Comments Summary: During stakeholder meetings, the City took notes on questions, comments, and suggestions received. The City also kept an MS4 email inbox where comments and questions could be sent at any time. This document is organized by Plan chapter and summarizes both the public's comments and the City's responses.
- Progress Report Comments: The City released Annual Progress Reports in 2016 and 2017 and announced formal comment periods for both. This document will include the comments received during those periods and the City's responses. The City also submitted these Responses to Comments to NYSDEC; the responses reflected the most up to date information at that time.
- Program Specific Engagement: For several MS4 Programs, the City conducted outreach to targeted stakeholders. These documents summarize the comments received during these meetings and events.

5.1 DEP IDDE Standard Operating Procedures for the Shoreline Survey and Sentinel Monitoring Program

The New York City Department of Environmental Protection's (DEP) Bureau of Wastewater Treatment's (BWT) Compliance Monitoring Section (CMS) is required by its 14 Wastewater Treatment Plant (WWTP) State Pollution Discharge Elimination System (SPDES) Permits to survey New York City's shoreline outfalls through the Shoreline Survey Program, and to monitor New York City's harbor for illicit discharges through the Sentinel Monitoring Program.

Shoreline Survey Program

The Shoreline Survey Unit (SSU) conducts field surveys and regular outfall surveillance by land, boat, and rigid inflatable rubber raft with an emphasis on boat surveillance of the entire NYC shoreline and the following inland waters within NYC boundaries: Van Cortlandt Lake (Bronx), Grasmere Lake (Staten Island), Arbutus Lake (Staten Island), and Wolfes Lake (Staten Island).

Each outfall is identified as to whether it is a City-owned sewer, highway drain, storm sewer, combine sewer outfall or SPDES-permitted discharge line, private, etc. DEP conducts an outfall reconnaissance inventory in line with the principles described in "Illicit Discharge Detection and Elimination: A Guidance Manual for Program Development and Technical Assessments" (Center for Watershed Protection and Robert Pitt, October 2004).

Example of Shoreline Mapping from the 2013 Shoreline Survey Report

As outlined in the Schedules of Compliance part of the SPDES permit, CMS provides Shoreline Survey Reports every five years to DEC representing 50 percent of the of the NYC shoreline outfalls. The Report includes spreadsheets of all identified outfalls by WWTP drainage area and maps with the outfalls identified. The information includes: outfall ID, classification (CSO, MS4, direct, etc.), location by description and GIS coordinates, size, and receiving water. Through the Shoreline Survey, 4,861 outfalls have been identified between 1998 and 2018 to date, including 431 DEP-owned CSO outfalls and 376 DEP-owned MS4 outfalls.

If a dry weather discharge is observed from a city-owned outfall during the shoreline survey, laboratory analysis may be conducted to test for fecal coliform levels. The nature of the discharge is determined based on laboratory analysis of samples collected. The discharge is identified as either an illicit discharge, such as sewage, or an allowable discharge authorized by the DEP Commissioner. DEP tracks discharges authorized by the DEP Commissioner, which helps determine if an observed dry weather flow is allowable. If the lab confirms a discharge is sanitary flow, then SSU will begin the trackdown process for the discharge source. SSU also uses visual indicators for all types of illicit discharges (e.g. oil, soap suds, etc.) that may initiate the trackdown process.

Trackdown includes various procedures, such as dye testing, to attempt to identify the discharge. Once the source of an illicit discharge is identified, SSU works to eliminate the issue.

Discharge from collection system, due to failures such as blockage or mechanical failure of regulator and pump is usually identifiable. Such discharges are reported immediately upon discovery to the SPDES Compliance Section and Collection Facilities Operations that are responsible for undertaking immediate corrective actions.

Discharge from suspected illegal sanitary connections to the storm sewer, is reported to DEC by SPDES Compliance Section within two hours of the confirmation, and is followed by a letter within 5 days that an untreated discharge exists. CMS normally prepares abatement schedules and conducts investigations. However, appropriate Bureaus/Sections within DEP are contacted if jurisdiction requires their approval or cooperation.

Discharges that are identified as non-sanitary are reported to DEC. If the non-sanitary discharge is coming out of a City-owned storm sewer, the shoreline crew will investigate and attempt to mitigate the discharge. However, if the discharge is not under City ownership, the crew will defer to DEC for investigation.

When DEP identifies that the source of an illegal discharge will require lengthy investigation, it follows up with a phone call to DEC within 2 hours and a letter to DEC within 5 days. Then, within 30 days, DEP submits a two-phase abatement schedule to DEC. The first phase indicates a timetable for the completion of the investigation to determine the source(s) of the discharge. The second phase is submitted upon the identification of the source(s) and reflects a schedule for the ultimate abatement.

Between 1998 and 2017, the Citywide IDDE Program identified 412 contaminated discharges, representing 4.38 million gallons per day (MGD) of flow. Of the contaminated discharges identified in

that timeframe, 402 discharges or 4.35 MGD have been abated, with 8 discharges or 0.03 MGD currently under continued investigation. The City will continue to implement its well-developed IDDE program while exploring additional actions to prevent, detect, and eliminate illicit discharges to all City agencies' storm sewers.

Shoreline Survey Investigation Procedure:

- 1. Prior to commencement of the field survey, the shoreline crew reviews the sewer map of the outfall(s)/area(s) that are in question. The crew needs to trace back the sewer lines leading to the outfall and their locations. This knowledge will then allow for proper preparedness in the field.
- 2. When the crew arrives at the site in question, crew members first begin to note observations and details of possible discharge sources. All observations are documented in an investigation report and photographed; if needed, a sample will be collected (procedures below).
- 3. The crew then follows all possible sources of discharge to its source as much as is physically and safely possible, noting all observations of possible sources of illicit discharge.
- 4. If a sample needs to be collected for testing, the crew:
 - Uses a clean Fecal Coliform 500 ml Clear Plastic Bottle to collect the water using either rubber gloves and personal protective equipment (PPE) or a rope and PPE.
 - Preserves the sample with sodium thiosulfate.
 - Labels the sample and place immediately on Ice to thermo-preserve the sample.
 - Delivers the sample to Newtown Creek Microbiology Lab upon completion of the job.

Dye Testing Procedure:

If it has been determined that a facility requires a dye test for confirmation of discharge location, the following steps are taken:

- 1. All necessary equipment is gathered:
 - Dye (red or green)
 - Hook, crow bar & sledge hammer
 - Traffic safety cones
 - Flashlights
 - PPE
 - Two-way radios
 - DEP vehicle
 - Camera
 - Sewer map of the location
 - Notepad & pen
 - Gas techs (Lower Explosive Limit gas analyzer or Photoionization Detector gas analyzer)
 - GPS

- 2. A traffic work zone safety area around the manhole(s) of interest is created using the DEP Vehicle, traffic safety zone cones, traffic flags, traffic signs and lights.
- 3. Crew members open the manhole(s) in question.
 - a. Using a hook, sledgehammer and/or crow bar, CMS Employees open the manhole(s) and take a step back to allow any tapped gasses to be expelled. A gas tech must be used for this task.
 - b. Traffic safety cones are to surround the open manhole at all times. A DEP Employee is to remain with the open manhole at all times until the job is completed.
- 4. A crew member pours the dye into the drain and then notifies the other crew members outside using the two-way radio.
- 5. When the dye is observed in the manhole, the crew member takes a picture noting the result.
- 6. A field report is completed and submitted the CMS Supervisor.

Sentinel Monitoring Program

The Sentinel Monitoring Program is an enhancement and modification of the Shoreline Survey Program's procedures for identifying and eliminating transitory and intermittent illicit discharges. The Program was designed, in cooperation with NYSDEC, to monitor specific sampling areas for fecal coliform in water bodies throughout New York City. As of October 2017, DEP is now also collecting samples for enterococcus to be consistent with the Harbor Survey Monitoring Program. DEP currently performs sentinel monitoring at 80 ambient monitoring stations in accordance with the WWTP SPDES Permits and MS4 Permit.

Sampling for fecal coliform at these stations is done quarterly. It is performed after a dry antecedent period of 48-hours and during various tidal cycles and seasons to ensure statistical integrity. The sampling results are compared to an established baseline. Currently, the fecal coliform baseline is 200 colonies/100 ml.

If sampling results are above the baseline trigger limits, DEP aggressively pursues field investigations and surveillance of the adjacent shoreline. The goal of these "mini-shoreline surveys" is to determine the source of the contamination and take immediate action to abate any found illegal discharges.

Sentinel Sampling Procedure:

Prior to sampling, arrangements are made with the Marine Section and Newtown Creek Lab as there is a 6 hour timeframe window to deliver the samples to Newtown Creek Lab. The timeframe begins when the first sentinel sample is collected. Typically samples from 10-12 stations are collected each run after a dry weather period of 48 hours or longer.

- 1. Materials are collected for sampling:
 - Sample vials from Newtown Creek Lab
 - Preservative Sodium Thiosulfate
 - Ice cooler and ice can
- 2. Using GPS coordinates, the boat arrives at the sampling location and the sample vial is affixed to the sampling pole located on the boat via rubber bands. The pole is then immersed in the water to the indicated mark.
- 3. As the sample is collected, air bubbles will be seen. Once the bubbling ceases, the pole is carefully lifted out of the water and the vial removed from the pole.
- 4. 3 pellets of sodium thiosulfate are added to the vial and capped.
- 5. The vial is labeled with the sampling point location and time of sampling.
- 6. The sample is then placed on ice in the cooler. Sampling is continued until all of the days locations are taken, unless the captain of the boat cancels the job and/or precipitation begins.
- 7. Once back on land, the samples are immediately delivered to Newtown Creek Microbiology Lab.

5.2 Rules, Sewer Design Standards, and Standard Sewer and Water Main Specifications for the City

Title 15 of the **Rules of the City of New York** Chapter 31, section 31-05 outlines standards for installation of sanitary sewer connections and has multiple design requirements for all new sewer connections, which limit the potential for infiltration or exfiltration problems. Examples include minimum cover/encasement, specific pipe and bedding materials for connections to sewers on piles, and repairs of damages during installation.

The **Sewer Design Standards** include multiple design requirements that may also aid in preventing seepage from sanitary sewers or into storm sewers. Examples include specific design standards for sewers, manholes, and catch basins intended to ensure durability based on their material; location in earth, rock, piles, cradles, wet locations and dry locations; whether they are precast or cast in place; and whether they are new construction or reconstruction. Additionally, there are loading requirements for watertight and non-watertight sheeting.

Section 53.11 pg. V-66 of the 2014 NYCDEP **Standard Sewer and Water Main Specifications** manual, and section 5.05D.7, pg.V-58 of the 2009 manual explains the inspection process and digital audio-visual recording of all new sewers constructed for sewer pipes 54 inches or smaller in their least inside dimension. All the inspection results and recordings are documented in a report that includes information of all sections of sewers inspected, all audio-visual digital recordings, collected data and specific details as to service connections, water infiltration from the joints, and other points of interest noted during the inspection and the report is the property of the Department of Design and Construction.

Both the 2014 and 2009 NYCDEP **Standard Sewer and Water Main Specifications** (Section 40.11.9 and Section 4.11, respectively) describe leakage and leakage tests for sewer lines and the allowable quantity of leakage or infiltration, which is important to detect and eliminate any infiltration from newly constructed sewers. Furthermore, DEP is initiating a study to understand the infiltration and inflow (I&I) issues in the areas of Rockaways, Coney Island and Oakwood Beach.

Both NYCDEP **Standard Sewer and Water Main Specifications Section 40.11.2**, pg. 31 sets forth requirements for all sewers (whether tested or not) to be constructed such that the quality and quantity of leakage or infiltration are not to exceed specified criteria. The quantity of leakage for concrete pressure sewer lines shall not exceed one hundred fifty gallons per inch of inner diameter, per mile of sewer, per day. No individual joint in any completed sewer under test shall leak an amount in excess of one-eighth gallon per hour per inch of inner diameter.

6.1 Lot Size Soil Disturbance Threshold Study for Construction and Post-Construction Stormwater Management

1. INTRODUCTION

The New York City (NYC) Department of Environmental Protection (DEP) received its first Municipal Separate Storm Sewer System (MS4) permit in 2015 that covers approximately 40% of the NYC land area. DEP has been preparing a Stormwater Management Program (SWMP) plan due by August 2018. One of the SWMP components is to determine the lot size soil disturbance/new impervious area threshold for triggering the applicability of construction and post-construction stormwater runoff management requirements at new development and redevelopment sites within NYC. This report summarizes the Lot Size Threshold Study and supporting analysis.

DEP pursued a multi-step approach to guide the selection of an appropriate lot size threshold for MS4 drainage areas, beginning with a peer survey from utilities across the U.S to develop an inventory of stormwater regulatory requirements in other cities. The second step in this study consisted of a statistical analysis of historical new and redevelopment permit applications within NYC to determine the extent of potential disturbed acres, with consideration given to properties that would be constrained by space and/or soil conditions. Representative properties were selected under the broad land use categories of industrial, mixed use commercial, and residential to develop conceptual designs of stormwater control measures (SCMs) and associated construction and long-term operation and maintenance (O&M) costs. Stormwater system modeling was then performed to estimate the benefits associated with implementation of SCMs to meet the New York State (NYS) water quality volume requirements. The results of the study were combined to complete cost-benefit evaluations of various new and redevelopment lot size thresholds for construction and post-construction stormwater controls while taking into account site constraint and watershed characteristics. Multiple stakeholder workshops with industry professionals and technical experts were held in collaboration with the Real Estate Board of New York (REBNY) and Urban Green Council (UGC) to solicit input on the typical SCM designs, costs, and potential constraints.

2. UTILITY SURVEY

For guiding the selection of thresholds for construction and post-construction stormwater management requirements, DEP surveyed selected utilities from across the country. This survey was designed specifically to assemble technical as well as administrative elements such as the different departments within a municipal government that manage the construction and post-construction requirements, staffing, and regulatory flexibility.

DEP compiled a list of utilities that NYC had been interfacing with, and the Arcadis team supplemented it with additional utilities with similar technical/administrative elements. Specifically, the selected peer utilities have advanced stormwater management programs hence adopted regulations to reflect that. These utilities are subject to national regulations for 1+ acre lots based on United States Environmental Protection Agency's (USEPA) or their respective state's MS4 programs, and have adopted thresholds of one acre or less for construction and post-construction stormwater control requirements. Most of the surveyed utilities also have combined and separate sanitary sewer systems or predominantly separate systems and administer their stormwater management programs related to construction and post-construction requirements. DEP and the Arcadis team developed a detailed questionnaire for soliciting

input from these utilities. This detailed questionnaire is presented in Appendix A, and the 12 peer utilities chosen for the utility survey from across the U.S. are listed in **Table 2-1**.

Table 2-1: Utility Name and Location

Utility Name	Municipality		
Department of Watershed Management	Atlanta, GA		
Watershed Protection Department	Austin, TX		
Department of Public Works (DPW)	Baltimore, MD		
Boston Water and Sewer Commission (BWSC)	Boston, MA		
Department of Water Management	Chicago, IL		
Department of Sanitation	Los Angeles, CA		
Philadelphia Water Department (PWD)	Philadelphia, PA		
Bureau of Environmental Services (BES)	Portland, OR		
Transportation and Storm Water Department	San Diego, CA		
San Francisco Public Utilities Commission (SFPUC)	San Francisco, CA		
Seattle Public Utilities (SPU)	Seattle, WA		
District Department of the Environment (DOEE) for MS4 areas, DC Water for Combined areas	Washington, D.C.		

The utility survey was performed as a two-step process. A review of each utility's stormwater technical manual and other publicly available guidance/policy documents served as the first step of completing the questionnaire. In the second step, the utilities were contacted directly to fill in any information gaps based on documents that are not publicly available, including the specific administrative information that is not typically listed on utilities' websites.

In addition to the 12 peer utilities that were directly surveyed, information readily available from Fairfax County, VA; Indianapolis, IN; Miami, FL; New Orleans, LA; and Richmond, VA were compiled for the construction and post-construction runoff threshold size (minimum new impervious or soil disturbance cover that triggers stormwater control requirements) and performance standard (criterion/criteria that the stormwater controls must meet).

The survey documented the utilities' stormwater management programs/procedures including but not limited to: (a) adopted thresholds based on soil disturbance and/or creation of new impervious area for new and redevelopment projects and if any analyses were done for determining a particular threshold and associated retention/detention or treatment standards; (b) off-site mitigation or in-lieu fee applications; (c) administrative process including Stormwater Pollution Prevention Plan (SWPPP) review times, and (d) staffing resources for managing permits and performing inspections and fees charged by the utilities.

The utilities' stormwater management programs for construction and post-construction differed based on factors such as geographical location, maturity of the MS4 program, size of the community served, and various local priorities. Some programs have been around for over 10 years with well-established staffing and financial resources to successfully manage the permitting and inspections, while others are in the early to mid-stages of their programs.

2.1. Performance Standard

2.1.1 Threshold Size

Peer utilities focus on threshold size as an important performance standard. As the threshold size that determines construction or post-construction requirements decreases, the resulting number of permits or inspections that the utility staff perform increases significantly. On the other hand, the improvement in water quality in terms of volume and pollutant load reductions is minimal with smaller lots in comparison to the larger lots. Therefore, the information from peer utilities on threshold size provided insight on the tradeoffs between administrative and technical costs versus the achieved benefits.

The thresholds for the utilities surveyed for the construction runoff control requirement (i.e., erosion and sediment control) are summarized in **Figure 2-1**. While Austin, Los Angeles, Portland, San Diego, San Francisco and Seattle require all construction activities to adhere to the requirement, Atlanta, Boston, Chicago, Indianapolis, and New Orleans use the recommended U.S. EPA Phase 2 Stormwater Guidance of one acre and above for construction runoff control. The remaining surveyed utilities use construction thresholds of less than one acre with Baltimore, Fairfax County, Miami and Philadelphia applying the same thresholds for both construction and post-construction runoff control (see Figure 2-2 below).

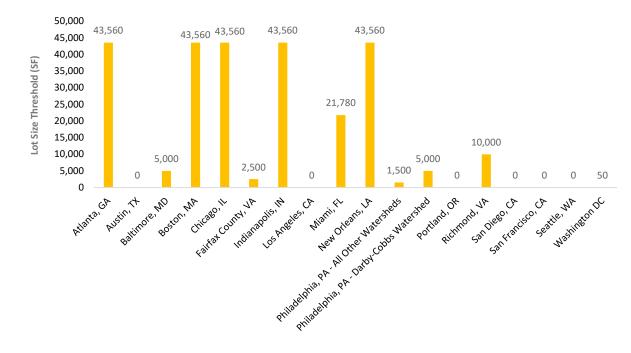
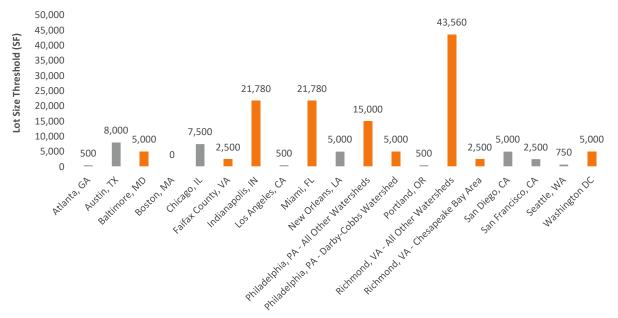



Figure 2-1. Lot Size Disturbance Construction Thresholds

The post-construction threshold size was specified based on the extent of soil disturbance within a new or redevelopment site or the increase in impervious cover resulting from new/redevelopment. The interviewed utilities and those reviewed based on available literature used either the new impervious or soil disturbance as thresholds, and **Figure 2-2** summarizes these threshold sizes for these utilities. Several observations were made from the responses on threshold size (expressed in square feet, SF, in this report).

Grey bars indicate impervious area creation threshold, Orange bars indicate soil disturbance area threshold

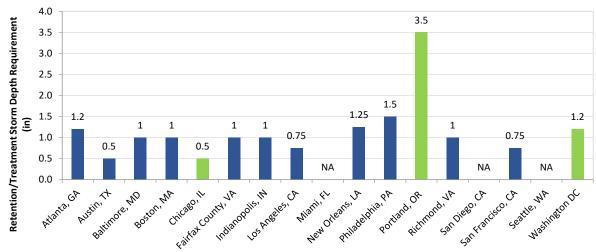
Figure 2-2. Lot Size Disturbance Post-Construction Thresholds

As shown in **Figure 2-2**, the selection of minimum post-construction thresholds varies significantly among cities of varied sizes and program development levels with respect to stormwater management in MS4 areas, including some with as high a threshold as one acre.

Most of the interviewed utilities implement a smaller than one-acre post-construction threshold, which refers to the condition that necessitates the permanent application of the stormwater control requirement for a property after construction.

While Portland has a low threshold of 500 SF, the permitting and inspections are done through a self-certification process for single family residential homes. Boston does not have a minimum soil disturbance threshold. Instead, every new or redevelopment project requires a construction permit, but not a post-construction (inspection) requirement, which reduces the administrative burden.

DEP was also interested in whether the utilities with combined and separately sewered systems have different permit requirements for these two systems. Most of the utilities have the same performance standards and administrative requirements for both systems. However, some utilities such as Philadelphia, Portland, and San Francisco each impose requirements that differ between combined and separate areas for certain criteria. San Francisco has the same retention standard for combined areas and for large MS4 areas (>5,000 SF), and a less stringent standard for smaller MS4 areas (2,500-5,000 SF). Philadelphia has different infiltration volume requirements for combined and MS4 areas (i.e., 20% of


directly connected impervious area to be routed through volume reduction stormwater management practice (SMP) in combined areas, whereas 100% of water quality control volume to be routed through infiltrating or treatment SMPs in MS4 areas). Similarly, Portland has different allowable discharge rates for the combined and MS4 areas (i.e., maintenance of pre-development rates for 2, 5 and 10-year 24-hour storms in all areas, whereas half the pre-development rates for 2-year 24-hour storm for areas that drain into waterways directly or MS4 outfalls to prevent channel erosion).

2.1.2 Stormwater Water Quality Volume Standard

The stormwater management or control volume standard specifies the extent of stormwater volume to be managed from disturbed areas (whether new impervious cover or soil disturbance area) with stormwater control measures (SCM). This volume standard can be adopted from state guidelines or developed to meet specific water quality improvement levels of service sought by individual utilities. It is often referred to as water quality volume (WQv).

Figure 2-3 depicts the distribution of rainfall depths used to compute WQv volumes as defined by each municipal utility. East coast utilities such as Boston and Philadelphia had a WQv in the range of 1 to 1.5 inches, which is typically the 90th percentile storm based on historical analysis of local precipitation records. San Diego and Seattle did not adhere to a uniformly applied volume value, instead defining their WQv requirements based on the 85th and 91st percentile storms, respectively, around the stormwater management asset.

Potential soil and space constraints can limit the implementation of retention-based stormwater controls. This is particularly relevant to dense urban areas with compacted soils or underlying soil with poor permeability. It is important to recognize the soil and space constraints for SCM implementation and develop alternative compliance measures to achieve the same water quality improvement goals. One of the questions in the utility survey focused on whether the utilities offered alternative compliance strategies when individual lots have soil and/or space constraints. Some utilities (e.g., San Francisco, Portland, and Philadelphia) have developed a stormwater management hierarchy that requires retention and water reuse whenever possible, and provides detention and treatment of stormwater as secondary options.

Blue bars indicate retention and/or treatment requirement, Green bars indicate retention requirement - treatment not an allowed alternative

Figure 2-3. Retention/Treatment Storm Depth Requirement

Most utilities who participated in the survey offer alternative measures for sites that may not be able to meet the stormwater management requirements in the forms of in-lieu fees and offsite mitigation options.

The alternative measures are in the form of in-lieu fee (penalty for not implementing an SCM so that the money can be used to implement SCM in another feasible lot), offsite mitigation (implementation of SCM in another feasible lot to compensate for not being able to implement at the site seeking a permit), or stormwater credit (similar to a trading model, where credits are created for implementation of SCMs and the site not being able to implement SCMs can buy credits from other lots that have already implemented more-than-required SCMs to create a credit).

These allowances tend to be awarded on a case-by-case basis, and usually the site needs to demonstrate an inability to infiltrate the necessary volume that would preclude it from offering stormwater management potential. **Table 2-2** summarizes the options allowed by different utilities. An "X" for a measure indicates that this option is not offered by the utility and NA indicates that there was no reference as to whether this option was allowed or not.

Utility Name	In-lieu	Offsite	Stormwater
Othicy Ivaille	Fee	Mitigation	Credit
Atlanta	Х	✓	✓
Austin	✓	✓	NA
Baltimore	✓	✓	✓
Boston	Х	Х	X
Chicago	Х	Х	X
Los Angeles	Х	✓	NA
Philadelphia	✓	✓	✓
Portland	Х	✓	NA
San Diego	✓	✓	✓
San Francisco	✓	✓	NA
Seattle	Х	NA	✓
Washington DC	Х	NA	✓

Table 2-2. Alternative Compliance Measures

Boston and Chicago were the only cities that strictly adhere to on-site stormwater management regulations. Both Seattle and Washington DC did not explicitly state as to whether they would accept inlieu fees or offsite mitigation, but they do utilize a stormwater credit system that offers some flexibility for developers to meet the stormwater management regulations.

2.2. Resource Utilization

This is a key consideration for a utility for overall management of the permits and inspections that need to be administered for a given threshold size. As the number of permits and inspections increase with smaller threshold sizes, more staff resources are needed to manage them effectively and efficiently. This

consideration was sought in the questionnaire to peer utilities and the specific metrics requested are discussed below.

2.2.1 Staffing Allocation

Most utilities have different departments (e.g., Department of Public Works or Stormwater Programs or Buildings and Inspections) for review and approval of permits for construction requirements and for inspections after construction and long-term operation and maintenance. The utility survey focused on contacting these different departments to get a holistic picture of staff allocation and administration.

The number of staff utilized for review during construction varies significantly, from 1-2 staff dedicated to reviews and inspections in Boston to as many as 33 dedicated staff in Atlanta, with mostly engineers performing the permit reviews. There is also a wide range in the number of inspection staff for post-construction. Some utilities such as Boston do not currently have an inspection program, so there is no dedicated staff for inspections, whereas Washington DC and Seattle have more than 10 dedicated inspection staff.

While some cities such as Boston, Portland, and Seattle concentrate permit reviews and inspections within only one or two departments, other cities such Los Angeles, Philadelphia, and San Diego involve at least three departments in permit review and inspection tasks.

2.2.2 Production Using Given Resources

The survey also requested information from utilities on how many permits/inspections were performed to get information on the production aspects. This information can be used to guide the number of staff members needed for New York City's program based on the chosen threshold size.

Fewer responses were received for the number of permit reviews and inspections performed over the given period and the average time spent on SWPPP reviews by the permit reviewer. Therefore, any conclusions regarding trends between utilities could not be drawn. However, the responses received present some interesting points for consideration.

The economic downturn affected the number of projects being constructed and the number of permits reviewed in Portland. As far as the average time spent on SWPPP reviews, all respondents noted that it depends on the complexity of the project. However, Portland also indicated that incorporating a webbased interface had increased the speed of the review process.

The level of automation and online interfacing each utility has in its permit application process were also reviewed. Portland has an electronic application process, and both Philadelphia and Washington DC utilize similar web-based processes to accelerate the review process and ease some of the administrative burden. San Francisco allows for electronic submission of some applications, and Chicago offers a stormwater detention calculation tool for developers to use in developing their applications. However, most utilities still work with print-based applications.

2.3. Administrative Costs

The indicators for administrative costs included the number of staff to manage permits, perform construction permit inspections and post-construction periodic inspections, as well as the number of permits/inspections handled and the departments/municipal jurisdictions that manage the permitting and inspections. Full-time salary and benefits of permitting/inspection staff and the supervisors' time increase significantly with smaller threshold sizes due to the large number of permits/inspections involved. Considering the minimal water quality improvement associated with smaller threshold sizes, the overall cost-benefit comparison needs to include both technical costs for implementation of SCMs by property owners and the administrative costs for utility staff to administer them.

Based on the survey responses, it was observed that mature stormwater management programs have a larger number of staff as well as dedicated funding mechanisms (e.g., stormwater utility, component stormwater bill to customers, etc.), whereas the newer programs are still establishing the staffing and funding needs.

Administrative costs must be recovered through appropriation of additional budget to the permitting/inspection operations (thereby increasing the financial burden on the utility) or through full-cost recovery with permitting/inspection fees charged to the property owners. One of the survey questions (included in Appendix A) focused on whether specific utilities adopted financial models based on discussions with ratepayers and elected officials.

The fees charged for stormwater management applications, reviews, and inspections vary. Most utilities have fees for construction review, but do not have post-construction inspection fees. Fees range from no fee in San Francisco, where stormwater fees are included as part of the regular water and sewer fees; to Los Angeles, where there is a city fee for construction and only a state fee for post-construction; to over \$10,000 for a combination of several different fees in Washington, DC.

Another consideration that was of interest to DEP was whether the utilities imposed surcharges or additional fees for expedited review of permit applications. Of the utilities surveyed, only Los Angeles and Philadelphia have a formal expedited permit review process and additional fees charged for an expedited review. While Los Angeles requires a higher cost for an expedited review, Philadelphia offers it as an incentive depending on the SCMs used.

2.4. Key Findings from Survey

The responses gathered from 12 interviewed utilities represent stormwater management programs in various stages of development and implementation. The findings also indicated that there is a wide variation among the responding utilities in the administration of stormwater management and the performance standards that developers are required to follow. Some programs are mature (more than 10 years old) and efficiently manage the permitting and inspections, while others are in the early to midstages of the program with evolving staffing and financial resources.

Most utilities establish performance standards for stormwater management to address their water quality and watershed-based (e.g., TMDL or healthy streams) requirement needs. Peak flow mitigation, WQv, and detention performance standards are developed to achieve these goals. Some utilities offer a tiered approach to the developer community, in which retention is the highly preferred strategy, and detention

or connection to combined sewers is the least preferred strategy and only an option when retention or treatment-based controls are infeasible.

Both construction and post-construction thresholds vary significantly among cities of varied sizes and program development levels with respect to stormwater management in MS4 areas. Construction stormwater runoff threshold varies from all activities (Austin, Los Angeles, Portland, San Diego, San Francisco and Seattle) to one acre (Atlanta, Boston, Chicago, Indianapolis, and New Orleans) with several utilities in-between. Baltimore, Fairfax County, Miami and Philadelphia use the same thresholds for both construction and post-construction runoff control.

The minimum post-construction stormwater runoff threshold based on soil disturbance or increase in impervious cover ranges from no-minimum value for Boston to one acre for Richmond (outside Chesapeake Bay Area) with most of the interviewed utilities using a smaller than one-acre threshold based on local needs and priorities. Some utilities have low threshold requirements for post-construction, but they allow self-certification by single family residential thereby reducing their administrative workload significantly. Philadelphia for Darby Cobbs watershed and Richmond for Chesapeake Bay Preservation Areas have different thresholds for the rest of their respective communities to meet their specific watershed-based requirements.

Most utilities that have combined and MS4 areas have chosen the same minimum threshold for stormwater controls. Some utilities (e.g., Philadelphia and San Francisco) have developed specific provisions for combined and MS4 areas. Even though this questionnaire was primarily aimed at on-site projects, one of the questions focused on the right-of-way (ROW) stormwater control from a standpoint of watershed-based pollutant sources mitigation. Most utilities follow the national guideline of >1 acre for ROW projects. Some utilities have developed policies and associated performance standards for ROW projects (e.g., Portland's Green Street policy developed in 2007 to reduce flows and pollutant loads from over 60% of the city's stormwater that was estimated to be generated from ROW and adjacent private driveways).

3. NYC MS4 DRAINAGE AREAS

DEP had previously compiled MS4 subcatchment delineations for internal use. Prior watershed modeling efforts undertaken to support the Long Term Control Plan (LTCP) and other CSO-related water quality studies had also approximated delineations for the MS4 and direct drainage (MS4/DD) areas. Therefore, in this project, any overlaps of these delineations were reconciled in ArcGIS. This resulted in a MS4/DD subcatchment layer that integrated and reconciled the information available as of October 2016.

Consistent with the LTCP designation, each MS4 subcatchment was assigned a waterbody based on where the runoff from the area drained. Typically, the tributary drainage areas that do not drain into one of the 10 LTCP priority waterbodies are considered to drain into a waterbody referred to as the East River Open Water (EROW). However, it was understood that EROW tributary areas within each borough would not share similar space and subsurface characteristics, factors important for SCM selection. Therefore, the EROW waterbody was further broken down into four separate categories by respective boroughs: EROW Manhattan, EROW Bronx, EROW Brooklyn/Queens, and EROW Staten Island. The waterbody-specific

216

drainage areas are shown in **Figure 3-1**. Areas shown in white color are served by combined sewers, therefore, are not included in the analyses described herein.

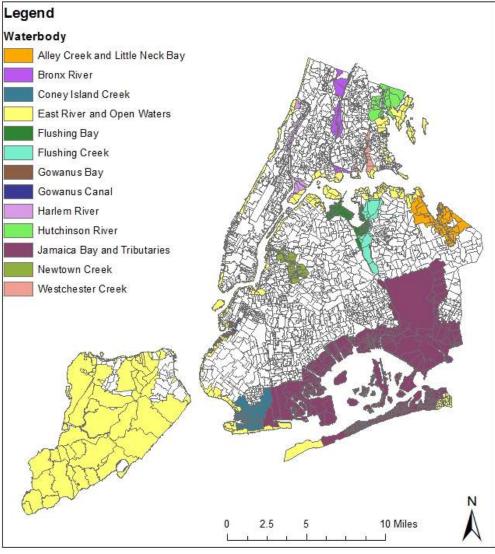


Figure 3-1: NYC Waterbodies and Drainage Areas

4. STATISTICAL ANALYSIS OF NEW AND REDEVELOPED LOTS

NYC Department of Buildings (DOB) construction permit data from the 15-year period between 2000 and 2014 was analyzed to determine an annual average number of lots and acres for new and redevelopment for both public and private projects within each watershed of the NYC's MS4 drainage area. All permits were assigned to one of the three main property type categories based on land use designations:

1) Industrial;

- 2) Commercial/Mixed Use; and
- 3) Residential.

Many lots had two or more permits in the DOB record but, the data was normalized by assuming that each lot had only one permit and as such number of lots was used in lieu of DOB permits for the subsequent evaluations. The DOB permit data did not provide any information on the percentage of the lot disturbed for each new and redevelopment construction. To account for the fact that some of the larger size lots may be only partially disturbed by construction, percent disturbance discount factors were applied to the historical new and redeveloped acres which varied based on the lot size as shown in **Table 4-1**.

Lot Size Amount of Lot Area Used for Analyses 50 - 75 ac15% 25 - 50 ac20% 30% 10 - 25 ac 5 – 10 ac 40% 2 – 5 ac 50% 1 – 2 ac 55% 40.000 SF - 1 ac 70% 30,000 - 40,000 SF 75% 85% 25,000 – 30,000 SF 5,000 - 25,000 SF 100%

Table 4-1: Disturbance Discount Factors

The new and redeveloped lot and acre data for each of the three property types was then sorted into nine lot size bins with 5,000 SF lot size increments representing potential construction and post-construction stormwater management thresholds. Two additional thresholds, 7,500 SF and 12,500 SF, were added for subsequent evaluations to address stakeholder's feedback. Cumulative values for the number of lots and acres were then developed for each potential lot size threshold starting with greater than 1 acre. **Figure 4-1** presents the cumulative number of lots and **Figure 4-2** presents the cumulative number of acres for each potential lot size threshold.

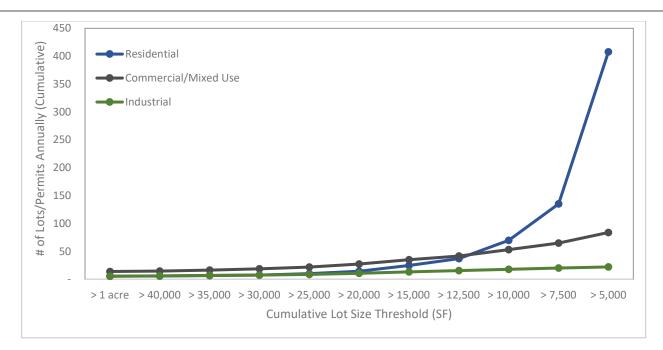


Figure 4-1: Cumulative number of lots vs. potential lot size threshold

As shown in **Figure 4-1**, the number of residential lots increases significantly for thresholds below 15,000 to 20,000 SF with residential lots heavily dominating the smaller sized properties. Commercial properties also see a slight increase in the number of lots for smaller sized properties, while industrial properties remain relatively flat.

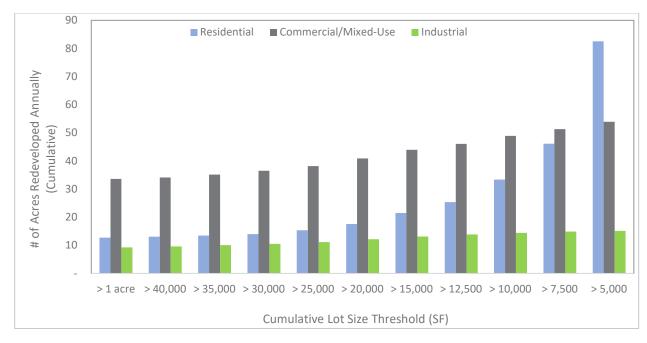


Figure 4-2: Cumulative number of acres vs. potential lot size threshold

Figure 4-2 indicates that commercial properties represent over 50% of the total number of acres for all lot sizes above 12,500 SF. The number of residential acres increases exponentially for smaller lots (below 15,000 to 20,000 SF) while commercial acres increase moderately and industrial acres stay relatively flat with most industrial properties having lot sizes greater than 1 acre.

Figure 4-3 presents the cumulative number of acres versus number of lots for all evaluated thresholds. The figure indicates that the rate of increase in number of lots significantly outpaces the rate of increase in number of acres for thresholds below 20,000 SF. As previously indicated in Figure 4-1, this rate of increase is heavily dominated by smaller sized residential properties.

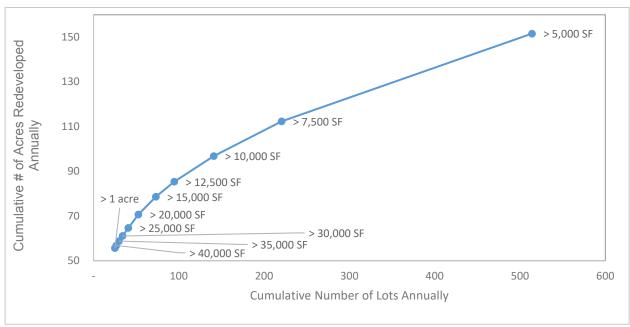


Figure 4-3: Cumulative Number of Acres vs. Lots

The type and extent of SCMs can vary extensively for individual lot size thresholds. Selection of properties under each lot size threshold and associated SCM design and cost estimation was not practical. Instead, two representative lot sizes for each land use type were identified using cumulative probability versus lot size curves for the 15 years of historical new and redevelopment data.

The cumulative probability versus lot size curves for the commercial/mixed use, industrial, and residential properties are presented in **Figure 4-4**, **Figure 4-5** and **Figure 4-6** respectively. The 25th (1st Quartile) and 75th (3rd Quartile) percentiles were used as targets for selecting two representative lot sizes for the industrial and commercial properties.

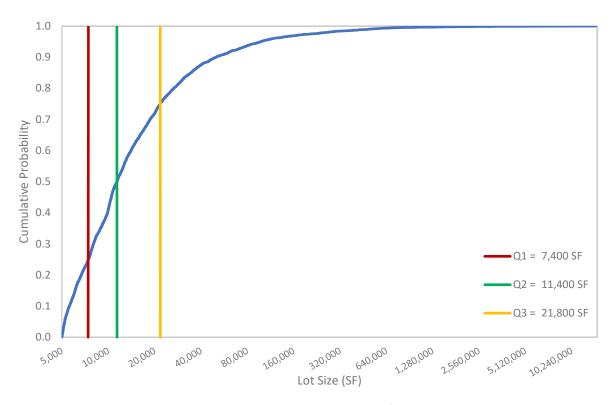


Figure 4-4: Lot Size Distribution of All Commercial and/or Mixed-Use Properties

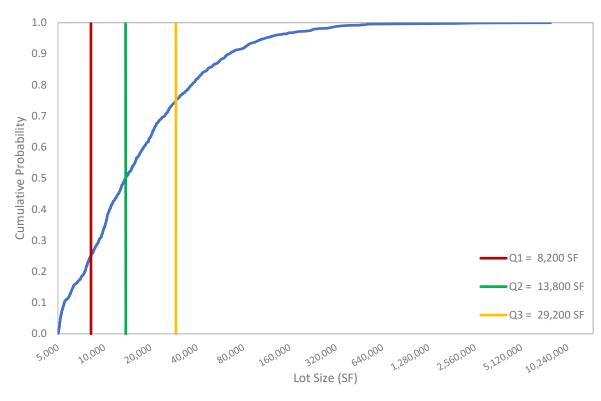


Figure 4-5: Lot Size Distribution of All Industrial Properties

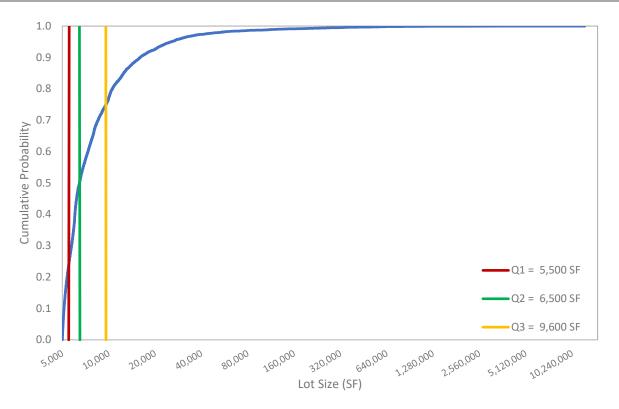


Figure 4-6: Lot Size Distribution of All Residential Properties

As shown in **Figure 4-6**, the cumulative probability curve for the residential property types is heavily skewed towards smaller lot sizes with the 25th and 75th percentiles representing two smallest potential thresholds (approximately 5,000 SF and 10,000 SF). A subset of the historical residential new and redevelopment data with lot sizes greater than 10,000 SF was further evaluated and presented in **Figure 4-7**.

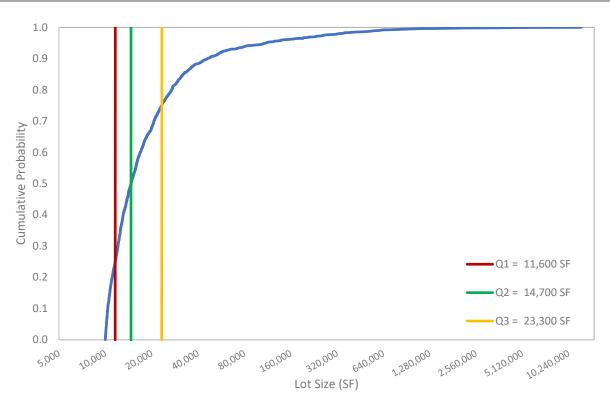


Figure 4-7. Lot Size Distribution of Residential Properties Greater than 10,000 SF

The two representative lot sizes for residential properties were selected as the median lot size for the entire residential dataset as illustrated on **Figure 4-6** and median lot size for the residential properties above 10,000 SF as illustrated on **Figure 4-7**. A summary of representative lot sizes for industrial, commercial, and residential property types used for the conceptual SCM design and cost evaluations presented in the subsequent sections of this report is presented in **Table 4-2**.

Category A lot size bins highlighted in blue represent lot sizes for smaller properties. Category B bins are highlighted in green to indicate larger properties. Properties that fell in between the two categories (purple) were later interpolated during the cost analyses. It should be noted that the actual lot sizes for representative properties selected for subsequent cost evaluations (as presented in Section 7) varied slightly from the breakdown analyses targets due to the limited availability of data (e.g., impervious cover, space potential for certain SCMs, etc.) for the actual properties reviewed during this lot size study.

Table 4-2: Lot Size Breakdown

Lot Size Bins, SF	Residential	Commercial/ Mixed Use	Industrial
> 1ac			
40,000 - 1 ac			
35,000 - 40,000			
30,000 - 35,000			
25,000 - 30,000			
20,000 - 25,000			
15,000 - 20,000			
10,000 - 15,000			
5,000 - 10,000			

Legend:

Category A – 25th
Percentile & Below
Category B – 75th
Percentile & Above
Interpolated

5. CONSTRAINT ANALYSIS

Each SCM practice must be designed specifically for each required location, with factors such as available space and localized soil conditions driving the design. Therefore, for the purpose of this study, it was important to understand the space limitations and subsurface conditions across the NYC MS4 areas. The constraint analysis was performed for the citywide MS4 areas and then grouped into the waterbodies used by the LTCP. This section describes the analysis that was completed to define space and soil constrains within each waterbody.

5.1. Space Constraint Analysis

A space constraint analysis was performed to understand the amount of space available to construct an SCM practice within a range of NYC lots. The goal of this analysis was to quantify the percentage of properties that could be considered space-constrained within each MS4 waterbody area of the NYC. It was completed using ArcGIS and publicly available datasets. Information for the city lots was taken from MapPLUTO v.16 developed by the NYC Department of City Planning (DCP) and information for the building footprints was taken from DOB shapefiles. Using ArcGIS, the building shapefile was mapped to the lot shapefile, and the data was exported to Excel for post-processing.

The percentage of each lot covered by a building footprint was calculated and summed on a subcatchment and ultimately a waterbody basis. The decision of the percentage of free space that should allow the lot

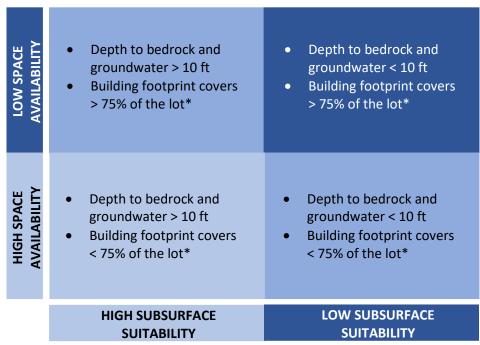
to be considered "space unconstrained" was generally based on the suitability to accommodate an infiltration-based SCM to manage stormwater runoff within the property lot. For this analysis, space constrained and space unconstrained were defined as the following:

- For lots between 5,000 SF and 14,999 SF
 - Space Unconstrained: less than 50% of the lot is covered by a building footprint
 - Space Constrained: more than 50% of the lot is covered by a building footprint
- For lots equal to or greater than 15,000 SF
 - Space Unconstrained: less than 75% of the lot is covered by a building footprint
 - Space Constrained: more than 75% of the lot is covered by a building footprint

The results of this analysis (summarized in Table 5) defined the overall percentage of space unconstrained and constrained lots within the tributary areas for each waterbody and citywide.

Subsurface Suitability Analysis

In addition to understanding the space available for the construction of an SCM practice, it is important to understand the subsurface conditions. If the subsurface conditions are favorable, meaning there is low groundwater table, low bedrock, and good soil permeability, then an infiltration-based practice can typically be used. However, if any of these conditions are not met, then an alternative SCM practice must be selected.


This analysis was completed using ArcGIS and two datasets provided by DEP: "Depth to Groundwater" and "Depth to Bedrock". The data was spot checked using existing soil permeability and boring data previously collected by DEP as part of the Green Infrastructure (GI) Program. Consistent with DEP's GI standards, a minimum depth of 10 feet (ft) was used for both groundwater and bedrock, defining high and low subsurface suitability as follows:

- High subsurface suitability: groundwater depth > 10 ft and bedrock depth > 10 ft
- Low subsurface suitability: groundwater depth < 10 ft and bedrock depth > 10 ft
- Low subsurface suitability: groundwater depth > 10 ft and bedrock depth < 10 ft
- Low subsurface suitability: groundwater depth < 10 ft and bedrock depth < 10 ft

The results of this analysis (summarized in Table 5) defined the overall percentage of high subsurface suitability lots within the tributary areas for each waterbody.

5.3. Combining Space Constraint and Subsurface Suitability Analysis

The final step in this analysis was to combine the space constraint analysis and the subsurface suitability analysis, defining the average conditions of each waterbody. To do so, the matrix shown in Figure 5-1 was developed and applied to each subcatchment, and ultimately each waterbody and citywide.

*50% for lots <15,000 SF

Figure 5-1: Matrix Used to Define Space and Subsurface Constraints

All properties in each waterbody were divided into one of four categories: 1.) unconstrained, 2.) space constrained, 3.) subsurface constrained, and 4.) space and subsurface constrained. The results of this analysis are presented in Table 5-1.

Table 5-1. Constraint Characterization of Each Waterbody

Waterbody	Unconstrained	Space Subsurfa Constrained Constrain		Space and Subsurface Constrained
Confined Tributaries	34%	1%	62%	3%
EROW	40%	1%	57%	2%
Citywide	37%	1%	60%	2%

The percentages shown in **Table 5-1** were then utilized to estimate the number of lots and acres with SCM technologies assigned to each of the four constraint categories.

6. POST-CONSTRUCTION STORMWATER CONTROL MEASURE SELECTION

Representative Stormwater Control Measure (SCM) technologies for each of the constraint types were selected based on DEP's expertise on Green Infrastructure Program implementation and technical information obtained from the peer utility surveys. Designs for the SCM practices were then prepared for each of the representative properties identified in Section 4 and cost estimates were developed. This section discusses the selection, ranking, and design of the representative SCM technologies used.

6.1. SCM Selection and Ranking

A hierarchy of SCM technologies considered for evaluations was determined based on DEP's expertise on GI implementation, discussion with developers and their technical experts and information obtained from utility surveys. SCM technologies were divided into two categories given subsurface conditions: infiltration and treatment. Infiltration practices can be either on-site vegetated practices or subsurface infiltration. Treatment practices can be either vegetated detention with treatment or physical treatment. In locations with favorable subsurface conditions, infiltration practices are preferred over treatment processes. However, as infiltration practices typically require more space, the size and configuration of the lot will also dictate which SCM can be implemented. A preliminary matrix of preferred SCM technologies is shown in **Figure 6-1**. Within each category, multiple examples of SCM technologies are shown and the preferred technology used for the evaluations in this study is underlined. Further refinement of the hierarchy of preferred SCM technologies may be performed as the program evolves.

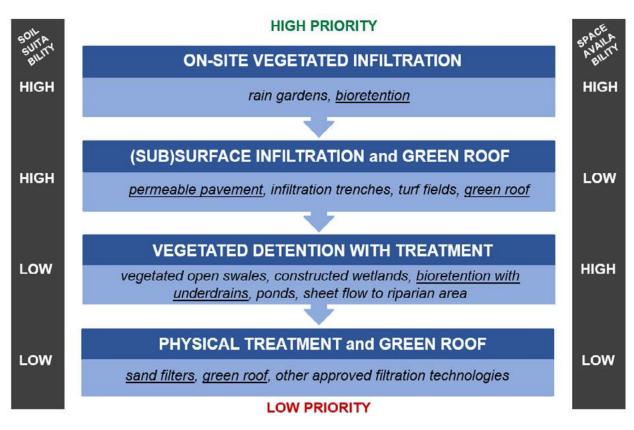


Figure 6-1: Preliminary Post-Construction SCM Hierarchy Matrix for MS4 Tributary Areas

Infiltration practices are ranked higher than treatment practices, with on-site vegetated infiltration being the preferred SCM category. While permeable pavement is a preferred option when space availability is low, it is most often used in open areas such as parking lots. Green roofs may be considered if the space is constrained due to the building footprint. It should be noted that green roofs do not fall exclusively into a single category. They were instead placed into the two categories designated as having low space availability, the condition most likely to lead to the consideration of a green roof. Descriptions of the preferred SCMs utilized in this analysis are provided below.

6.2. Bioretention

Bioretention is the preferred SCM technology because it prevents stormwater from entering the sewer system via storage and infiltration and provides numerous co-benefits. This technology is utilized in locations where subsurface conditions are favorable and there is adequate space for construction. Thousands of bioretention practices, most commonly Right-of-Way Bioswales (ROWBs), have been constructed across NYC based on a standard design developed by DEP¹) and shown in **Figure 6-2**.

Figure 6-2: DEP Standard Design for a Bioretention Practice

This DEP standard design for a bioretention practice was used in this analysis, as shown in **Figure 6-3** on a representative residential property. The depth of the engineered soil and open-graded stone base remained unchanged, and the footprint of the practice varied depending on the size of the lot and volume of stormwater management required. Bioretention practice sizing was based on the ROWB Performance Calculator developed by DEP.

¹ DEP Bureau of Engineering Design and Construction – Green Infrastructure, *Standard Designs and Guidelines for Green Infrastructure Practices*, March 2016

MS4 LOT SIZE THRESHOLD STUDY

MS4 LOT SIZE THRESHOLD STUDY

Figure 6-3: Example Bioretention Design (Residential Category B – Subsurface Unconstrained, Space Unconstrained)

6.3. Bioretention with Underdrain and Permeable Pavement

Bioretention with underdrain practices can be utilized in locations in which the subsurface conditions are not favorable but there is adequate space. These practices store and treat the stormwater as it passes through the engineered soil and open-graded stone base before the treated stormwater is returned to the collection system through an underdrain. In order to increase the storage capacity of the bioretention units, DEP standard designs incorporate permeable pavement strips which collect the extra stormwater and slowly feed it into the bioretention system, as shown in **Figure 6-4**.

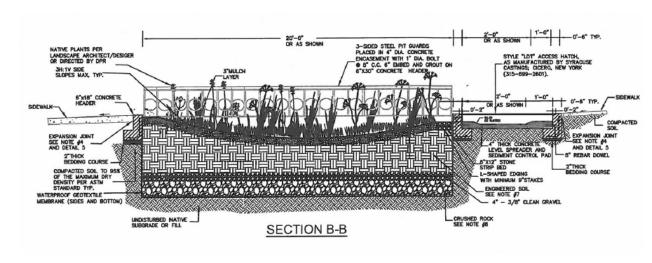


Figure 6-4: DEP Standard Design for a Bioretention Practice with Underdrain and Permeable Pavement

Figure 6-5: Example Bioretention Practice with Underdrain and Permeable Pavement (Commercial and/or Mixed-Use Category B – Subsurface Constrained, Space Unconstrained

This DEP standard design for a bioretention practice with underdrain and permeable pavement was utilized in this analysis, as shown in **Figure 6-5**. The relative amount of bioretention and permeable pavement varied for each site, to accommodate space availability and to incorporate the design into the lot. The unit sizing was based on the ROWB Performance Calculator developed by DEP.

6.4. Sand Filters

Sand filters are one of the two preferred technologies that were utilized for locations with both space and soil constraints. Collected stormwater is fed to the sand filter where it is treated as it trickles through the sand before being returned to the collection system. DEP does not currently have a standard design for this SCM practice, so the New York State standard design² was utilized. The section view of the DEC standard design is shown in **Figure 6-6**, and the plan and profile are shown in **Figure 6-7**. An example of the sand filter SCM practice is shown in **Figure 6-8**.

² New York State Department of Environmental Conservation, *New York State Stormwater Management Design Manual,* January 2015

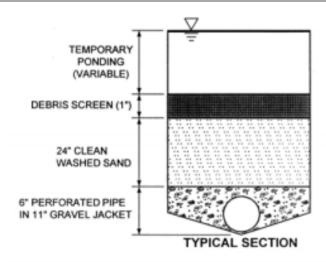
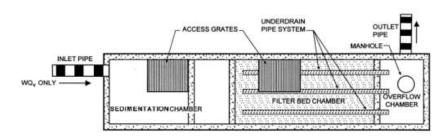



Figure 6-6. Section View of the Sand Filter Standard Design Developed by NYS DEC

PLAN VIEW

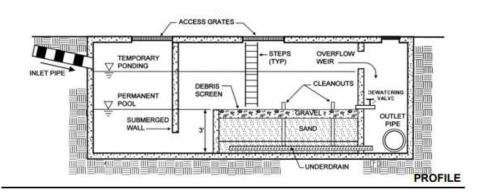


Figure 6-7. Plan and Profile Views of the Sand Filter Standard Design Developed by NYS DEC

Figure 6-8: Example Sand Filter Practice (Commercial and/or Mixed-Use Category B – Subsurface Unconstrained, Space Constrained)

For this analysis, it was assumed that the sand filters would be constructed in the basement of a building to minimize the value of the real estate devoted to this practice. Sand filter sizing was done using the methodology outlined in the NYS Stormwater Management Design Manual.

6.5. Green Roofs

Green roofs can be implemented under almost any condition, providing that the roof is flat and has sufficient structural capacity. As shown in the hierarchy matrix, green roofs were only used in space constrained locations as an alternative to sand filters. Green roofs collect and store rainwater, allowing it to slowly return to the atmosphere via evapotranspiration. Due to building codes in NYC, green roofs cannot cover the entire surface of the roof; space must be left around the perimeter of the roof and around interior items such as windows and utilities to allow for access. Permeable pavers can fill in these areas to collect and detain the remaining stormwater, slowly feeding it to the collection system. The green roof design used in this analysis was a 6" deep modular green roof tray provided by a vendor, examples of which are shown in **Figure 6-9** and **Figure 6-10**.

Figure 6-9. Modular 6" Deep Green Roof Tray

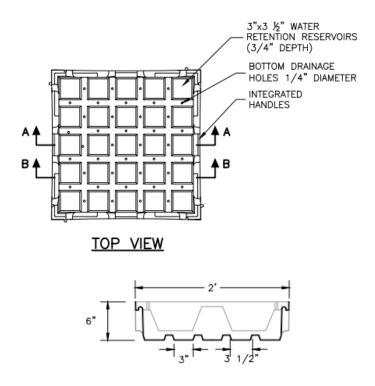


Figure 6-10. Dimensions of the 6" Deep Modular Green Roof Tray

For this analysis, it was estimated that 70% of space constrained lots have buildings with flat roofs capable of accommodating a green roof, as depicted in Figure 6-11.

Figure 6-11. Example Green Roof Practice (Industrial Category A – Subsurface Unconstrained, Space Constrained)

6.6. Selection of Representative SCM Technologies

For each property type (residential, commercial/mixed-use, and industrial), two Category A and two Category B (as defined in section 4) properties were selected, representing space constrained and space unconstrained property types. For each of these properties, two SCM designs were selected to represent the scenario of favorable subsurface conditions and unfavorable subsurface conditions. The technology selected for each type of constraint are shown in **Table 6-1**.

Table 6-1. Selected Technologies Used Under Each Constraint Type

Constraint	Technology
Unconstrained	Bioretention
Subsurface Constrained	Bioretention w/ Underdrain + Permeable Pavement
Space Constrained	Sand Filter or Green Roof
Subsurface and Space Constrained	Sand Filter or Green Roof

A total of 24 conceptual designs utilizing these representative SCM technologies for two size categories and a variety of subsurface and space conditions were developed and are presented in Appendix B.

7. POST-CONSTRUCTION SCM COST ANALYSIS

The next step in the analysis was to develop capital and operation and maintenance (O&M) costs for the representative SCM technologies. Based on discussions with DEP and feedback from stakeholders, a 30year SCM lifecycle was selected. The cost evaluation approach outlined in Figure 7-1 combined the earlier analyses of lot type, size, and constraints with conceptual designs to estimate the SCM lifecycle cost for each SF of disturbed area. The methodology is further described in the following subsections.

DETERMINE SPACE AND ANALYZE 15 YEARS OF SOIL CONSTRAINTS DOB DATA TO: **DEVELOP CONCEPTUAL** by waterbody using: **DESIGNS FOR EXAMPLE** Determine annual Soil Constraint redevelopment rates **PROPERTIES** Groundwater data Soil & Space constraints Bedrock data SCM hierarchy Lot size Select example Building % of Lot Lot Size Ranges

SCM LIFECYCLE COSTS PER SF OF DISTURBED AREA

Figure 7-1: Cost Evaluation Approach

7.1. Capital Cost Development

The conceptual designs for the representative SCM technologies were utilized to develop capital costs for each project. It was assumed that the SCM practices would be incorporated as part of a larger redevelopment or new development project, so line items for mobilization were not included. For areas that are considered "space constrained," the costs for disposal of excavated material was not included, as the cost for disposal was assumed to be necessary regardless of the inclusion of the SCM practice. The line item cost estimates were shared with industry professionals and technical experts at stakeholder workshops and revised based on feedback received. Unlike the other SCM types, the capital costs for the modular green roof trays were obtained from a vendor. Additionally, no engineering cost markups were used for the green roof capital cost estimates as they are assumed to be designed by a vendor. A list of the markups used is shown in **Table 7-1**.

Table 7-1. Markups Used in the Development of Capital Costs for SCM Practices

Markup	Percentage of Subtotal
General conditions, bonds and insurance	10%
General contractor overhead and profit	21%
Contingency	20%
Engineering (not included for green roofs)	15%

Once the capital costs were developed, the unit capital cost per SF of disturbed area was estimated for each type of property so that it could be utilized to scale costs for the historical new and redevelopment properties in the DOB data.

7.2. O&M Cost Development

O&M costs were developed over a 30-year lifecycle based on familiarity with the SCM technologies and experience in other cities. For SCM practices with vegetation, the first two years focus on plant establishment and subsequent years on maintenance and plant replacement. A conservative assumption was used for replacing bioretention and filter media once over the lifecycle of the respective SCMs based on feedback received at stakeholder workshops. This includes replacement of engineered soil and stone base for the bioretention practices and sand media for the sand filter. It was assumed that all green roof trays would be replaced once over the lifecycle. **Table 7-2** summarized the major categories of O&M and media replacement activities for each SCM type.

Table 7-2. O&M Activities included in SCM Lifecycle Costs

Bioretention Maintenance Tasks and Description

Years One and Two

- Establishment watering, establishment weeding, plant replacement, pest management, mulching
- Debris and sediment removal, general site cleanup
- Painting, structural repair, erosion/settling repair

After the First Two Years

- Weeding, plant replacement, pest management
- Debris and sediment removal, general site cleanup
- Painting, structural repair, erosion/settling repair

One-time Media Replacement

Replacement of open graded stone base, engineered soil, and mulch layer

Bioretention with Underdrain and Porous Pavement Maintenance Tasks and Description

Years One and Two

- Establishment watering, establishment weeding, plant replacement, pest management, mulching
- Debris and sediment removal, general site cleanup
- Painting, structural repair, erosion/settling repair
- Vacuuming porous pavement strip(s)

After First Two Years

- Weeding, plant replacement, pest management
- Debris and sediment removal, general site cleanup
- Painting, structural repair, erosion/settling repair
- Vacuuming porous pavement strip(s)

One-time Media Replacement

- Replacement of open graded stone base, engineered soil and mulch layers
- Replacement of permeable pavers and open graded stone base for permeable pavers

Sand Filter Maintenance Tasks and Description

Annual

- Inlet/pre-treatment inspection and vacuuming (sedimentation and overflow chambers)
- Subsurface inspection and maintenance of pipes and detention areas and the dewatering system and vacuuming gravel layer

236

• Replacement of gravel and/or sand media as necessary

17

MS4 LOT SIZE THRESHOLD STUDY

Observe drawdown rate following a large storm

One-time Media Replacement

- Vacuum removal of the sand using a vac truck
- Replacement of stone base, clean, washed sand, debris screen, and gravel

Green Roof Maintenance Tasks and Description

Years One and Two

• Establishment watering, establishment weeding, plant replacement, and pest management

After First Two Years

- Weeding, plant replacement, and pest management
- Soil testing and amendments

One-time Media Replacement

Complete replacement of green roof trays

Once the 30-year O&M costs were developed, they were converted into a unit cost per SF of disturbed area. This was then added to the capital cost to determine the overall lifecycle post-construction stormwater management cost per SF of disturbed area. The unit costs for each lot size threshold are presented in Appendix C.

The unit costs for Category A and Category B properties were applied based on the size of the sample properties utilized to develop the example SCM designs. For the lot size thresholds that fell between these two categories, the unit costs were interpolated to incorporate an economy of scale into the costs. These unit costs were then applied to the historical DOB new and redevelopment data to estimate citywide post-construction SCM lifecycle costs.

7.3. Development of Cost Curves

The 15 years of historical DOB data was also analyzed to estimate the average annual new and redeveloped acres in NYC. The acreage was broken down by waterbody, and divided into one of the four constraint categories. The lifecycle unit costs were then applied to each of these areas to calculate the total lifecycle cost required to manage up to 1.5 inches of stormwater runoff from the annually disturbed acres in each lot size threshold. The citywide MS4 area cumulative post-construction lifecycle cost for each evaluated lot size threshold is presented in **Figure 7-2**. Note that this cost represents the total estimated lifecycle SCM cost for one year of new and redeveloped properties with 30 years of operation and maintenance. Each year of new and redevelopment construction would result in repeat costs.

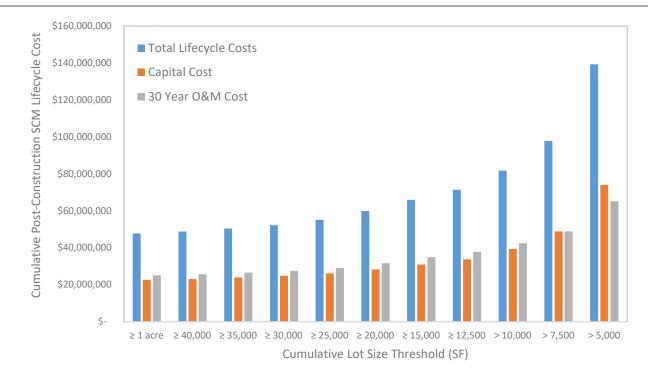


Figure 7-2: Annual Cumulative Cost Citywide for Post-Construction Stormwater Management

The capital and O&M costs each contribute to approximately 50% of the total lifecycle costs at all lot sizes. The costs remain relatively constant until roughly the 20,000 SF lot size threshold, after which the costs increase exponentially. This can be attributed to the increased unit costs for small lot SCMs combined with the increase in smaller lots and acres for lower thresholds.

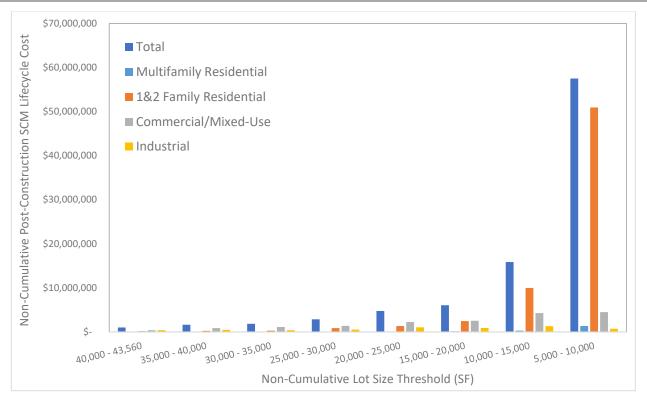


Figure 7-3: Non-Cumulative Annual Post-Construction SCM Lifecycle Costs by Property Type

Figure 7-3 represents the non-cumulative annual post-construction SCM lifecycle cost by property type. Since residential properties make up most properties at thresholds below 15,000 SF, they were further broken down into one- and two-family residential and multifamily residential properties. This figure indicates that the SCM costs for lower lot size thresholds are predominantly driven by one- and two-family residential properties, with commercial and/or mixed-use properties becoming predominant at the thresholds larger than 20,000 SF.

Figure 7-4 provides the post-construction SCM capital costs per residential unit for each evaluated lot size bin. Majority of the Staten Island is managed by a separate storm sewer system and roughly 51% of the permit data evaluated came from Staten Island, much of which is residential properties. To understand the potential impact to Staten Island residential developers and/or homeowners, that borough is shown separately, in addition to the citywide results.

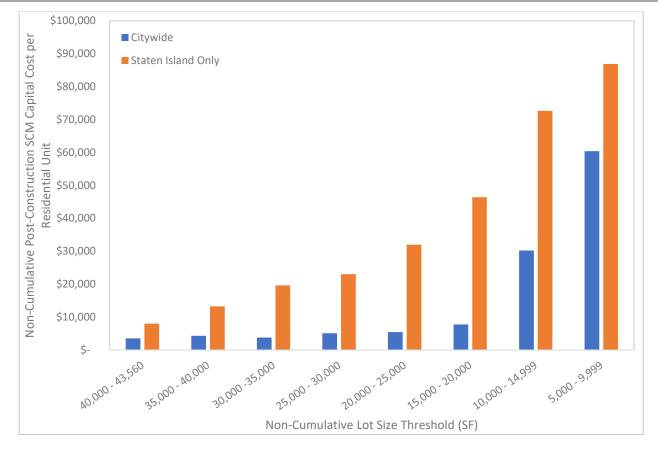


Figure 7-4: Non-Cumulative Post Construction SCM Capital Cost per Residential Unit Citywide and Staten Island Only

At lot size thresholds below 20,000 SF, the SCM cost per residential unit increases exponentially and would present a significant burden to the developer and/or owner as compared to the cost of the property. Additionally, the SCM cost per residential unit in Staten Island is significantly higher than the citywide average, likely due to "horizontal" residential construction as opposed to the "vertical" construction which is more predominant in Brooklyn and Queens.

8. POST-CONSTRUCTION STORMWATER CONTROL MEASURE BENEFIT ANALYSIS

Benefit analyses in terms of SCM implementation related stormwater runoff and pollutant load reductions were performed for each waterbody and then combined on a citywide basis. A summary of the approach and results are presented in this section.

8.1. InfoWorks Modeling

Existing InfoWorks models were reviewed for all wastewater treatment plant (WWTP) services areas, except for Oakwood Beach WWTP. This review allowed MS4 areas that eventually connect to combined

sewers to be excluded from further evaluation. MS4 areas that are connected to CSO outfalls downstream of the regulator structures were retained.

The Oakwood Beach WWTP area was characterized in earlier studies using a simple rainfall-runoff model.

Consistent with the LTCP methodology, the baseline scenario for the benefit analysis was setup with the following conditions:

- 1) rainfall from John F. Kennedy International Airport for the calendar year 2008 as typical hydrologic year;
- 2) no delineation of drainage areas and runoff estimation at the scale of private outfalls, but modeling was performed for lumped areas that may be discharging to a single waterbody through numerous small outfalls or directly as overland flow; and
- 3) unless provided by DEP from ongoing studies, no effort was undertaken in this project to delineate or confirm drainage areas for individual MS4 outfalls.

DEP is currently undertaking a major mapping effort to delineate subcatchments in MS4 areas hence the loading estimates may require revisions. **Table 8-1** shows the summary of drainage area characteristics (total and impervious areas in acres, ac) and baseline scenario runoff volumes (in million gallons, MG) for the typical hydrologic year, developed from the 14 WWTP drainage area InfoWorks models.

Waterbodies	Total Area (ac)	Impervious Area (ac)	Baseline Runoff (MG)
Confined Tributaries	44,684	27,594	19,774
EROW	43,332	17,824	19,586
Citywide	88,016	45,418	39,360

Table 8-1: Baseline Scenario - Summary of Areas and Annual Stormwater Runoff Volumes

Although there may be some SCMs implemented in public and private lots or the public right-of-way, it was conservatively assumed that no SCMs existed in the MS4/DD areas under baseline or existing conditions.

The benefit assessment phase of InfoWorks modeling incorporated the SCMs for disturbed acres in the MS4/DD areas for each waterbody. The goal is to represent the disturbed acres explicitly in InfoWorks models so that the benefits associated with implementation of retention- and treatment-based SCMs can be quantified.

The impervious acres within each subcatchment drainage area were divided into three categories in the models:

- a) impervious areas that are not managed by SCMs;
- b) impervious areas that are managed with retention-based SCMs; and
- c) impervious areas that are managed with treatment-based SCMs.

The disturbed areas managed by retention were categorized as "unconstrained" for subsurface and space. For subcatchment areas with retention controls, consistent with the LTCP methodology for modeling bioretention, storage nodes (designed as 5-foot depth retention tanks) were added to the baseline model to capture and infiltrate up to 1.5 inches of stormwater volume from the contributing drainage area. A 1.5-inch event was selected as a conservative value for the 90th percentile storm in NYC area. Infiltration rates were set to 1 inch per hour so that the captured stormwater would be depleted before the next storm. Bypasses from these storage elements were estimated using the storage-infiltration methodology.

Similarly, the disturbed areas managed by treatment-based controls were divided into areas managed by bioretention with underdrains (for subsurface constrained lots), sand filters (for subsurface and space constrained lots), and green roofs (for space-constrained or subsurface and space constrained portions). These were individually modeled in the InfoWorks models or clustered and segregated proportionally in the post-processing step, as applicable. The 1.5-inch target runoff capture was used for both retention and treatment calculations. For treatment using sand filters, an orifice was sized to drain stormwater runoff in two days. The incorporation of the green roofs assumed that they would provide 50% retention and 50% treatment benefit.

The retention and treatment SCMs were modeled for four threshold lot sizes: greater than 5,000 SF, greater than 10,000 SF, greater than 20,000 SF, and greater than 1 acre. The greater than 5,000 SF threshold size had the most stringent stormwater management requirement, with the most managed disturbed areas being included in the benefit analysis. Alternatively, the greater than 1 acre threshold size had the smallest area to be managed by SCMs. For a given waterbody and threshold, the InfoWorks models generated the unmanaged runoff volume, bypass volume from the retention tank, treated volume, and the treated bypass volume, all expressed in millions of gallons per year (MG/Year).

The unmanaged impervious areas and pervious areas contributed the same amount of stormwater discharges and pollutant loads in all scenarios including the baseline, and only the managed impervious areas contributed reduced runoff and/or pollutant loads based on the extent of retention or treatment-based SCMs used. Because the thresholds were cumulative, the unmanaged runoff increased and the rate of treated runoff decreased as the threshold size increased.

8.2. Post-Processing

Based on the vendor data and literature review a conservative assumption was used for green roof performance with the retention benefit assumed to be 50% of the generated runoff treatment benefit assumed for the remaining 50% of the runoff. This process was implemented using linear interpolation in the post-processing step.

Additional threshold sizes were considered beyond the four that were modeled using InfoWorks. The disturbed areas to be managed for the threshold sizes of greater than 7,500 SF, greater than 7,500 SF, greater than 15,000 SF and greater than 25,000 SF were also linearly interpolated from the results of four modeled thresholds. Once the managed areas were estimated, the unmanaged runoff volume, the bypass volume from the retention tank, the treated volume, the treated bypass volume, and the green roof runoff

volume were apportioned linearly to assess the resulting stormwater flow volume reductions from the MS4/DD areas.

8.3. Event Mean Concentrations

Pollutant loads were estimated using time-variant or representative pollutant concentrations applied for the various runoff components. Extensive water quality monitoring data and associated model calibration/validation helped justify a complex representation of time-variant concentrations. Based on limited monitoring data available in the NYC's MS4/DD areas, the concept of event mean concentrations (EMCs) was adopted in this analysis.

The EMCs for total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP), fecal coliforms (FC) and enterococci (ENT) were sourced from the Nationwide Urban Runoff Program (NURP), National Stormwater Quality Database (NSQD), and NYC's LTCP reports. For TSS and TN, a pooled mean was calculated from NURP and NSQD. Data from NYC were given the highest consideration to develop representative EMCs, and the concentrations from literature were supplemented where limited or no NYC-specific information was available. Selected EMC values for these parameters are summarized in **Table 8-2**, which were used consistently for baseline and the varying threshold size scenarios.

Table 8-2: Selected EMC Valu	ues for Key Water Quality Paramete	ers

Parameter	TSS (mg/L)	TN (mg/L)	TP (mg/L)	FC (#/100mL)	ENT (#/100mL)
EMC Value	80	2.50	0.37	35,000	15,000

Baseline pollutant loadings were calculated for each waterbody by multiplying the waterbody's baseline runoff volumes with each of the five water quality parameters' EMCs. **Table 8-3** summarizes these pollutant loads, which were used to compare against and estimate the incremental benefits of adopting different disturbance threshold sizes and implementing SCMs to achieve the pollutant load reductions at the corresponding lifecycle costs.

Table 8-3: Baseline Pollutant Load by Waterbody

Waterbody	TSS (Lb/yr)	TN (Lb/yr)	TP (Lb/yr)	FC (Trillion/yr)	Ent (Trillion/yr)
Confined Tributaries	13,205,600	412,900	61,000	26,229,500	11,241,214
EROW	13,080,700	408,900	60,600	25,981,800	11,135,100
Citywide	13,080,700	408,900	60,600	25,981,800	11,135,100

The EMCs were also applied to the unmanaged runoff and bypasses from the implementation of SCMs. For each threshold scenario, the bypass volume from the retention tank, the treated volume, the treated bypass volume, and the green roof retained and treated runoff volume were multiplied by the EMC to get the pollutant load for each type of runoff. Partial treatment of bypassed volume during the retention or treatment-based unit process is not accounted for as a conservative assumption in this analysis.

Reductions in pollutant loads due to treatment are discussed in terms of percent reduction factors in the next section.

8.4. Performances of Stormwater Control Measures

The effectiveness of SCMs for the various water quality parameters were extracted from the *Preliminary Data of Urban Stormwater Best Management Practices*³, the *National Pollutant Removal Performance Database*⁴, the Pathogens in Urban Stormwater Systems (International BMP Database 2014), the *Stormwater Best Management Practices Performance Analysis*⁵, and the Literature Review of Existing Treatment Technologies for Industrial Stormwater⁶.

Pollutant reduction effectiveness of individual SCMs have been reported in the literature in the form of percent removal (a constant reduction applied irrespective of storm patterns) or effective reduction (varied performance based on storm patterns). The percent removal methodology was adopted for this study, again with the limited performance data available in NYC's MS4/DD areas, to quantify the reductions achieved with the selected SCM technologies. The selected percent removals for treatment-based SCMs are shown in **Table 8-4**. Retention-based SCMs were considered to provide 100% removal for all pollutants associated with the eliminated stormwater runoff.

Table 8-4: Percent Removals for Water Quality Performance of SCMs

Selected SCMs	Removal Rate per Pollutant						
Selected Scivis	TSS*	TN	TP*	FC	ENT		
Green Roof	80%	42%	40%	65%	65%		
Bioretention with Underdrain	80%	24%	40%	30%	30%		
Sand Filter	80%	30%	40%	30%	30%		

^{*}Performance targets established by NYS for TSS and TP load reductions from stormwater are used as removal rates in this analysis, with the intent that these regulatory requirements can be included as part of permits for on-site projects.

The reduced pollutant load associated with retention-based controls resulted from the direct reduction in runoff due to storage and infiltration of up to the 1.5-inch design event. There were no removal rates applied to the stormwater that bypasses the retention-based SCMs for the portion of events greater than 1.5 inches, as a conservative assumption. However, trapping of suspended solids and other nutrients and pathogens could occur from runoff that enters an SCM even if bypasses occur due to capacity constraints.

³ United States Environmental Protection Agency, EPA-821-R-99-012, August 1999

⁴ Center for Watershed Protection, *Version 3*, September 2007

⁵ United States Environmental Protection Agency, Revised March 2010

⁶ Science Applications International Corporation and Washington Department of Ecology, July 22, 2011

For the treatment-based controls, including the sand filter and the green roof, the pollutant loading was an outcome of applying the appropriate pollutant removal rate and EMC to the managed runoff. Once the EMCs and removal rates were applied, the total pollutant load for a given threshold size was estimated by adding the pollutant loads from unmanaged runoff volume, the bypass volume from the retention tank, the treated volume, the treated bypass volume, and the green roof treated volume. This total number corresponds to the remnant pollutant load to each waterbody after the SCMs are implemented in all the new or re-development projects in public and private lots for a given threshold size.

In each waterbody, the final water quality benefit for each threshold scenario was determined by calculating the percent difference between the baseline and the threshold scenarios with stormwater management. The percent difference was determined for each water quality parameter as well as the total runoff volume using the citywide MS4 area onsite runoff and pollutant load values as a basis. The citywide water quality benefits were assessed by summing the baseline and threshold scenarios from each waterbody. The reductions were then translated to annual benefit by dividing by 15 years for normalizing the benefits that are summarized in **Table 8-5**.

Table 8-5: Annua	ıl Post-Construction	on Flow and	l Water Quali	ty Benefits	(Cumulative)
------------------	----------------------	-------------	---------------	-------------	--------------

Threshold Size (SF)	Runoff Volume Reduction (%)	TSS Reduction (%)	TN Reduction (%)	TP Reduction (%)	FC Reduction (%)	ENT Reduction (%)
>5,000	0.63%	0.91%	0.71%	0.77%	0.74%	0.74%
>7,500	0.46%	0.68%	0.53%	0.57%	0.55%	0.55%
>10,000	0.40%	0.59%	0.46%	0.50%	0.47%	0.47%
>12,500	0.35%	0.52%	0.40%	0.44%	0.42%	0.42%
>15,000	0.32%	0.48%	0.37%	0.40%	0.38%	0.38%
>20,000	0.29%	0.43%	0.33%	0.36%	0.35%	0.35%
>25,000	0.26%	0.40%	0.31%	0.33%	0.32%	0.32%
>1 acre	0.23%	0.34%	0.26%	0.29%	0.27%	0.27%

Figure 8-1 presents the cumulative TSS reduction benefits associated with the cumulative accumulation of the number of lots and disturbed acres being managed by SCMs. Pollutant load reduction is linearly proportional to the managed impervious acres, and the rate of increase in pollutant load reduction decreases generally with lower lot size thresholds (as reflected by the increase in lots with lower threshold sizes).

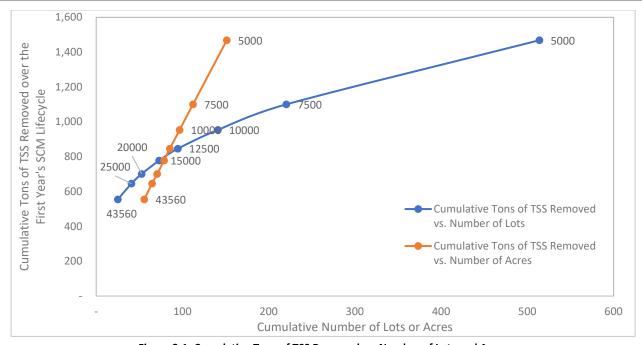


Figure 8-1: Cumulative Tons of TSS Removed vs. Number of Lots and Acres

Figure 8-2 shows the relationship between life cycle costs and percent reductions in runoff/pollutant loads estimated for different lot size thresholds. Generally, these relationships become steeper with lower thresholds, indicating that the incremental costs of SCMs are higher to achieve the unit reductions in pollutant loads for smaller thresholds.

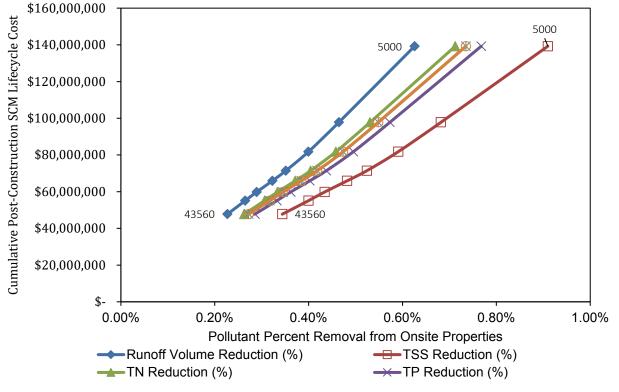


Figure 8-2: Cumulative cost benefit curves for pollutant percent removal

246

Table 8-6 provides an overall summary of disturbed acres, number of lots, SCM costs to developers and associated administrative costs to DEP, and the corresponding pollutant load reductions and cost/unit reduction in pollutant loads. The increases in benefits (pollutant load reductions) with incremental costs show similar trends seen in **Figure 8-2**, for the various lot size thresholds.

Table 8-6: Summary of Post-Construction Cost/Benefit Analysis (Cumulative)

Lot Size Threshold	Annual # of Acres	Annual # of Permits/ Lots	Post- Construction Lifecycle Cost to Developer	Annual Cost to DEP	Tons of TSS Removed from First Year's Lots over 30 Years	Developer Cost Per Ton of TSS Removed
≥ 1 Acre (Baseline)	56	25	\$47,744,400	\$ 2,540,500	555	\$86,000
≥ 30,000 SF	61	34	\$52,241,300	\$2,764,800	604	\$86,500
≥ 25,000 SF	65	41	\$55,098,800	\$2,876,900	643	\$85,700
≥ 20,000 SF	71	53	\$59,845,000	\$ 2,989,100	701	\$85,400
≥ 15,000 SF	79	73	\$65,903,000	\$ 3,213,300	778	\$84,700
≥ 12,500 SF	85	95	\$71,418,500	\$ 3,325,500	846	\$84,400
≥ 10,000 SF	97	141	\$81,762,100	\$3,920,400	954	\$85,700
≥ 7,500 SF	112	220	\$97,772,500	\$4,481,100	1,100	\$88,900
≥ 5,000 SF	152	514	\$139,255,600	\$6,646,000	1,468	\$94,900

9. CONSTRUCTION STORMWATER MANAGEMENT COST-BENEFIT ANALYSIS

This section presents the results of cost-benefit analyses for lot size threshold selection for stormwater runoff management during construction. Typical construction stormwater runoff management requirements include erosion and sedimentation controls and, unlike the post-construction SCMs, the construction runoff technology selection is mostly independent of the space and subsurface conditions. The construction runoff management evaluations were built off the post-construction SCM cost-benefit analyses presented in the previous sections and include the key steps described in the following sections.

9.1. Develop conceptual designs and construction cost estimates

For the purposes of evaluations in this study, it was assumed that each construction site, independently of the lot size and space and subsurface conditions, would include the following erosion and sedimentation controls:

- Perimeter Silt Fence
- Construction Entrance
- Sedimentation Basin

These controls were selected based on the 2016 NYS Blue Book⁷. Average construction lot dimensions, including area and perimeter were estimated for each lot size bin using the historical permit data. These dimensions were used for estimating silt fence and sedimentation basin quantities for representative lots in each lot size bin. Standard Blue Book construction details were assumed for the silt fence and sedimentation basin. One standard stabilized construction (SCE) site entrance was assumed for each lot.

Upper ranges of the Blue Book cost tables were then applied to the estimated quantities within each lot size bin to develop cost estimates for construction stormwater runoff management.

Cumulative construction stormwater management costs for each evaluated threshold are presented in **Figure 9-1**. The costs increase exponentially below the 20,000 SF threshold, mostly due to the significant increase in number of lots and acres.

⁷ New York State Department of Environmental Conservation, *New York State Standards and Specifications for Erosion and Sediment Control*, November 2016

MS4 LOT SIZE THRESHOLD STUDY

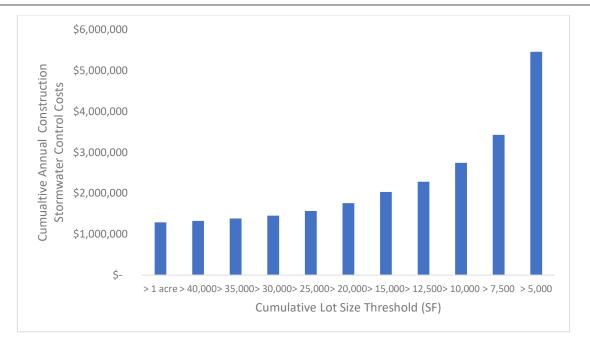


Figure 9-1: Annual Cumulative Cost Citywide for Construction Stormwater Management

Note that these construction costs do not include engineering, SWPPP preparation, or the O&M costs.

9.2. Estimate Construction Runoff Management WQ Benefits

The next step in evaluations was to estimate pollutant loading reductions associated with the construction stormwater management controls. TSS was assumed under this evaluation as the primary pollutant of concern associated with the construction site stormwater runoff. Based on the literature review, a typical TSS EMC value of 200 mg/L ⁸and an average TSS removal efficiency for the selected stormwater runoff controls of 50% were used for the WQ benefit analyses.

InfoWorks modeling results, as described in Section 8.1, were post-processed to estimate the annual stormwater runoff volumes, TSS loads, and corresponding TSS load reduction from construction sites. An average construction duration of one year and the 2008 rainfall from John F. Kennedy International Airport were used for estimating TSS removals for each lot size threshold. **Table 9-1** presents cumulative annual TSS load reduction and percent removal benefits (using TSS load from citywide onsite properties in MS4 area as a basis) for construction stormwater controls for the various lot size thresholds.

Threshold Size (SF)	TSS Removal (tons)	TSS Reduction (%)*
>5,000	55	1.02%
>7,500	41	0.76%
>10,000	35	0.65%
>12,500	31	0.58%
>15,000	28	0.52%
>20,000	26	0.48%

23

20

0.43%

0.37%

Table 9-1: Annual Construction TSS Reduction Benefits (Cumulative)

9.3. Develop Cost-Benefit Curve

>25,000

>1 acre

The costs and benefit data for the construction stormwater runoff management were assembled in a curve presented in **Figure 9-2**, which shows a relationship between the annual costs and **c**umulative TSS removal expressed as percentage of the baseline TSS loads from all onsite properties within the NYC MS4 area. As indicated in the figure, both costs and benefits increase with the smaller lot threshold sizes; however, no explicit knee of the curve could be observed.

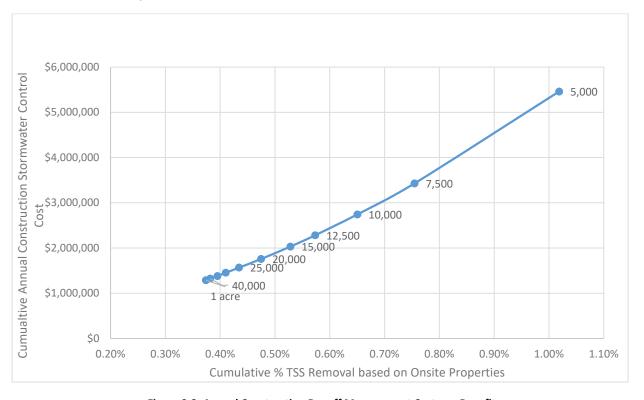


Figure 9-2: Annual Construction Runoff Management Costs vs. Benefits

⁸ The Hows and Whys of Controlling Runoff Pollution, University of Wisconsin DNR Extension, PUB WT-922-2009

⁹ New Jersey Stormwater Best Management Practices Manual, February 2014. The manual provides a range of 40-90%, based on specific SCM. A conservative 50% is assumed here.

^{*}Based on load from onsite properties in MS4 area citywide

10. ADMINISTRATIVE COST BENEFIT ANALYSIS

To analyze administrative costs versus the benefits of reducing the lot size threshold, the team performed a statistical analysis using the estimated number of annual permits from the DOB permit data and the associated resources anticipated for the overall management of the permit review and inspections for a given threshold size. The analysis includes the base salaries of an executive director that spends one third of their time on MS4 issues, a director to oversee implementation of the program, senior level engineers to assist in the review, inspection and implementation of enforcement actions and assistant level engineers and technicians to perform reviews and inspections. Additionally, the study includes the cost of one IT professional for maintaining the permitting and enforcement group database including the online application systems, the review database, the inspection database and the supporting information such as certifications, contact information and registrations. Finally, the study does not include support staff that will be required to field phone calls, assist with nontechnical application questions and assist the public on retrieving information. Figure 10-1 presents the administrative costs to DEP for each lot size threshold

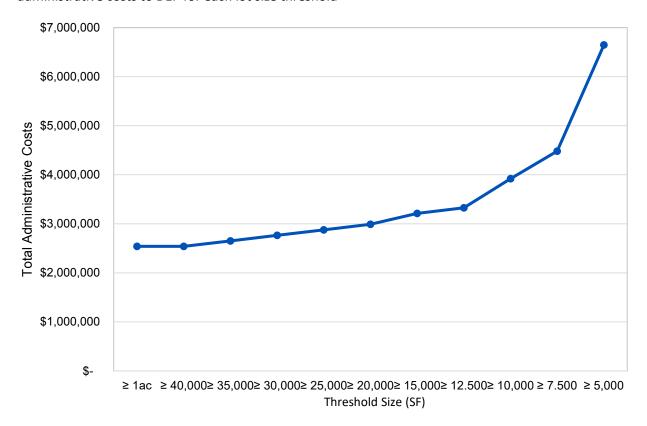


Figure 10-1: Total Administrative Costs to DEP

Under the existing permit, DEP is required to review all permits and prioritize sites for inspection during and after construction. Using the DOB permit data and the lot size disturbance thresholds, larger projects are assumed to require more review time with additional assistance from high-level staff and more time for construction and post-construction site inspection and enforcement. As the area of disturbance, the threshold, is reduced, the staff effort to get and maintain compliance through permit reviews is also reduced since it is likely that smaller projects will take less time to review. However, visiting each project in the field for inspections during construction will become a challenge as the

number of permits rises. Since the number of permits increases dramatically below the 20,000 square foot threshold, the need for additional staff increases dramatically even though the additional area covered is minimal.

Reducing the threshold increases the need for staff. The area impacted by the program grows with the reduced the threshold, but the number of permits grows at a quicker rate than the area covered as the threshold falls below 20,000 square feet. Additionally, allocating resources to lower thresholds does not support the minimal water quality benefits that would be associated with the smaller threshold sizes. The overall cost-benefit comparison favors larger thresholds both administratively and technically.

11. RECOMMENDATION OF LOT SIZE THRESHOLD

DEP is proposing to adopt a 20,000 SF threshold as a recommendation for reduction from 1 acre; applicable to both construction and post construction stormwater management. This recommendation is supported by most of the evaluations performed in this study, including:

- number of managed lots and acres,
- cost-benefit analyses and
- o administrative costs

A 20,000 SF threshold size also takes into consideration costs to individual households and borough-specific impacts. The selected threshold considers staffing resources to accommodate permit reviews and inspections and it provides flexibility for site constraints through a hierarchy for stormwater control measures (i.e., soil suitability, site availability). For these reasons, a 20,000 SF disturbance threshold is the maximum extent practicable (MEP) in NYC.

APPENDIX A

Utility Survey Memorandum

Arcadis of New York, Inc. 27-01 Queens Plaza North Suite 800 Long Island City New York 11101 Tel 718 446 0116 Fax 718 389 2040

To:

New York City Department of Environmental Protection

From:

Arcadis Team

Date

October 21, 2016

Revised October 31, 2017

Subject:

GI-RD Task 2.4 – Literature Survey and Assessment of Technical and Administrative Requirements for Construction and Post-Construction Stormwater Management Implemented by other Municipal Utilities Nationwide

SUMMARY

On August 1, 2015, New York State Department of Environmental Conservation (DEC) issued a permit to the City of New York, which includes a multitude of requirements on stormwater discharges including those related to construction and post-construction activities. Accordingly, the New York City Department of Environmental Protection (DEP) sought to understand how other peer utilities with combined and/or separate sewer systems comply with their local ordinances or stormwater regulations. The following twelve (12) utilities of various sizes across the country, with the local population served ranging from about 600,000 to 4,000,000 people, were shortlisted for literature review and follow-up interviews: Atlanta (GA), Austin (TX), Baltimore (MD), Boston (MA), Chicago (IL), Los Angeles (CA), Philadelphia (PA), Portland (OR), San Diego (CA), San Francisco (CA), Seattle (WA), and Washington (DC).

The questionnaire that was developed by DEP and the Arcadis team to support this survey focused on performance standards, administrative process, number of applications received and staffing resources, etc. related to stormwater management of construction and post-construction activities (see Attachment A at the end of this appendix for the questionnaire). All 12 of the utilities participated in interviews, providing partial or full responses to the questionnaire.

The first step was a literature review of each utility's stormwater manual and other publicly available guidance. Following this, the second step was to reach out to the utilities directly with a standardized interview questionnaire to fill in any gaps in information, particularly the administrative information that is not typically listed on utilities' websites.

There are various technical and administrative topics included in the questionnaire, including but not limited to the stormwater regulations: (a) adopted thresholds based on soil disturbance and/or creation of new impervious area for new and redevelopment projects and if any analyses were done for determining a

Page: 1/30

particular threshold and associated retention/detention or treatment standards; (b) off-site mitigation or inlieu fee applications; (c) administrative process including stormwater management pollution prevention plan review times, and (d) staffing resources for managing permits and performing inspections and fees charged by the utilities.

Utilities with Phase 2 MS4 permits typically have applied construction and post-construction thresholds in the range of one acre and above, expressed in terms of either the soil disturbance or new impervious cover as trigger for post-construction stormwater runoff control.

Most of the 12 utilities interviewed under this task applied construction thresholds of less than one acre with the remainder using a one-acre national threshold recommended in the US EPA Phase 2 Stormwater Guidance.

All the 12 interviewed utilities have adopted a minimum soil disturbance or new impervious area post-construction threshold that ranged from no-minimum value (i.e., all new or redevelopment applications require permits) to 15,000 square feet (sq ft.). About half specified a post-construction threshold be between 5,000 and 10,000 sq ft., with four out of the 12 utilities using 5,000 sq ft.

In addition to the 12 utilities surveyed under this task, DEP has been communicating with other utilities on CSO and stormwater regulations compliance matters, and the information on post-construction threshold from these additional utilities (included below) was used in the comparative evaluations:

- City of Miami (half acre);
- New Orleans (5,000 sq ft.);
- Fairfax County (2,500 sq ft.);
- Indianapolis (half acre); and
- Richmond (one acre for all areas and 2,500 sq ft. only for Chesapeake Bay Preservation Area). Three out of these five additional utilities have established larger thresholds of half to one acre. Overall, out of 17 utilities considered for the post-construction threshold survey, seven have established thresholds of greater than 5,000 sq ft.

Most of the 17 utilities also have combined sewers as part of their service area and almost all have adopted the same minimum threshold for post-construction runoff requirements in both MS4 and combined areas.

It is also important to note that some utilities with smaller thresholds have provisions to significantly minimize the administrative workload for inspections. For example, Portland (OR), with 500 sq ft. as threshold, only requires self-certification for single family residential lots and Boston, with no-minimum threshold, does not have any post-construction inspection requirement at this time. Some other utilities have watershed-based varying thresholds to meet their flood control or water quality end goals, e.g., Philadelphia, Washington DC and Richmond.

Most of 12 interviewed utilities offered alternative measures for sites that may not be able to meet the stormwater management requirements, specifically in the forms of in-lieu fees and offsite mitigation options. Boston and Chicago are the only cities that strictly adhere to on-site stormwater management regulations. Neither Seattle nor DC explicitly state whether they accept in-lieu fees or offsite mitigation, but they do utilize a stormwater credit system that offers some flexibility for developers to meet the stormwater management regulations.

Performance standard requirements varied among the utilities interviewed, but some general trends were observed. Most utilities listed a water quality control volume (WQv) retention standard below 1.5 inches, with only Portland that has a significantly larger standard of 3.5 inches over a 24-hour period. Some of the utilities have peak flow (i.e., flood control) reduction standard in addition to WQv.

Potential soil and space constraints can limit the implementation of retention-based stormwater controls. This is particularly relevant to dense urban areas with compacted soils or underlying soil with poor permeability. Several utilities (e.g., San Francisco, Philadelphia and Portland) have developed tiered approaches to controlling stormwater – starting with retention as the first tier to the maximum extent practicable and using detention or treatment based controls as lower tiered options.

The indicators for administrative costs included the number of staff to manage permits, perform construction permit inspections and post-construction periodic inspections, as well as the number of permits/inspections handled and the departments/municipal jurisdictions that manage the permitting and inspections. Mature stormwater management programs appear to have larger number of staff as well as dedicated funding mechanisms (e.g., stormwater utility, component stormwater bill to customers, etc.), whereas the newer programs are still in the midst of establishing the staffing and funding needs.

Another topic of interest to DEP was whether the utilities with both combined and separately sewered systems had different permit (stormwater management) requirements. It appears that most have the same performance standards and administrative requirements for both combined and separate systems. However, some utilities such as Philadelphia, Portland, and San Francisco each impose requirements that differ between combined and separate areas for certain criteria. San Francisco, for example, has the same standard for retention in combined and large MS4 areas (>5,000 sq ft.), whereas a less stringent standard for 2,500-5,000 sq ft. in smaller MS4 areas. Philadelphia has different infiltration volume requirements and Portland has different allowable discharge rates for the combined and MS4 areas.

The responses gathered from 12 interviewed utilities represent stormwater management programs in various stages of development and implementation, some dating back nearly 10 years and some others being relatively new – established within the last two years. The findings also indicate that there is a wide variation among the responding utilities in the administration of stormwater management and the performance standards that developers are required to follow.

Page: 2/30

This technical memorandum summarizes the data and information obtained from the interviews conducted by DEP staff and the Arcadis team and a review of existing documentation. This memorandum will be shared with utilities that have participated in this survey for reference upon DEP approval. Due to the wide variation in stormwater rule implementation by the responding utilities, only the key topics of interest to DEP are summarized in this memorandum.

1.0 INTRODUCTION

Since 2010, DEP has been constructing and funding stormwater management assets throughout the City's combined sewer tributary areas. The types of stormwater management assets include but are not limited to bio infiltration, permeable paving, subsurface retention systems, and green roofs. In 2012, DEP established a new stormwater performance standard (Stormwater Rule) with which developers must comply for any new construction or major alteration in the combined sewer areas. This performance standard took effect in 2012, and since then DEP has certified more than 5,300 site or house connection permits. Stormwater management systems constructed so far, to comply with this rule, are primarily detention-based and designed to meet the reduced 0.25 cubic feet per second (cfs) stormwater release rate or 10% of the allowable flow, whichever is greater, or if the allowable flow is less than 0.25 cfs then no more than allowable flow (NYC DEP Green Infrastructure Annual Report, 2016).

On August 1, 2015, New York City received its first municipal separate storm sewer system (MS4) permit, and is required to develop a stormwater management program (SWMP) plan within three years to address the various permit provisions. Two provisions specifically apply to construction and post-construction stormwater controls, of which there are two key components. The first component is to implement a program to enforce the existing state requirements for soil disturbances greater than or equal to one acre by August 1, 2018. These existing DEC requirements include a performance standard that prescribes a water quality control volume (WQv) ranging from 1.4 to 1.5 inches over different parts of New York City, which corresponds to the 90th percentile 24-hour storm volume appropriate for the City's geographic area. The second key component of this permit is to determine an appropriate reduction below one acre for the threshold triggering construction and post-construction stormwater management requirements. Accordingly, the City convened a group of stakeholders, including representatives from the developer and environmental advocacy communities, to determine a new threshold based on soil disturbance and/or creation of new impervious area for new and redevelopment projects. The determination of this threshold is guided by the anticipated benefits (stormwater volume and pollutant load reductions) and associated costs (construction and post-construction stormwater control implementation and operation and maintenance costs incurred by developers to meet the performance standard and municipal costs to administer the program).

In order to gain additional information from other urban cities and their stormwater regulations and associated administrative requirements for the long-term management of a construction and post-

construction stormwater program, DEP conducted a survey of peer utilities across the U.S. The utility survey was performed as a two-step process. A review of each utility's stormwater technical manual and other publicly available guidance/policy documents served as the first step of completing the questionnaire. In the second step, the utilities were contacted directly to fill in any information gaps based on documents that are not publicly available, including the specific administrative information that is not typically listed on utilities' websites.

Responses were recorded from participating utilities pertinent to a variety of construction and postconstruction stormwater management implementation, regulation, and management topics.

This technical memorandum summarizes the data and information acquired from the questionnaire's responses as well as information resulting from interviews conducted by DEP and the Arcadis team, and is supplemented by a review of existing publicly-available information. As noted earlier, key selected topics are highlighted in subsequent subsections.

2.0 DATA COLLECTION

In order to assess the administration of the construction and post-construction aspects of stormwater management programs across the U.S, the DEP and Arcadis team began by gathering data from other large utilities and regional utilities. A questionnaire was developed, and the team compiled more comprehensive information from 12 U.S. utilities. Most utilities provided responses to all questions, whereas some were only able to complete the questionnaire partially.

In addition to the 12 municipalities interviewed in this task, DEP has been communicating with five other utilities on combined sewer and MS4 regulatory requirements. Additional information from these five other municipal utilities (Fairfax County, VA; Indianapolis, IN; Miami, FL; New Orleans, LA; and Richmond, VA) on post-construction runoff threshold size and performance standard was also included in this memorandum.

Specifically, the selected peer utilities have advanced stormwater management programs hence adopted regulations to reflect that. These utilities are subject to national regulations for 1+ acre lots based on United States Environmental Protection Agency's (USEPA) or their respective state's MS4 programs, and have adopted thresholds of one acre or less for construction and post-construction stormwater control requirements. Most of the surveyed utilities also have combined and separate sanitary sewer systems or predominantly separate systems and administer their stormwater management programs related to construction and post-construction requirements. The 12 peer utilities chosen for the utility survey from across the U.S. are listed in Table 2-1.

Table 2-1: Utility Name and Location

Utility Name	Municipality
Department of Watershed Management	Atlanta, GA

Page: 4/30

Watershed Protection Department	Austin, TX
Department of Public Works (DPW)	Baltimore, MD
Boston Water and Sewer Commission (BWSC)	Boston, MA
Department of Water Management	Chicago, IL
Department of Sanitation	Los Angeles, CA
Philadelphia Water Department (PWD)	Philadelphia, PA
Bureau of Environmental Services (BES)	Portland, OR
Transportation and Storm Water Department	San Diego, CA
San Francisco Public Utilities Commission (SFPUC)	San Francisco, CA
Seattle Public Utilities (SPU)	Seattle, WA
District Department of the Environment (DOEE) for	Washington, D.C.
MS4 areas, DC Water for Combined areas	

The utilities' stormwater management programs have differed based on factors such as geographical location, maturity of the MS4 program, size of the community served, and various local priorities. Some programs have been around for over 10 years with well-established technical and administrative resources, while others are in the early to mid-stages of their programs.

2.1 Questionnaire Development

DEP sought to understand how other peer utilities with combined and separate sanitary sewer systems were administrating their stormwater management programs related to construction and post-construction requirements. A questionnaire was developed by the DEP and Arcadis team to support the documentation of other selected utilities' stormwater management programs/procedures in the areas including, but are not limited to, the following:

- Performance standards for stormwater best management practices (BMPs), such as WQv, peak flow reduction, erosion and sedimentation control (ESC), etc.
- Water quality and any watershed-specific requirements, such as total maximum daily loads (TMDLs)

- Compliance cost to the developer/owner, that can include total permit fee and cost of stormwater control measures (see Appendix C for municipal guidance documents with cost information)
- Administrative cost to the utility, that can include the number of staff required to review and administer permit applications and perform inspections, staff time required for reviews and inspections, and a typical number of permit applications received during construction and inspection applications received during post-construction
- Alternative means to meet the stormwater control requirements (e.g., offsets, credits, or in-lieu fees)
 if the implementation of controls is technically infeasible, and the associated waiver process if applicable.

The survey topics included technical, regulatory, administrative and financial elements and the full questionnaire is shown in Attachment A.

2.2 Interviews with Utilities

Once the questionnaire was prepared, DEP and the Arcadis team identified key utilities to target for responses. The utilities selected included some large utilities, regional utilities and utilities with known contacts. As reviewed in Table 2-1, the final list of utilities included: Atlanta, Austin, Baltimore, Boston, Chicago, Los Angeles, Philadelphia, Portland, San Diego, San Francisco, Seattle, and Washington DC.

The responding utilities comprise a broad range of utility size and customer accounts, ranging from service areas of 32 sq. miles to 735 sq. miles and populations ranging from 600,000 to 4,000,000 residents. Physical sewer system statistics also varied greatly in terms of miles of sewers and number of combined sewer overflow outfalls (CSOs) and stormwater (MS4) drainage areas and outfalls. Table 2-2 summaries key characteristics for each responding utility. The fields marked with "X" indicate that this characteristic data was not readily available in the utility's website and the utility did not provide a response during interviews.

Table 2-2. Utility Characteristics

Utility Name	Number of Customer Accounts/ Taps	Service Area Size (Sq. Miles)	Population Served	Total Miles of Public Storm Sewers	Total Miles of Public Sanitary Sewers	Total Miles of Public Combined Sewers	MS4 Drainage Area (Sq Miles)	Number of MS4 Outfalls
Atlanta	160,000	267	Х	158	1900	300	146	1,503
Austin	213,310	548	Х	2,789	Х	0	Х	Х
Baltimore	200,000	Х	1,800,000	1,146	3100	0	81.6	1,709
Boston	88,000	32	667,137	595	622	238	24	224

Page: 6/30

Utility Name	Number of Customer Accounts/ Taps	Service Area Size (Sq. Miles)	Population Served	Total Miles of Public Storm Sewers	Total Miles of Public Sanitary Sewers	Total Miles of Public Combined Sewers	MS4 Drainage Area (Sq Miles)	Number of MS4 Outfalls
Chicago	Х	234	2,700,000	50	>10	4,400	Х	156
Los Angeles	Х	600	4,000,000	Х	Х	0	103.9	38
Philadelphia	640,000	143	1,500,000	774	765	1,856	39.6	434
Portland	182,221	145	592,000	460	1001	910	24.2	39
San Diego	311,000	342	1,300,000	900	Х	0	Х	502
San Francisco	2,600,000	47	800,000	1000	3.84	7.91	2.3	97
Seattle	Х	84	630,000	Х	448	520	Х	Х
Washington DC	Х	735	2,000,000	Х	1900	Х	31.2	566

From February 2016 through August 2016, all 12 utilities were initially contacted for discussions on the questionnaire. E-mail follow-up and phone calls were held with utility staff from one or more departments (divisions) that manage the construction and post-construction requirements for onsite and public ROW projects. All the participating utilities expressed interest in the findings of the study.

2.3 Information from Additional Utilities

In addition to the 12 interviewed municipalities in this task, DEP has been communicating on CSO and MS4 program requirements with five additional utilities (New Orleans LA; Miami FL; Richmond VA; Fairfax County VA; and Indianapolis IN). A separate survey questionnaire was used to compile information from these additional utilities. Information pertinent to post-construction stormwater management requirement in terms of soil disturbance or new impervious cover threshold lot size was extracted by DEP from the responses of these five utilities and incorporated in the summary presented in this memorandum.

3.0 FINDINGS

Once all the 12 completed questionnaires were collected and the preliminary interviews were conducted, the results were compiled and summarized to provide a review of construction and post-construction stormwater management requirements and administrative processes. In general, all utilities have minor differences in performance standards as well as the administrative elements pertinent to the implementation and management of their respective stormwater management programs. The differences can be attributed to factors such as geographical location, maturity of the MS4 program, size of the community served, and

various local priorities. The key findings are highlighted in the subsequent subsections and were divided into three major areas for organizational purposes, as below. The remaining subject areas are included in the questionnaire in Attachment A, for which only some municipalities provided additional information. These partial information is not discussed in this memorandum.

- Performance standard (soil disturbance threshold and stormwater retention volume standard) and
 if in lieu fee or offsite mitigation is applied;
- Resource utilization (number of staff utilized, and the departments in which these staff reside); production using the given resources (number of permit reviews and inspections performed over a given period, average time spent on Stormwater Pollution Prevention Plan (SWPPP) reviews, and level of automation and web-based interfacing in the permit application process);
- Administrative costs (fees charged for stormwater management applications, reviews, and inspections, and where applicable, the costs for an expedited permit review).

3.1 Performance Standard

3.1.1 Threshold Size

Peer utilities focus on threshold size as an important performance standard. As the threshold size that determines construction or post-construction requirements decreases, the resulting number of permits or inspections that the utility staff perform increases significantly. On the other hand, the improvement in water quality in terms of volume and pollutant load reductions is minimal with smaller lots in comparison to the larger lots. Therefore, the information from peer utilities on threshold size provided insight on the tradeoffs between administrative and technical costs versus the achieved benefits.

The EPA Stormwater Phase II rule on Construction and Post-Construction Site Runoff Control mandates that an operator of a regulated small MS4 develops, implements, and enforces a pollutant reduction program for stormwater runoff from construction activities that result in a land disturbance greater than or equal to one acre (NPDES stormwater permit requirement). The thresholds for the utilities surveyed directly or literature compiled for the construction runoff control requirement (i.e., erosion and sediment control) are summarized in Figure 3-1. The utilities that require all construction activities include Austin, Los Angeles, Portland, San Diego, San Francisco and Seattle. On the other hand, Atlanta, Boston, Chicago, Indianapolis, and New Orleans use the recommended U.S. EPA Phase 2 Stormwater Guidance of one acre and above for construction runoff control. Richmond (VA) has implemented a 10,000 sq ft. threshold for meeting the construction runoff control requirement. The remaining surveyed utilities use construction thresholds of less than one acre with Baltimore, Fairfax County, Miami and Philadelphia applying the same thresholds for both construction and post-construction runoff control (see Figure 3-2 below).

Page: 9/30

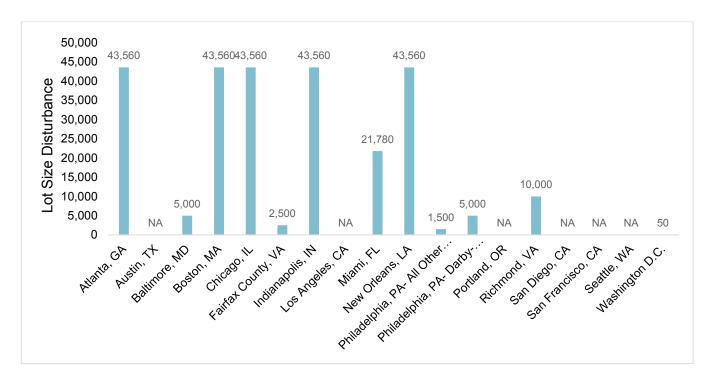
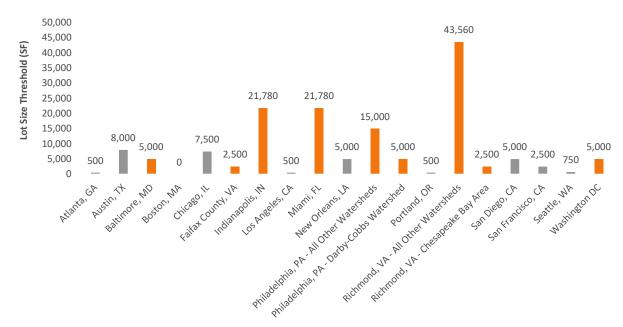



Figure 3-1. Lot Size Disturbance Construction Thresholds

The post-construction threshold size was specified based on the extent of soil disturbance within a new or redevelopment site or the increase in impervious cover resulting from new/redevelopment. The interviewed utilities and those reviewed based on available literature used either the new impervious or soil disturbance as thresholds, and Figure 3-2 summarizes these threshold sizes for these utilities. Several observations were made from the responses on threshold size.

Grey bars indicate impervious area creation threshold, Orange bars indicate soil disturbance area threshold

Figure 3-2. Lot Size Disturbance Post-Construction Thresholds

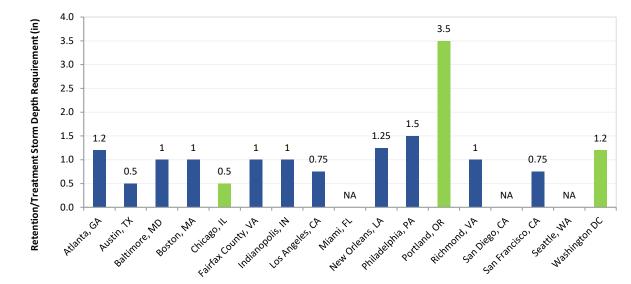
As shown in Figure 3-2, the selection of minimum post-construction thresholds varies significantly among cities of varied sizes and program development levels with respect to stormwater management in MS4 areas, including some with as high a threshold as one acre.

Most of the interviewed utilities or those with compiled literature have implemented a smaller than one-acre post-construction threshold, which refers to the condition that necessitates the permanent application of the stormwater control requirement for a property after construction (e.g., creation of XX sq. ft. of new impervious area, soil disturbance of YY sq. ft. during construction, etc.). This threshold is reported in Figure 3-1. Some cities such as Portland and Los Angeles have a very low threshold for their stormwater management programs (500 sq. ft.), and other cities such as Philadelphia have higher thresholds (15,000 sq. ft.), even for priority watersheds (5,000 sq. ft.). Additional utilities contacted by DEP have the following minimum thresholds:

- City of Miami and Indianapolis half-acre,
- New Orleans 5,000 sq. ft.,
- Fairfax County 2,500 sq ft., and
- Richmond (VA) one acre or 2,500 sq ft. for developments in the Chesapeake Bay Preservation Area.

While Portland has a low threshold of 500 sq ft., the permitting and inspections are done through a self-certification process for single family residential homes. Boston does not have a minimum soil disturbance

Page: 10/30 Page: 11/30


threshold, indicating that every new or redevelopment project requires a construction permit. On the other hand, Boston does not have a post-construction (inspection) requirement at this time, that reduces the administrative burden significantly. Therefore, the selection of minimum thresholds seems to vary significantly among cities of different sizes and varying maturity levels with respect to stormwater management in MS4 areas, with some even with as high a threshold as one acre.

DEP was also interested in whether the utilities with combined and separately sewered systems have different permit requirements for these two systems. Most of the utilities have the same performance standards and administrative requirements for both systems. However, some utilities such as Philadelphia, Portland, and San Francisco each impose requirements that differ between combined and separate areas for certain criteria. San Francisco has the same retention standard for combined areas and for large MS4 areas (>5,000 SF), and a less stringent standard for smaller MS4 areas (2,500-5,000 SF). Philadelphia has different infiltration volume requirements for combined and MS4 areas (i.e., 20% of directly connected impervious area to be routed through volume reduction stormwater management practice (SMP) in combined areas, whereas 100% of water quality control volume to be routed through infiltrating or treatment SMPs in MS4 areas). Similarly, Portland has different allowable discharge rates for the combined and MS4 areas (i.e., maintenance of pre-development rates for 2, 5 and 10-year 24-hour storms in all areas, whereas half the pre-development rates for 2-year 24-hour storm for areas that drain into waterways directly or MS4 outfalls to prevent channel erosion).

3.1.2 Stormwater Retention Volume Standard

The stormwater management or control volume standard specifies the extent of stormwater volume to be managed from disturbed areas (whether new impervious cover or soil disturbance area) with stormwater control measures (SCM). This volume standard can be adopted from state guidelines or developed to meet specific water quality improvement levels of service sought by individual utilities. It is often referred to as water quality volume (WQv).

Figure 3-3 depicts the distribution of rainfall depths used to compute WQv volumes as defined by each municipal utility. East coast utilities such as Boston and Philadelphia had a WQv in the range of 1 to 1.5 inches, which is typically the 90th percentile storm based on historical analysis of local precipitation records. San Diego and Seattle did not adhere to a uniformly applied volume value, instead defining their WQv requirements based on the 85th and 91st percentile storms, respectively, around the stormwater management asset.

Blue bars indicate retention and/or treatment requirement, Green bars indicate retention requirement -- treatment not an allowed alternative

Figure 3-3. Retention/Treatment Storm Depth Requirement

Potential soil and space constraints can limit the implementation of retention-based stormwater controls. This is particularly relevant to dense urban areas with compacted soils or underlying soil with poor permeability. It is important to recognize the soil and space constraints for SCM implementation and develop alternative compliance measures to achieve the same water quality improvement goals. One of the questions in the utility survey focused on whether the utilities offered alternative compliance strategies when individual lots have soil and/or space constraints. Some utilities (e.g., San Francisco, Portland, and Philadelphia) have developed a stormwater management hierarchy that requires retention and water reuse whenever possible, and provides detention and treatment of stormwater as secondary options.

Most utilities who participated in the survey offer alternative measures for sites that may not be able to meet the stormwater management requirements in the forms of in-lieu fees and offsite mitigation options.

The alternative measures are in the form of in-lieu fee (penalty for not implementing an SCM so that the money can be used to implement SCM in another feasible lot), offsite mitigation (implementation of SCM

Page: 12/30 Page: 13/30

in another feasible lot to compensate for not being able to implement at the site seeking a permit), or stormwater credit (similar to a trading model, where credits are created for implementation of SCMs and the site not being able to implement SCMs can buy credits from other lots that have already implemented more-than-required SCMs to create a credit).

These allowances tend to be awarded on a case-by-case basis, and usually the site needs to demonstrate an inability to infiltrate the necessary volume that would preclude it from offering stormwater management potential. Table 3-1 summarizes the options allowed by different utilities. An "X" for a measure indicates that this option is not offered by the utility and NA indicates that there was no reference as to whether this option was allowed or not.

Table 3-1. Alternative Compliance Measures

Utility Name	In-lieu Fee	Offsite Mitigation	Stormwater Credit
Atlanta	Х	✓	✓
Austin	√	✓	NA
Baltimore	~	√	✓
Boston	Х	Х	Х
Chicago	Х	Х	Х
Los Angeles	Х	✓	NA
Philadelphia	√	✓	√
Portland	Х	✓	NA
San Diego	√	✓	✓
San Francisco	√	✓	NA
Seattle	Х	NA	✓
Washington DC	Х	NA	✓

Boston and Chicago were the only cities that strictly adhere to on-site stormwater management regulations. Both Seattle and Washington DC did not explicitly state as to whether they would accept in-lieu fees or offsite mitigation, but they do utilize a stormwater credit system that offers some flexibility for developers to meet the stormwater management regulations.

3.2 Resource Utilization

This is a key consideration for a utility for overall management of the permits and inspections that need to be administered for a given threshold size. As the number of permits and inspections increase with smaller threshold sizes, more staff resources are needed to manage them effectively and efficiently. This consideration was sought in the questionnaire to peer utilities and the specific metrics requested are discussed below.

3.2.1 Staffing Allocation

Most utilities have different departments (e.g., Department of Public Works or Stormwater Programs or Buildings and Inspections) for review and approval of permits for construction requirements and for inspections after construction and long-term operation and maintenance. The utility survey focused on contacting these different departments to get a holistic picture of staff allocation and administration.

Table 3-2 presents the number of staff performing permit reviews and inspections. The number of staff utilized for review during construction varies significantly, from 1-2 staff dedicated to reviews and inspections in Boston to as many as 33 dedicated staff in Atlanta, with mostly engineers performing the permit reviews. There is also a wide range in the number of inspection staff for post-construction. Some utilities such as Boston do not currently have an inspection program, so there is no dedicated staff for inspections, whereas Washington DC and Seattle have more than 10 dedicated inspection staff.

Table 3-2. Number of Staff Performing Permit Reviews and Inspections

Utility Name	Construction Related	Post-Construction Related
Atlanta	33 full-time equivalents (FTEs) dedicated	33 FTEs dedicated to implementing SWMP
	to implementing SWMP	
Austin	No response given	No response given
Baltimore	Five staff doing both reviews and	Five staff in addition to review staff
	inspections	
	•	
Boston	1-2 for reviews and inspections	None specifically for inspections
	2-3 for review of site plans for new	
	development projects	
Chicago	Three Stormwater Reviewers (consultants)	Three Stormwater Reviewers (consultants) + Six
	+ Six Mason Inspectors (sewer inspectors)	Mason Inspectors (sewer inspectors)
Los Angeles	No staff dedicated- City does not inspect GI	Inspections of construction BMPs (conducted by
	on a regular basis, but initial inspection is carried	Sanitation Department): Five staff including one
	out during Certificate of Occupancy review	supervisor, plus time contributed by Public Works and
		Building and Safety Departments (FTE estimate not
		known by respondent)

Page: 14/30 Page: 15/30

Utility Name	Construction Related	Post-Construction Related
Philadelphia	Four FTE conceptual review staff, Seven FTE technical review staff, 5-6 FTE Active construction inspection group, Four FTE Data analysis/Project Tracking support group.	Consultant augmentation for review and inspection (Six Consultants), in addition to the City Staff.
Portland	 8-10 staff from Bureau of Development Services (BDS) do permit and design reviews Four more staff provide early assistance in preparing the permit applications. Five more staff for public projects. 8-10 more engineers in Bureau of Environmental Services Engineering Services Division to support the review. Six staff positions do construction phase inspections. Those staff do both Inspection and review, and rotate duties. 	 Inspections: Eight FTE + periodic inspection involvement by BES staff Inspections of large commercial/industrial projects (occur every three years): 1.5 FTE Additional as-needed support from contractors: 1-2 FTE
San Diego	 4-6 stormwater pollution prevention plan - SWPPP/Water Pollution Control Plan reviewers for City projects 4-6 for City projects and grading on private developments 	 For private project review, One Senior Engineer, three Associate Engineers, and three Assistant/Junior Engineers. For City project review, one Assistant Engineer and four consultants.
San Francisco	Two FTE Staff	 Stormwater control plan review: 2.5 FTEs Coordination of post-construction inspection: 1.5 FTE Construction permit-related work: One FTE Inspections carried out by Department of Building Inspections: 18 (one per zone) + two senior management staff
Seattle	No response given	 Building inspections: 10 (one per region), plus 2-3 management staff SWPPP and design reviews: Additional staff asneeded (FTE estimate not provided)
Washington DC	 Two staff at permit office performing erosion and sediment control (E&SC) reviews 12-15 in-house staff for full reviews (including post-construction) 2-3 consultant staff assisting in full reviews (including post-construction) 	12 staff performing inspections

Table 3-3 details the departments and contractors (if applicable) involved in or tasked with permit reviews and inspections. While some cities such as Boston, Portland, and Seattle concentrate permit reviews and inspections within only one or two departments, other cities such Los Angeles, Philadelphia, and San Diego involve at least three departments in permit review and inspection tasks. This was partly the reasoning for not being able to obtain complete responses to the questionnaire, as the staff from different departments who were responsible for administrative aspects were not present during the telephone interviews.

Table 3-3. Departments/Contractors Involved In/Tasked with Permit Reviews and Inspections

Utility Name	Construction Related	Post-Construction Related
Atlanta	Department of Watershed Management	Department of Watershed Management
Austin	Watershed Protection Department	Watershed Protection Department
Baltimore	Department of Public Works	Department of Housing and Community
		Development (HCD)
		Department of Planning
		Department of Public Works (DPW).
Boston	Boston Water and Sewer Commission	Boston Water and Sewer Commission
Chicago	Department of Buildings (consultant)	Department of Buildings (consultant
	stormwater reviewers)	stormwater reviewers)
	Department of Water Management	Department of Water Management (mason
	(mason inspectors)	inspectors)
Los Angeles	Department of Sanitation	Department of Sanitation
	Department of Public Works – Bureau of	Department of Public Works – Bureau of
	Contract Administration	Contract Administration
		Department of Building and Safety Inspection
Philadelphia	Philadelphia Water Department	Philadelphia Water Department
Portland	Bureau of Environmental Services	Bureau of Environmental Services
	Bureau of Development Services	Bureau of Development Services
San Diego	Public Works Department - Construction	The City's Storm Water Division
	Management & Field Services	(Construction & Development Standards section)
	Development Services Department (either	Each asset owning department maintains
	Drainage & Grades section, Storm Water	structural best management practices - BMPs
	section, or Utilities Section) reviews the	(Public Utilities, libraries, fire stations, etc).

Page: 16/30 Page: 17/30

Utility Name	Construction Related	Post-Construction Related
	SWPPP/WPCP for private projects depending on project type.	 The Storm Water operations and maintenance (O&M) division maintains structural BMPs on park parcels and in the right-of-way. Development Services Department conducts reviews for private development projects.
San Francisco	 Port of San Francisco San Francisco Public Utilities Commission 	 Stormwater regulations: Port of San Francisco or San Francisco Public Utilities Commission (jointly) Utility inspections: Department of Building Inspections
Seattle	 Seattle Public Utilities Review and permitting for lots >1 acre: Department of Ecology (state) 	 Seattle Public Utilities Seattle Department of Construction and Inspections
Washington DC	 DC Water for Combined areas District Department of Environment (DDOE) for MS4 areas 	 DC Water for Combined areas District Department of Environment (DDOE) for MS4 areas

3.2.2 Production Using Given Resources

The survey also requested information from utilities on how many permits/inspections were performed to get information on the production aspects. This information can be used to guide the number of staff members needed for New York City's program based on the chosen threshold size.

Fewer responses were received for the number of permit reviews and inspections performed over the given period and the average time spent on SWPPP reviews by the permit reviewer. Therefore, any conclusions regarding trends between utilities could not be drawn. However, the responses received present some interesting points for consideration. As far as permit application reviews, the economic downturn affected the number of projects being constructed and therefore the number of permits reviewed in Portland. As far as the average time spent on SWPPP reviews, all respondents note that it depends on the complexity of the project. However, Portland has also indicated that incorporating a web-based interface has increased the speed of the review process. Table 3-4 details the number of permit reviews and inspections performed over the given period and Table 3-5 provides the average time spent on SWPPP reviews by the permit reviewer, who is usually an engineer, planner, or architect.

Table 3-4. Number of Permit Reviews and Inspections Performed

Utility Name	Construction Related	Post-Construction Related
Atlanta	5,283 Site Plan Reviews Conducted (2016 Annual MS4 Report)	 47 Inspections of Industrial Facilities (2016 Annual MS4 Report) 14,087 Construction Sites Inspections (2016 Annual MS4 Report) 59 Highly Visible Pollutant Source Facilities Inspected (2016 Annual MS4 Report)
Austin	1,754 Site Development Plans Reviewed (Fiscal Year 2015)	 455 Inspections by Stormwater Discharge Permit Program (Fiscal Year 2015) 20,824 Inspections by Environmental Inspection Program (Fiscal Year 2015) 156 Inspection by On-site Sewage Facility (Fiscal Year 2015) 866 residential and 1,322 commercial water quality and detention ponds by Watershed Protection Department (Fiscal Year 2015)
Baltimore	 130 Concept Plans Received (Fiscal Year 2015) 94 Site Development Plans Received (Fiscal Year 2015) 2,164 Inspections of ESD treatment practices and stormwater management facilities during construction phase (Fiscal Year 2015) 	211 Inspections of ESD treatment practices and structural stormwater management facilities as preventive maintenance inspections (Fiscal Year 2015)
Boston	~480 Site Plans Reviewed	None - BMPs inspected following construction, but not regularly inspected after construction
Chicago	• 250 to 300	300 to 500 inspections performed by stormwater reviewers
Los Angeles	No response given	No response given

Page: 18/30 Page: 19/30

Utility Name	Construction Related	Post-Construction Related
Philadelphia	 1,400 Reviews total (conceptual, post construction stormwater management plan, Erosion and Sediment Control, and record drawing reviews combined) 650 reviews performed for PCSM. Most projects undergo 3-5 reviews before they are approved. Active construction projects may be inspected as frequently as once/week or more during SMP installation 	Since 2011, performed over 3,100 inspections per year. Of that, 200 (6%) are post-construction inspections.
Portland	 Before recession: 100-150/year for projects over 500 sq. ft. After recession: 25/year (average) 	 Green streets (public right-of-way): 1,700 facilities inspected 4 times per year. Private facilities: 1,340 facilities at 645 properties were inspected during fiscal year 2015 (does not currently included single-family residential).
San Diego	No response given	 In Fiscal Year 2015, 339 projects that required structural BMPs were approved. Number of construction inspections depend on whether construction takes place during the wet or dry season and the disturbance area of the project, ranging from weekly, biweekly, monthly to as-needed.
San Francisco	• FY 2014 – 38, FY 2015 - 26	Over 100 approved projects and associated inspections on a 3-year cycle (approx. 25% of final projects in the MS4 area, rest in combined areas)
Seattle	No response given	No response given
Washington DC	3,775 in 2015 (of which ~200 include post- construction controls)	In 2015: 1,085 for projects including post- construction controls and 1,150 for E&SC

Table 3-5. Average Time Spent on SWPPP Reviews

Utility Name	Construction Related
Atlanta	No response given
Austin	No response given
Baltimore	No response given

Utility Name Construction Related • 0.5 Days for SWPPP (Site plan could take longer depending on complexity of site) **Boston** Chicago • 5 to 10 business days to review a submittal • Typically, three rounds of reviews plus the final approval takes 6-10 weeks, depending mostly on the responsiveness of the designer. Depends on the project. Some projects have taken up to a week for review. Los Angeles Philadelphia • Approximately 36 hours in PCSM Review total per project. • All projects reviewed within 15 days of receipt (five days for expedited review). Portland • Depends on the project. San Diego • 1-3 hours depending on project size, submittal quality, and reviewer experience. San Francisco • 3 -5 days depending on complexity of the plan Seattle No response given Washington DC • Current average of 34 days per review round (target of 30 days)

The economic downturn affected the number of projects being constructed and the number of permits reviewed in Portland. As far as the average time spent on SWPPP reviews, all respondents noted that it depends on the complexity of the project. However, Portland also indicated that incorporating a web-based interface had increased the speed of the review process.

Table 3-6 describes the level of automation and online interfacing each utility has in its permit application process were also reviewed. Portland has an electronic application process, and both Philadelphia and Washington DC utilize similar web-based processes to accelerate the review process and ease some of the administrative burden. San Francisco allows for electronic submission of some applications, and Chicago offers a stormwater detention calculation tool for developers to use in developing their applications. However, most utilities still work with print-based applications.

Table 3-6. Level of Automation/Web Interfacing in the Permit Application Process

Utility Name	Construction Related	
Atlanta	No automation	
Austin	No automation	
Baltimore	No automation	
Boston	No automation	

Page: 20/30

Utility Name	Construction Related		
Chicago	Yes, spreadsheet Tool provided via website for aid in calculating required		
	stormwater detention		
Los Angeles	No response given		
Philadelphia	Yes, customized online application and applicant login. All technical guidance is web		
	based.		
Portland	Yes, web-based interface for permit application preparation		
San Diego	No automation		
San Francisco	No automation, but Construction Runoff Permit Application and E&SC Plan can be		
	submitted electronically, Construction Runoff Permit can be filled in online in PDF form		
Seattle	No automation		
Washington DC	Yes all projects must use online Stormwater Database (including standalone)		
	E&SC), and DDOE provides a compliance calculator spreadsheet for developer use		

3.3 Administrative Costs

The indicators for administrative costs included the number of staff to manage permits, perform construction permit inspections and post-construction periodic inspections, as well as the number of permits/inspections handled and the departments/municipal jurisdictions that manage the permitting and inspections. Full-time salary and benefits of permitting/inspection staff and the supervisors' time increase significantly with smaller threshold sizes due to the large number of permits/inspections involved. Considering the minimal water quality improvement associated with smaller threshold sizes, the overall cost-benefit comparison needs to include both technical costs for implementation of SCMs by property owners and the administrative costs for utility staff to administer them.

Based on the survey responses, it was observed that mature stormwater management programs have a larger number of staff as well as dedicated funding mechanisms (e.g., stormwater utility, component stormwater bill to customers, etc.), whereas the newer programs are still establishing the staffing and funding needs.

Compliance cost to the developer/owner includes the total permit fee and cost of stormwater control measures. Since this overall cost depends on the size of the project, the number of inspections required during construction and post-construction, soil type that will guide the type of feasible control measures, and other preferences of developer/owner such as the LEED certification. Therefore, utility-specific compliance costs were unavailable from this utility survey.

Administrative costs must be recovered through appropriation of additional budget to the permitting/inspection operations (thereby increasing the financial burden on the utility) or through full-cost recovery with permitting/inspection fees charged to the property owners. One of the survey questions focused on whether specific utilities adopted financial models based on discussions with ratepayers and elected officials.

The fees charged for stormwater management applications, reviews, and inspections vary as shown in Table 3-7. Most utilities have fees for construction review, but do not have post-construction inspection fees. Fees range from no fee in San Francisco, where stormwater fees are included as part of the regular water and sewer fees; to Los Angeles, where there is a city fee for construction and only a state fee for post-construction; to over \$10,000 for a combination of several different fees in Washington, DC.

Table 3-7. Fees Charged for Stormwater Management Applications, Reviews, and Inspections

Utility Name	Construction Related	Post-Construction Related	
Atlanta	No specific stormwater fee in Land	No post-construction inspection fees	
	Development Permit application		
Austin	Street and Drainage Full Development	No post-construction inspection fees	
	Application - \$1,796.40.		
	Initial permit fee is in the \$4,000-6,000		
	range for residential and increases for		
	commercial		
Baltimore	Initial plan review - \$500;	No post-construction inspection fees	
	 Permit fee - \$2,500 to \$8,000 by DPW 		
Boston	No specific stormwater fee, generic	Fees vary by type of inspection, as seen in	
	application fee applies	Exhibit C – Special Service Fee Schedule in	
		2015 Rate Document	
Chicago	\$1,000 stormwater review fee	Fees vary by type of inspection, as seen in	
	(developments <50,000 sq ft)	2005 Sewer Permit Requirements and Fees	
	\$3,000 stormwater review fee	document	
	(developments >50,000 sq ft)		
Los Angeles	Single-family residential: \$204 (starting)	City doesn't charge separately, but there is a	
	Industrial, commercial, multi-family residential	State fee for post-construction inspection.	
	(greater than 5 units): \$1,000 (starting)		

Page: 22/30 Page: 23/30

Utility Name	Construction Related	Post-Construction Related
Philadelphia	 Conceptual SWMP review and approval: \$600 Post Construction SWMP: \$600 + \$90/hour for review 	No post-construction inspection fees
Portland	• Fee: \$715	 Commercial Stormwater Facility Inspection Fee - \$473 Additional fees listed in 2015-2016 Sewer and Drainage Rates and Charges
San Diego	 No fee for public project review Private development projects subject to fees as per Bulletin 501 (January 2016) 	 Stormwater high-priority inspection: \$240 (covers the first four) Additional: \$240 (each)
San Francisco	None at this time	 None at this time (no stormwater fees); included as part of water/wastewater fees Review fee to recover some of the program costs is currently in development
Seattle	\$95 minimum fee for drainage review, additional fee at \$190 hourly rate	No post-construction inspection fees
Washington DC	Range of fees based on review type (E&SC, SWMP, etc.), stage of review, and land disturbance area	No post-construction fees

Another consideration that was of interest to DEP was whether the utilities imposed surcharges or additional fees for expedited review of permit applications documented on Table 3-8. Of the utilities surveyed, only Los Angeles and Philadelphia have a formal expedited permit review process and additional fees charged for an expedited review. While Los Angeles requires a higher cost for an expedited review, Philadelphia offers it as an incentive depending on the SCMs used.

Table 3-8. Presence of an Expedited Review Process and Additional Fees Charged for an Expedited Review

Utility Name	Construction Related		
Atlanta	No process		
Austin	No process		
Baltimore	Not currently, but expedited review process for small restoration projects is being explored		

approach to the developer community, in which retention is the highly preferred strategy, and detention or

Page: 24/30

Page: 25/30

Utility Name	Construction Related
Boston	No process
Chicago	Yes – "Green Permit Process"
	Additional cost not given
Los Angeles	Yes- expedited timeframe for review offered if surcharge fee paid
	Fee is a surcharge of 50% on the regular fee
Philadelphia	Yes- Disconnection Green Review and Surface green Review
	No additional costs; expedited review is one incentive offered based on the type of BMP
	used
Portland	No formal process for expedited review
San Diego	Yes – "Express Plan Check"
	Additional cost not given
San Francisco	None, but special request by involved properties can be accommodated.
	Additional cost not given
Seattle	No response given
Washington DC	Only for special District projects (e.g., DC Water)
	Additional cost not given

4.0 CONCLUSIONS

The responses gathered from 12 interviewed utilities represent stormwater management programs in various stages of development and implementation. The findings also indicated that there is a wide variation among the responding utilities in the administration of stormwater management and the performance standards that developers are required to follow. Some programs are mature (more than 10 years old) and efficiently manage the permitting and inspections, while others are in the early to mid-stages of the program with evolving staffing and financial resources.

In addition to the 12 interviewed utilities, DEP has been communicating with five other utilities for CSO and MS4 permitting programs. These utilities included Richmond VA, Fairfax County VA, Indianapolis IN, Miami FL, and New Orleans LA. Arcadis team also compiled information from its major clients across the country.

Most utilities establish performance standards for stormwater management to address their water quality and watershed-based (e.g., TMDL or healthy streams) requirement needs. Peak flow mitigation, WQv, and detention performance standards are developed to achieve these goals. Some utilities offer a tiered approach to the developer community, in which retention is the highly preferred strategy, and detention or

connection to combined sewers is the least preferred strategy and only an option when retention or treatment-based controls are infeasible. WQv typically ranged from 1.2 to 1.5 inches.

Both construction and post-construction thresholds vary significantly among cities of varied sizes and program development levels with respect to stormwater management in MS4 areas. Construction stormwater runoff threshold varies from all activities (Austin, Los Angeles, Portland, San Diego, San Francisco and Seattle) to one acre (Atlanta, Boston, Chicago, Indianapolis, and New Orleans) with a number of utilities in-between (e.g., Richmond VA with 10,000 SF). Baltimore, Fairfax County, Miami and Philadelphia use the same thresholds for both construction and post-construction runoff control.

The minimum post-construction stormwater runoff threshold based on soil disturbance or increase in impervious cover ranges from no-minimum value for Boston to one acre for Richmond (outside Chesapeake Bay Area) with most of the interviewed utilities using a smaller than one acre threshold based on local needs and priorities. Some utilities have low threshold requirements for post-construction, but they allow self-certification by single family residential thereby reducing their administrative workload significantly. Philadelphia for Darby Cobbs watershed and Richmond for Chesapeake Bay Preservation Areas have different thresholds for the rest of their respective communities to meet their specific watershed-based requirements.

Most utilities that have combined and MS4 areas have chosen the same minimum threshold for stormwater controls. Some utilities (e.g., Philadelphia and San Francisco) have developed specific provisions for combined and MS4 areas.

Even though this questionnaire was primarily aimed at on-site projects, one of the questions focused on the right-of-way (ROW) stormwater control from a standpoint of watershed-based pollutant sources mitigation. Most utilities follow the national guideline of >1 acre for ROW projects. Some utilities have developed policies and associated performance standards for ROW projects (e.g., Portland's Green Street policy developed in 2007 to reduce flows and pollutant loads from over 60% of the city's stormwater that was estimated to be generated from ROW and adjacent private driveways).

REFERENCES

State of Georgia, Stormwater Management Manual, 2016 Edition. Adopted by Atlanta (GA).

City of Atlanta (GA), Green Infrastructure for Single Family Residences, City of Atlanta Stormwater Guidelines, November 2012.

City of Austin (TX), Environmental Criteria Manual, Updated in August 2017.

City of Austin (TX), Drainage Criteria Manual, Updated in May 2017.

City of Baltimore (MD), Stormwater Management Manual, Department of Public Works, February 2003.

City of Boston (MA), Stormwater Best Management Practices: Guidance Document, Boston Water and Sewer Commission, January 2013.

City of Chicago (IL), 2016 Regulations for Sewer Construction and Stormwater Management, Department of Water Management, January 2016.

City of Chicago (IL), Stormwater Management Ordinance Manual, January 2014.

County of Los Angeles (CA), Low Impact Development Standards Manual, Department of Public Works, February 2014. Adopted by City of Los Angeles (CA).

City of Philadelphia (PA), Stormwater Management Guidance Manual, Philadelphia Water Department, 2015.

City of Portland (OR), Stormwater Management Manual, 2016.

City of Portland (OR), Source Control Manual, August 2016.

City of Portland (OR), Erosion and Sediment Control Manual, Bureau of Environmental Services and other City Bureaus, March 2008.

City of San Diego (CA), Storm Water Standards Manual, Accessed in 2016. Updated in 2018.

City of San Francisco (CA), Stormwater Management Requirements and Design Guidelines, May 2016.

City of Seattle (WA), Stormwater Manual, Seattle Public Utilities, August 2017.

Washington (DC), Stormwater Management Guidebook, District Department of the Environment, July 2013.

Miami-Dade County (FL), Stormwater Design and Construction Standards. Accessed in November 2016. Adopted by City of Miami (FL).

New Orleans (LA), Stormwater Management Manual, Accessed online in November 2016 and in March 2018.

State of Louisiana, Stormwater BMP Guidance Tool – A Stormwater BMP Guide for Orleans and Jefferson Parishes, State of Louisiana Department of Environmental Quality, September 2010.

Commonwealth of Virginia, 2013 Virginia Stormwater Management Handbook (Second Edition, DRAFT), Adopted by Fairfax County (VA).

Fairfax County (VA), Code of Ordinances Chapter 124 on Stormwater Management Ordinance, Accessed in November 2016.

City of Indianapolis (IN), Stormwater Design and Construction Specifications Manual, June 2011.

City of Richmond (VA), Chesapeake Bay Preservation Program, Public Information Manual, Adopted in March 2009.

Page: 26/30

City of Richmond (VA), Stormwater Management Design and Construction Standards Manual, Department of Public Utilities, July 2012.

Attachment A

The blank questionnaires for construction and post-construction related criteria circulated to and discussed with various municipalities are shown in the following two tables.

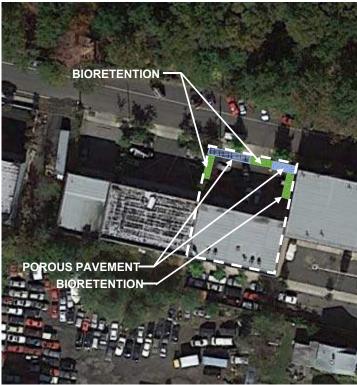

	CONSTRUCTION RELATED	City 1	City 2
	Retention Criterion		
	Water Quality (WQv) Criterion		
Technical Criteria	Public Right of Way		
	Detention (Peak Discharge Reduction) Criterion		
	Extreme Storm		
	Erosion and Sediment Control Plan/SWPPP Requirement		
ınical	Offsite alternatives (offsets, trade credits, etc.)		
Tech	Watershed-based Criterion (Geomorphology, TMDL, Instream Erosion Control, etc.) - Please specify		
	Existence of variance opportunities (waivers, offsite alternatives, in-lieu fees, etc.)? If so, briefly describe the process (distinguish those allowed "by-right" and those require special approval).		
	Number of Reviews Performed Per Year		
	Number of Staff Performing Reviews (in-house or contractor)		
	Number of Staff performing both Reviews and Inspections		
Administrative Criteria	Any automation in permit application (e.g., eNOI, customized online applications)		
	Municipal Department tasked with Reviews and Inspections, or Private if conducted by contractors		
	Fees charged for stormwater management applications, reviews, and inspections		
	Provision of waiver for post-construction BMP Requirement? If so what qualifies for waiver?		
AC	How many waiver applications per year?		
	Average time spent for SWPP reviews?		
	Existence of an expedited review process? If so briefly describe the process		
	Additional fees charged for expedited review		
	Type of BMP applied for by developer and cost, if available.		

Page: 28/30

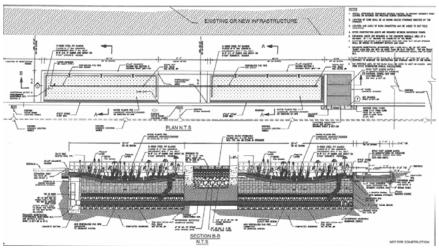
	POST-CONSTRUCTION RELATED	City 1	City 2
	Retention Criterion	•	•
	Water Quality (WQv) Criterion		
	Public Right of Way		
<u>a</u> .	Difference in criteria for MS4 vs. Combined Areas		
Technical Criteria	Detention (Peak Discharge Reduction) Criterion		
ical (Extreme Storm (Flood Control)		
echn	Offsite alternatives (offsets, trade credits, etc.)		
-	Watershed-based Criterion (Geomorphology, TMDL, Instream Erosion Control, etc.) - Please specify		
	Existence of variance opportunities (waivers, offsite alternatives, in-lieu fees, etc.)? If so, briefly describe the process (distinguish those allowed "by-right" and those require special approval).		
	Number of Inspections performed per year		
	Number of Staff performing Inspections (in-house or contractor)		
	Number of Staff performing both Reviews and Inspections		
teria	Existence of a Maintenance/Inspection Checklist		
Administrative Criteria	Municipal Department tasked with Reviews and Inspections, or Private if conducted by contractors		
inistra	Fees charged for stormwater management applications, reviews, and inspections		
Adm	Provision of waiver for post-construction BMP Requirement? If so what qualifies for waiver?		
	How many waiver applications per year?		
	Type of BMP applied for by developer and cost, if available.		

APPENDIX B

Conceptual SCM Designs


Page: 30/30

CATEGORY A - INDUSTRIAL PROPERTY


MS4 - SPACE UNCONSTRAINED - SOIL CONSTRAINED

SITE SCHEMATIC with STORMWATER CONTROL MEASURE (SCM)

SCM SCHEMATIC

SITE INFORMATION

Address: 141 Storer Avenue, SI BBL: 5073110035 Block: 7311 Lot: 35

DESIGN CRITERIA

Area Disturbed: 8,000 sf New Impervious Area: 8,000 sf Runoff Volume: 1,000 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Bioretention w/ UD SCM Area: 400 sf SCM Area as % of Total Lot: 5% Retention Volume: 650 cf Detention Volume: N/A Treatment Volume: N/A

SCM Practice 2: Porous Pavement Bridge SCM Area: 460 sf Impervious Coverage: 6% Retention Volume: N/A Detention Volume: 360 cf Treatment Volume: N/A

Total Runoff Retention: 0%
Total Runoff Detention: 100%
Total Runoff Treatment: 100%

GENERAL ASSUMPTIONS

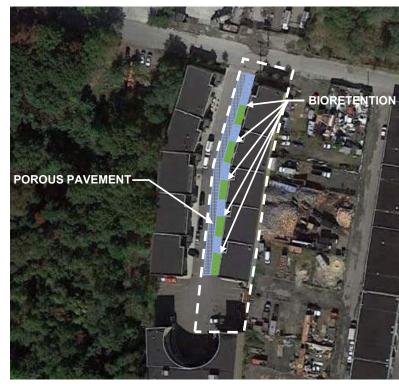
Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

Type: Bioretention w/ Underdrain
BR Dim.: 22'L x 6'W x 4'H
22'L x 6'W x 4'H
22'L x 6'W x 4'H
Porous Pave.:28'L x 6'W x 2'H
48'L x 6'W x 2'H
Permanent Pooling: 6"
BR Media Depth: 36" Engineered Soil
12" Open-Graded
Stone Base
6" Perforated PVC
Media Porosity: 25 % vol, 33% vol
PP Media Depth: 9" Permeable Paver

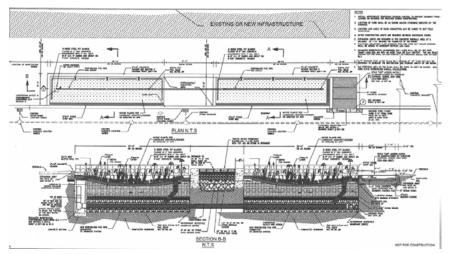
Media Porosity: 40 % vol, 33% vol

10" Open-Graded


Stone Base

CATEGORY B - INDUSTRIAL PROPERTY

MS4 - SPACE UNCONSTRAINED - SOIL CONSTRAINED


SITE SCHEMATIC with STORMWATER CONTROL MEASURE (SCM)

SCM SCHEMATIC

GENERAL ASSUMPTIONS

Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SITE INFORMATION

Address: 11 Brick Ct, SI BBL: 5074000100 Block: 7400 Lot: 100

DESIGN CRITERIA

Area Disturbed: 27,900 sf New Impervious Area: 27,900 sf Runoff Volume: 3,490 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

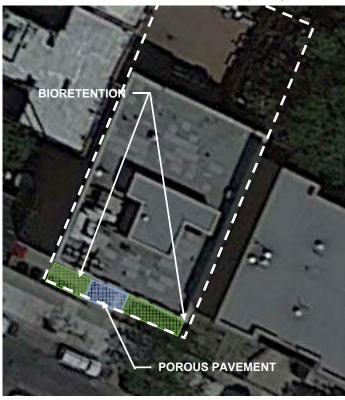
SCM Practice 1: Bioretention w/ UD SCM Area: 1,620 sf SCM Area as % of Total Lot: 4% Retention Volume: 650 cf Detention Volume: N/A Treatment Volume: N/A

SCM Practice 2: Porous Pavement Bridge

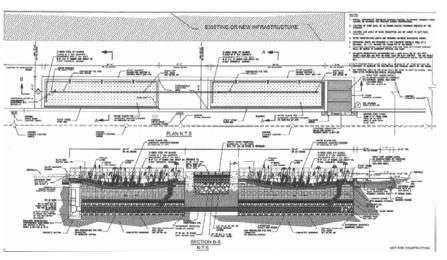
SCM Area: 2,370 sf Impervious Coverage: 8% Retention Volume: N/A Detention Volume: 1,870 cf Treatment Volume: N/A

Total Runoff Retention: 0%
Total Runoff Detention: 100%
Total Runoff Treatment: 100%

SCM ASSUMPTIONS


Type: Bioretention w/ Underdrain BR Dim.: 33'L x 6'W x 4'H Porous Pave.:20'L x 6'W x 2'H 20'L x 6'W x 2'H 20'L x 6'W x 2'H 20'L x 6'W x 2'H 35'L x 6'W x 2'H 280'L x 6'W x 2'H Permanent Pooling: 6" BR Media Depth: 36" Engineered Soil 12" Open-Graded Stone Base 6" Perforated PVC Media Porosity: 25 % vol, 33% vol PP Media Depth: 9" Permeable Paver 10" Open-Graded Stone Base Media Porosity: 40 % vol, 33% vol

CATEGORY A - COMMERCIAL PROPERTY


MS4 - SPACE UNCONSTRAINED - SOIL CONSTRAINED

SITE SCHEMATIC with STORMWATER CONTROL MEASURE (SCM)

SCM SCHEMATIC

SITE INFORMATION

Address: 141 South 3 Street, BK BBL: 3024180045 Block: 2418 Lot: 45

DESIGN CRITERIA

Area Disturbed: 7,450 sf New Impervious Area: 6,710 sf Runoff Volume: 840 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Bioretention w/ UD SCM Area: 400 sf SCM Area as % of Total Lot: 5% Retention Volume: 650 cf Detention Volume: N/A Treatment Volume: N/A

SCM Practice 2: Porous Pavement Bridge

SCM Area: 460 sf Impervious Coverage: 6% Retention Volume: Detention Volume: 360 cf Treatment Volume: N/A

Total Runoff Retention: 0% Total Runoff Detention: 100% Total Runoff Treatment: 100%

GENERAL ASSUMPTIONS

Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

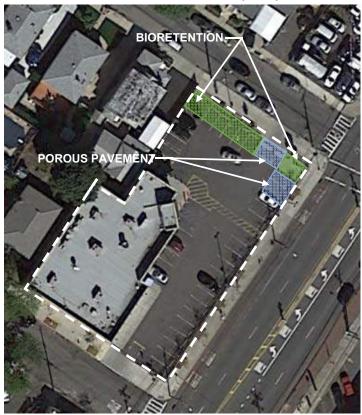
Type: Bioretention w/ Underdrain BR Dim.: 22'L x 9'W x 4'H 17'L x 9'W x 4'H Porous Pave.: 18'L x 10'W x 4'H Permanent Pooling: 6"

BR Media Depth: 36" Engineered Soil

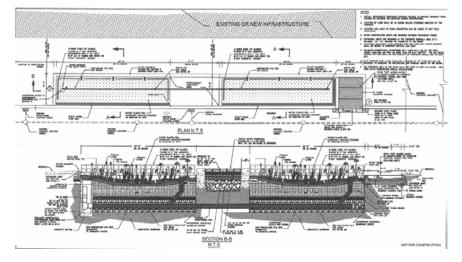
12" Open-Graded
Stone Base
6" Perforated PVC

Media Porosity: 25 % vol, 33% vol PP Media Depth: 24" Permeable

Paver 24" Open-Graded


Stone Base Media Porosity: 40 % vol, 33% vol

CATEGORY B - COMMERCIAL PROPERTY


MS4 - SPACE UNCONSTRAINED - SOIL CONSTRAINED

SITE SCHEMATIC with STORMWATER CONTROL MEASURE (SCM)

SCM SCHEMATIC

SITE INFORMATION

Address: 1759 Hylan Blvd, SI BBL: 5033450032 Block: 3345 Lot: 32

DESIGN CRITERIA

Area Disturbed: 21,600 sf New Impervious Area: 21,600 sf Runoff Volume: 2,700cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Bioretention w/ UD SCM Area: 1,220 sf SCM Area as % of Total Lot: 9% Retention Volume: 1,990 cf Detention Volume: N/A Treatment Volume: N/A

SCM Practice 2: Porous Pavement Bridge

SCM Area: 910 sf Impervious Coverage: 3% Retention Volume: N/A Detention Volume: 710 cf Treatment Volume: N/A

Total Runoff Retention: 0%
Total Runoff Detention: 100%
Total Runoff Treatment: 100%

GENERAL ASSUMPTIONS

Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

Type: Bioretention w/ Underdrain BR Dim.: 60'L x 16'W x 4'H 16'L x 16'W x 4'H

Porous Pave.:22'L x 16'W x 2'H

35'L x 16'W x 2'H Permanent Pooling: 6"

BR Media Depth: 36" Engineered Soil 12" Open-Graded

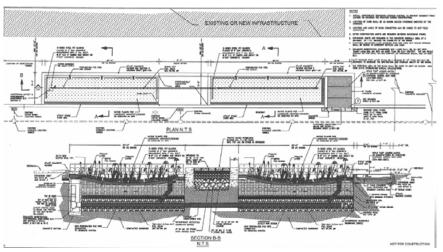
> Stone Base 6" Perforated PVC

Media Porosity: 25 % vol, 33% vol PP Media Depth: 9" Permeable Paver

> 10" Open-Graded Stone Base

Media Porosity: 40 % vol, 33% vol

CATEGORY A - RESIDENTIAL PROPERTY


MS4 - SPACE UNCONSTRAINED - SOIL CONSTRAINED

SITE SCHEMATIC with STORMWATER CONTROL MEASURE (SCM)

SCM SCHEMATIC

SITE INFORMATION

Address: 262 Corbin Place, BX BBL: 3087230267 Block: 8723 Lot: 267

DESIGN CRITERIA

Area Disturbed: 6,440 sf New Impervious Area: 6,440 sf Runoff Volume: 804 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Bioretention w/ UD SCM Area: 240 sf SCM Area as % of Total Lot: 4% Retention Volume: 390 cf Detention Volume: N/A Treatment Volume: N/A

SCM Practice 2: Porous Pavement Bridge

SCM Area: 560 sf Impervious Coverage: 9% Retention Volume: 830 cf Detention Volume: N/A Treatment Volume: N/A

Total Runoff Retention: 0% Total Runoff Detention: 100% Total Runoff Treatment: 100%

GENERAL ASSUMPTIONS

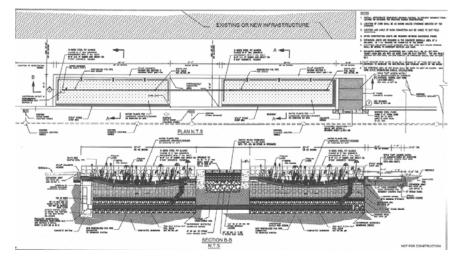
Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

Type: Bioretention w/ Underdrain BR Dim.: 20'L x 6'W x 4'H 20'L x 6'W x 4'H Porous Pave.:28'L x 20'W x 2'H Permanent Pooling: 6" BR Media Depth: 36" Engineered Soil 12" Open-Graded Stone Base 6" Perforated PVC Media Porosity: 25 % vol, 33% vol PP Media Depth: 9" Permeable Paver 10" Open-Graded Stone Base

Media Porosity: 40 % vol, 33% vol

CATEGORY B - RESIDENTIAL PROPERTY


CS/MS4 - SPACE UNCONSTRAINED - SOIL UNCONSTRAINED Environmental

SITE SCHEMATIC with STORMWATER CONTROL MEASURE (SCM)

SCM SCHEMATIC

SITE INFORMATION

Address: 14 Ottavio Promenade, SI BBL: 5077750135 Block: 7775 Lot: 135

DESIGN CRITERIA

Area Disturbed: 14,940 sf New Impervious Area: 6,720 sf Runoff Volume: 840 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Bioretention w/ UD SCM Area: 270 sf SCM Area as % of Total Lot: 4% Retention Volume: 430 cf Detention Volume: N/A Treatment Volume: N/A

SCM Practice 2: Porous Pavement Bridge SCM Area: 530 sf Impervious Coverage: 8% Retention Volume: N/A Detention Volume: 420 cf

Treatment Volume: N/A

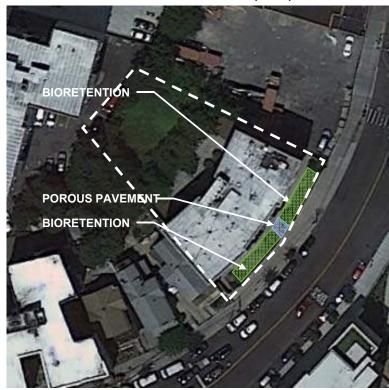
Total Runoff Retention: 0% Total Runoff Detention: 100% Total Runoff Treatment: 100%

GENERAL ASSUMPTIONS

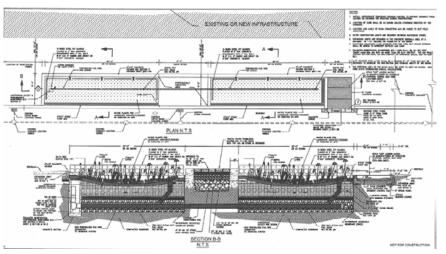
Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

Type: Bioretention w/ Underdrain BR Dim.: 24'L x 11'W x 4'H Porous Pave.:24'L x 22'W x 2'H Permanent Pooling: 6" BR Media Depth: 36" Engineered Soil 12" Open-Graded Stone Base 6" Perforated PVC Media Porosity: 25 % vol, 33% vol PP Media Depth: 9" Permeable Paver 10" Open-Graded Stone Base


Media Porosity: 40 % vol, 33% vol

CATEGORY B - INDUSTRIAL PROPERTY


CS/MS4 - SPACE UNCONSTRAINED - SOIL CONSTRAINED

SITE SCHEMATIC with
STORMWATER CONTROL MEASURE (SCM)

SCM SCHEMATIC

SITE INFORMATION

Address: 89 West Tremont Ave, BX BBL: 2028690047 Block: 2869 Lot: 47

DESIGN CRITERIA

Area Disturbed: 19,150 sf New Impervious Area: 11,490 sf Runoff Volume: 1,440 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Bioretention w/ UD SCM Area: 840 sf SCM Area as % of Total Lot: 7% Retention Volume: 1,380 cf Detention Volume: N/A Treatment Volume: N/A

SCM Practice 2: Porous Pavement Bridge

SCM Area: 100 sf Impervious Coverage: 9% Retention Volume: N/A Detention Volume: 80 cf Treatment Volume: N/A

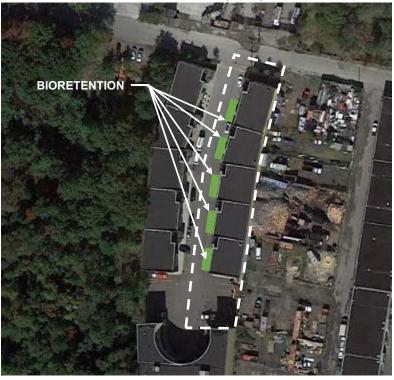
Total Runoff Retention: 0% Total Runoff Detention: 100% Total Runoff Treatment: 100%

GENERAL ASSUMPTIONS

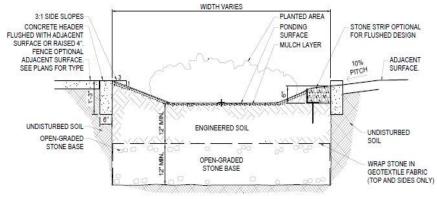
Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

Type: Bioretention w/ Underdrain
BR Dim.: 42'L x 10'W x 4'H
42'L x 10'W x 4'H
Porous Pave.:10'L x 10'W x 2'H
Permanent Pooling: 6"
BR Media Depth: 36" Engineered Soil
12" Open-Graded
Stone Base
6" Perforated PVC
Media Porosity: 25 % vol, 33% vol
PP Media Depth: 9" Permeable Paver
10" Open-Graded
Stone Base


Media Porosity: 40 % vol, 33% vol

CATEGORY B - INDUSTRIAL PROPERTY


CS/MS4 - SPACE UNCONSTRAINED - SOIL UNCONSTRAINED Environmental

SITE SCHEMATIC with
STORMWATER CONTROL MEAURE (SCM)

SCM SCHEMATIC

SECTION A-A

SITE INFORMATION

Address: 11 Brick Ct, SI BBL: 5074000100 Block: 7400 Lot: 100

DESIGN CRITERIA

Area Disturbed: 27,900 sf New Impervious Area: 27,900 sf Runoff Volume: 3,490 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Bioretention SCM Area: 990 sf SCM Area as % of Total Lot: 4% Retention Volume: 3,490 cf Detention Volume: N/A Treatment Volume: N/A

Total Runoff Retention: 100% Total Runoff Detention: 0% Total Runoff Treatment: 0%

GENERAL ASSUMPTIONS

Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

Type: Bioretention

SCM Dim.: 33'L x 6'W x 4.5'H 33'L x 6'W x 4.5'H

> 33'L x 6'W x 4.5'H 33'L x 6'W x 4.5'H 33'L x 6'W x 4.5'H

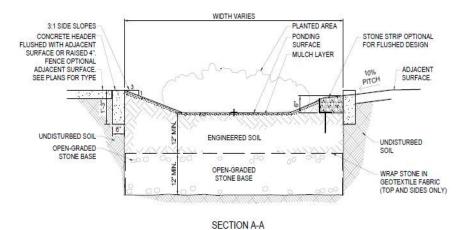
Permanent Pooling: 3"

Media Depth: 24" Engineered Soil 30" Open-Graded

Stone Base

Media Porosity: 25 % vol, 33% vol

CATEGORY A - INDUSTRIAL PROPERTY


CS/MS4 - SPACE UNCONSTRAINED - SOIL UNCONSTRAINED Environmental

SITE SCHEMATIC with STORMWATER CONTROL MEASURE (SCM)

SCM SCHEMATIC

SITE INFORMATION

Address: 141 Storer Avenue, SI BBL: 5073110035 Block: 7311 Lot: 35

DESIGN CRITERIA

Area Disturbed: 8,000 sf New Impervious Area: 8,000 sf Runoff Volume: 1,000 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Bioretention SCM Area: 252 sf SCM Area as % of Total Lot: 3% Retention Volume: 1001 cf Detention Volume: N/A Treatment Volume: N/A

Total Runoff Retention: 100% Total Runoff Detention: 0% Total Runoff Treatment: 0%

GENERAL ASSUMPTIONS

Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

Type: Bioretention

SCM Dim.: 21'L x 4'W x 4.5'H 21'L x 4'W x 4.5'H

21'L x 4'W x 4.5'H

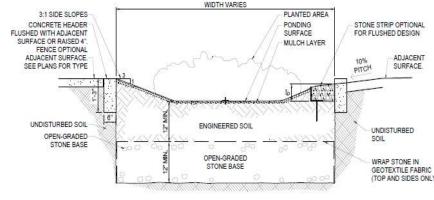
Permanent Pooling: 3"

Media Depth: 24" Engineered Soil

30" Open-Graded Stone Base

Media Porosity: 25 % vol, 33% vol

CATEGORY A - COMMERCIAL PROPERTY


CS/MS4 - SPACE UNCONSTRAINED - SOIL UNCONSTRAINED Environmental

SITE SCHEMATIC with STORMWATER CONTROL MEASURE (SCM)

SCM SCHEMATIC

SECTION A-A

SITE INFORMATION

Address: 141 South 3 Street, BK BBL: 3024180045 Block: 2418 Lot: 45

DESIGN CRITERIA

Area Disturbed: 7,450 sf New Impervious Area: 6,710 sf Runoff Volume: 840 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Bioretention SCM Area: 240 sf SCM Area as % of Total Lot: 3% Retention Volume: 850 cf Detention Volume: N/A Treatment Volume: N/A

Total Runoff Retention: 100% Total Runoff Detention: 0% Total Runoff Treatment: 0%

GENERAL ASSUMPTIONS

Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

Type: Bioretention

SCM Dim.: 17'L x 6'W x 4.5'H 22'L x 6'W x 4.5'H

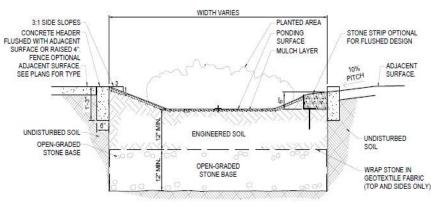
Permanent Pooling: 3"

Media Depth: 24" Engineered Soil

30" Open-Graded Stone Base

Media Porosity: 25 % vol, 33% vol

CATEGORY B - COMMERCIAL PROPERTY


CS/MS4 - SPACE UNCONSTRAINED - SOIL UNCONSTRAINED Environmental

SITE SCHEMATIC with STORMWATER CONTROL MEAUSURE (SCM)

SCM SCHEMATIC

SECTION A-A

SITE INFORMATION

Address: 1759 Hylan Blvd, SI BBL: 5033450032 Block: 3345 Lot: 32

DESIGN CRITERIA

Area Disturbed: 21,600 sf New Impervious Area: 21,600 sf Runoff Volume: 2,700 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Bioretention SCM Area: 860 sf SCM Area as % of Total Lot: 4% Retention Volume: 2.700 cf Detention Volume: N/A Treatment Volume: N/A

Total Runoff Retention: 100% Total Runoff Detention: 0% Total Runoff Treatment: 0%

GENERAL ASSUMPTIONS

Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

Type: Bioretention

SCM Dim.: 60'L x 10'W x 4.5'H 16'L x 16'W x 4.5'H

Permanent Pooling: 3" Media Depth: 24" Engineered Soil

30" Open-Graded

Stone Base

Media Porosity: 25 % vol, 33% vol

CATEGORY A - RESIDENTIAL PROPERTY

CS/MS4 - SPACE UNCONSTRAINED - SOIL UNCONSTRAINED Environmental

SITE SCHEMATIC with STORMWATER CONTROL MEASURE (SCM)

SCM SCHEMATIC

SITE INFORMATION

Address: 262 Corbin Place, BX BBL: 3087230267 Block: 8723 Lot: 267

DESIGN CRITERIA

Area Disturbed: 6,434 sf New Impervious Area: 6,440 sf Runoff Volume: 810 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Bioretention SCM Area: 220 sf SCM Area as % of Total Lot: 3% Retention Volume:810 cf Detention Volume: N/A Treatment Volume: N/A

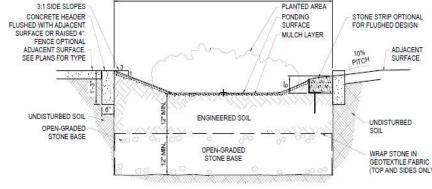
Total Runoff Retention: 100% Total Runoff Detention: 0% Total Runoff Treatment: 0%

GENERAL ASSUMPTIONS

Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

Type: Bioretention


SCM Dim.: 18.5'L x 6'W x 4.5'H 18.5'L x 6'W x 4.5'H

Permanent Pooling: 3"

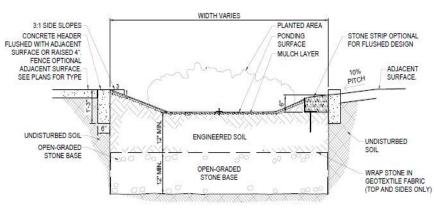
Media Depth: 24" Engineered Soil

30" Open-Graded Stone Base

Media Porosity: 25 % vol, 33% vol

SECTION A-A

CATEGORY B - RESIDENTIAL PROPERTY


CS/MS4 - SPACE UNCONSTRAINED - SOIL UNCONSTRAINED Environmental

SITE SCHEMATIC with STORMWATER CONTROL MEASURE (SCM)

SCM SCHEMATIC

SECTION A-A

SITE INFORMATION

Address: 14 Ottavio Promenade, SI BBL: 5077750135 Block: 7775 Lot: 135

DESIGN CRITERIA

Area Disturbed: 14,940 sf New Impervious Area: 6,720 sf Runoff Volume: 840 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Bioretention SCM Area: 260 sf SCM Area as % of Total Lot: 4% Retention Volume:840 cf Detention Volume: N/A Treatment Volume

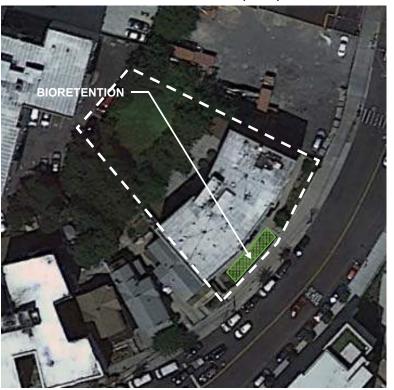
Total Runoff Retention: 100% Total Runoff Detention: 0% Total Runoff Treatment: 0%

GENERAL ASSUMPTIONS

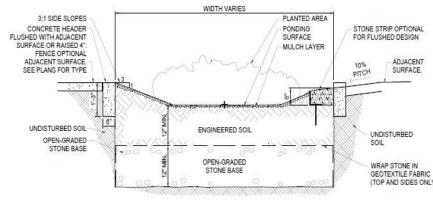
Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

Type: Bioretention
Media Dim.: 23'L x 12'W x 4.5'H
Permanent Pooling: 3"
Media Depth: 24" Engineered Soil
30" Open-Graded
Stone Base
Media Porosity: 25 % vol, 33% vol



CATEGORY B - INDUSTRIAL PROPERTY


CS/MS4 - SPACE UNCONSTRAINED - SOIL UNCONSTRAINED Environmental

SITE SCHEMATIC with STORMWATER CONTROL MEASURE (SCM)

SCM SCHEMATIC

SECTION A-A

SITE INFORMATION

Address: 89 West Tremont Ave, BX BBL: 2028690047 Block: 2869 Lot: 47

DESIGN CRITERIA

Area Disturbed: 19,150 sf New Impervious Area: 11,490 sf Runoff Volume: 1,440 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Bioretention SCM Area: 460 sf SCM Area as % of Total Lot: 4% Retention Volume:1,450 cf Detention Volume: N/A Treatment Volume: N/A

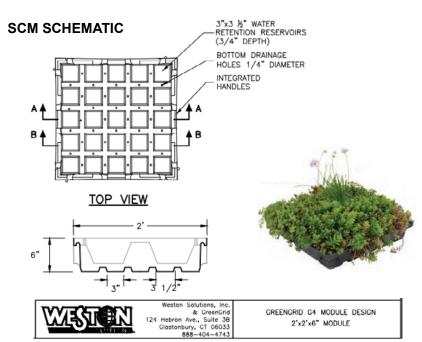
Total Runoff Retention: 100% Total Runoff Detention: 0% Total Runoff Treatment: 0%

GENERAL ASSUMPTIONS

Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

Type: Bioretention
Media Dim.: 45.5'L x 10'W x 4.5'H
Permanent Pooling: 3"
Media Depth: 24" Engineered Soil
30" Open-Graded
Stone Base
Media Porosity: 25 % vol, 33% vol


CATEGORY A - INDUSTRIAL PROPERTY

CS / MS4 - SPACE CONSTRAINED - SOIL (UN)CONSTRAINED

SITE SCHEMATIC with STORMWATER CONTROL MEASURE (SCM)

SITE INFORMATION

Address: 508 Smith Street, BK BBL: 3004790027 Block: 479 Lot: 27

DESIGN CRITERIA

Area Disturbed: 8,800 sf New Impervious Area: 8,800 sf Runoff Volume: 1,100 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Green Roof + Permeable Pavers Green Roof Area: 7.210 sf Pavers Area: 1.530 sf SCM Area as % of Total Roof: 83% Retention Volume: 900 cf Detention Volume: 190 cf

SCM Practice 2: N/A SCM Area: N/A Impervious Coverage: N/A Retention Volume: N/A Detention Volume: N/A

Total Runoff Retention: 83% Total Runoff Detention: 17%

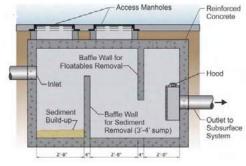
GENERAL ASSUMPTIONS

Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

Type: Modular Tray System Media Depth in CS Areas: 5 inch Media Depth in MS4 Areas: 6 inch Media Porosity: 55 %vol Media Field Capacity: 36 %vol Media Water Content: 0 %vol Uncovered Area: Gravel Ballast Ballast Storage: 0.08 inch Depression Storage: 0.06 inch Building Height: <100 ft Perimeter Edging: 1 ft wide Mechanical Edging: 3 ft wide Landing and Clear Paths: 6 ft wide 1 foot perimeter with porous pavers

CATEGORY A - INDUSTRIAL PROPERTY


CS - SPACE UNCONSTRAINED - SOIL CONSTRAINED

SITE SCHEMATIC with STORMWATER CONTROL MEASURE (SCM)

SCM SCHEMATIC

Pretreatment Structure

SITE INFORMATION

Address: 141 Storer Avenue, SI BBL: 5073110035 Block: 7311 Lot: 35

DESIGN CRITERIA

Area Disturbed: 8,000 sf New Impervious Area: 8,000 sf Runoff Volume: 1,000 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Green Roof + Permeable Pavers Green Roof Area: 2.890 sf Pavers Area: 920 sf SCM Area as % of Total Roof: 76% Retention Volume: 360 cf Detention Volume: 120 cf

SCM Practice 2: Detention Vault SCM Area: 130 sf Paved Lot Coverage: 3% Retention Volume: N/A Detention Volume: 530 cf

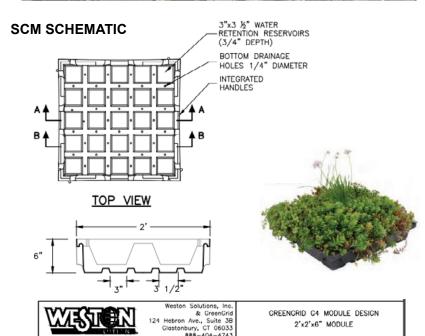
Total Runoff Retention: 36 % **Total Runoff Detention: 64%**

GENERAL ASSUMPTIONS

Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

Type: Modular Tray System Media Depth in CS Areas: 5 inch Media Porosity: 55 %vol Media Field Capacity: 36 %vol Media Water Content: 0 %vol Uncovered Area: Gravel Ballast Ballast Storage: 0.08 inch Depression Storage: 0.06 inch Building Height: <100 ft Perimeter Edging: 1 ft wide Mechanical Edging: 3 ft wide Landing and Clear Paths: 6 ft wide Detention: No Rooftop Connection Detention Vault (SingeTrap® shown) Effective Vault Storage Depth: 1.5 ft 1 foot perimeter with porous pavers


CATEGORY B - INDUSTRIAL PROPERTY

CS/MS4 - SPACE CONSTRAINED - SOIL (UN)CONSTRAINED Environmental

SITE SCHEMATIC with STORMWATER CONTROL MEASURE (SCM)

SITE INFORMATION

Address: 305 Johnson Avenue, BK BBL: 3030560240 Block: 3056 Lot: 240

DESIGN CRITERIA

Area Disturbed: 24,580 sf New Impervious Area: 24,580 sf Runoff Volume: 3,070 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Green Roof + Permeable Pavers Green Roof Area: 22.560 sf Pavers Area: 2.020 SCM Area as % of Total Roof: 89% Retention Volume: 2,820 cf Detention Volume: 350 cf

SCM Practice 2: N/A SCM Area: N/A Impervious Coverage: N/A Retention Volume: N/A Detention Volume: N/A

Total Runoff Retention:92% Total Runoff Detention: 8%

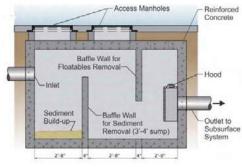
GENERAL ASSUMPTIONS

Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

Type: Modular Tray System Media Depth in CS Areas: 5 inch Media Depth in MS4 Areas: 6 inch Media Porosity: 55 %vol Media Field Capacity: 36 %vol Media Water Content: 0 %vol Uncovered Area: Gravel Ballast Ballast Storage: 0.08 inch Depression Storage: 0.06 inch Building Height: <100 ft Perimeter Edging: 1 ft wide Mechanical Edging: 3 ft wide Landing and Clear Paths: 6 ft wide 1 foot perimeter with porous pavers

CATEGORY B - RESIDENTIAL PROPERTY


CS - SPACE UNCONSTRAINED - SOIL CONSTRAINED

SITE SCHEMATIC with STORMWATER CONTROL MEASURE (SCM)

SCM SCHEMATIC

Pretreatment Structure

SITE INFORMATION

Address: 89 West Tremont Ave, BX BBL: 2028690047 Block: 2869 Lot: 47

DESIGN CRITERIA

Area Disturbed: 19,150 sf New Impervious Area: 11,490 sf Runoff Volume: 1,440 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Green Roof + Permeable Pavers Green Roof Area: 4.220 sf Pavers Area: 1.220 sf SCM Area as % of Total Roof: 78% Retention Volume: 530 cf Detention Volume: 150 cf

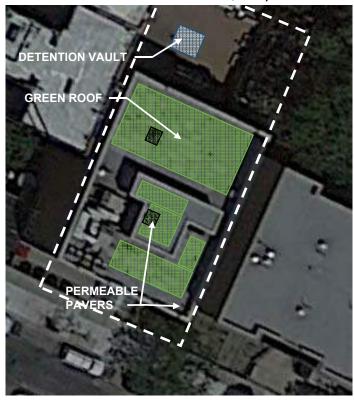
SCM Practice 2: Detention Vault SCM Area: 190 sf Paved Lot Coverage: 3% Retention Volume: N/A Detention Volume: 760 cf

Total Runoff Retention: 37% Total Runoff Detention: 63%

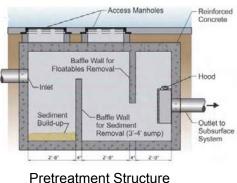
GENERAL ASSUMPTIONS

Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS


Type: Modular Tray System Media Depth: 5 inch Media Porosity: 55 %vol Media Field Capacity: 36 %vol Media Water Content: 0 %vol Uncovered Area: Gravel Ballast Ballast Storage: 0.08 inch Depression Storage: 0.06 inch Building Height: <100 ft Perimeter Edging: 1 ft wide Mechanical Edging: 3 ft wide Landing and Clear Paths: 6 ft wide Detention Vault (SingeTrap® shown) Detention: No Rooftop Connection Effective Vault Storage Depth: 1.5 ft 1 foot perimeter with porous pavers

CATEGORY A - COMMERCIAL PROPERTY


CS - SPACE UNCONSTRAINED - SOIL CONSTRAINED

SITE SCHEMATIC with STORMWATER CONTROL MEASURE (SCM)

SCM SCHEMATIC

Detention Vault (SingeTrap® shown)

SITE INFORMATION

Address: 141 South 3 Street, BK BBL: 3024180045 Block: 2418 Lot: 45

DESIGN CRITERIA

Area Disturbed: 7,450 sf New Impervious Area: 6,710 sf Runoff Volume: 840 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Green Roof + Permeable Pavers Green Roof Area: 2,530 sf Pavers Area: 1.040 sf SCM Area as % of Total Roof: 71% Retention Volume: 320 cf Detention Volume: 130 cf

SCM Practice 2: Detention Vault SCM Area: 100 sf Paved Lot Coverage: 3% Retention Volume: N/A Detention Volume: 400 cf

Total Runoff Retention: 38% Total Runoff Detention: 62%

GENERAL ASSUMPTIONS

Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

Type: Modular Tray System Media Depth: 5 inch Media Porosity: 55 %vol Media Field Capacity: 36 %vol Media Water Content: 0 %vol Uncovered Area: Gravel Ballast Ballast Storage: 0.08 inch Depression Storage: 0.06 inch Building Height: <100 ft Perimeter Edging: 1 ft wide Mechanical Edging: 3 ft wide Landing and Clear Paths: 6 ft wide Detention: No Rooftop Connection Effective Vault Storage Depth: 1.5 ft 1 foot perimeter with porous pavers

CATEGORY A - COMMERCIAL PROPERTY

CS/MS4 - SPACE CONSTRAINED - SOIL (UN)CONSTRAINED Environmental

SITE SCHEMATIC with STORMWATER CONTROL MEASURE (SCM)

3"x3 ½" WATER -RETENTION RESERVOIRS (3/4" DEPTH) **SCM SCHEMATIC** BOTTOM DRAINAGE INTEGRATED HANDLES Pre-Vegetated 4-inch Module TOP VIEW CROSS SECTION B-B GREENGRID G4 MODULE DESIGN

2'x2'x4.25" MODULE

SITE INFORMATION

Address: 132-08 Pople Ave, QN BBL: 4051040009 Block: 5104 Lot: 9

DESIGN CRITERIA

Area Disturbed: 6,500 sf New Impervious Area: 6,500 sf Runoff Volume: 810 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Green Roof + Permeable Pavers Green Roof Area: 1.580 sf Pavers Area: 4.600 sf SCM Area as % of Total Roof: 26% Retention Volume: 200 cf Detention Volume: 610 cf

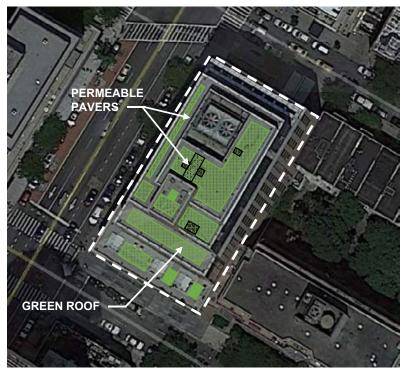
SCM Practice 2: N/A SCM Area: N/A Impervious Coverage: N/A Retention Volume: N/A Detention Volume: N/A

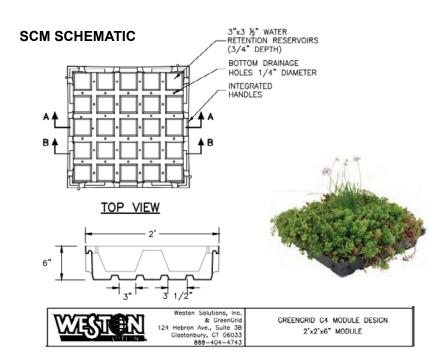
Total Runoff Retention: 24% Total Runoff Detention: 76%

GENERAL ASSUMPTIONS

Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS


Type: Modular Tray System Media Depth in CS Areas: 5 inch Media Depth in MS4 Areas: 6 inch Media Porosity: 55 %vol Media Field Capacity: 36 %vol Media Water Content: 0 %vol Uncovered Rooftop: Gravel Ballast Private Balcony: No Green Roof Uncovered Balcony: No Ballast Ballast Storage: 0.08 inch Depression Storage: 0.06 inch Building Height: <100 ft Perimeter Edging: 2 ft wide Mechanical Edging: 3 ft wide Landing and Clear Paths: 6 ft wide 1 foot perimeter with porous pavers


CATEGORY B - COMMERCIAL PROPERTY

CS/MS4 - SPACE CONSTRAINED - SOIL (UN)CONSTRAINED Environmental

SITE SCHEMATIC with STORMWATER CONTROL MEASURE (SCM)

SITE INFORMATION

Address: 1256 2 Avenue, MN BBL: 1014400049 Block: 1440 Lot: 49

DESIGN CRITERIA

Area Disturbed: 20,160 sf New Impervious Area: 17,500 sf Runoff Volume: 2,190 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Green Roof + Permeable Area Green Roof Area: 6.790 sf Pavers Area: 10.700 sf SCM Area as % of Total Roof: 39% Retention Volume: 850 cf Detention Volume: 1,340 cf

SCM Practice 2: N/A SCM Area: N/A Impervious Coverage: N/A Retention Volume: N/A

Detention Volume: N/A

Total Runoff Retention: 39% Total Runoff Detention: 61%

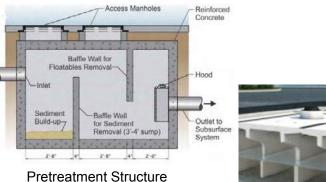
GENERAL ASSUMPTIONS

Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

Type: Modular Tray System Media Depth in CS Areas: 5 inch Media Depth in MS4 Areas: 6 inch Media Porosity: 55 %vol Media Field Capacity: 36 %vol Media Water Content: 0 %vol Building Height: >100 ft Uncovered Area: Gravel Ballast Ballast Storage: 0.08 inch Depression Storage: 0.06 inch Building Height: >100 ft Perimeter Edging: 1 ft wide Mechanical Edging: 3 ft wide Landing and Clear Paths: 6 ft wide 1 foot perimeter with porous pavers

CATEGORY B - COMMERCIAL PROPERTY


CS - SPACE UNCONSTRAINED - SOIL CONSTRAINED

SITE SCHEMATIC with STORMWATER CONTROL MEASURE (SCM)

SCM SCHEMATIC

SITE INFORMATION

Address: 1759 Hylan Blvd, SI BBL: 5033450032 Block: 3345 Lot: 32

DESIGN CRITERIA

Area Disturbed: 21,600 sf New Impervious Area: 21,600 sf Runoff Volume: 2,700 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Green Roof + Permeable Pavers Green Roof Area: 4.940 sf Pavers Area: 2.000 sf SCM Area as % of Total Roof: 71% Retention Volume: 620 cf Detention Volume: 250 cf

SCM Practice 2: Detention Chamber SCM Area: 460 sf Paved Lot Coverage: 3% Retention Volume: N/A Detention Volume: 18,300 cf

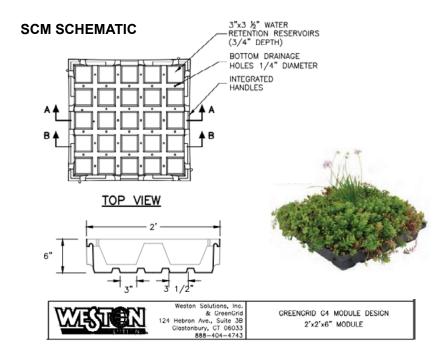
Total Runoff Retention: 23% Total Runoff Detention: 77%

GENERAL ASSUMPTIONS

Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

Type: Modular Tray System Media Depth: 5 inch Media Porosity: 55 %vol Media Field Capacity: 36 %vol Media Water Content: 0 %vol Uncovered Area: Gravel Ballast Ballast Storage: 0.08 inch Depression Storage: 0.06 inch Building Height: <100 ft Perimeter Edging: 1 ft wide Mechanical Edging: 3 ft wide Landing and Clear Paths: 6 ft wide Detention: No Rooftop Connection Detention Vault (SingeTrap® shown) 1 foot perimeter with porous pavers Effective Vault Storage Depth: 1.5 ft


CATEGORY A - RESIDENTIAL PROPERTY

CS/MS4 - SPACE CONSTRAINED - SOIL (UN)CONSTRAINED Environmental

SITE SCHEMATIC with STORMWATER CONTROL MEASURE (SCM)

SITE INFORMATION

Address: 560 Carroll Street, BK BBL: 3009610003 Block: 961 Lot: 3

DESIGN CRITERIA

Area Disturbed: 6,120 sf New Impervious Area: 4,850 sf Runoff Volume: 610 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Green Roof +
Permeable Pavers
Green Roof Area: 1,500 sf
Pavers Area: 3,350 sf
SCM Area as % of Total Roof: 31%
Retention Volume: 190 cf
Detention Volume: 420 cf

SCM Practice 2: N/A SCM Area: N/A Impervious Coverage: N/A Retention Volume: N/A Detention Volume: N/A

Total Runoff Retention: 31% Total Runoff Detention: 69%

GENERAL ASSUMPTIONS

Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

Type: Modular Tray System Media Depth in CS Areas: 5 inch Media Depth in MS4 Areas: 6 inch Media Porosity: 55 %vol Media Field Capacity: 36 %vol Media Water Content: 0 %vol Uncovered Rooftop: Gravel Ballast Private Balcony: No Green Roof Uncovered Balcony: No Ballast Ballast Storage: 0.08 inch Depression Storage: 0.06 inch Building Height: >100 ft Perimeter Edging: 1 ft wide Mechanical Edging: 3 ft wide Landing and Clear Paths: 6 ft wide 1 foot perimeter with porous pavers

CATEGORY B - RESIDENTIAL PROPERTY

CS/MS4 - SPACE CONSTRAINED - SOIL (UN)CONSTRAINED Environmental

SITE SCHEMATIC with
STORMWATER CONTROL MEASURE (SCM)

SCM SCHEMATIC 3"x3 ½" WATER RETENTION RESERVOIRS (3/4" DEPTH) BOTTOM DRAINAGE HOLES 1/4" DIAMETER INTEGRATED HANDLES Westen Solutione, Inc. & CreenGrid 24 Hebron Ave., Suite 38 2'x2"x6" MODULE 2'x2"x6" MODULE

SITE INFORMATION

Address: 462 West 58 St, MN BBL: 1010670057 Block: 1067 Lot: 57

DESIGN CRITERIA

Area Disturbed: 14,100 sf New Impervious Area: 14,100 sf Runoff Volume: 1,760 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Green Roof +
Permeable Pavers
Green Roof Area: 4,070 sf
Pavers Area: 10,000 sf
SCM Area as % of Total Roof: 34%
Retention Volume: 510 cf
Detention Volume: 1,250 cf

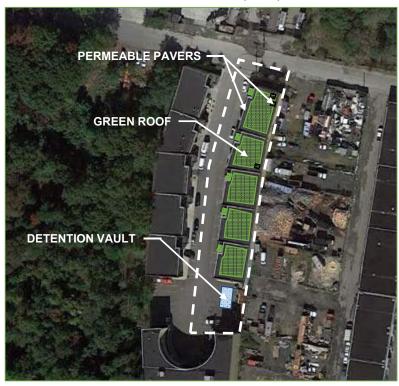
SCM Practice 2: N/A SCM Area: N/A Impervious Coverage: N/A Retention Volume: N/A Detention Volume: N/A

Total Runoff Retention: 29% Total Runoff Detention: 71%

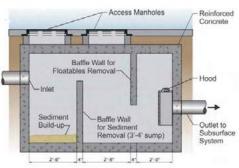
GENERAL ASSUMPTIONS

Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS


Type: Modular Tray System Media Depth in CS Areas: 5 inch Media Depth in MS4 Areas: 6 inch Media Porosity: 55 %vol Media Field Capacity: 36 %vol Media Water Content: 0 %vol Uncovered Rooftop: Gravel Ballast Private Balcony: No Green Roof Uncovered Balcony: No Ballast Ballast Storage: 0.08 inch Depression Storage: 0.06 inch Building Height: <100 ft Perimeter Edging: 1 ft wide Mechanical Edging: 3 ft wide Landing and Clear Paths: 6 ft wide 1 foot perimeter with porous pavers

CATEGORY B - INDUSTRIAL PROPERTY


CS - SPACE UNCONSTRAINED - SOIL CONSTRAINED

SITE SCHEMATIC with STORMWATER CONTROL MEASURE (SCM)

SCM SCHEMATIC

Pretreatment Structure

SITE INFORMATION

Address: 11 Brick Ct, SI BBL: 5074000100 Block: 7400 Lot: 100

DESIGN CRITERIA

Area Disturbed: 27,900 sf New Impervious Area: 27,900 sf Runoff Volume: 3,490 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Green Roof + Permeable Pavers Green Roof Area: 10.670 sf Pavers Area:1.660 sf SCM Area as % of Total Roof: 87% Retention Volume: 1,335 cf Detention Volume: 210 cf

SCM Practice 2: Detention Vault SCM Area: 490 sf Paved Lot Coverage: 3% Retention Volume: N/A Detention Volume: 1,950 cf

Total Runoff Retention: 38% Total Runoff Detention: 62%

GENERAL ASSUMPTIONS

Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

Type: Modular Tray System Media Depth: 5 inch Media Porosity: 55 %vol Media Field Capacity: 36 %vol Media Water Content: 0 %vol Uncovered Area: Gravel Ballast Ballast Storage: 0.08 inch Depression Storage: 0.06 inch Building Height: <100 ft Perimeter Edging: 1 ft wide Mechanical Edging: 3 ft wide Landing and Clear Paths: 6 ft wide Detention Vault (SingeTrap® shown) Detention: No Rooftop Connection Effective Vault Storage Depth: 1.5 ft 1 foot perimeter with porous pavers

CATEGORY A - RESIDENTIAL PROPERTY

CS - SPACE UNCONSTRAINED - SOIL CONSTRAINED

SITE SCHEMATIC with STORMWATER CONTROL MEASURE (SCM)

SITE INFORMATION

Address: 262 Corbin Place, BK BBL: 3087230267 Block: 8723 Lot: 267

DESIGN CRITERIA

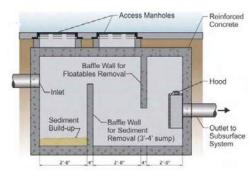
Area Disturbed: 6,440 sf New Impervious Area: 6,440 sf Runoff Volume: 810 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Detention Vault

SCM Area: 200 sf SCM Area as % of Total Lot: 3% Vault Dimensions: 3'H x 20'W x 10'D Pretreatment Dimensions: 1.5'H x 10'W x 13.5'D Retention Volume: N/A Detention Volume: 810 cf

Total Runoff Retention: 0% Total Runoff Detention: 100%


GENERAL ASSUMPTIONS

Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

Detention: Rooftop Connected Effective Vault Storage Depth: 1.5 ft

SCM SCHEMATIC

Pretreatment Structure

Detention Vault (SingeTrap® shown)

CATEGORY B - RESIDENTIAL PROPERTY

CS - SPACE UNCONSTRAINED - SOIL CONSTRAINED

SITE SCHEMATIC with
STORMWATER CONTROL MEASURE (SCM)

SITE INFORMATION

Address: 14 Ottavio Promenade, SI BBL: 5077750135 Block: 7775 Lot: 135

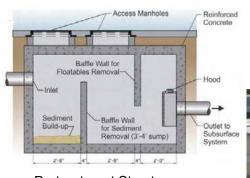
DESIGN CRITERIA

Area Disturbed: 14,940 sf New Impervious Area: 7,550 sf Runoff Volume: 950 cf Peak Runoff Rate: N/A

CONCEPTUAL DESIGN

SCM Practice 1: Detention Vault SCM Area: 240 sf SCM Area as % of Total Lot: 3% Vault Dimensions: 3'H x 20'W x 12'D Pretreatment Dimensions: 1.5'H x 10'W x 16'D Retention Volume: N/A Detention Volume: 950 cf

Total Runoff Retention: 0%
Total Runoff Detention: 100%


GENERAL ASSUMPTIONS

Event: 1.5 inch over 24 hours Rainfall distribution: Type III Maximum Discharge: 0.1 cfs/acre

SCM ASSUMPTIONS

Detention: Rooftop Connected Effective Vault Storage Depth: 1.5 ft

SCM SCHEMATIC


Pretreatment Structure

Detention Vault (SingeTrap® shown)

APPENDIX C

Post-Construction Capital and O&M Unit Costs

BIORETENTION CAPITAL COST ESTIMATE

GENERAL CONDITIONS, BONDS & INS - 10.0% \$2,14	MEDIUM SIZED INDUSTRIAL PROPERTY					
DESCRIPTION	SPACE UNCONSTRAINED - SOIL UNCONSTRAINED					
DESCRIPTION QUANTITY	141 Storer Avenue, Staten Island					
DISTURBED AREA 8,000 S		QUANT	TTY	UNIT PRICE	AMOUNT	TOTAL
DISTURBED AREA 8,000 S	5445 4054	252		(24) 4)		
RETENTION NOL				(21° x 4° x 2	i.5' depth x 3)	
ENGIN SOIL DEPTH 24 INCH 30 INCH 31 CY \$ 100.00 \$ 5,133 3,080 3						
STONE BASE DEPTH						
Introduct away spoil- add 20% 62 CY \$ 50.00 \$ 3.080 install geotech fabric at stone-wrap top & sides 627 SF \$ 0.75 S \$ 470 install 30° open graded stone base 23 CY \$ 82.00 \$ 1,913 install 24" engineered soil 19 CY \$ 106.00 \$ 1,979 install multiple and the product of the pr						
Introduct away spoil- add 20% 62 CY \$ 50.00 \$ 3.080 install geotech fabric at stone-wrap top & sides 627 SF \$ 0.75 S \$ 470 install 30° open graded stone base 23 CY \$ 82.00 \$ 1,913 install 24" engineered soil 19 CY \$ 106.00 \$ 1,979 install multiple and the product of the pr						
Install geotech fabric at stone-wrap top & sides 627 SF S 0.75 S 470 Install 30" open graded stone base 23 CV S 82.00 S 1.913 Install 21" engineered soil 19 CV S 106.00 S 1.979 Install mulch layer (allow 3") 2 CV S 40.00 S 93 Install 21" engineered soil 19 CV S 40.00 S 93 Install 21" engineered soil 19 CV S 40.00 S 93 Install 21" engineered soil 19 CV S 40.00 S 93 Install 21" engineered soil 19 CV S 40.00 S 93 Install 21" engineered soil 19 CV S 40.00 S 93 Install 21" engineered soil 19 CV S 40.00 S 93 Install 21" engineered soil 19 CV S 40.00 S 93 Install 21" engineered soil 19 CV S 40.00 S 50.00	·	51	CY	\$ 100.00	\$ 5,133	
Install 30" open graded stone base 23 C/	, ·				\$ 3,080	
Install Author 19 CY \$ 106.00 \$ 1,979		627	SF			
Install mulch layer (allow 3")			CY			
Conveyance			 			
Planting Area 252 SF \$ 7.50 \$ 1,890	Install mulch layer (allow 3")	2	CY	\$ 40.00	\$ 93	
SUBTOTAL \$21,65	Conveyance	50	LF		\$ 7,100	
SUBTOTAL \$ 21,65	Planting Area	252	CE	¢ 750	¢ 1.900	
GENERAL CONDITIONS, BONDS & INS - 10.0% \$2,14	I latting Area	232	51	7.50	7 1,650	
SUBTOTAL \$23.80		CENED	AL CONU	NITIONS DONE		, , , , , , , , , , , , , , , , , , , ,
G.C. OH & P - 21.0% \$5.00		GENERA	AL CONI	JITIONS, BONL		
SUBTOTAL \$28,80 CONTINGENCY - 20.09% 55,80 SUBTOTAL \$34,60 ENGINEERING - 15.09% 55,20 ENGINEERING - 15.09% 55,20 ENGINEERING - 15.09% 55,20 ENGINEERING - 15.09% 50,20 ENGINEERING - 15.09% 63,32 ENGINEERING - 15.00%						
CONTINGENCY - 20.0% S5.86 SUBTOTAL S34.66 SUBTOTAL S34.66 ENGINEERING - 15.0% S5.20 S5.20 STOTAL CONSTRUCTION COST S39,80 LARGE SIZED INDUSTRIALL PROPERTY SPACE UNCONSTRAINED - SOIL UNCONSTRAINED 11 Brick Court, Staten Island DESCRIPTION QUANTITY UNIT PRICE AMOUNT TOTAL SMP AREA 990 SF (33' x 6' x 4.5' depth x 5) DISTURBED AREA 27,903 SF RETENTION VOL 3,487 CF ENGIN SOIL DEPTH 24 INCH STONE BASE DEPTH 30 INCH Excavate to specified depth 202 CY S 100.00 S 20,167 - truck away spoil- add 20% 242 CY S 50.00 S 12,100 Install geotech fabric at stone-wrap top & sides 1,173 SF S 0.75 S 880 Install 30" open graded stone base 92 CY S 20.00 S 7,773 Install 30" denominated stone base 92 CY S 40.00 S 367 Conveyance 50 LF S 7,100 Planting Area 990 SF S 7.50 S 7,425 GENERAL CONDITIONS, BONDS & INS -10.0% S 63,32 GENERAL CONDITIONS, BONDS & INS -10.0% S 69,37 G.C. OH & P - 21.0% S 14,66 SUBTOTAL S 63,32 GENERAL CONDITIONS, BONDS & INS -10.0% S 6,37 G.C. OH & P - 21.0% S 14,66 SUBTOTAL S 84,36 CONTINGENCY - 20.0% S 16,90 SUBTOTAL S 81,520 SUB				G.C.		\$5,000
SUBTOTAL \$34,60 ENGINEERING - 15.0% \$5,20 TOTAL CONSTRUCTION COST \$39,80 LARGE SIZED INDUSTRIALL PROPERTY SPACE UNCONSTRAINED - SOIL UNCONSTRAINED 11 Brick Court, Staten Island DESCRIPTION QUANTITY UNIT PRICE AMOUNT TOTAL SMP AREA 990 SF (33' x 6' x 4.5' depth x 5) DISTURBED AREA 27,903 SF RETENTION VOL 3,487 CF ENGIN SOIL DEPTH 24 INCH STONE BASE DEPTH 30 INCH Excavate to specified depth 202 CY \$ 100.00 \$ 20,167 - truck away spoil- add 20% 242 CY \$ 50.00 \$ 12,100 Install geotech fabric at stone-wrap top & sides 1,173 SF \$ 0.75 \$ 880 Install 30" open graded stone base 92 CY \$ 82.00 \$ 7,517 Install 30" open graded stone base 92 CY \$ 40.00 \$ 367 Conveyance 90 SF \$ 7,100 Planting Area 990 SF \$ 7.50 \$ 7,425 GENERAL CONDITIONS, BONDS & INS - 10.0% \$69,37 GENERAL CONDITIONS, BONDS & INS - 10.0% \$69,37 GENERAL CONDITIONS, BURDOTAL \$ 63,32 GENERAL CONDITIONS, BURDOTAL \$ 84,36 CONTINGENCY - 20.0% \$ 314,66 SUBTOTAL \$ 84,36 CONTINGENCY - 20.0% \$ 316,90 SUBTOTAL \$ 84,31 CONTINGENCY - 20.0% \$ 316,90 SUBTOTAL \$ 50,212 SUBTOTAL \$						\$28,800
ENGINEERING-15.0% S5,20				CONTI	NGENCY - 20.0%	\$5,800
TOTAL CONSTRUCTION COST \$39,80						\$34,600
LARGE SIZED INDUSTRIALL PROPERTY SPACE UNCONSTRAINED - SOIL UNCONSTRAINED				ENGI	NEERING- 15.0%	\$5,200
SPACE UNCONSTRAINED - SOIL UNCONSTRAINED				TOTAL CONST	RUCTION COST	\$39,800
Table Description Descri	LARGE SIZED INDUSTRIALL PROPERTY					
DESCRIPTION QUANTITY UNIT PRICE AMOUNT TOTAL	SPACE UNCONSTRAINED - SOIL UNCONSTRAINED					
SMP AREA	11 Brick Court, Staten Island					
DISTURBED AREA 27,903 SF	DESCRIPTION	QUANT	ITY	UNIT PRICE	AMOUNT	TOTAL
DISTURBED AREA 27,903 SF	CAAD ADEA	000	CE	(22) v 6) v 7	L C' donth v C\	
RETENTION VOL 3,487 CF			 	(33 X 0 X 2	1.5 deptil x 5)	
ENGIN SOIL DEPTH STONE BASE DEPTH 30 INCH Excavate to specfied depth -truck away spoil- add 20% -tr						
STONE BASE DEPTH 30 INCH		,				
Excavate to specfied depth 202 CY \$ 100.00 \$ 20,167			 			
- truck away spoil- add 20% Install geotech fabric at stone-wrap top & sides Install 30" open graded stone base Install 24" engineered soil Install 24" engineered soil Install 30" open graded stone base Install 24" engineered soil Install 30" open graded stone base Install 24" engineered soil Install 30" open graded stone base Install 40" open graded stone base In						
Install geotech fabric at stone-wrap top & sides	Excavate to specfied depth	202	CY	\$ 100.00	\$ 20,167	
Install 30" open graded stone base	- truck away spoil- add 20%	242	CY	\$ 50.00	\$ 12,100	
Install 24" engineered soil		1,173	SF	\$ 0.75	\$ 880	
Install mulch layer (allow 3") 9 CY \$ 40.00 \$ 367	Install 30" open graded stone base	92	CY	\$ 82.00	\$ 7,517	
Conveyance 50 LF \$ 7,100 Planting Area 990 SF \$ 7.50 \$ 7,425 SUBTOTAL \$ 63,32 GENERAL CONDITIONS, BONDS & INS - 10.0% \$6,33 SUBTOTAL \$ 69,70 G.C. OH & P - 21.0% \$14,60 SUBTOTAL \$ 84,30 CONTINGENCY - 20.0% \$16,90 SUBTOTAL \$ 101,20 ENGINEERING - 15% \$15,20				· ·		
Planting Area 990 SF \$ 7.50 \$ 7,425 SUBTOTAL \$ 63,32 GENERAL CONDITIONS, BONDS & INS - 10.0% \$6,37 SUBTOTAL \$69,70 G.C. OH & P - 21.0% \$14,60 SUBTOTAL \$84,30 CONTINGENCY - 20.0% \$16,90 SUBTOTAL \$101,20 ENGINEERING - 15% \$15,20	Install mulch layer (allow 3")	9	CY	\$ 40.00	\$ 367	
SUBTOTAL \$ 63,33 GENERAL CONDITIONS, BONDS & INS - 10.0% \$6,37 SUBTOTAL \$69,70 G.C. OH & P - 21.0% \$14,60 SUBTOTAL \$84,30 CONTINGENCY - 20.0% \$16,90 SUBTOTAL \$101,20 ENGINEERING - 15% \$15,20	Conveyance	50	LF		\$ 7,100	
SUBTOTAL \$ 63,33 GENERAL CONDITIONS, BONDS & INS - 10.0% \$6,37 SUBTOTAL \$69,70 G.C. OH & P - 21.0% \$14,60 SUBTOTAL \$84,30 CONTINGENCY - 20.0% \$16,90 SUBTOTAL \$101,20 ENGINEERING - 15% \$15,20	Planting Δrea	990	SE	\$ 750	\$ 7.425	
GENERAL CONDITIONS, BONDS & INS - 10.0% \$6,37 SUBTOTAL \$69,70 G.C. OH & P - 21.0% \$14,60 SUBTOTAL \$84,30 CONTINGENCY - 20.0% \$16,90 SUBTOTAL \$101,20 ENGINEERING - 15% \$15,20		330	J.	7.50		
SUBTOTAL \$69,7000 \$14,6000						
G.C. OH & P - 21.0% \$14,60 SUBTOTAL \$84,30 CONTINGENCY - 20.0% \$16,90 SUBTOTAL \$101,20 ENGINEERING - 15% \$15,20		GENERA	AL CONI	DITIONS, BONE	S & INS - 10.0%	\$6,372
SUBTOTAL \$84,30 CONTINGENCY - 20.0% \$16,90 SUBTOTAL \$101,20 ENGINEERING - 15% \$15,20						\$69,700
CONTINGENCY - 20.0%				G.C.	OH & P - 21.0%	\$14,600
SUBTOTAL \$101,20 ENGINEERING - 15% \$15,20					SUBTOTAL	\$84,300
SUBTOTAL \$101,20 ENGINEERING - 15% \$15,20				CONTI	NGENCY - 20.0%	\$16,900
ENGINEERING - 15% \$15,20					SUBTOTAL	\$101,200
				ENG	INEERING - 15%	\$15,200
TOTAL CONSTRUCTION COST \$116,40				TOTAL CONST	RUCTION COST	\$116,400

SPACE UNCONSTRAINED - SOIL UNCONSTRAINE	_							
141 South 3 Street, Brooklyn DESCRIPTION	QUANT	ITY	UN	NIT PRICE	AM	OUNT	TO	OTAL
SMP AREA	234	SF		(17' x 6' x	4.5' de	epth)		
				(22' x 6' x	4.5' de	epth)		
DISTURBED AREA	7,450	SF						
RETENTION VOL	846	CF						
ENGIN SOIL DEPTH		INCH						
STONE BASE DEPTH	30	INCH						
Francis to a Cod doub	40	C) (100.00		4.767		
Excavate to specfied depth - truck away spoil- add 20%		CY	\$	100.00 50.00		4,767		
Install geotech fabric at stone-wrap top & sides	489	CY	\$	0.75		2,860 367		
Install 30" open graded stone base		CY	\$	82.00		1,777		
Install 24" engineered soil	17	CY	\$	106.00	\$	1,837		
Install mulch layer (allow 3")		CY	\$	40.00	\$	87		
motan malemayer (unew 5)	_		7	.0.00	7	<u> </u>		
Conveyance	50	LF			\$	7,100		
				-			-	
Planting Area	234	SF	\$	7.50	\$	1,755		
						JBTOTAL	\$	20,5
	GENER	AL CON	IDITIC	NS, BONE				\$2,0
						JBTOTAL		\$22,6
				G.C.		P - 21.0%		\$4,7
				CONTI		JBTOTAL		\$27,3
				CONTI	1	Y - 20.0%		\$5,5
					SU	JBTOTAL		\$32,8
				ENIC	INICEDIA	10 450/		
SPACE UNCONSTRAINED - SOIL UNCONSTRAINE	<u> </u>		тот	ENG AL CONST		NG - 15% ON COST		\$4,9 \$37,7
SPACE UNCONSTRAINED - SOIL UNCONSTRAINEI 1759 Hylan Blvd, Staten Island	_	ITV		AL CONST	TRUCTIO	ON COST		\$37,7
SPACE UNCONSTRAINED - SOIL UNCONSTRAINE	D QUANT	ITY			TRUCTIO			
	QUANT		UN	IT PRICE	AM	OUNT		\$37,7
SPACE UNCONSTRAINED - SOIL UNCONSTRAINEI 1759 Hylan Blvd, Staten Island	QUANT 856	SF	UN	IT PRICE	AM x 4.5' d	OUNT epth)		\$37,7
SPACE UNCONSTRAINED - SOIL UNCONSTRAINEI 1759 Hylan Blvd, Staten Island DESCRIPTION SMP AREA	QUANT	SF SF	UN	IT PRICE	AM x 4.5' d	OUNT epth)		\$37,7
SPACE UNCONSTRAINED - SOIL UNCONSTRAINEI 1759 Hylan Blvd, Staten Island DESCRIPTION SMP AREA DISTURBED AREA RETENTION VOL	QUANT 856 21,600 2,715	SF SF	UN	IIT PRICE	AM x 4.5' d	OUNT epth)		\$37,7
SPACE UNCONSTRAINED - SOIL UNCONSTRAINED 1759 Hylan Blvd, Staten Island DESCRIPTION SMP AREA DISTURBED AREA RETENTION VOL ENGIN SOIL DEPTH	QUANT 856 21,600 2,715 24	SF SF CF	UN	IIT PRICE	AM x 4.5' d	OUNT epth)		\$37,7
SPACE UNCONSTRAINED - SOIL UNCONSTRAINED 1759 Hylan Blvd, Staten Island DESCRIPTION SMP AREA DISTURBED AREA RETENTION VOL ENGIN SOIL DEPTH	QUANT 856 21,600 2,715 24	SF SF CF INCH	UN	IIT PRICE (60' x 10' (16' x16' ;	AM x 4.5' d	OUNT epth)		\$37,7
SPACE UNCONSTRAINED - SOIL UNCONSTRAINED 1759 Hylan Blvd, Staten Island DESCRIPTION SMP AREA DISTURBED AREA RETENTION VOL ENGIN SOIL DEPTH STONE BASE DEPTH Excavate to specfied depth	QUANT 856 21,600 2,715 24 30	SF SF CF INCH INCH	\$	IIT PRICE (60' x 10' (16' x16' x	AM x 4.5' d x 4.5' d	OUNT epth) 17,437		\$37,7
SPACE UNCONSTRAINED - SOIL UNCONSTRAINED 1759 Hylan Blvd, Staten Island DESCRIPTION SMP AREA DISTURBED AREA RETENTION VOL ENGIN SOIL DEPTH STONE BASE DEPTH Excavate to specfied depth - truck away spoil- add 20%	QUANT 856 21,600 2,715 24 30 174 209	SF SF CF INCH INCH CY	\$ \$	IIT PRICE (60' x 10' (16' x16' x	AM x 4.5' d x 4.5' d \$ \$	OUNT epth) 17,437 10,462		\$37,7
SPACE UNCONSTRAINED - SOIL UNCONSTRAINED 1759 Hylan Blvd, Staten Island DESCRIPTION SMP AREA DISTURBED AREA RETENTION VOL ENGIN SOIL DEPTH STONE BASE DEPTH Excavate to specfied depth - truck away spoil- add 20% Install geotech fabric at stone-wrap top & sides	QUANT 856 21,600 2,715 24 30 174 209 1,366	SF SF CF INCH INCH CY CY SF	\$ \$ \$	IIT PRICE (60' x 10' (16' x16' x 100.00 50.00 0.75	AM × 4.5' de × 4.5' de \$ \$ \$ \$ \$ \$	OUNT epth) 17,437 10,462 1,025		\$37,7
SPACE UNCONSTRAINED - SOIL UNCONSTRAINE 1759 Hylan Blvd, Staten Island DESCRIPTION SMP AREA DISTURBED AREA RETENTION VOL ENGIN SOIL DEPTH STONE BASE DEPTH Excavate to specfied depth - truck away spoil- add 20% Install geotech fabric at stone-wrap top & sides Install 30" open graded stone base	QUANT 856 21,600 2,715 24 30 174 209 1,366 79	SF SF CF INCH INCH CY CY CY	\$ \$ \$ \$	100.00 50.00 0.75 82.00	AM x 4.5' de \$ \$ \$ \$ \$ \$	OUNT epth) 17,437 10,462 1,025 6,499		\$37,7
SPACE UNCONSTRAINED - SOIL UNCONSTRAINE 1759 Hylan Blvd, Staten Island DESCRIPTION SMP AREA DISTURBED AREA RETENTION VOL ENGIN SOIL DEPTH STONE BASE DEPTH Excavate to specfied depth - truck away spoil- add 20% Install geotech fabric at stone-wrap top & sides Install 30" open graded stone base Install 24" engineered soil	QUANT 856 21,600 2,715 24 30 174 209 1,366 79 63	SF SF CF INCH INCH CY CY CY SF CY	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	100.00 50.00 0.75 82.00 106.00	AM x 4.5' de \$ \$ \$ \$ \$ \$ \$ \$	OUNT epth) 17,437 10,462 1,025 6,499 6,721		\$37,7
SPACE UNCONSTRAINED - SOIL UNCONSTRAINE 1759 Hylan Blvd, Staten Island DESCRIPTION SMP AREA DISTURBED AREA RETENTION VOL ENGIN SOIL DEPTH STONE BASE DEPTH Excavate to specfied depth - truck away spoil- add 20% Install geotech fabric at stone-wrap top & sides Install 30" open graded stone base Install 24" engineered soil	QUANT 856 21,600 2,715 24 30 174 209 1,366 79 63	SF SF CF INCH INCH CY CY CY	\$ \$ \$ \$	100.00 50.00 0.75 82.00	AM x 4.5' de \$ \$ \$ \$ \$ \$	OUNT epth) 17,437 10,462 1,025 6,499		\$37,7
SPACE UNCONSTRAINED - SOIL UNCONSTRAINED 1759 Hylan Blvd, Staten Island DESCRIPTION SMP AREA DISTURBED AREA RETENTION VOL ENGIN SOIL DEPTH STONE BASE DEPTH Excavate to specfied depth - truck away spoil- add 20%	QUANT 856 21,600 2,715 24 30 174 209 1,366 79 63	SF SF CF INCH INCH CY CY CY SF CY CY	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	100.00 50.00 0.75 82.00 106.00	AM x 4.5' de \$ \$ \$ \$ \$ \$ \$ \$	OUNT epth) 17,437 10,462 1,025 6,499 6,721		\$37,7
SPACE UNCONSTRAINED - SOIL UNCONSTRAINED 1759 Hylan Blvd, Staten Island DESCRIPTION SMP AREA DISTURBED AREA RETENTION VOL ENGIN SOIL DEPTH STONE BASE DEPTH Excavate to specfied depth - truck away spoil- add 20% Install geotech fabric at stone-wrap top & sides Install 30" open graded stone base Install 24" engineered soil Install mulch layer (allow 3")	QUANT 856 21,600 2,715 24 30 174 209 1,366 79 63 8	SF SF CF INCH INCH CY CY CY CY CY	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	100.00 50.00 0.75 82.00 106.00	AM x 4.5' de \$ \$ \$ \$ \$ \$ \$ \$	OUNT epth) 17,437 10,462 1,025 6,499 6,721 317		\$37,7
SPACE UNCONSTRAINED - SOIL UNCONSTRAINE 1759 Hylan Blvd, Staten Island DESCRIPTION SMP AREA DISTURBED AREA RETENTION VOL ENGIN SOIL DEPTH STONE BASE DEPTH Excavate to specfied depth - truck away spoil- add 20% Install geotech fabric at stone-wrap top & sides Install 30" open graded stone base Install 24" engineered soil Install mulch layer (allow 3")	QUANT 856 21,600 2,715 24 30 174 209 1,366 79 63 8	SF SF CF INCH INCH CY CY CY CY CY	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	100.00 50.00 0.75 82.00 40.00	AM x 4.5' de \$ \$ \$ \$ \$ \$ \$ \$ \$	OUNT epth) 17,437 10,462 1,025 6,499 6,721 317 7,100		\$37,7
SPACE UNCONSTRAINED - SOIL UNCONSTRAINE 1759 Hylan Blvd, Staten Island DESCRIPTION SMP AREA DISTURBED AREA RETENTION VOL ENGIN SOIL DEPTH STONE BASE DEPTH Excavate to specfied depth - truck away spoil- add 20% Install geotech fabric at stone-wrap top & sides Install 30" open graded stone base Install 24" engineered soil Install mulch layer (allow 3")	QUANT 856 21,600 2,715 24 30 174 209 1,366 79 63 8 50	SF SF CF INCH INCH CY CY CY CY CY CY CY CY CY LF	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	100.00 50.00 0.75 82.00 40.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	OUNT epth) 17,437 10,462 1,025 6,499 6,721 317 7,100 6,420 JBTOTAL	ТС	\$37,7 DTAL
SPACE UNCONSTRAINED - SOIL UNCONSTRAINE 1759 Hylan Blvd, Staten Island DESCRIPTION SMP AREA DISTURBED AREA RETENTION VOL ENGIN SOIL DEPTH STONE BASE DEPTH Excavate to specfied depth - truck away spoil- add 20% Install geotech fabric at stone-wrap top & sides Install 30" open graded stone base Install 24" engineered soil Install mulch layer (allow 3")	QUANT 856 21,600 2,715 24 30 174 209 1,366 79 63 8 50	SF SF CF INCH INCH CY CY CY CY CY CY CY CY CY LF	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	100.00 50.00 0.75 82.00 40.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	OUNT epth) 17,437 10,462 1,025 6,499 6,721 317 7,100 6,420 JBTOTAL	ТС	\$37,7 DTAL 55,9 \$5,6
SPACE UNCONSTRAINED - SOIL UNCONSTRAINE 1759 Hylan Blvd, Staten Island DESCRIPTION SMP AREA DISTURBED AREA RETENTION VOL ENGIN SOIL DEPTH STONE BASE DEPTH Excavate to specfied depth - truck away spoil- add 20% Install geotech fabric at stone-wrap top & sides Install 30" open graded stone base Install 24" engineered soil Install mulch layer (allow 3")	QUANT 856 21,600 2,715 24 30 174 209 1,366 79 63 8 50	SF SF CF INCH INCH CY CY CY CY CY CY CY CY CY LF	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	100.00 50.00 0.75 82.00 106.00 40.00 7.50	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	OUNT epth) 17,437 10,462 1,025 6,499 6,721 317 7,100 6,420 JBTOTAL S - 10.0% JBTOTAL	ТС	\$37,7 DTAL 55,9 \$5,6 \$61,6
SPACE UNCONSTRAINED - SOIL UNCONSTRAINE 1759 Hylan Blvd, Staten Island DESCRIPTION SMP AREA DISTURBED AREA RETENTION VOL ENGIN SOIL DEPTH STONE BASE DEPTH Excavate to specfied depth - truck away spoil- add 20% Install geotech fabric at stone-wrap top & sides Install 30" open graded stone base Install 24" engineered soil Install mulch layer (allow 3")	QUANT 856 21,600 2,715 24 30 174 209 1,366 79 63 8 50	SF SF CF INCH INCH CY CY CY CY CY CY CY CY CY LF	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	100.00 50.00 0.75 82.00 106.00 40.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	OUNT epth) epth) 17,437 10,462 1,025 6,499 6,721 317 7,100 6,420 JBTOTAL S - 10.0%	ТС	\$37,7
SPACE UNCONSTRAINED - SOIL UNCONSTRAINE 1759 Hylan Blvd, Staten Island DESCRIPTION SMP AREA DISTURBED AREA RETENTION VOL ENGIN SOIL DEPTH STONE BASE DEPTH Excavate to specfied depth - truck away spoil- add 20% Install geotech fabric at stone-wrap top & sides Install 30" open graded stone base Install 24" engineered soil Install mulch layer (allow 3")	QUANT 856 21,600 2,715 24 30 174 209 1,366 79 63 8 50	SF SF CF INCH INCH CY CY CY CY CY CY CY CY CY LF	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	100.00 100.00 50.00 0.75 82.00 106.00 40.00 7.50 ONS, BONE	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	OUNT epth) epth) 17,437 10,462 1,025 6,499 6,721 317 7,100 6,420 JBTOTAL S - 10.0% JBTOTAL D - 21.0% JBTOTAL	ТС	\$37,7 DTAL 55,9 \$5,6 \$61,6 \$12,9 \$74,5
SPACE UNCONSTRAINED - SOIL UNCONSTRAINE 1759 Hylan Blvd, Staten Island DESCRIPTION SMP AREA DISTURBED AREA RETENTION VOL ENGIN SOIL DEPTH STONE BASE DEPTH Excavate to specfied depth - truck away spoil- add 20% Install geotech fabric at stone-wrap top & sides Install 30" open graded stone base Install 24" engineered soil Install mulch layer (allow 3")	QUANT 856 21,600 2,715 24 30 174 209 1,366 79 63 8 50	SF SF CF INCH INCH CY CY CY CY CY CY CY CY CY LF	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	100.00 100.00 50.00 0.75 82.00 106.00 40.00 7.50 ONS, BONE	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	OUNT epth) epth) 17,437 10,462 1,025 6,499 6,721 317 7,100 6,420 JBTOTAL S - 10.0% JBTOTAL D - 21.0%	ТС	\$37,7 DTAL 55,9 \$5,6 \$61,6 \$12,9 \$74,5 \$14,9
SPACE UNCONSTRAINED - SOIL UNCONSTRAINE 1759 Hylan Blvd, Staten Island DESCRIPTION SMP AREA DISTURBED AREA RETENTION VOL ENGIN SOIL DEPTH STONE BASE DEPTH Excavate to specfied depth - truck away spoil- add 20% Install geotech fabric at stone-wrap top & sides Install 30" open graded stone base Install 24" engineered soil Install mulch layer (allow 3")	QUANT 856 21,600 2,715 24 30 174 209 1,366 79 63 8 50	SF SF CF INCH INCH CY CY CY CY CY CY CY CY CY LF	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	100.00 100.00 50.00 0.75 82.00 106.00 40.00 7.50 ONS, BONE G.C.	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	OUNT epth) epth) 17,437 10,462 1,025 6,499 6,721 317 7,100 6,420 JBTOTAL S - 10.0% JBTOTAL Y - 20.0% JBTOTAL Y - 20.0% JBTOTAL	ТС	\$37,7 DTAL DTAL 55,9 \$5,6 \$61,6 \$12,9 \$74,5 \$14,9 \$89,4
SPACE UNCONSTRAINED - SOIL UNCONSTRAINE 1759 Hylan Blvd, Staten Island DESCRIPTION SMP AREA DISTURBED AREA RETENTION VOL ENGIN SOIL DEPTH STONE BASE DEPTH Excavate to specfied depth - truck away spoil- add 20% Install geotech fabric at stone-wrap top & sides Install 30" open graded stone base Install 24" engineered soil Install mulch layer (allow 3")	QUANT 856 21,600 2,715 24 30 174 209 1,366 79 63 8 50	SF SF CF INCH INCH CY CY CY CY CY CY CY CY CY LF	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	100.00 100.00 50.00 0.75 82.00 106.00 40.00 7.50 ONS, BONE G.C.	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	OUNT epth) epth) 17,437 10,462 1,025 6,499 6,721 317 7,100 6,420 JBTOTAL S - 10.0% JBTOTAL Y - 20.0% JBTOTAL Y - 20.0% JBTOTAL Y - 20.0% JBTOTAL NG - 15%	\$	\$37,7 55,9 \$5,6 \$61,6 \$12,9 \$74,5 \$14,5

BIORETENTION CAPITAL COST ESTIMATE

SPACE UNCONSTRAINED - SOIL UNCONSTRAINE	D						
262 Corbin Place, Bronx							
DESCRIPTION	QUANT	ITY	UNI	IT PRICE	Α	MOUNT	TOTAL
SMP AREA	222	-	(:	18.5' x 6'	x 4.5	depth)	
DISTURBED AREA	6,434	SF	(:	18.5' x 6'	x 4.5	depth)	
RETENTION VOL	806	CF					
ENGIN SOIL DEPTH	24	INCH					
STONE BASE DEPTH	30	INCH					
Excavate to specfied depth	45	CY	\$	100.00	\$	4,522	
- truck away spoil- add 20%	54	CY	\$	50.00	\$	2,713	
Install geotech fabric at stone-wrap top & sides	467	SF	\$	0.75	\$	350	
Install 30" open graded stone base	21	CY	\$	82.00	\$	1,686	
Install 24" engineered soil	16	CY	\$	106.00	\$	1,743	
Install mulch layer (allow 3")	2	CY	\$	40.00	\$	82	
Conveyance	50	LF			\$	7,100	
Planting Area	222	SF	\$	7.50	\$	1,665	
						SUBTOTAL	\$ 19,862
	GENERA	AL CONI	IOITIC	NS, BONE	S & I	INS - 10.0%	\$1,938
						SUBTOTAL	\$21,800
				G.C.	он 8	& P - 21.0%	\$4,600
						SUBTOTAL	\$26,400
				CONTI	NGEN	ICY - 20.0%	\$5,300
						SUBTOTAL	\$31,700
				ENG	INEE	RING - 15%	\$4,800
			TOTA	AL CONST	TRUC	TION COST	\$36,500

LARGE SIZED RESIDENTIAL PROPERTY SPACE UNCONSTRAINED - SOIL UNCONSTRAINED

14 Ottavio Promanade, Staten Island

DESCRIPTION	QUANT	ITY	UNIT PRICE		AMOL	JNT	-	TOTAL
SMP AREA	260	SF		(23' x 12'	x 4.5' dep	th)		
DISTURBED AREA	14,935	SF						
RETENTION VOL	840	CF						
ENGIN SOIL DEPTH	24	INCH						
STONE BASE DEPTH	30	INCH						
Excavate to specfied depth	53	CY	\$	100.00	\$	5,296		
- truck away spoil- add 20%	64	CY	\$	50.00	\$	3,178		
Install geotech fabric at stone-wrap top & sides	435	SF	\$	0.75	\$	326		
Install 30" open graded stone base	24	CY	\$	82.00	\$	1,974		
Install 24" engineered soil	19	CY	\$	106.00	\$	2,041		
Install mulch layer (allow 3")	2	CY	\$	40.00	\$	96		
Conveyance	50	LF			\$	7,100		
Planting Area	260	SF	\$	7.50	\$	1,950		
						TOTAL	\$	21,962
	GENERA	AL CONE	OITIC	NS, BONE	S & INS -	10.0%		\$2,238
						TOTAL		\$24,200
				G.C.	OH & P -	21.0%		\$5,100
					SUB.	TOTAL		\$29,300
				CONTIN	NGENCY -	20.0%		\$5,900
					SUB	TOTAL		\$35,200
				ENG	INEERING	- 15%		\$7,000
			тот	AL CONST	RUCTION	COST		\$42,200

SPACE UNCONSTRAINED - SOIL UNCONSTRAINEI	<u>D</u>							
89 West Tremont Avenue, Bronx								
DESCRIPTION	QUANTITY UI		UN	IIT PRICE	AMOUNT		1	ΓΟΤΑL
SMP AREA	455	-	(-	45.5' x 10	' x 4.5	' depth)		
DISTURBED AREA	19,146							
RETENTION VOL	1,449							
ENGIN SOIL DEPTH	24	INCH						
STONE BASE DEPTH	30	INCH						
Excavate to specfied depth	93	CY	\$	100.00	\$	9,269		
- truck away spoil- add 20%	111	CY	\$	50.00	\$	5,561		
Install geotech fabric at stone-wrap top & sides	733	SF	\$	0.75	\$	549		
Install 30" open graded stone base	42	CY	\$	82.00	\$	3,455		
Install 24" engineered soil	34	CY	\$	106.00	\$	3,573		
Install mulch layer (allow 3")	4	CY	\$	40.00	\$	169		
Conveyance	50	LF			\$	7,100		
Planting Area	455	SF	\$	7.50	\$	3,413		
						SUBTOTAL	\$	33,0
	GENERA	AL CONI	DITIO	NS, BONE	os & I	NS - 10.0%		\$3,3
						SUBTOTAL		\$36,4
				G.C.	OH 8	k P - 21.0%		\$7,6
						SUBTOTAL		\$44,0
				CONTI	NGEN	CY - 20.0%		\$8,8
						SUBTOTAL		\$52,8
				ENG	INEEF	RING - 15%		\$7,9
			TOT	AL CONST	TRUC	TION COST		\$60,70

MEDIUM SIZED INDUSTRIAL PROPERTY			1				
SPACE UNCONSTRAINED - SOIL CONSTRAINED							
STACE ONCONSTRAINED SOLE CONSTRAINED							
141 STORER AVE , STATEN ISLAND							
DESCRIPTION	QUANT	ITY	U	NIT PRICE		AMOUNT	TOTAL
BESCHI HON	Q0/11/1	 		IVII I I II CE		111100111	TOTAL
SMP AREA - BIORETENSION	396	SF	(22)	x 6 x4 x3)			
RETENTION VOL	648	CF	<u> </u>	,			
SMP AREA - POROUS PAVEMENT BRIDGE	456	SF	(28	x 6 x2)	(48	3 x 6x 2)	
RETENTION VOL	358	CF	<u> </u>	,	Ì	,	
DISTURBED AREA	8,000	SF					
ENGIN SOIL DEPTH	36	INCH					
STONE BASE DEPTH	12	INCH					
PERFORATED PIPE SIZE	6	INCH					
Excavate to specfied depth (142' x 6' x 4')	126		\$	100.00	\$	12,622	
- truck away spoil- add 20%	151	CY	\$	50.00	\$	7,573	
Install 12" open graded stone base	15	_	\$	82.00	\$	1,203	
6" PVC perforated pipe	142		\$	25.00	\$	3,550	
Perforated pipe cleanouts		EA	\$	150.00	\$	450	
Concrete trough for overflow pipe	1		\$	2,500.00	\$	2,500	
Install geotech fabric at stone-wrap top & bottom	792		\$	0.75	\$	594	
Install 36" engineered soil-	44	CY	\$	106.00	\$	4,664	
Install mulch layer (allow 3")	4	CY	\$	40.00	\$	147	
18 x 18" concrete header curb	120	LF	\$	25.00	\$	3,000	
Install 3-1/2" permeable paver on 5-1/2" stone bed	456	SF	\$	40.00	\$	18,240	
Install 10" open graded stone base	14		\$	82.00	\$	1,149	
24" x 8" concrete curb	24	LF	\$	55.00	\$	1,320	
Install 24" controlled backfill	34		\$	75.00	\$	2,533	
Deduct Concrete Paving	(456)		\$	25.00	\$	(11,400)	
3' x 6' Access Hatch by Syracuse Castings		EA	\$	3,000.00	\$	3,000	
4" wide concrete apron at Hatch	1	LS	\$	1,000.00	\$	1,000	
Outlet Pipe - ALLOW	50	LF	\$	125.00	\$	6,250	
Repair disturbed area	8,000	SF	\$	2.50			
Companyance	F0	LF			۲.	0.000	
Conveyance	50	LF			\$	9,000	
Planting Area	396	SF	\$	7.50	\$	2,970	
						-	
						SUBTOTAL	\$ 70,366
	GENE	RAL COI	NDITI	ONS, BOND	S &	INS - 10.0%	\$7,034
			1			SUBTOTAL	\$77,400
				G.C.	ОН	& P - 21.0%	\$16,300
						SUBTOTAL	\$93,700
			1	CONTIN	NGEN	NCY - 20.0%	\$18,700
			1			SUBTOTAL	\$112,400
			1	ENGIN	NEER	RING- 15.0%	\$16,900
			TO			CTION COST	\$129,300

QUANT	TY	U	NIT PRICE	,	AMOUNT		TOTAL
1.620	CF	22.	, 6 y 1 y 500	\			
·		337	X)			
		/20	NE v.C v.2 \				
·		(39	75 X6 X2)				
·							
0	INCH						
498	CY	\$	100.00	\$	49,778		
597	CY	\$	50.00	\$	29,867	I	
60	CY	Ś	82.00	\$	4.920		
300	LI	۲	23.00	۲	22,300		
2,370	SF	\$	40.00	\$	94,800		
	CY		82.00				
					-,		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1					
50	LF			\$	9,000		
4.620	c =		7.50	.	42.450		
1,620	SF.	\$	7.50	\$	12,150		
					SUBTOTAL	\$	235,8
GENER	RAL COI	VDIT	IONS, BOND	s &			\$23,5
							\$259,4
			G.C.	ОН			\$54,5
		1					\$313,9
			CONTIN	IGE			\$62,8
		1		J <u>-</u> .			\$376,7
		1	FNGIN	JEFF			\$56,5
		1	TAL CONST				\$433,2
	1,620 648 2,370 1,867 27,903 36 12 6 498 597 60 560 5 11 3,240 180 15 900 2,370 73 60 176 (2,370) 1 50 27,903	648 CF 2,370 SF 1,867 CF 27,903 SF 36 INCH 12 INCH 6 INCH 498 CY 597 CY 60 CY 560 LF 5 EA 1 LS 3,240 SF 180 CY 15 CY 900 LF 2,370 SF 73 CY 60 LF 176 CY (2,370) SF 1 EA 1 LS 5 LF	1,620 SF 33 x 648 CF 2,370 SF (39 1,867 CF 27,903 SF 36 INCH 12 INCH 6 INCH 498 CY \$ 597 CY \$ 60 CY \$ 560 LF \$ 3,240 SF \$ 1 LS \$ 3,240 SF \$ 180 CY \$ 900 LF \$ 2,370 SF \$ 73 CY \$ 60 LF \$ 560 LF \$ \$ 5 EA \$ 1 LS \$ 3,240 SF \$ 3	1,620 SF 33 x 6 x 4 x 5ea 648 CF 2,370 SF (395 x6 x2) 1,867 CF 27,903 SF 36 INCH 12 INCH 6 INCH 6 INCH 597 CY \$ 100.00 597 CY \$ 50.00 60 CY \$ 82.00 560 LF \$ 25.00 5 EA \$ 150.00 1 LS \$ 2,500.00 3,240 SF \$ 0.75 180 CY \$ 40.00 900 LF \$ 25.00 2,370 SF \$ 40.00 900 LF \$ 55.00 176 CY \$ 75.00 (2,370) SF \$ 25.00 1 EA \$ 3,000.00 1 LS \$ 1,000.00 50 LF \$ 125.00 27,903 SF \$ 2.50 GENERAL CONDITIONS, BOND GENERAL CONDITIONS, BOND GENERAL CONDITIONS, BOND	1,620 SF 33 x 6 x 4 x 5ea) 648 CF 2,370 SF (395 x6 x2) 1,867 CF 27,903 SF 36 INCH 12 INCH 6 INCH 6 INCH 597 CY \$ 100.00 \$ 597 CY \$ 50.00 \$ 60 CY \$ 82.00 \$ 560 LF \$ 25.00 \$ 1 LS \$ 2,500.00 \$ 1 LS \$ 2,500.00 \$ 3,240 SF \$ 0.75 \$ 180 CY \$ 40.00 \$ 900 LF \$ 25.00 \$ 2,370 SF \$ 40.00 \$ 73 CY \$ 82.00 \$ 60 LF \$ 55.00 \$ 15 CY \$ 40.00 \$ 15 CY \$ 40.00 \$ 2,370 SF \$ 40.00 \$ 73 CY \$ 82.00 \$ 60 LF \$ 55.00 \$ 1 LS \$ 1,000.00 \$ 3 CY \$ 50.00 \$ 4 CONTINGE	1,620 SF 33 x 6 x 4 x 5ea) 648 CF 2,370 SF (395 x 6 x 2) 1,867 CF 27,903 SF 36 INCH 12 INCH 6 INCH 6 INCH 597 CY \$ 100.00 \$ 49,778 597 CY \$ 50.00 \$ 29,867 60 CY \$ 82.00 \$ 4,920 560 LF \$ 25.00 \$ 14,000 5 EA \$ 150.00 \$ 750 1 LS \$ 2,500.00 \$ 2,500 3,240 SF \$ 0.75 \$ 2,430 180 CY \$ 106.00 \$ 19,080 15 CY \$ 40.00 \$ 600 900 LF \$ 25.00 \$ 22,500 2,370 SF \$ 40.00 \$ 94,800 73 CY \$ 82.00 \$ 5,974 60 LF \$ 55.00 \$ 3,300 176 CY \$ 75.00 \$ 13,167 (2,370) SF \$ 25.00 \$ 13,000 1 LS \$ 1,000.00 \$ 1,000 5 LF \$ 125.00 \$ 6,250 27,903 SF \$ 2.50	1,620 SF 33 x 6 x 4 x 5ea) 648 CF 2,370 SF (395 x 6 x 2) 1,867 CF 27,903 SF 36 INCH 12 INCH 6 INCH 498 CY \$ 100.00 \$ 49,778 597 CY \$ 50.00 \$ 29,867 60 CY \$ 82.00 \$ 4,920 560 LF \$ 25.00 \$ 14,000 5 EA \$ 150.00 \$ 750 1 LS \$ 2,500.00 \$ 2,500 3,240 SF \$ 0.75 \$ 2,430 180 CY \$ 106.00 \$ 19,080 15 CY \$ 40.00 \$ 600 900 LF \$ 25.00 \$ 22,500 2,370 SF \$ 40.00 \$ 94,800 73 CY \$ 82.00 \$ 5,974 60 LF \$ 55.00 \$ 3,300 176 CY \$ 75.00 \$ 13,167 (2,370) SF \$ 25.00 \$ 6,250 1 LS \$ 1,000.00 \$ 1,000 50 LF \$ 125.00 \$ 6,250 27,903 SF \$ 2.50 SUBTOTAL \$ GENERAL CONDITIONS, BONDS & INS - 10.0% SUBTOTAL G.C. OH & P - 21.0% SUBTOTAL G.C. OH & P - 21.0% SUBTOTAL CONTINGENCY - 20.0%

MEDIUM SIZED COMMERCIA PROPERTY								
SPACE UNCONSTRAINED - SOIL CONSTRAINED								
141 South 3 Street, Brooklyn								
DESCRIPTION	QUANT	ITY	U	NIT PRICE	Α	MOUNT		TOTAL
SMP AREA - BIORETENSION	396	SF	(22	x 9 x 4)	(17	x9x4)		
RETENTION VOL	648	CF						
SMP AREA - POROUS PAVEMENT BRIDGE	456	SF	(18	x 10 x 4)				
RETENTION VOL	358	CF						
DISTURBED AREA	7,450	SF						
ENGIN SOIL DEPTH	36	INCH						
STONE BASE DEPTH	12	INCH						
PERFORATED PIPE SIZE	6	INCH						
Excavate to specfied depth (142' x 6' x 4')	51	CY	\$	100.00	\$	5,067		
- truck away spoil- add 20%	61	CY	\$	50.00	\$	3,040	·	
Install 12" open graded stone base	15	CY	\$	82.00	\$	1,203		
6" PVC perforated pipe	57		\$	25.00	\$	1,425		
Perforated pipe cleanouts	2	EA	\$	150.00	\$	300		
Concrete trough for overflow pipe	1	_	\$	2,500.00	\$	2,500		
Install geotech fabric at stone-wrap top & bottom	792	SF	\$	0.75	\$	594		
Install 36" engineered soil-	44	CY	\$	106.00	\$	4,664		
Install mulch layer (allow 3")	4	CY	\$	40.00	\$	147		
18 x 18" concrete header curb - +/-	140	LF	\$	25.00	\$	3,500		
Install 3-1/2" permeable paver on 5-1/2" stone bed	456	SF	\$	40.00	\$	18,240		
Install 10" open graded stone base	34	CY	\$	82.00	\$	2,770		
24" x 8" concrete curb	12	LF	\$	55.00	\$	660		
Install 24" controlled backfill	34	CY	\$	75.00	\$	2,533		
Deduct Concrete Paving	(456)	SF	\$	25.00	\$	(11,400)		
3' x 6' Access Hatch by Syracuse Castings	1	EA	\$	3,000.00	\$	3,000		
4" wide concrete apron at Hatch	1	LS	\$	1,000.00	\$	1,000		
Outlet Pipe - ALLOW	50	LF	\$	125.00	\$	6,250		
Repair disturbed area	7,450	SF	\$	2.50		·		
Conveyance	50	LF			\$	9,000		
Conveyance	30	LI			ب	3,000		
Planting Area	396	SF	\$	7.50	\$	2,970		
						SUBTOTAL	¢	57,462
	GENFF	L RAL COI	I NDITI	ONS. BOND	S &	INS - 10.0%	۲	\$5,738
			1			SUBTOTAL		\$63,200
			1	G C	OH 2	& P - 21.0%		\$13,300
			+	0.0.	5,10	SUBTOTAL		\$76,500
	1		1	CONTIN	IGEN	ICY - 20.0%		\$15,300
			1	CONTIN	VOEN			
			1	FNICIN		SUBTOTAL ING- 15.0%		\$91,800
								\$13,800
			10	TAL CONST	KUC	TION COST		\$105,600

LARGE SIZED COMMERCIAL PROPERTY					
SPACE UNCONSTRAINED - SOIL CONSTRAINED					
1759 Hylan Blvd, Staten Island					
DESCRIPTION	QUANT	ITY	UNIT PRICE	AMOUNT	TOTAL
DESCRIPTION	Q0/1	1	CHITTHEE	74100141	TOTAL
SMP AREA - BIORETENSION	1,216	SF	(60 x 16 x 4)	(16 x16 x 4)	
RETENTION VOL	1,989	CF	(001120111)	(=======,	
SMP AREA - POROUS PAVEMENT BRIDGE	912	SF	(22 x16 x 2)	(35 x16 x2)	
RETENTION VOL	712	CF	, ,	,	
DISTURBED AREA	21,600	SF			
ENGIN SOIL DEPTH	36	INCH			
STONE BASE DEPTH	12	INCH			
PERFORATED PIPE SIZE	6				
Excavate to specfied depth	315	CY	\$ 100.00	\$ 31,526	
- truck away spoil- add 20%	378	CY	\$ 50.00	\$ 18,916	
				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Install 12" open graded stone base	45	CY	\$ 82.00	\$ 3,693	
6" PVC perforated pipe	133	LF	\$ 25.00	\$ 3,325	
Perforated pipe cleanouts	2	EA	\$ 150.00	\$ 300	
Concrete trough for overflow pipe	1	LS	\$ 2,500.00	\$ 2,500	
Install geotech fabric at stone-wrap top & bottom	2,432	SF	\$ 0.75	\$ 1,824	
Install 36" engineered soil-	135	CY	\$ 106.00	\$ 14,322	
Install mulch layer (allow 3")	11	CY	\$ 40.00	\$ 450	
18 x 18" concrete header curb	276	LF	\$ 25.00	\$ 6,900	
				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Install 3-1/2" permeable paver on 5-1/2" stone bed	912	SF	\$ 40.00	\$ 36,480	
Install 10" open graded stone base	68	CY	\$ 82.00	\$ 5,540	
24" x 8" concrete curb	12	LF	\$ 55.00	\$ 660	
Install 24" controlled backfill	68	CY	\$ 75.00	\$ 5,067	
Deduct Concrete Paving	(912)	SF	\$ 25.00	\$ (22,800)	
3' x 6' Access Hatch by Syracuse Castings	1	EA	\$ 3,000.00	\$ 3,000	
4" wide concrete apron at Hatch	1	LS	\$ 1,000.00	\$ 1,000	
Outlet Pipe - ALLOW	50	LF	\$ 125.00	\$ 6,250	
Repair disturbed area	21,600	SF	\$ 2.50	. ,	
	,				
Conveyance	50	LF		\$ 9,000	
,					
Planting Area	1,216	SF	\$ 7.50	\$ 9,120	
				SUBTOTAL	\$ 137,072
	GENEI	RAL CON	NDITIONS, BONE	OS & INS - 10.0%	\$13,728
			,	SUBTOTAL	\$150,800
			G C	OH & P - 21.0%	\$31,700
	1		5.6.	SUBTOTAL	\$182,500
	1		CONTI	NGENCY - 20.0%	\$36,500
	1		CONTI	1	
	1		FNICH	SUBTOTAL NEERING- 15.0%	\$219,000
	1				\$32,900
	1	<u> </u>	TOTAL CONST	TRUCTION COST	\$251,900

BIORETENTION WITH POROUS PAVERS AND UNDERDRAIN CAPITAL COST ESTIMATE

LARGE SIZED RESIDENTIAL PROPERTY								
SPACE UNCONSTRAINED - SOIL CONSTRAINED								
STACE ONCONSTRAINED - SOIL CONSTRAINED								
14 Ottavio Promanade, Staten Island								
DESCRIPTION	QUANT	ITY	U	NIT PRICE		AMOUNT		TOTAL
DESCRIPTION	ζο,	<u></u>	╁	MITTRICE		1100111		TOTAL
SMP AREA - BIORETENSION	264	SF	(24	x 11 x 4)				
RETENTION VOL	432	CF		,				
SMP AREA - POROUS PAVEMENT BRIDGE	528	SF	(24	x22 x 2)				
RETENTION VOL	415	CF		•				
DISTURBED AREA	7,450	SF						
ENGIN SOIL DEPTH	36	INCH						
STONE BASE DEPTH	12	INCH						
PERFORATED PIPE SIZE	6	INCH						
					ļ			
Excavate to specfied depth	78	CY	\$	100.00	\$	7,822		
- truck away spoil- add 20%	94	CY	\$	50.00	\$	4,693	ſ	
Install 12" open graded stone base	10	CY	\$	82.00	\$	802		
6" PVC perforated pipe		LF	\$	25.00	\$	1,200		
Perforated pipe cleanouts		EA	\$	150.00	\$	150		
Concrete trough for overflow pipe		LS	\$	2,500.00	\$	2,500		
Install geotech fabric at stone-wrap top & bottom		1	\$	0.75	\$	396		
Install 36" engineered soil-	29	CY	\$	106.00	\$	3,109		
Install mulch layer (allow 3")	2	CY	\$	40.00	\$	98		
18 x 18" concrete header curb	114		\$	25.00	\$	2,850		
Install 3-1/2" permeable paver on 5-1/2" stone bed	528	SF	\$	40.00	\$	21,120		
Install 10" open graded stone base		CY	\$	82.00	\$	1,331		
24" x 8" concrete curb		LF	\$	55.00	\$	660		
Install 24" controlled backfill		CY	\$	75.00	\$	2,933		
Deduct Concrete Paving	(528)		\$	25.00	\$	(13,200)		
3' x 6' Access Hatch by Syracuse Castings		EA	\$	3,000.00	\$	3,000		
4" wide concrete apron at Hatch		LS	\$	1,000.00	\$	1,000		
Outlet Pipe - ALLOW		LF	\$	125.00	\$	6,250		
Repair disturbed area	7,450	SF	\$	2.50				
Conveyance	50	LF			\$	9,000		
	30				7	3,000		
Planting Area	264	SF	\$	7.50	\$	1,980		
						SUBTOTAL	\$	57,695
	GENE	RAL CO	NDIT	IONS, BOND	S &	INS - 10.0%		\$5,805
						SUBTOTAL		\$63,500
				G.C.	ОН	& P - 21.0%		\$13,300
				-		SUBTOTAL		\$76,800
				CONTIN	IGEN	NCY - 20.0%		\$15,400
						SUBTOTAL		\$92,200
				ENGIN	NEER	ING- 15.0%		\$13,800
			TC	TAL CONST	RUC	TION COST		\$106,000

LARGE SIZED INDUSTRIAL PROPERTY					
SPACE UNCONSTRAINED - SOIL CONSTRAINED					
89 West Tremont Avenue, Bronx					1
DESCRIPTION	QUANT	ITY	UNIT PRICE	AMOUNT	TOTAL
			/		
SMP AREA - BIORETENSION	840	SF	(42 x 10 x 4 x 2	ea)	<u> </u>
RETENTION VOL	1,374	CF	/ >		
SMP AREA - POROUS PAVEMENT BRIDGE	100	SF	(10 x10 x 2)		
RETENTION VOL	79	CF			
DISTURBED AREA	19,146	SF			
ENGIN SOIL DEPTH	36	INCH			
STONE BASE DEPTH	12	INCH			
PERFORATED PIPE SIZE	6	INCH			
Excavate to specfied depth	139	CY	\$ 100.00	\$ 13,926	
- truck away spoil- add 20%	167	CY	\$ 100.00 \$ 50.00	\$ 13,926 \$ 8,356	<u> </u>
- truck away spoil- add 20%	167	Cf	\$ 50.00	\$ 6,330	
Install 12" open graded stone base	31	CY	\$ 82.00	\$ 2,551	
6" PVC perforated pipe	94		\$ 25.00	\$ 2,350	
Perforated pipe cleanouts		EA	\$ 150.00	\$ 2,330	
Concrete trough for overflow pipe		LS	\$ 2,500.00	\$ 2,500	
Install geotech fabric at stone-wrap top & bottom	1,680		\$ 2,300.00	\$ 1,260	
Install 36" engineered soil-	93	CY	\$ 106.00	\$ 9,893	
Install mulch layer (allow 3")	8	CY	\$ 40.00	\$ 311	
18 x 18" concrete header curb	_	LF	\$ 25.00	\$ 3,100	
10 x 10 concrete neader curb	124		23.00	ÿ 3,100	
Install 3-1/2" permeable paver on 20-1/2" stone bed	100	SF	\$ 55.00	\$ 5,500	
Install 24" open graded stone base	3	CY	\$ 82.00	\$ 252	
24" x 8" concrete curb	12	LF	\$ 55.00	\$ 660	
Install 24" controlled backfill	7	CY	\$ 75.00	\$ 556	
Deduct Concrete Paving	(100)	SF	\$ 25.00	\$ (2,500)	
3' x 6' Access Hatch by Syracuse Castings		EA	\$ 3,000.00	\$ 3,000	
4" wide concrete apron at Hatch	1	LS	\$ 1,000.00	\$ 1,000	
Outlet Pipe - ALLOW	50	LF	\$ 125.00	\$ 6,250	
Repair disturbed area	19,146	SF	\$ 2.50		
Conveyance	50	LF		\$ 9,000	
Planting Area	840	SF	\$ 7.50	\$ 6,300	
				CURTOT	¢ 74.555
	GENIEI		 NDITIONS, BOND	SUBTOTAL	\$ 74,565 \$7,435
	GLIVEI	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		SUBTOTAL	\$82,000
	-		G.C.	OH & P - 21.0%	\$17,200
			G.C.	SUBTOTAL	
			CONTIN	I SUBTUTAL NGENCY - 20.0%	\$99,200
			CONTIN	1	\$19,800
			FAIGIA	SUBTOTAL	\$119,000
				NEERING- 15.0%	\$17,900
	1		TOTAL CONST	RUCTION COST	\$136,900

BIORETENTION WITH POROUS PAVERS AND UNDERDRAIN CAPITAL COST ESTIMATE

MEDIUM SIZED RESIDENTIAL PROPERTY								
SPACE UNCONSTRAINED - SOIL CONSTRAINED								
SPACE ONCONSTRAINED - SOIL CONSTRAINED								
262 Corbin Place, Bronx, NY	OLIANIT	IT) (1	TOTAL
DESCRIPTION	QUANT	IIY I	U	UNIT PRICE AN		AMOUNT		TOTAL
SMP AREA - BIORETENSION	240	SF	(20 x 6 x 4 x 2 ea)				l	
RETENTION VOL	393	CF	,					
SMP AREA - POROUS PAVEMENT BRIDGE	560	SF	(28	3 x20 x 2)				
RETENTION VOL	833	CF	Ì	· · · · · · · · · · · · · · · · · · ·				
DISTURBED AREA	6,434	SF						
ENGIN SOIL DEPTH	36	INCH						
STONE BASE DEPTH	12	INCH						
PERFORATED PIPE SIZE	6	INCH						
Excavate to specfied depth	77	CY	\$	100.00	\$	7,704		
- truck away spoil- add 20%	92	CY	\$	50.00	\$	4,622	<u> </u>	
discharg spon and 2070	32		7	30.00	7	1,022		
Install 12" open graded stone base	9	CY	\$	82.00	\$	729		
6" PVC perforated pipe	40	LF	\$	25.00	\$	1,000		
Perforated pipe cleanouts	2	EA	\$	150.00	\$	300		
Concrete trough for overflow pipe	1	LS	\$	2,500.00	\$	2,500		
Install geotech fabric at stone-wrap top & bottom	480	SF	\$	0.75	\$	360		
Install 36" engineered soil-	27	CY	\$	106.00	\$	2,827		
Install mulch layer (allow 3")	2	CY	\$	40.00	\$	89		
18 x 18" concrete header curb	92	LF	\$	25.00	\$	2,300		
Install 3-1/2" permeable paver on 20-1/2" stone bed	560	SF	\$	55.00	\$	30,800		
Install 24" open graded stone base	17	CY	\$	82.00	\$	1,412		
24" x 8" concrete curb	24	LF	\$	55.00	\$	1,320		
Install 24" controlled backfill	41	CY	\$	75.00	\$	3,111		
Deduct Concrete Paving	(560)		7	73.00	7	3,111		
3' x 6' Access Hatch by Syracuse Castings	1	EA	\$	3,000.00	\$	3,000		
4" wide concrete apron at Hatch	1	LS	\$	1,000.00	\$	1,000		
Outlet Pipe - ALLOW	50	LF	\$	125.00	\$	6,250		
Repair disturbed area	6,434		\$	2.50	7	0,200		
	3, 13 1		1					
Conveyance	50	LF			\$	9,000		
Planting Area	240	SE	\$	7.50	\$	1,800		
i runting Area	240	J1	۲	7.50	ڔ	1,000		
						SUBTOTAL	\$	80,123
	GENE	RAL COI	NDITI	IONS, BOND	S &			\$7,977
					<u> </u>	SUBTOTAL		\$88,100
				G.C.	OH	& P - 21.0%		\$18,500
	1			CONT	L	SUBTOTAL		\$106,600
				CONTIN	IGEN	NCY - 20.0%		\$21,300
				EN C''		SUBTOTAL		\$127,900
			 			ING- 15.0%		\$19,200
			TC	TAL CONST	KUC	TION COST		\$147,100

MEDIUM INDUSTRIAL SPACE CONSTRAINED - SOIL (UN)CONSTRAINED

508 Smith Street, BK

DESCRIPTION	QUANTITY	UNIT	PRICE	A	AMOUNT		TOTAL
Green Roof SCM Area	7,210	SE					
SCM Volume	134						
Managed Area	7,210	-					
Retention Volume	901						
Greened Acre	0.17	Ac					
Pavers SCM Area	1,525	SF					
Managed Area	1,525	SF					
Detention Volume	191	CF					
6" deep green roof trays (installation included)	7,210	CE	\$ 15.25	ć	109,953		
, ,	,		•		,		
1' square pavers (instalation included)	1,525	SF	\$ 15.00	\$	22,875		
	I	1 1	1	I	SUBTOTAL	ς	132 828

GENERAL CONDITIONS, BONDS & INS - 10.0% \$13,283

SUBTOTAL \$146,110

G.C. OH & P - 21.0% \$30,683

SUBTOTAL \$176,793

CONTINGENCY - 20.0% \$35,359

SUBTOTAL \$212,152

\$212,152

TOTAL CONSTRUCTION COST

MEDIUM INDUSTRIAL

SPACE UNCONSTRAINED - SOIL CONSTRAINED

141 Storer Avenue, SI

DESCRIPTION	QUANTITY	UNIT	<u> </u>	PRICE	Α	MOUNT	TOTA
Green Roof SCM Area	2 900	SF					
Green Roof SCM Volume	2,890 54						
	2,890						
Managed Area Retention Volume	361						
Greened Acre	0.07						
Greened Acre	0.07	AC					
Pavers SCM Area	920	SF					
Managed Area	920	SF					
Detention Volume	115	CF					
Detention Vault SCM Area	130	SF					
Managed Area	4,190						
Detention Volume	530	CF					
Engineered Chamber Depth	330	LF					
Engineered Chamber Width	8	LF					
•	_						
Engineer Chamber Length	16	LF					
Wall Thickness	6	IN.					
6" deep green roof trays (installation included)	2,890	SF	\$	15.25	\$	44,073	
1' square pavers (instalation included)	920	SF	\$	15.00	\$	13,800	
Excavate to specfied depth (assume 24' x 16')	57	CY	\$	100.00	\$	5,689	
Finish grade for bottom slab	131		\$	5.00	\$	655	
- truck away spoil- add 20%	68	_	\$	50.00	\$	3,413	
Bottom Reinf Concrete Slab - assume 6"/wwm	554	-	\$	30.00	Ś	16,620	
Reinf Concrete Chamber Walls 6"	150		\$	70.00	Ś	10,500	
Reinf Concrete Top Supp. Slab - 6"	131		\$	40.00	\$	5,240	
Reinf Interior Concrete Chamber Walls - 4"		CY	\$	80.00	\$	2,240	
Gravel Backfill at Chamber		CY	\$	65.00	\$	2,795	
Access Manhole at Chamber slab		EA	\$	400.00	\$	800	
Outlet Pipe- ALLOW		LF	\$	125.00	\$	6,250	
Inlet Pipe - ALLOW		LF	\$	125.00	\$	6,250	
Drotroatment Structure /10 v 5 5 v 1 5	1						
Pretreatment Structure (10 x 6.5 x 1.5) Executed to specified depth (assume 10' x 16')	10	CY	\$	100.00	خ ا	1 053	
Excavate to specified depth (assume 19' x 16')					\$	1,852	
Finish grade for bottom slab	131		\$	5.00	<u>ې</u>	655	
- truck away spoil- add 20%		CY	\$	50.00	\$	1,111	
Bottom Reinf Concrete Slab - assume 6"/wwm		SF	\$	30.00	\$	1,950	
Reinf Concrete Chamber Walls 6"		SF	\$	70.00	\$	3,465	
Reinf Concrete Top Supp. Slab - 6"		SF	\$	40.00	\$	2,600	
Reinf Interior Concrete Chamber Walls - 4"		SF	\$	80.00	\$	880	
Gravel Backfill at Chamber		CY	\$	65.00	\$	969	
Access Manhole at Chamber slab	2	EA	\$	400.00	\$	800	
Outlet Pipe Hood	1	EA	\$	500.00	\$	500	
	1	LF	\$	125.00	\$	6,250	l

SUBTOTAL \$ 139,357
GENERAL CONDITIONS, BONDS & INS - 10.0% \$13,936
SUBTOTAL \$153,292
G.C. OH & P - 21.0% \$32,191
SUBTOTAL \$185,484
CONTINGENCY - 20.0% \$37,097
SUBTOTAL \$222,580

TOTAL CONSTRUCTION COST \$222,580

LARGE INDUSTRIAL SPACE CONSTRAINED - SOIL (UN)CONSTRAINED

305 Johnson Ave. BK

			UNIT		
DESCRIPTION	QUANTITY	UNIT	PRICE	AMOUNT	TOTAL
Green Roof SCM Area	22,560	SF			
Green Roof SCM Volume	418	CY			
Managed Area	22,560	SF			
Retention Volume	2,820	CF			
Greened Acre	0.52	Ac			
Pavers SCM Area	2,020	SF			
Managed Area	2,020	SF			
Detention Volume	253	CF			
6" deep green roof trays (installation included)	22,560	SF	\$ 15.25	\$ 344,040	
1' square pavers (instalation included)	2,020	SF	\$ 15.00	\$ 30,300	

 SUBTOTAL
 \$ 374,340

 GENERAL CONDITIONS, BONDS & INS - 10.0%
 \$37,434

 SUBTOTAL
 \$411,774

 G.C. OH & P - 21.0%
 \$86,473

 SUBTOTAL
 \$498,247

 CONTINGENCY - 20.0%
 \$99,649

 SUBTOTAL
 \$597,896

TOTAL CONSTRUCTION COST \$597,896

LARGE RESIDENTIAL SPACE UNCONSTRAINED - SOIL CONSTRAINED

89 West Tremont Ave. BX

DESCRIPTION	QUANTITY	UNIT	PRICE	AMO	UNT	TOTAL
Green Roof SCM Area	4,220	SF				
Green Roof SCM Volume	78	CY				
Managed Area	4,220	SF				
Retention Volume	528	CF				
Greened Acre	0.10	Ac				
Greened Acre	0.10	AC				
Pavers SCM Area	1,220	SF				
Managed Area	1,220	SF				
Detention Volume	153	CF				
Detention Vault SCM Area	190	SF				
Managed Area	6,050	SF				
Detention Volume	756					
Engineered Chamber Depth		LF				
Engineered Chamber Width		LF				
Engineer Chamber Length		LF				
Wall Thickness		IN.				
vuii mickiess	Ü					
6" deep green roof trays (installation included)	4,220	SF	\$ 15.25	\$	64,355	
1' square pavers (instalation included)	-	SF	\$ 15.00	-	18,300	
Detention Vault (10 x19 x3)						
Excavate to specfied depth (25'x 16' x 4')	50	CY	\$ 100.00	\$	5,926	
Finish grade for bottom slab		SF	\$ 5.00	\$	3,320	
•		CY	\$ 50.00	\$	2 556	
- truck away spoil- add 20% Bottom Reinf Concrete Slab - assume 6"/wwm		SF	\$ 30.00	\$	3,556	
Reinf Concrete Chamber Walls - 6"		SF	\$ 70.00	\$	-	
		SF	\$ 40.00		-	
Reinf Concrete Top Supp. Slab - 6" Reinf Interior Concrete Chamber Walls - 4"		SF		\$	2 040	
				\$	3,840	
Gravel Backfill at Chamber Access Manhole at Chamber slab		CY EA	\$ 65.00 \$ 400.00	\$ \$	2,913 400	
Outlet Pipe- ALLOW		LF	\$ 125.00	\$	6,250	
Inlet Pipe - ALLOW		LF	\$ 125.00	\$	6,250	
Pretreatment Structure (10 x 6.5 x 1.5)	30	LI	\$ 125.00	Ą	0,230	
Excavate to specfied depth (assume 19' x 16')	10	CY	\$ 100.00	\$	1,852	
Finish grade for bottom slab	_	SF	\$ 5.00	\$	325	
- truck away spoil- add 20%		CY	\$ 50.00	\$	1,111	
Bottom Reinf Concrete Slab - assume 6"/wwm		SF		\$		
Reinf Concrete Chamber Walls 6"		SF SF	•		1,950	
			\$ 70.00	\$	3,465	
Reinf Concrete Top Supp. Slab - 6" Reinf Interior Concrete Chamber Walls - 4"		SF SF	\$ 40.00 \$ 80.00	\$ \$	2,600 880	
				-		
Gravel Backfill at Chamber	_	CY	\$ 65.00	\$	987	
Access Manhole at Chamber slab		EA	\$ 400.00	\$	800	
Outlet Pipe Hood		EA	\$ 500.00	\$	500	
Inlet Pipe - ALLOW	50	LF	\$ 125.00	>	6,250	I

SUBTOTAL \$ 132,509
GENERAL CONDITIONS, BONDS & INS - 10.0% \$13,251
SUBTOTAL \$145,760
G.C. OH & P - 21.0% \$30,610
SUBTOTAL \$176,370
CONTINGENCY - 20.0% \$35,274
SUBTOTAL \$211,644

TOTAL CONSTRUCTION COST

\$211,644

LARGE COMMERCIAL SPACE UNCONSTRAINED - SOIL CONSTRAINED

141 South 3rd Street, BK

DESCRIPTION	QUANTITY	UNIT	PRICE	Α	MOUNT	TOTAL
Green Roof SCM Area	2,530	SF				
Green Roof SCM Volume	47					
Managed Area	2,530	-				
Retention Volume	316					
Greened Acre	0.06					
Pavers SCM Area	1,040	SF				
Managed Area	1,040	SF				
Detention Volume	130	CF				
Detention Vault SCM Area	100	SF				
Managed Area	3,135	SF				
Detention Volume	400	CF				
Engineered Chamber Depth	3	LF				
Engineered Chamber Width	10	LF				
Engineer Chamber Length	10	LF				
Wall Thickness	6	IN.				
6" deep green roof trays (installation included)	2,530	SF	\$ 15.25	\$	38,583	
1' square pavers (instalation included)	1,040	SF	\$ 15.00	\$	15,600	
Detention Vault (10 x 10 x3)						
Excavate to specfied depth (16'x 16' x 4')	38	CY	\$ 100.00	\$	3,793	
Finish grade for bottom slab	100		\$ 5.00		500	
- truck away spoil- add 20%		CY	\$ 50.00		2,276	
Bottom Reinf Concrete Slab - assume 6"/wwm	100		\$ 30.00		3,000	
Reinf Concrete Chamber Walls - 6"	120		\$ 70.00		8,400	
Reinf Concrete Top Supp. Slab - 6"	100		\$ 40.00		4,000	
Reinf Interior Concrete Chamber Walls - 4"		SF	\$ 80.00		2,880	
Gravel Backfill at Chamber		CY	\$ 65.00		1,526	
Access Manhole at Chamber slab		EA	\$ 400.00		400	
Outlet Pipe- ALLOW		LF	\$ 125.00		6,250	
nlet Pipe - ALLOW	50	LF	\$ 125.00	\$	6,250	
Pretreatment Structure (10 x 5 x 1.5) Excavate to specfied depth (11' x 16' X 2.5)	17	CY	\$ 100.00	\$	1,704	
Finish grade for bottom slab	50	SF	\$ 5.00		250	
- truck away spoil- add 20%	20	CY	\$ 50.00	\$	1,022	
Bottom Reinf Concrete Slab - assume 6"/wwm	50	SF	\$ 30.00	\$	1,500	
Reinf Concrete Chamber Walls 6"	50	SF	\$ 70.00	\$	3,465	
Reinf Concrete Top Supp. Slab - 6"	50	SF	\$ 40.00	\$	2,000	
Reinf Interior Concrete Chamber Walls - 4"	8	SF	\$ 80.00		640	
Gravel Backfill at Chamber	14	CY	\$ 65.00	\$	927	
Access Manhole at Chamber slab	1	EA	\$ 400.00	\$	400	
Outlet Pipe Hood	1	EA	\$ 500.00		500	
nlet Pipe - ALLOW	50	LF	\$ 125.00	\$	6,250	
					SUBTOTAL \$	112,1
	GEN	ERAL CO	NDITIONS, BON	IDS &	INS - 10.0%	\$11,2
					SUBTOTAL	\$123,3
			G.0	C. OH	& P - 21.0%	\$25,8
					SUBTOTAL	\$149,2
			CONT	INGE	NCY - 20.0%	\$29,8
					CLIDTOTAL	¢170 (

\$179,070

\$179,070

SUBTOTAL

TOTAL CONSTRUCTION COST

LARGE COMMERCIAL

SPACE CONSTRAINED - SOIL (UN)CONSTRAINED

			UNIT		
DESCRIPTION	QUANTITY	UNIT	PRICE	AMOUNT	TOTAL
Green Roof SCM Area	6,790	SF			
Green Roof SCM Volume	126	CY			
Managed Area	6,790	SF			
Retention Volume	850	CF			
Greened Acres	0.16	Ac			
Pavers SCM Area	10,700	SF			
Managed Area	10,700	SF			
Detention Volume	1,340	CF			
6" deep green roof trays (installation included)	6,790	C.E.	\$ 15.25	\$ 103,548	
, ,					
1' square pavers (instalation included)	10,700	5F	\$ 15.00	\$ 160,500	
	1	1		1	1

SUBTOTAL \$ 264,048 \$26,405 \$290,452 GENERAL CONDITIONS, BONDS & INS - 10.0% SUBTOTAL \$60,995 G.C. OH & P - 21.0% SUBTOTAL \$351,447 CONTINGENCY - 20.0% \$70,289 SUBTOTAL \$421,737

> TOTAL CONSTRUCTION COST \$421,737

GREEN ROOF CAPITAL COST ESTIMATE

LARGE COMMERCIAL SPACE UNCONSTRAINED - SOIL CONSTRAINED

1759 Hylan Blvd, SI								
DESCRIPTION	LOUANITITY	l		JNIT				TOTAL
DESCRIPTION	QUANTITY	UNIT	Р	RICE	,	AMOUNT		TOTAL
Green Roof SCM Area	4,940	SF						
Green Roof SCM Volume	91	CY						
Managed Area	4,940	SF						
Retention Volume	620	CF						
Greened Acre	0.11	Ac						
Pavers SCM Area	2,000	SF						
Managed Area	2,000	SF						
Detention Volume	250	CF						
Detention Vault SCM Area	460	SF						
Managed Area	14,660	SF						
Detention Volume	1,883	CF						
Engineered Chamber Depth	3	LF						
Engineered Chamber Width	16	LF						
Engineer Chamber Length	30	LF						
Wall Thickness	6	IN.						
6" deep green roof trays (installation included) 1' square pavers (instalation included)	4,940 2,000		\$ \$	15.25 15.00	\$ \$	75,335 30,000		
Detention Vault (30 x 15.5 x 3)								
Excavate to specfied depth (36'x 21 x 4')	112	CY	\$	100.00	\$	11,200		
Finish grade for bottom slab		SF	\$	5.00	\$	2,325		
- truck away spoil- add 20%		CY	\$	50.00	\$	6,720		
Bottom Reinf Concrete Slab - assume 6"/wwm		SF	\$	30.00	\$	13,950		
Reinf Concrete Chamber Walls - 6"		SF	\$	70.00	\$	19,110		
Reinf Concrete Top Supp. Slab - 6"		SF	\$	40.00	\$	18,600		
Reinf Interior Concrete Chamber Walls - 4"		SF	\$	80.00	\$	4,960		
Gravel Backfill at Chamber	60	CY	\$	65.00	\$	3,922		
Access Manhole at Chamber slab	1	. EA	\$	400.00	\$	400		
Outlet Pipe- ALLOW	50	LF	\$	125.00	\$	6,250		
Inlet Pipe - ALLOW	50	LF	\$	125.00	\$	6,250		
Pretreatment Structure (10 x 5 x 1.5)								
Excavate to specfied depth (11' x 16' X 2.5)		CY	\$	100.00	\$	1,704		
Finish grade for bottom slab		SF	\$	5.00	\$	250		
- truck away spoil- add 20%		CY	\$	50.00	\$	1,022		
Bottom Reinf Concrete Slab - assume 6"/wwm		SF	\$	30.00	\$	1,500		
Reinf Concrete Chamber Walls 6"		SF	\$	70.00	\$	3,465		
Reinf Concrete Top Supp. Slab - 6"		SF	\$	40.00	\$	2,000		
Reinf Interior Concrete Chamber Walls - 4"	8	SF	\$	80.00	\$	640		
Gravel Backfill at Chamber		CY	\$	65.00		1,107		
Access Manhole at Chamber slab		! EA	\$	400.00		800		
Outlet Pipe Hood		. EA	\$	500.00		500		
Inlet Pipe - ALLOW	50	LF	\$	125.00	\$	6,250		
	GEN	IERAL CO	אחודור	NIS DON	וחכ ס	SUBTOTAL	\$	218,260 \$21,826
	GENERAL CONDITIONS, BONDS & INS - 10.0%							
				6	C 01	SUBTOTAL		\$240,086 \$50,418
				G.(c. UH	I & P - 21.0% SUBTOTAL		\$50,418
				CONT	INICE	NCY - 20.0%		\$58,101
				CONT	IIVGE	SUBTOTAL		\$348,605
			TO-	TAL CON	TDII	CTION COST		¢249 60E

TOTAL CONSTRUCTION COST \$348,605

MEDIUM RESIDENTIAL

SPACE CONSTRAINED - SOIL (UN)CONSTRAINED

560 Carroll Street, BK

	_	UNIT			
QUANTITY	UNIT	PRICE	AMOUNT		TOTAL
1,500	SF				
28	CY				
1,500	SF				
188	CF				
0.03	Ac				
3.350	SF				
419	CF				
1,500	SF	\$ 15.25	\$ 22,875		
3,350	SF	\$ 15.00	\$ 50,250		
	ļ		 SUBTOTAL	∥ . \$	73,125
GEN	ERAL CO	NDITIONS, BON	IDS & INS - 10.0%		\$7,313
			SUBTOTAL		\$80,438
		G.0	C. OH & P - 21.0%		\$16,892
			SUBTOTAL		\$97,329
	1,500 28 1,500 188 0.03 3,350 3,350 419 1,500 3,350	1,500 SF 28 CY 1,500 SF 188 CF 0.03 Ac 3,350 SF 3,350 SF 419 CF 1,500 SF 3,350 SF	QUANTITY UNIT PRICE 1,500 SF CY SF CF CY SF CF	QUANTITY UNIT PRICE AMOUNT 1,500 SF 28 CY 1,500 SF 188 CF 0.03 Ac 3,350 SF 419 CF 1,500 SF 15.25 \$ 22,875 3,350 SF \$ 15.25 \$ 50,250 SUBTOTAL GENERAL CONDITIONS, BONDS & INS - 10.0% SUBTOTAL G.C. OH & P - 21.0%	QUANTITY UNIT PRICE AMOUNT 1,500 SF 28 CY 1,500 SF 419 CF 1,500 SF 3,350 SF 3,350 SF 3,350 SF 419 CF 419 CF

CONTINGENCY - 20.0%

G.C. OH & P - 21.0%

CONTINGENCY - 20.0%

TOTAL CONSTRUCTION COST

SUBTOTAL

SUBTOTAL

TOTAL CONSTRUCTION COST

SUBTOTAL

\$19,466 \$116,795

\$116,795

\$48,988 \$282,262

\$56,452

\$338,714

\$338,714

LARGE RESIDENTIAL

SPACE CONSTRAINED - SOIL (UN)CONSTRAINED

462 West 58th Street, MN

DESCRIPTION	QUANTITY	UNIT	UNIT PRICE	,	AMOUNT		TOTAL
Green Roof SCM Area	4,070	SF					
Green Roof SCM Volume	75	CY				ĺ	
Managed Area	4,070	SF				ĺ	
Retention Volume	509	CF				ĺ	
Greened Acre	0.09	Ac					
Pavers SCM Area	10,000	SF					
Managed Area	10,000	SF				ĺ	
Detention Volume	1,250	CF					
		c=	4 45 05	_	ca aca		
6" deep green roof trays (installation included)	4,070		\$ 15.25	'	62,068	İ	
1' square pavers (instalation included)	10,000	SF	\$ 15.00	\$	150,000		
	ļ	Į				İ	
					SUBTOTAL	\$	212,068
	GEN	ERAL CO	NDITIONS, BON	IDS 8	k INS - 10.0%		\$21,207
					SUBTOTAL		\$233,274

GREEN ROOF CAPITAL COST ESTIMATE

LARGE INDUSTRIAL

SPACE UNCONSTRAINED - SOIL CONSTRAINED

11 Brick Ct, SI						
DESCRIPTION	QUANTITY	UNIT	UNIT PRICE	А	MOUNT	TOTAL
	10.570					
Green Roof SCM Area Green Roof SCM Volume	10,670					
	198					
Managed Area Retention Volume	10,670 1,334					
Greened Acre	0.24					
Greeneu Acre	0.24	AL				
Pavers SCM Area	1,660					
Managed Area	,	SF				
Detention Volume	208	CF				
Detention Vault SCM Area	485	SF				
Managed Area	15,570	SF				
Detention Volume	1947	CF				
Engineered Chamber Depth	3	LF				
Engineered Chamber Width	16.2					
Engineer Chamber Length	30	LF				
Wall Thickness	6	IN.				
6" deep green roof trays (installation included)	10,670	SF	\$ 15.25	\$	162,718	
1' square pavers (instalation included)	1,660	SF	\$ 15.00	\$	24,900	
Detention Vault (30 x 16.2 x 3)						
Excavate to specfied depth (36'x 23 x 4')	123	CY	\$ 100.00	\$	12,267	
Finish grade for bottom slab	486	SF	\$ 5.00	\$	2,430	
- truck away spoil- add 20%	147	CY	\$ 50.00	\$	7,360	
Bottom Reinf Concrete Slab - assume 6"/wwm	486	SF	\$ 30.00	\$	14,580	
Reinf Concrete Chamber Walls - 6"	276	SF	\$ 70.00	\$	19,320	
Reinf Concrete Top Supp. Slab - 6"	486	SF	\$ 40.00	\$	19,440	
Reinf Interior Concrete Chamber Walls - 4"	61	SF	\$ 80.00	\$	4,864	
Gravel Backfill at Chamber	51	CY	\$ 65.00	\$	3,293	
Access Manhole at Chamber slab		EA	\$ 400.00	\$	400	
Outlet Pipe- ALLOW		LF	\$ 125.00	\$	6,250	
Inlet Pipe - ALLOW	50	LF	\$ 125.00	\$	6,250	
Pretreatment Structure (20 x 12.5 x 1.5) Excavate to specfied depth (11' x 16' X 2.5)	17	CY	\$ 100.00	\$	1,704	
Finish grade for bottom slab	50	SF	\$ 5.00	\$	250	
- truck away spoil- add 20%	20	CY	\$ 50.00	\$	1,022	
Bottom Reinf Concrete Slab - assume 6"/wwm	50	SF	\$ 30.00	\$	1,500	
Reinf Concrete Chamber Walls 6"	50	SF	\$ 70.00	\$	3,465	
Reinf Concrete Top Supp. Slab - 6"	50	SF	\$ 40.00	\$	2,000	
Reinf Interior Concrete Chamber Walls - 4"	8	SF	\$ 80.00	\$	640	
Gravel Backfill at Chamber	4	CY	\$ 65.00		277	
Access Manhole at Chamber slab		EA	\$ 400.00	\$	800	
Outlet Pipe- ALLOW	50	LF	\$ 125.00			
Outlet Pipe Hood	1	EA	\$ 500.00	\$	500	
Inlet Pipe - ALLOW	50	LF	\$ 125.00	\$	6,250	
	I	ı	I	ı	SUBTOTAL \$	302,479
	GEN	IERAL CO	NDITIONS, BON	NDS &		\$30,248
	02.		, _ . .		SUBTOTAL	\$332,727
			G.	с. он	& P - 21.0%	\$69,873
			G.		SUBTOTAL	\$402,600
			CONT	TINGE	NCY - 20.0%	\$80,520
					SUBTOTAL	\$483,120
			TOT:: 05::			A.coc.

TOTAL CONSTRUCTION COST

\$483,120

MEDIUM COMMERCIAL

SPACE CONSTRAINED - SOIL (UN)CONSTRAINED

132-08 Pople Ave, QN

			UNIT		
DESCRIPTION	QUANTITY	UNIT	PRICE	AMOUNT	TOTAL
Green Roof SCM Area	1,549	SF			
Green Roof SCM Volume	29	CY			
Managed Area	1,549	SF			
Retention Volume	194	CF			
Greened Acre	0.04	Ac			
Pavers SCM Area	4,600	SF			
Managed Area	4,600	SF			
Detention Volume	575	CF			
6" deep green roof trays (installation included)	1,549	SF	\$ 15.25	\$ 23,622	
1' square pavers (instalation included)	4,600	SF	\$ 15.00	\$ 69,000	
,					

∥ SUBTOTAL \$ 92,622 GENERAL CONDITIONS, BONDS & INS - 10.0% \$9,262 SUBTOTAL \$101,884 G.C. OH & P - 21.0% \$21,396 SUBTOTAL \$123,280 \$24,656 CONTINGENCY - 20.0% SUBTOTAL \$147,936 TOTAL CONSTRUCTION COST \$147,936

MEDIUM SIZED INDUSTRIAL PROPERT	/							
SPACE CONSTRAINED - SOIL UNCONS								
OF AGE GONG TRAINED GOIL GROOMS	ITOXITEE							
508 Smith Street, Brooklyn								
DESCRIPTION	QUANTITY	LINIT	1.18	IIT DDICE		AMOUNT		TOTAL
DESCRIPTION	QUANTITY	UNIT	Ul	VII PRICE		AMOUNT		TOTAL
SMP AREA	204	SF						
DISTURBED AREA	8,800							
RETENTION VOL	1,103							
ENGIN CHAMBER DEPTH		LF						
ENGIN. CHAMBER WIDTH		LF						
ENGIN CHAMBER LENGTH	31.58							
WALL THICKNESS-		INCH						
WALL THORNEOU-	12	114011						
Excavate to specfied depth (assume 14' x 44')	228	CY	\$	100.00	\$	22,815		
Finish grade for bottom slab	253	SF	\$	5.00	\$	1,263		
- truck away spoil- add 20%	274	CY	\$	50.00	\$	13,689		
Bottom Reinf Concrete Slab - 12"	253		\$	25.00	\$	6,316		
Reinf Concrete Chamber Walls - 12"	20.7	CY	\$	1,500.00	\$	31,111		
Reinf Concrete Top Supp. Slab - 12"	253	SF	\$	75.00	\$	18,948		
Reinf Interior Concrete Chamber Walls - assume		CY	\$	1,500.00	\$	2,833		
Gravel Backfill at Chamber	144		\$	65.00	\$	9,356		
M	4	_ ^	•	400.00	•	400		
Manhole at Chamber slab		EA	\$	400.00	\$	400		
Access grates at Chamber slab		EA	\$	500.00	\$	1,000		
Ladder to Access Grate- 6'		EA	\$	600.00	\$	600		
Sandfilter Chamber: (assume 15' x 8' X 3')		SF	•	100.00	•	100		
Install 11" stone base-M		CY	\$	100.00	\$	409		
Install 6" PVC Perf. Pipe Underdrain		LF	\$	25.00	\$	1,125		
Install 24" clean washed sand		CY	\$	75.00	\$	667		
Install 1" debris screen	120		\$	5.00	\$	600		
Install 12" +/- gravel		CY	\$	75.00	\$	333		
Cleanouts		EA	\$	500.00	\$	1,000		
Dewatering Valve	1	EA	\$	1,500.00	\$	1,500		
Outlet Pipe	50	LF	\$	125.00	φ \$	6,250		
Inlet Pipe	50		\$	125.00	\$	6,250		
miet i ipe	30	LI	Ψ	125.00	\$	-		
					Ψ	SUBTOTAL	Φ	126,4
	CENEDA		דוחו	TIONS DON	IDG	& INS - 10.0%		\$12,6
	GLINLINA	L CON	ווטוי	IONS, BON	103			
						SUBTOTAL		\$139,10
				G.	J. U	H & P - 21.0%	<u> </u>	\$29,20
				601:-		SUBTOTAL		\$168,30
				CONT	ING	ENCY - 20.0%	<u> </u>	\$33,70
						SUBTOTAL		\$202,00
						ERING- 15.0%		\$30,30
			TO	TAL CONS	TRU	CTION COST		\$232,30

LARGE SIZED INDUSTRIAL PROPERTY						
SPACE CONSTRAINED - SOIL UNCONS	TRAINED					
305 Johnson Ave, Bronx						
DESCRIPTION	QUANTITY	UNIT	UI	NIT PRICE	AMOUNT	TOTAL
SMP AREA	565.5					
DISTURBED AREA	24,580					
RETENTION VOL	3,086					
ENGIN CHAMBER DEPTH -		LF				
ENGIN. CHAMBER WIDTH -		LF				
ENGIN CHAMBER LENGTH	49.58					
WALL THICKNESS-	12	INCH	1			
Excavate to specfied depth (assume 15' x 49')	394	CY	\$	100.00	\$ 39,407	,
Finish grade for bottom slab	650	SF	\$	5.00	\$ 3,250	
- truck away spoil- add 20%	473		\$	50.00	\$ 23,644	
Bottom Reinf Concrete Slab - 12"	650	SF	\$	25.00	\$ 16,250	
Reinf Concrete Chamber Walls - 12"	32.7	CY	\$	1,500.00	\$ 49,000	
Reinf Concrete Top Supp. Slab - 12"	650		\$	75.00	\$ 48,750	
Reinf Interior Concrete Chamber Walls - assume 6		CY	\$	1,500.00	\$ 5,194	
Gravel Backfill at Chamber	286		\$	65.00	\$ 18,573	
Olavoi Baokiii at Ollambol	200		Ψ_	00.00	\$ -	
Manhole at Chamber slab	1	EA	\$	400.00	\$ 400	
Access grates at Chamber slab	2	EA	\$	500.00	\$ 1,000	
Ladder to Access Grate- 6'	1	EA	\$	600.00	\$ 600	
Sandfilter Chamber: (assume 25' x13' X 3')	325		Ψ	000.00	Ψ σσσ	
Install 11" stone base-M	4	-	\$	100.00	\$ 409	
Install 6" PVC Perf. Pipe Underdrain	75		\$	25.00	\$ 1,875	
Install 24" clean washed sand	24.1		\$	75.00	\$ 1,806	
Install 1" debris screen	325		\$	5.00	\$ 1,625	
Install 12" +/- gravel	12.0		\$	75.00	\$ 903	
Cleanouts	2	EA	\$	500.00	\$ 1,000	
Dewatering Valve	1	EA	\$	1,500.00	\$ 1,500	
Dewatering valve	ı	LA	Ψ	1,300.00	\$ 1,500	
Outlet Pipe	50	IE	\$	125.00	\$ 6,250	
Inlet Pipe		LF	\$	125.00	\$ 6,250	
illiet ripe	30	LF	φ	125.00	\$ 0,250	
					SUBTOTAL	\$ 227,687
	GENERA		וחו ו	TIONS BON	NDS & INS - 10.09	
	OZ. (Z. U.	<u> </u>			SUBTOTAL	
				G	C. OH & P - 21.09	
				<u> </u>		
				CONT	SUBTOTAI	
				CONT		
					SUBTOTAL	
					INEERING- 15.09	
			TO	TAL CONS	TRUCTION COS	Г \$418,300

LARGE SIZED INDUSTRIAL PROPERTY SPACE UNCONSTRAINED - SOIL CONSTRAINED								
11 Brick Court, Staten Island								
DESCRIPTION	QUANTITY	LINIT	LIN	IIT DDICE	,	AMOUNT	Т	TOTAL
DESCRIPTION	QUANTITI	CIVIII	Oi	WII I INIOL		AIVIOOIVI		OTAL
SMP AREA	644	SF						
DISTURBED AREA	27,903							
RETENTION VOL	1,541							
ENGIN CHAMBER DEPTH	9	LF						
ENGIN. CHAMBER WIDTH	14							
ENGIN CHAMBER LENGTH	52.08	LF						
WALL THICKNESS-	12	INCH						
Excavate to specfied depth (assume 20' x 58')	430		\$	100.00		42,963		
Finish grade for bottom slab	728		\$	5.00		3,640		
- truck away spoil- add 20%	516		\$	50.00		25,778		
Bottom Reinf Concrete Slab - 12"	700		\$	50.00		35,000		
Reinf Concrete Chamber Walls - 12"	34.2		\$	1,500.00		51,333		
Reinf Concrete Top Supp. Slab - 12"	700		\$	75.00		52,500		
Reinf Interior Concrete Chamber Walls - assume 6		CY	\$	1,500.00		7,000		
Gravel Backfill at Chamber	187	CY	\$	65.00	\$	12,153		
					\$	-		
Manhole at Chamber slab		EA	\$	400.00		400		
Access grates at Chamber slab		EA	\$	500.00		1,000		
Ladder to Access Grate- 6'		EA	\$	600.00	\$	600		
Sandfilter Chamber: 27' X14' X3'		SF						
Install 11" stone base-M		CY	\$	100.00		1,288		
Install 6" PVC Perf. Pipe Underdrain		LF	\$	25.00		2,025		
Install 24" clean washed sand	28.0		\$	75.00	\$	2,100		
Install 1" debris screen	378		\$	5.00	\$	1,890		
Install 12" +/- gravel	14.0		\$	75.00	\$	1,050		
Cleanouts	2	EA	\$	500.00	\$	1,000		
Dewatering Valve	1	EA	\$	1,500.00	\$	1,500		
					\$	-		
Outlet Pipe	50		\$	125.00	\$	6,250		
Inlet Pipe	50	LF	\$	125.00	\$	6,250		
					\$	-		
						SUBTOTAL	\$	255,720
	GENERA	L CON	IDIT	IONS, BOI	NDS 8	k INS - 10.0%		\$25,580
						SUBTOTAL	9	\$281,300
				G.	C. OH	l & P - 21.0%		\$59,100
						SUBTOTAL	9	\$340,400
				CONT	INGE	NCY - 20.0%		\$68,100
						SUBTOTAL	9	\$408,500
				ENG	INEE	RING- 15.0%		\$61,300
			TO	TAL CONS	TRUC	CTION COST	9	469,800

MEDIUM SIZED COMMERCIAL PROPER	TY					
SPACE UNCONSTRAINED - SOIL CONST						
132-08 Pople Street, Queens						
DESCRIPTION	QUANTITY	UNIT	UN	IT PRICE	AMOUNT	TOTAL
SMP AREA	154					
DISTURBED AREA	6,500					
RETENTION VOL		SF				
ENGIN CHAMBER DEPTH	9	LF				
ENGIN. CHAMBER WIDTH		LF				
ENGIN CHAMBER LENGTH	28.08					
WALL THICKNESS	12	INCH				
Excavate to specfied depth (assume 13' x 35')	169	CY	\$	100.00	\$ 16,852	
Finish grade for bottom slab	196		\$	5.00	\$ 980	
- truck away spoil- add 20%	202		\$	50.00	\$ 10,111	
Bottom Reinf Concrete Slab - 12"	196		\$	25.00	\$ 4,900	
Reinf Concrete Chamber Walls - 12"	18.1		\$	1,500.00	\$ 27,222	
Reinf Concrete Top Supp. Slab - 12"	196		\$	75.00	\$ 14,700	
Reinf Interior Concrete Chamber Walls - assume 6		CY	\$	1,500.00	\$ 2,361	
Gravel Backfill at Chamber	26	CY	\$	65.00	\$ 1,668	
Manhole at Chamber slab	1	EA	\$	400.00	\$ 400	
Access grates at Chamber slab	2	EA	\$	500.00	\$ 1,000	
Ladder to Access Grate- 6'	1	EA	\$	600.00	\$ 600	
Sandfilter Chamber: (assume 13' x 7' X 3')	91	SF	Ψ	000.00	Ψ	
Install 11" stone base-M		CY	\$	100.00	\$ 409	
Install 6" PVC Perf. Pipe Underdrain		LF	\$	25.00	\$ 1,125	
Install 24" clean washed sand		CY	\$	75.00	\$ 506	
Install 1" debris screen		SF	\$	5.00	\$ 600	
Install 12" +/- gravel		CY	\$	75.00	\$ 253	
Cleanouts		EΑ	\$	500.00	\$ 1,000	
Dewatering Valve		EA	\$	1,500.00	\$ 1,500	
	-		-T	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	\$ -	
Outlet Pipe	50	LF	\$	125.00	\$ 6,250	
Inlet Pipe		LF	\$	125.00	\$ 6,250	
,					\$ -	
					SUBTOTAL	\$ 98,687
	GENERA	LCON	NDITI	ONS. BON	IDS & INS - 10.0%	
				- , - 3.	SUBTOTAL	
				G.0	C. OH & P - 21.0%	
					SUBTOTAL	\$131,400
				CONT	INGENCY - 20.0%	\$26,300
					SUBTOTAL	·
			T0-		INEERING- 15.0%	
			IOT	AL CONS	TRUCTION COST	\$181,400

LARGE SIZED COMMERCIAL PROPERT SPACE CONSTRAINED - SOIL UNCONS								
1256 2nd Avenue. Manhattan	ITTAITTE							
	OLIANITITY	LINIT	1.18	IIT DDICE		ANACHINIT		TOTAL
DESCRIPTION	QUANTITY	UNII	Uľ	NIT PRICE	,	AMOUNT		TOTAL
SMP AREA	402	QE .						
DISTURBED AREA	20,164							
RETENTION VOL	2,192							
ENGIN CHAMBER DEPTH		LF						
ENGIN CHAMBER WIDTH	11							
ENGIN CHAMBER WIDTH	42.58							
			<u> </u>					
WALL THICKNESS	12	INCH	I 					
Excavate to specfied depth (assume 16' x 49')	290	CY	\$	100.00	\$	29,037		
Finish grade for bottom slab	468	SF	\$	5.00	\$	2,342		
- truck away spoil- add 20%	348		\$	50.00	\$	17,422		
Bottom Reinf Concrete Slab - 12"	468		\$	25.00	\$	11,710		
Reinf Concrete Chamber Walls - 12"	28.0		\$	1,500.00	\$	42,000		
Reinf Concrete Top Supp. Slab - 12"	468		\$	75.00	\$	35,129		
Reinf Interior Concrete Chamber Walls - assume 6		CY	\$	1,500.00	\$	4,250		
Gravel Backfill at Chamber		CY	\$	65.00	\$	9,837		
Graver Backlin at Griamber	101	01	Ψ	00.00	Ψ	3,007		
Manhole at Chamber slab	1	EA	\$	400.00	\$	400		
Access grates at Chamber slab		EA	\$	500.00	\$	1,000		
Ladder to Access Grate- 6'		EA	\$	600.00	\$	600		
Sandfilter Chamber: - 21' x 11' X 3')	231							
Install 11" stone base-M		CY	\$	100.00	\$	787		
Install 6" PVC Perf. Pipe Underdrain	63		\$	25.00	\$	1,575		
Install 24" clean washed sand	17.1		\$	75.00	\$	1,283		
Install 1" debris screen	231		\$	5.00	\$	1,155		
Install 12" +/- gravel		CY	\$	75.00	\$	642		
Cleanouts		EA	\$	500.00	\$	1,000		
Dewatering Valve		EA	\$	1,500.00	\$	1,500		
					\$	-		
Outlet Pipe	50	LF	\$	125.00	\$	6,250		
Inlet Pipe	50	LF	\$	125.00	\$	6,250		
					\$	-		
						SUBTOTAL	\$	174,168
	GENERA	L CON	DIT	IONS, BON	IDS 8	k INS - 10.0%	•	\$17,432
						SUBTOTAL		\$191,600
				G.0	C. OF	1 & P - 21.0%		\$40,200
						SUBTOTAL		\$231,800
				CONT	INGE	NCY - 20.0%		\$46,400
						SUBTOTAL		\$278,200
				ENG	INEE	RING- 15.0%		\$41,700
			то			CTION COST		\$319,900

MEDIUM SIZED RESIDENTIAL PROPER								
SPACE CONSTRAINED - SOIL UNCONS	TRAINED							
560 Carroll Street, Bronx								
DESCRIPTION	QUANTITY	UNIT	U١	NIT PRICE		AMOUNT		TOTAL
SMP AREA	114							
DISTURBED AREA	6,114							
RETENTION VOL	618							
ENGIN CHAMBER DEPTH		LF						
ENGIN. CHAMBER WIDTH		LF						
ENGIN CHAMBER LENGTH	25.08							
WALL THICKNESS- GIVEN	12	INCH	 					
Excavate to specfied depth (assume 15' x 49')	138	CY	\$	100.00	\$	13,778		
Finish grade for bottom slab	150		\$	5.00	\$	750		
- truck away spoil- add 20%	165		\$	50.00	\$	8,267		
Bottom Reinf Concrete Slab - 12"	150		\$	25.00	\$	3,750		
Reinf Concrete Chamber Walls - 12"	18.7	CY	\$	1,500.00	\$	28,000		
Reinf Concrete Top Supp. Slab - 12"	150	SF	\$	75.00	\$	11,250		
Reinf Interior Concrete Chamber Walls - assume 6	1.3	CY	\$	1,500.00	\$	1,889		
Gravel Backfill at Chamber	88	CY	\$	65.00	\$	5,720		
Manhole at Chamber slab	1	EA	r.	400.00	ሰ	400		
	2		\$	400.00 500.00	\$ \$	1,000		
Access grates at Chamber slab Ladder to Access Grate- 6'	1	EA	\$	600.00	\$	600		
Sandfilter Chamber: - 11' x 6' X 3')	66		Φ	600.00	Φ	000		
Install 11" stone base-M		CY	\$	100.00	\$	225		
Install 6" PVC Perf. Pipe Underdrain		LF	\$	25.00	\$	825		
Install 24" clean washed sand		CY	\$	75.00	\$	367		
Install 1" debris screen		SF	\$	5.00	<u>φ</u> \$	330		
Install 12" +/- gravel		CY	\$	75.00	\$	183		
Cleanouts	2.4		\$	500.00	\$	1,000		
Dewatering Valve	1	EA	\$	1,500.00	\$	1,500		
Dewatering valve	<u>'</u>	LA	Ψ	1,000.00	\$	-		
Outlet Pipe	50	IF	\$	125.00	\$	6,250		
Inlet Pipe		LF	\$	125.00	\$	6,250		
inict ipo	- 00		Ψ	120.00	\$			
					Ψ	SUBTOTAL	\$	92,333
	GENERA		בוחוי ר	TIONS BON	DS	& INS - 10.0%	Ψ	\$9,267
	OLIVEION	1		110110, 2011	00	SUBTOTAL		\$101,600
				C (. 0	H & P - 21.0%		\$21,300
				9.0	J. U			
				CONT	NO	SUBTOTAL ENCY - 20.0%		\$122,900
				CONT	IVG			\$24,600
				ENIO	NICT	SUBTOTAL		\$147,500
			T-0			RING- 15.0%		\$22,100
			10	TAL CONS	ıKU	CTION COST		\$169,600

MEDIUM SIZED REIDENTIAL PROPERTY	Y						
SPACE CONSTRAINED - SOIL UNCONS							
462 West 58 Street, Manhattan							
DESCRIPTION	QUANTITY	UNIT	UN	NIT PRICE		AMOUNT	TOTAL
SMP AREA	325						
DISTURBED AREA	14,095						
RETENTION VOL	1,763						
ENGIN CHAMBER DEPTH	9	LF					
ENGIN. CHAMBER WIDTH		LF					
ENGIN CHAMBER LENGTH	38.58	LF					
WALL THICKNESS-	12	INCH					
Excavate to specfied depth (assume 16' x 45')	267	CY	\$	100.00	\$	26,667	
Finish grade for bottom slab		SF	\$	5.00	\$	1,950	
- truck away spoil- add 20%	320		\$	50.00		16,000	
Bottom Reinf Concrete Slab - 12"		SF	\$	25.00	\$	9,750	
Reinf Concrete Chamber Walls - 12"	18.7		\$	1,500.00	\$	28,000	
Reinf Concrete Top Supp. Slab - 12"	390		\$	75.00	\$	29,250	
Reinf Interior Concrete Chamber Walls - assume (CY	\$	1,500.00	\$	3,778	
Gravel Backfill at Chamber	138		\$	65.00	\$	8,974	
Manhole at Chamber slab	1	EA	\$	400.00	\$	400	
Access grates at Chamber slab	2	EA	\$	500.00	\$	1,000	
Ladder to Access Grate- 6'	1	EA	\$	600.00	\$	600	
Sandfilter Chamber: - 19' x10' X 3')	190	SF	Ψ	000.00	Ψ	000	
Install 11" stone base-M		CY	\$	100.00	\$	225	
Install 6" PVC Perf. Pipe Underdrain	57	LF	\$	25.00	\$	1,425	
Install 24" clean washed sand	14.1		\$	75.00	\$	1,056	
Install 1" debris screen	190		\$	5.00	\$	950	
Install 12" +/- gravel		CY	\$	75.00	\$	528	
Cleanouts		EA	\$	500.00	\$	1,000	
Dewatering Valve	1	EA	\$	1,500.00	\$	1,500	
	-		т .	1,000100	\$	-	
Outlet Pipe	50	LF	\$	125.00	\$	6,250	
Inlet Pipe	50	LF	\$	125.00	\$	6,250	
			*		\$	-	
					· ·	SUBTOTAL	\$ 145,552
	GENERA	LCON	IDIT	IONS, BON	IDS :	& INS - 10.0%	\$14,548
	02.12.01			,		SUBTOTAL	\$160,100
				G	$\frac{1}{2}$	H & P - 21.0%	\$33,600
				<u> </u>). 	SUBTOTAL	\$193,700
				CONT	INGF	ENCY - 20.0%	\$38,700
				20.11		SUBTOTAL	\$232,400
				FNG	INFF	RING- 15.0%	
			ΤO			CTION COST	
		1	·	1AL 00110	1110	5 11011 0031	Ψ201,300

DETENTION VAULT CAPITAL COST ESTIMATE

MEDIUM SIZED INDUSTRIAL PROPERTY						
SPACE UNCONSTRAINED - SOIL CONSTRAINE	- D					
SPACE ONCONSTRAINED - SOIL CONSTRAINE	_ <u></u>					
141 Storer Ave, Bklyn						
DESCRIPTION	QUANTITY	UNIT	1U	NIT PRICE	AMOUNT	TOTAL
SMP AREA	131					
DISTURBED AREA		SF				
DETENTION VOLUME	524	CF				
ENGIN CHAMBER DEPTH	3	LF				
ENGIN. CHAMBER WIDTH	10	LF				
ENGIN CHAMBER LENGTH	13	LF				
WALL THICKNESS	6	INCH				
Detention Vault (10 x13 x3)						
Excavate to specfied depth (assume 19' x 16' x 4)	45	CY	\$	100.00	\$ 4,504	
Finish grade for bottom slab	131	SF	\$	5.00	\$ 655	
- truck away spoil- add 20%	54	CY	\$	50.00	\$ 2,702	
Bottom Reinf Concrete Slab - assume 6"/wwm	131	SF	\$	30.00	\$ 3,930	
Reinf Concrete Chamber Walls 6"	150	SF	\$	70.00	\$ 10,500	
Reinf Concrete Top Supp. Slab - 6"	131	SF	\$	40.00	\$ 5,240	
Reinf Interior Concrete Chamber Walls - 4"		SF	\$	80.00	\$ 3,840	
Gravel Backfill at Chamber	31	CY	\$	65.00	\$ 1,989	
Access Manhole at Chamber slab		EA	\$	400.00	\$ 400	
Outlet Pipe- ALLOW	50		\$	125.00	\$ 6,250	
Inlet Pipe - ALLOW	50	LF	\$	125.00	\$ 6,250	
Pretreatment Structure (10 x 6.5 x 1.5)						
Excavate to specfied depth (assume 19' x 16')	19	CY	\$	100.00	\$ 1,852	
Finish grade for bottom slab	131	SF	\$	5.00	\$ 655	
- truck away spoil- add 20%	22	CY	\$	50.00	\$ 1,111	
Bottom Reinf Concrete Slab - assume 6"/wwm	65	SF	\$	30.00	\$ 1,950	
Reinf Concrete Chamber Walls 6"	50	SF	\$	70.00	\$ 3,465	
Reinf Concrete Top Supp. Slab - 6"	65	SF	\$	40.00	\$ 2,600	
Reinf Interior Concrete Chamber Walls - 4"	11	SF	\$	80.00	\$ 880	
Gravel Backfill at Chamber		CY	\$	65.00	\$ 969	
Access Manhole at Chamber slab	2	EA	\$	400.00	\$ 800	
Outlet Pipe- ALLOW	50		\$	125.00	\$ 6,250	
Outlet Pipe Hood		EA	\$	500.00	\$ 500	
Inlet Pipe - ALLOW	50	LF	\$	125.00	\$ 6,250	
					SUBTOTAL	\$ 73,541
	(GENER/	AL CO	NDITIONS, E	BONDS & INS - 10.0%	\$7,359
					SUBTOTAL	\$80,900
					G.C. OH & P - 21.0%	\$17,000
					SUBTOTAL	\$97,900
				CC	NTINGENCY - 20.0%	\$19,600
					SUBTOTAL	\$117,500
				E	NGINEERING- 15.0%	\$17,600
					ONSTRUCTION COST	 \$135,100

LARGE SIZED RESIDENTIAL PROPERTY							
SPACE UNCONSTRAINED - SOIL CONSTRAIN	JFD						
STACE ORCORSTRAINED SOIL CONSTRAIN	<u> </u>						
89 West Tremont Avenue, Bronx							
DESCRIPTION	QUANTITY	UNIT	U	INIT PRICE		AMOUNT	TOTAL
SMP AREA	188						
DISTURBED AREA	19,146						
DETENTION VOLUME	756	CF					
ENGIN CHAMBER HEIGHT	3	LF					
ENGIN. CHAMBER WIDTH	10	LF					
ENGIN CHAMBER LENGTH	19	LF					
WALL THICKNESS	6	INCH					
Detention Vault (10 x19 x3)							
Excavate to specfied depth (25'x 16' x 4')	59	CY	\$	100.00	\$	5,926	
Finish grade for bottom slab	190	SF	\$	5.00	\$	950	
- truck away spoil- add 20%	71	CY	\$	50.00	\$	3,556	
Bottom Reinf Concrete Slab - assume 6"/wwm	190	SF	\$	30.00	\$	5,700	
Reinf Concrete Chamber Walls - 6"	174	SF	\$	70.00	\$	12,180	
Reinf Concrete Top Supp. Slab - 6"	190	SF	\$	40.00	\$	7,600	
Reinf Interior Concrete Chamber Walls - 4"	48	SF	\$	80.00	\$	3,840	
Gravel Backfill at Chamber	45	CY	\$	65.00	\$	2,913	
Access Manhole at Chamber slab	1	EA	\$	400.00	\$	400	
Outlet Pipe- ALLOW	50	LF	\$	125.00	\$	6,250	
Inlet Pipe - ALLOW	50	LF	\$	125.00	\$	6,250	
Pretreatment Structure (10 x 6.5 x 1.5)							
Excavate to specfied depth (assume 19' x 16')	19	CY	\$	100.00	\$	1,852	
Finish grade for bottom slab	65	SF	\$	5.00	\$	325	
- truck away spoil- add 20%	22	CY	\$	50.00	\$	1,111	
Bottom Reinf Concrete Slab - assume 6"/wwm	65	SF	\$	30.00	\$	1,950	
Reinf Concrete Chamber Walls 6"	50	SF	\$	70.00	\$	3,465	
Reinf Concrete Top Supp. Slab - 6"	65	SF	\$	40.00	\$	2,600	
Reinf Interior Concrete Chamber Walls - 4"	11	SF	\$	80.00	\$	880	
Gravel Backfill at Chamber	15	CY	\$	65.00	\$	987	
Access Manhole at Chamber slab	2	EA	\$	400.00	\$	800	
Outlet Pipe- ALLOW	50	LF	\$	125.00	\$	6,250	
Outlet Pipe Hood	1	EA	\$	500.00	\$	500	
Inlet Pipe - ALLOW	50	LF	\$	125.00	\$	6,250	
_						SUBTOTAL	\$ 82,534
		GENER <i>A</i>	AL CC	ONDITIONS. E	ONI	OS & INS - 10.0%	\$8,266
				,		SUBTOTAL	\$90,800
					G C	. OH & P - 21.0%	\$19,100
					٥.٠	SUBTOTAL	\$109,900
					ודואר	NGENCY - 20.0%	\$109,900
					IN I I		
				-	אכיי	SUBTOTAL	\$131,900
						NEERING- 15.0%	\$19,800
				TOTAL CO	Sחכ	TRUCTION COST	\$151,700

DETENTION VAULT CAPITAL COST ESTIMATE

MEDIUM SIZED COMMERCIAL PROPERTY							
SPACE UNCONSTRAINED - SOIL CONSTRAINE	<u>ט:</u>						
141 South 3 Street, Bronx							
DESCRIPTION	QUANTITY	UNIT	UN	IT PRICE	AMOUNT		TOTAL
SMP AREA	100	SF					
DISTURBED AREA	7,450	SF					
DETENTION VOLUME	397						
ENGIN CHAMBER HEIGHT	3	LF					
ENGIN. CHAMBER WIDTH	10	LF					
ENGIN CHAMBER LENGTH	10	LF					
WALL THICKNESS -	6	INCH					
Detention Vault (10 x 10 x3)							
Excavate to specfied depth (16'x 16' x 4')	38	CY	\$	100.00	\$ 3,793		
Finish grade for bottom slab	100		\$	5.00	\$ 500		
- truck away spoil- add 20%	46	CY	\$	50.00	\$ 2,276		
Bottom Reinf Concrete Slab - assume 6"/wwm	100	SF	\$	30.00	\$ 3,000		
Reinf Concrete Chamber Walls - 6"	120	SF	\$	70.00	\$ 8,400		
Reinf Concrete Top Supp. Slab - 6"	100	SF	\$	40.00	\$ 4,000		
Reinf Interior Concrete Chamber Walls - 4"	36	SF	\$	80.00	\$ 2,880		
Gravel Backfill at Chamber	23	CY	\$	65.00	\$ 1,526		
Access Manhole at Chamber slab	1	EA	\$	400.00	\$ 400		
Outlet Pipe- ALLOW	50	LF	\$	125.00	\$ 6,250		
Inlet Pipe - ALLOW	50	LF	\$	125.00	\$ 6,250		
Pretreatment Structure (10 x 5 x 1.5)							
Excavate to specfied depth (11' x 16' X 2.5)	17	CY	\$	100.00	\$ 1,704		
Finish grade for bottom slab	50	SF	\$	5.00	\$ 250		
- truck away spoil- add 20%	20	CY	\$	50.00	\$ 1,022		
Bottom Reinf Concrete Slab - assume 6"/wwm	50	SF	\$	30.00	\$ 1,500		
Reinf Concrete Chamber Walls 6"	50	SF	\$	70.00	\$ 3,465		
Reinf Concrete Top Supp. Slab - 6"	50	SF	\$	40.00	\$ 2,000		
Reinf Interior Concrete Chamber Walls - 4"	8	SF	\$	80.00	\$ 640		
Gravel Backfill at Chamber	14	CY	\$	65.00	\$ 927		
Access Manhole at Chamber slab		EA	\$	400.00	\$ 400		
Outlet Pipe- ALLOW	50	LF	\$	125.00	\$ 6,250		
Outlet Pipe Hood	1	EA	\$	500.00	\$ 500		
Inlet Pipe - ALLOW	50	LF	\$	125.00	\$ 6,250		
					SUBTOTAL	\$	64,182
	(GENER/	AL CON	IDITIONS, E	30NDS & INS - 10.0%		\$6,418
					SUBTOTAL		\$70,600
					G.C. OH & P - 21.0%		\$14,800
					SUBTOTAL		\$85,400
				CC	ONTINGENCY - 20.0%		\$17,100
					SUBTOTAL	_	\$102,500
					NGINEERING- 15.0%		\$102,300
				IUIALU	ONSTRUCTION COST		\$117,900

LARGE SIZED COMMERCIAL PROPERTY							
SPACE UNCONSTRAINED - SOIL CONSTRAIL	NED						
1759 Hylan Blvd, Staten Island							
DESCRIPTION	QUANTITY	UNIT	U	NIT PRICE		AMOUNT	TOTAL
DESCRIPTION	QO/WITT	01411		THITTINEL		7.100101	TOTAL
SMP AREA	460	SF					
DISTURBED AREA	21,600						
DETENTION VOLUME	1,883						
ENGIN CHAMBER HEIGHT	3	LF					
ENGIN. CHAMBER WIDTH	15.5						
ENGIN CHAMBER LENGTH	30						
WALL THICKNESS -		INCH					
<u>Detention Vault (30 x 15.5 x 3)</u>							
Excavate to specfied depth (36'x 21 x 4')	112	CY	\$	100.00	\$	11,200	
Finish grade for bottom slab		SF	\$	5.00	\$	2,325	
- truck away spoil- add 20%	134	CY	\$	50.00	\$	6,720	
Bottom Reinf Concrete Slab - assume 6"/wwm	465		\$	30.00	\$	13,950	
Reinf Concrete Chamber Walls - 6"	273		\$	70.00	\$	19,110	
Reinf Concrete Top Supp. Slab - 6"	465		\$	40.00	\$	18,600	
Reinf Interior Concrete Chamber Walls - 4"		SF	\$	80.00	\$	4,960	
Gravel Backfill at Chamber		CY	\$	65.00	\$	3,922	
Access Manhole at Chamber slab		EA	\$	400.00	\$	400	
Outlet Pipe- ALLOW		LF	\$	125.00	\$	6,250	
Inlet Pipe - ALLOW	50	LF	\$	125.00	\$	6,250	
Pretreatment Structure (10 x 5 x 1.5)					•	,	
Excavate to specfied depth (11' x 16' X 2.5)	17	CY	\$	100.00	\$	1,704	
Finish grade for bottom slab	50	SF	\$	5.00	\$	250	
- truck away spoil- add 20%	20	CY	\$	50.00	\$	1,022	
Bottom Reinf Concrete Slab - assume 6"/wwm	50	SF	\$	30.00	\$	1,500	
Reinf Concrete Chamber Walls 6"	50	SF	\$	70.00	\$	3,465	
Reinf Concrete Top Supp. Slab - 6"	50	SF	\$	40.00	\$	2,000	
Reinf Interior Concrete Chamber Walls - 4"	8	SF	\$	80.00	\$	640	
Gravel Backfill at Chamber	17	CY	\$	65.00	\$	1,107	
Access Manhole at Chamber slab	2	EA	\$	400.00	\$	800	
Outlet Pipe- ALLOW	50	LF	\$	125.00	\$	6,250	
Outlet Pipe Hood	1	EA	\$	500.00	\$	500	
Inlet Pipe - ALLOW	50	LF	\$	125.00	\$	6,250	
						SUBTOTAL	\$ 119,175
	(GENER/	AL CC	ONDITIONS, E	SOND	S & INS - 10.0%	\$11,925
				· · · · · · · · · · · · · · · · · · ·		SUBTOTAL	\$131,100
					G.C.	OH & P - 21.0%	\$27,500
						SUBTOTAL	\$158,600
				((L NTIN	NGENCY - 20.0%	\$31,700
						SUBTOTAL	\$190,300
				F	NGIN	SEERING- 15.0%	\$28,500
						RUCTION COST	\$218,800
			<u> </u>	TOTAL CO	וכמוכ	NUCTION COST	7216,800

DETENTION VAULT CAPITAL COST ESTIMATE

LARGE SIZED INDUSTRIAL PROPERTY							
SPACE UNCONSTRAINED - SOIL CONSTRAINE	D						
SPACE UNCONSTRAINED - SOIL CONSTRAINE	<u>ט</u>						
11 Brick Court, Staten Island							
DESCRIPTION	QUANTITY	UNIT	UN	NIT PRICE	AMOUNT		TOTAL
SMP AREA	485	SF					
DISTURBED AREA	27,903						
DETENTION VOLUME		CF					
ENGIN CHAMBER HEIGHT		LF					
ENGIN. CHAMBER WIDTH	16.2	LF					
ENGIN CHAMBER LENGTH	30	LF					
WALL THICKNESS -	6	INCH					
Detention Vault (30 x 16.2 x 3)							
Excavate to specfied depth (36'x 23 x 4')	123	CY	\$	100.00	\$ 12,267		
Finish grade for bottom slab	486		\$	5.00	\$ 2,430		
- truck away spoil- add 20%	147	CY	\$	50.00	\$ 7,360		
Bottom Reinf Concrete Slab - assume 6"/wwm	486	_	\$	30.00	\$ 14,580		
Reinf Concrete Chamber Walls - 6"	276	SF	\$	70.00	\$ 19,320		
Reinf Concrete Top Supp. Slab - 6"	486		\$	40.00	\$ 19,440		
Reinf Interior Concrete Chamber Walls - 4"	61	SF	\$	80.00	\$ 4,864		
Gravel Backfill at Chamber		CY	\$	65.00	\$ 3,293		
Access Manhole at Chamber slab		EA	\$	400.00	\$ 400		
Outlet Pipe- ALLOW	50	LF	\$	125.00	\$ 6,250		
Inlet Pipe - ALLOW	50		\$	125.00	\$ 6,250		
Pretreatment Structure (20 x 12.5 x 1.5)			•		,		
Excavate to specfied depth (11' x 16' X 2.5)	17	CY	\$	100.00	\$ 1,704		
Finish grade for bottom slab	50	SF	\$	5.00	\$ 250		
- truck away spoil- add 20%	20	CY	\$	50.00	\$ 1,022		
Bottom Reinf Concrete Slab - assume 6"/wwm		SF	\$	30.00	\$ 1,500		
Reinf Concrete Chamber Walls 6"		SF	\$	70.00	\$ 3,465		
Reinf Concrete Top Supp. Slab - 6"	50	SF	\$	40.00	\$ 2,000		
Reinf Interior Concrete Chamber Walls - 4"	8	SF	\$	80.00	\$ 640		
Gravel Backfill at Chamber	4	CY	\$	65.00	\$ 277		
Access Manhole at Chamber slab	2	EA	\$	400.00	\$ 800		
Outlet Pipe- ALLOW	50		\$	125.00	\$ 6,250		
Outlet Pipe Hood	1	EA	\$	500.00	\$ 500		
Inlet Pipe - ALLOW	50	LF	\$	125.00	\$ 6,250		
					SUBTOTAL	\$	121,112
	(GENER/	AL COI	NDITIONS, E	BONDS & INS - 10.0%		\$12,088
					SUBTOTAL		\$133,200
					G.C. OH & P - 21.0%		\$28,000
					SUBTOTAL	-	\$161,200
				((ONTINGENCY - 20.0%		\$32,200
						\vdash	
					SUBTOTAL		\$193,400
					NGINEERING- 15.0%	_	\$29,000
		l		TOTAL CO	DNSTRUCTION COST		\$222,400

LARGE SIZED RESIDENTIAL PROPERTY							
SPACE UNCONSTRAINED - SOIL CONSTRAIN	<u>IED</u>						
14 Ottavio Promanade, Staten Island							
DESCRIPTION	QUANTITY	UNIT	U	INIT PRICE		AMOUNT	TOTAL
	7						
SMP AREA	235	SF					
DISTURBED AREA	14,935						
DETENTION VOLUME	943	CF					
ENGIN CHAMBER HEIGHT	3	LF					
ENGIN. CHAMBER WIDTH	12	LF					
ENGIN CHAMBER LENGTH	20	LF					
WALL THICKNESS -	6	INCH					
TV/ LEE TTHORN LEGS							
Detention Vault (20 x 12 x 3)							
Excavate to specfied depth (26'x 18 x 4')	69	CY	\$	100.00	\$	6,933	
Finish grade for bottom slab	235	SF	\$	5.00	\$	1,175	
- truck away spoil- add 20%	83	CY	\$	50.00	\$	4,160	
Bottom Reinf Concrete Slab - assume 6"/wwm	235		\$	30.00	\$	7,050	
Reinf Concrete Chamber Walls - 6"	192	SF	\$	70.00	\$	13,440	
Reinf Concrete Top Supp. Slab - 6"	235	SF	\$	40.00	\$	9,400	
Reinf Interior Concrete Chamber Walls - 4"	40	SF	\$	80.00	\$	3,200	
Gravel Backfill at Chamber		CY	\$	65.00	\$	2,773	
Access Manhole at Chamber slab		EA	\$	400.00	\$	400	
Outlet Pipe- ALLOW	50	LF	\$	125.00	\$	6,250	
Inlet Pipe - ALLOW	50	LF	\$	125.00	\$	6,250	
Pretreatment Structure (10 x 16 x 1.5)			•		•	-,	
Excavate to specfied depth (16' x 22' X 2.5)	33	CY	\$	100.00	\$	3,259	
Finish grade for bottom slab	160	SF	\$	5.00	\$	800	
- truck away spoil- add 20%	39	CY	\$	50.00	\$	1,956	
Bottom Reinf Concrete Slab - assume 6"/wwm	160	SF	\$	30.00	\$	4,800	
Reinf Concrete Chamber Walls 6"		SF	\$	70.00	\$	5,460	
Reinf Concrete Top Supp. Slab - 6"	160	SF	\$	40.00	\$	6,400	
Reinf Interior Concrete Chamber Walls - 4"		SF	\$	80.00	\$	1,440	
Gravel Backfill at Chamber		CY	\$	65.00	\$	1,541	
Access Manhole at Chamber slab		EA	\$	400.00	\$	800	
Outlet Pipe- ALLOW	50	LF	\$	125.00	\$	6,250	
Outlet Pipe Hood	1	EA	\$	500.00	\$	500	
Inlet Pipe - ALLOW	50	LF	\$	125.00	\$	6,250	
					•	2, 22	
						SUBTOTAL	\$ 100,487
		GENER/	AL CC	ONDITIONS, E	ONE	OS & INS - 10.0%	\$10,013
						SUBTOTAL	\$110,500
					G.C.	OH & P - 21.0%	\$23,200
						SUBTOTAL	\$133,700
				CC	NTII	NGENCY - 20.0%	\$26,700
						SUBTOTAL	\$160,400
				F	NGII	NEERING- 15.0%	\$24,100
						RUCTION COST	\$184,500

AAEDUUM CIZED DECIDENTIAL DOODEDTY		1	1		I		
MEDIUM SIZED RESIDENTIAL PROPERTY							
SPACE UNCONSTRAINED - SOIL CONSTRAIN	<u>IED</u>						
262 Corbin Place, Brooklyn							
DESCRIPTION	QUANTITY	UNIT	LIN	NIT PRICE		AMOUNT	TOTAL
DESCRIPTION	QUANTITI	OIVII	01	VIII I IIICL		AMOUNT	TOTAL
CAAD ADEA	200	CF					
SMP AREA	200						
DISTURBED AREA	,						
DETENTION VOLUME	804	CF					
ENGIN CHAMBER HEIGHT	3	LF					
ENGIN. CHAMBER WIDTH	10	LF					
ENGIN CHAMBER LENGTH	20	LF					
WALL THICKNESS -	6	INCH					
Detention Vault (20 x 10 x 3)							
Excavate to specfied depth (26'x 16 x 4')	62	CY	\$	100.00	\$	6,163	
Finish grade for bottom slab		SF	\$	5.00	\$	1,000	
- truck away spoil- add 20%	74	CY	\$	50.00	\$	3,698	
Bottom Reinf Concrete Slab - assume 6"/wwm		SF	\$	30.00	\$	6,000	
Reinf Concrete Chamber Walls - 6"	180		\$	70.00	\$	12,600	
Reinf Concrete Top Supp. Slab - 6"	200		\$	40.00	\$	8,000	
Reinf Interior Concrete Chamber Walls - 4"		SF	\$	80.00	\$	2,560	
Gravel Backfill at Chamber		CY	\$	65.00	\$	2,561	
Access Manhole at Chamber slab		EA	\$	400.00	\$	400	
Outlet Pipe- ALLOW	50	LF	\$	125.00	\$	6,250	
Inlet Pipe - ALLOW	50	LF	\$	125.00	\$	6,250	
Pretreatment Structure (10 x 13.5 x 1.5)	30	L	٧	123.00	۲	0,230	
Excavate to specfied depth (16' x 19.5' X 2.5)	29	CY	\$	100.00	\$	2,889	
Finish grade for bottom slab	160	SF	\$	5.00	\$	800	
	35	CY	\$	50.00	\$		
- truck away spoil- add 20% Bottom Reinf Concrete Slab - assume 6"/wwm						1,733	
-		SF	\$	30.00	\$	4,800	
Reinf Concrete Chamber Walls 6"		SF SF	\$	70.00	\$	5,460	
Reinf Concrete Top Supp. Slab - 6"			\$	40.00	\$	6,400	
Reinf Interior Concrete Chamber Walls - 4"		SF	\$	80.00		1,440	
Gravel Backfill at Chamber		CY	\$	65.00	\$	1,390	
Access Manhole at Chamber slab		EA	\$	400.00	\$	800	
Outlet Pipe- ALLOW			\$	125.00	\$	6,250	
Outlet Pipe Hood	1	EA	\$	500.00	\$	500	
Inlet Pipe - ALLOW	50	LF	\$	125.00	\$	6,250	
		CENTE :		NDITIONS		SUBTOTAL	94,195
		JENEK/	AL CO	NULLIONS, E	SUNE	OS & INS - 10.0%	\$9,405
						SUBTOTAL	\$103,600
					G.C.	OH & P - 21.0%	\$21,800
						SUBTOTAL	\$125,400
				CC	NTII	NGENCY - 20.0%	\$25,100
						SUBTOTAL	\$150,500
				Е	NGI	NEERING- 15.0%	\$22,600
				TOTAL CO	ONST	RUCTION COST	\$173,100

ASSET TYPE:	BIORETENTION
ASSUMED SURFACE AREA (SF):	400
ASSUMED VOLUME MANAGED (CF):	1,200
IMPERVIOUS AREA MANAGED (SF):	9,600

YEARS 1 & 2										
				LABOR HOL	IRS					
Maintenance Task & Description	FREQUENCY (#/YR)	S	SURFACE CREW	SUBSURFACE CREW		FSTI	MATED	1		
			(\$/HR)	(\$/HR)	HOURS	LABOR FEE				
	\$		156	\$ 440	440		440		0	
								[once a we		
								season; as		
Establishment watering only	15	5	0.75	0.00	11	\$	1,758	available o		
Establishment weeding, plant replacement, pest managemen; establishment								[once a m		
watering	5	5	1.75	0.00	9	\$	1,368	season]		
Debris and sediment removal; general site cleanup (painting, structural repair,								1		
erosion/settling repair, mulching; establishment weeding, plant replacement,										
pest management; establishment watering	4	ı	3.50	0.00	14	\$	2,188			
Subsurface inspection and maintenance of pipes and structures	0)	0.00	4.00	0	\$	-			
<u> </u>					Total Labor Fee	Ċ	5 315	-		

[once a week for 6 month growing season; assumes water source is available onsite] once a month for 6 month growing

Materials Cost Mark-Up (8%) \$ 425

TOTAL YEARLY MAINTENANCE FEE \$ 5,740

AFT	TER FIRST TWO YEARS				
			LABOR HOU	RS	
Maintenance Task & Description	FREQUENCY (#/YR)	SURFACE CREW SUBSURFACE C (\$/HR) (\$/HR)		HOURS	ESTIMATED
		\$ 156	\$ 440		LABOR FEE
Debris and sediment removal; general site cleanup (painting, structural repair, erosion/settling repair; Weeding, plant replacement, pest management		3.0		12	\$ 1,876
Subsurface inspection and maintenance of pipes and structures	4	5.0	0	0	\$ 1,070
	•			Total Labor Fee	\$ 1,876
			Materials C	ost Mark-Up (8%)	\$ 150
		TOTAL YEARLY PO	ST-ESTABLISHMENT MA	AINTENANCE FEE	\$ 2,026
		ANNUALIZED M	AINTENANCE FEE INCL	ESTABLISHMENT	\$ 2,211.47
Complete replacement of sand media after 20 year lifespan assumed					
Install 30" open graded stone base	37.0	CY	\$ 82.00		\$ 3,037
Install 24" engineered Soil	29.6	CY	\$ 106.00		\$ 3,141
Install mulch layer (3")	3.7	CY	\$ 40.00		\$ 148

[Assumes a 400 SF bioretention asset with underdrain and planted with a mix of grasses, herbaceous, and small shrubs.]
[Assumes this is for routine maintenance only. Anything that must be completed using a professional is specifically excluded.]
[SOURCE: http://www.phila.gov/water/PDF/SWRetroManual.pdf AND http://www.phila.gov/water/PDF/Retrofit-O.M.Manual.pdf]

GREEN ROOF O+M COST ESTIMATE

SSET TYPE:	BIORETENTION
SSUMED SURFACE AREA (SF):	400
SSUMED VOLUME MANAGED (CF):	800
MPERVIOUS AREA MANAGED (SF):	6,400

	YEARS 1 & 2					
			LABOR HOUF	ıs		
Maintenance Task & Description	FREQUENCY (#/YR)	SURFACE CREW	SUBSURFACE CREW		ESTIMATED LAB	OR.
mameriance rack a peculiphon		(\$/HR)	(\$/HR)	HOURS	FEE	
		\$ 156	156 \$ 440			
						[once a week for 6
						growing season; as
						water source is ava
Establishment watering only	15	0.75	0	11	\$ 1,75	8 onsite]
						[once a month for
Establishment weeding, plant replacement, pest managemen; establishment watering	5	1.75	0	9	\$ 1,30	8 growing season]
Vacuuming porous pavement strip - concurrent with quarterly tasks	4	0.30	0	1	\$ 18	8
Debris and sediment removal; general site cleanup (painting, structural repair,						
erosion/settling repair, mulching; establishment weeding, plant replacement, pest						
management; establishment watering	4	3.50	0	14	\$ 2,18	8
Subsurface inspection and maintenance of pipes and structures	0	0.00	4	0	\$ -	
•			Tot	al Labor Fee	\$ 5,50	12

Materials Cost Mark-Up (8%)	\$	440
TOTAL YEARLY MAINTENANCE FEE	\$	5,942
	_	

AFT	ER FIRST TWO YEARS					
	LABOR HOURS					
Maintenance Task & Description	FREQUENCY (#/YR)	SURFACE CREW	SUBSURFACE CREW		ESTIMATED LABOR	
Maintenance rask & Description	FREQUEINCT (#/ TK)	(\$/HR)	(\$/HR)	HOURS	FEE	
	\$ 156.31	\$ 439.73		FEE		
Debris and sediment removal; general site cleanup (painting, structural repair,						
erosion/settling repair; Weeding, plant replacement, pest management	4	3.00	0	12	\$ 1,876	
Vacuuming porous pavement strip - concurrent with quarterly tasks	4	0.30	0	1	\$ 188	
Subsurface inspection and maintenance of pipes and structures	1	0.00	2	2		
·			Tot	al Labor Fee	\$ 2,063	
			Materials Cost N	/lark-Up (8%)	\$ 235	

Total Labor Fee	Ş	2,063
Materials Cost Mark-Up (8%)	\$	235
TOTAL YEARLY POST-ESTABLISHMENT MAINTENANCE	\$	3,178
ANNUALIZED MAINTENANCE FEE INCL	\$	3,316

Complete replacement of sand media after 20 year lifespan assumed					
Install 36" engineered soil	44	CY	\$ 106.00	\$	4,711
Install 12" open graded stone base	15	CY	\$ 82.00	\$	1,215
Install mulch layer (3")	3.7	CY	\$ 40.00	\$	148
Install 3-0.5" permeable paver on 20-0.5" stone bed	400	SF	\$ 55.00	\$	22,000
Install 24" open graded stone base	30	CY	\$ 82.00	\$	2,430

ADDITIONAL COST FOR REPLACEMENT OF MEDIA	Ś	28.074

[Assumes a 400 SF bioretention asset with underdrain and planted with a mix of grasses, herbaceous, and small shrubs.]

[Assumes this is for routine maintenance only. Anything that must be completed using a professional is specifically excluded.]

[SOURCE: http://www.phila.gov/water/PDF/SWRetroManual.pdf AND http://www.phila.gov/water/PDF/Retrofit-O.M.Manual.pdf]

ASSET TYPE: ASSUMED SURFACE AREA (SF):

	YEA	ARS 1 & 2				1			
Maintenance Task & Description	FREQUENCY (#/YR)	SURFACE CREW (\$/HR) \$ 156	SUBSURFACE CREW (\$/HR) \$ 440	HOURS	ESTIMATED LABOR FEE				
		3 130	3 440			[Every other week for 6 mont			
Establishment watering only	3	1.0	0	3	\$ 469	growing season]			
Establishment weeding, plant replacement, pest management, and establishment watering	9	2.0	0	18	\$ 2,814	[once a month for 9 month gr season]			
				Total Labor Fee	\$ 3,283	_			
	\$ 492								
	TOTAL YEARLY MAINTENANCE FEE \$								
						_			
	AFTER FIF	RST TWO YEARS							
_			LABOR F	HOURS		I			
Maintenance Task & Description	FREQUENCY (#/YR)	SURFACE CREW	SUBSURFACE CREW		ESTIMATED				

Maintenance Task & Description	FREQUENCY (#/YR)	(\$/HR)	(\$/HR)	HOURS		TIMATED						
		\$ 156	\$ 440		LA	BOR FEE						
Weeding, plant replacement, pest management	3	1.5	0	5	\$	703						
Soil testing and amendments	1	1.5	0	2	\$	234						
				Total Labor Fee	\$	938						
Materials Cost Mark-Up (15%)												
		TOTAL YEAR	Y POST-ESTABLISHM	ENT MAINTENANCE FEE	\$	1,079						
		ANNUALIZ	ED MAINTENANCE FE	E INCL ESTABLISHMENT	\$	1,213						
Complete replacement of green roof trays after 20 yea	rs											
6" deep green roof trays (installation included)	3000	CY	\$ 15.25		\$	45,750						
•												
		ADD	ITIONAL COST FOR R	PLACEMENT OF MEDIA	\$	45,750						

ADDITIONAL COST FOR REPLACE
[Assumes this is for routine maintenance only. Anything that must be completed using a professional is specifically excluded.] [SOURCE: http://www.phila.gov/water/PDF/SWRetroManual.pdf AND http://www.phila.gov/water/PDF/Retrofit-O.M.Manual.pdf]

SAND FILTER O+M COST ESTIMATE

ASSET TYPE:	SAND FILTER
ASSUMED VOLUME (CF):	2,000
MANAGED IMPERVIOUS AREA (SF):	16,000

			LABOR HOURS										
Maintenance Task & Description	FREQUENCY (#/YR)		SURFACE CREW	SUBSURFACE CREW		ESTIMATED	,						
·		ċ	(\$/HR) 156	(\$/HR) \$ 440	HOURS	LABOR FEE							
Inlet/pre-treatment inspection and vacuuming (sedimentation and		Ş	130	\$ 440		 I .	-						
overflow chambers)	1		0	4	4	\$ 1,75	59						
Subsurface inspection and maintenance of pipes and detention						İ							
areas; dewatering system and vacuuming gravel layer; replacing						İ							
gravel and/or sand media as necessary	1		0	8	8	\$ 3,51	18						
Observe drawdown rate after large storm	1		1	0	1	\$ 15	6						
Total Labor Fee \$													
				Materials Cost Mark-	Up (10%)	\$ 54	13						
			TOT	AL YEARLY MAINTEN	ANCE FEE	\$ 5,97	16						

Complete replacement of sand media after 20 year lifespan assumed

Vacuum removal of the sand using vac truck	1			\$ 16.00	12	\$ 7,036
Install 11" stone base-M	8	CY	9	\$ 100.00		\$ 787
Install 24" clean washed sand	17.1	CY	!	\$ 75.00		\$ 1,283
Install 1" debris screen	231	SF		\$ 5.00		\$ 1,155
Install 12" +/- gravel	8.6	CY	9	\$ 75.00		\$ 642

ADDITIONAL COST FOR REPLACEMENT OF MEDIA \$	10,903
---	--------

[Assumes this is for routine maintenance only. Anything that must be completed using a professional is specifically excluded.] [SOURCE: http://www.phila.gov/water/PDF/SWRetroManual.pdf AND http://www.phila.gov/water/PDF/Retrofit-O.M.Manual.pdf]

DETENTION TANK O+M COST ESTIMATE

ASSET TYPE:	DETENTION TANK
ASSUMED VOLUME (CF):	2,000
MANAGED IMPERVIOUS AREA (SF):	16,000

		LABOR HOURS										
Maintenance Task & Description	FREQUENCY (#/YR)	SURFACE CREW (\$/HR)		SSURFACE CREW (\$/HR)	HOURS		TIMATED					
		\$ 156.31	\$	439.73		LA	ABOR FEE					
Inspect inflow pipes, screens, and valves for debris that could cause												
clogs as well as for any structural damage	2	1		0	2	\$	313					
Subsurface inspection and maintenance of pipes and tank	1	0		4	4	\$	1,759					
				Total L	abor Fee	\$	2,072					

 Total Labor Fee
 \$ 2,072

 Materials Cost Mark-Up (5%)
 \$ 104

 TOTAL YEARLY MAINTENANCE FEE
 \$ 2,175

[Assumes system could be surface or subsurface tank.]

[Assumes this is for routine maintenance only. Anything that must be completed using a professional is specifically excluded.] [SOURCE: http://www.phila.gov/water/PDF/SWRetroManual.pdf AND http://www.phila.gov/water/PDF/Retrofit-O.M.Manual.pdf]

UNIT COST ESTIMATES (\$/SF MANAGED AREA)

	UC	soc	SPC	2XC	SPC	2XC
MI	141 Storer Avenue - bioretention	141-Storer Avenue - bioretention + underdrain	508 Smith Stree		508 Smith Stree	
MC	141 South 3rd Street - bioretention	141 South 3rd Street - bioretention + underdrain	132-08 Pople Av		132-08 Pople A	
MR	262 Corbin Place - bioretention	262 Corbin Place - bioretention + underdrain	560 Carroll Stree		560 Carroll Stre	
LI	11 Brick Ct - bioretention	11 Brick Ct - bioretention + underdrain	305 Johnson Av		305 Johnson Av	
LC	1759 Hylan Blvd - bioretention	1759 Hylan Blvd - bioretention + underdrain	1256 2nd Ave		1256 2nd Ave	
LR	14 Ottavio Prom and 89 West Tremont - bioretention	14 Ottavio Prom and 89 West Tremont - + underdrain	462 w. 58th Stre	et - sand filter	462 w. 58th Stre	et - green roof
1		SF N	IANAGED AREA			
	uc			2XC	SPC	2XC
MI	8,000	8,000	8,800	8,800	8,800	8,800
MC	7,450	7,450	6,500	6,500	6,500	6,500
MR	6,434	6,434	6,114	6,114	6,114	6,114
LI	27,900	27,900	24,580	24,580	24,580	24,580
LC	21,600	21,600	20,164	20,164	20,164	20,164
LR	17,043	17,043	14,095	14,095	14,095	14,095
1			APITAL COST			
	luc			2XC	SPC	2XC
MI	\$ 39,800	\$ 129,300	\$ 232,300	\$ 232,300	\$ 212,152	\$ 212,152
MC	\$ 37,700	\$ 105,600	\$ 181,400	\$ 181,400	\$ 147,936	\$ 147,936
MR	\$ 36,500	\$ 147,100	\$ 169,600	\$ 169,600		\$ 116,795
LI	\$ 116,400	\$ 433,200		\$ 418,300		\$ 597,896
LC	\$ 102,800	\$ 251,900	\$ 319,900	\$ 319,900	\$ 421,737	\$ 421,737
LR	\$ 51,450	\$ 121,450	\$ 267,300	\$ 267,300	\$ 338,714	\$ 338,714
i .		0.004				
	uc		ost per SF Managed SPC	2XC	SPC	2XC
MI	\$ 4.98	\$ 16.16	\$ 26.40	\$ 26.40	\$ 24.11	\$ 24.11
MC	\$ 5.06	\$ 16.16 \$ 14.17				
MR	\$ 5.67	\$ 22.86				
LI	\$ 4.17	\$ 15.53				
LC	\$ 4.76					
LR	\$ 3.02					
			,			-
	1		er SF Managed (30yrs 3% Disc.)		1	
						2XC
MI						
MC MR	\$ 0.27 \$ 0.27	2.00		\$ 0.97 \$ 1.03	\$ 0.80 \$ 0.80	\$ 0.80 \$ 0.80
LI	\$ 0.27	\$ 0.66				
LC	\$ 0.27	\$ 0.66				
LR	\$ 0.27					
Lit	0.27	·	0.45	0.43	0.50	9 0.00
	Discount Rate	3%				
	A given P (30 yr)	0.051				
1		TOTAL NPV COST per	SF MANAGED IMPERVIOUS AREA			
	uc			2XC	SPC	SPC
MI	\$ 10.22	\$ 29.08		\$ 40.38		
MC	\$ 10.30	\$ 27.09		\$ 46.83		
MR	\$ 10.91	\$ 35.78		\$ 47.86		
LI	\$ 9.41				\$ 39.97	\$ 39.97
LC	\$ 10.00	\$ 24.58	\$ 21.96	\$ 21.96	\$ 36.56	\$ 36.56
LR	\$ 8.26	\$ 20.04	\$ 27.69	\$ 27.69	\$ 39.68	\$ 39.68
	·		·		·	
1		Annualized O&M Cost	per SF Managed (30yrs 3% Disc.)			
	uc			2XC	SPC	2XC
MI	\$ 5.24	\$ 12.92		\$ 13.98		\$ 15.65
MC	\$ 5.24	\$ 12.92		\$ 18.92	\$ 15.65	\$ 15.65
MR	\$ 5.24	\$ 12.92		\$ 20.12		\$ 15.65
LI	\$ 5.24	\$ 12.92				
LC	\$ 5.24					\$ 15.65
LR	\$ 5.24	\$ 12.92	\$ 8.73	\$ 8.73	\$ 15.65	\$ 15.65

														He	i+ C	ost per !	SE O	Dietur	and	Aroa															
Bin Sizes						Resid	enti	ial						OI.	IL C	ost per .	JF U	Comm											Indu	stria	ıl				
	UC		SO	С	SPC	- SF	2X(C - SF	SP	C - GR	2X	C - GR	GR UC SOC SPC - SF 2XC - SF SPC - GR 2XC - G				C - GR	uc	soc	:	SP	C - SF	2X(- SF	SP	C - GR	2XC	- GR							
>100ac	\$	8.26	\$	20.04	\$	27.69	\$	27.69	\$	37.21	\$	37.21	\$	10.00	\$	24.58	\$	21.96	\$	21.96	\$ 36.56	\$	36.56	\$	9.41	\$	28.44	\$	22.02	\$	22.02	\$	39.86	\$	39.86
75-100ac	\$	8.26	\$	20.04	\$	27.69	\$	27.69	\$	37.21	\$	37.21	\$	10.00	\$	24.58	\$	21.96	\$	21.96	\$ 36.56	\$	36.56	\$	9.41	\$	28.44	\$	22.02	\$	22.02	\$	39.86	\$	39.86
50-75ac	\$	8.26	\$	20.04	\$	27.69	\$	27.69	\$	37.21	\$	37.21	\$	10.00	\$	24.58	\$	21.96	\$	21.96	\$ 36.56	\$	36.56	\$	9.41	\$	28.44	\$	22.02	\$	22.02	\$	39.86	\$	39.86
25-50ac	\$	8.26	\$	20.04	\$	27.69	\$	27.69	\$	37.21	\$	37.21	\$	10.00	\$	24.58	\$	21.96	\$	21.96	\$ 36.56	\$	36.56	\$	9.41	\$	28.44	\$	22.02	\$	22.02	\$	39.86	\$	39.86
10-25ac	\$	8.26	\$	20.04	\$	27.69	\$	27.69	\$	37.21	\$	37.21	\$	10.00	\$	24.58	\$	21.96	\$	21.96	\$ 36.56	\$	36.56	\$	9.41	\$	28.44	\$	22.02	\$	22.02	\$	39.86	\$	39.86
5-10ac	\$	8.26	\$	20.04	\$	27.69	\$	27.69	\$	37.21	\$	37.21	\$	10.00	\$	24.58	\$	21.96	\$	21.96	\$ 36.56	\$	36.56	\$	9.41	\$	28.44	\$	22.02	\$	22.02	\$	39.86	\$	39.86
2-5ac	\$	8.26	\$	20.04	\$	27.69	\$	27.69	\$	37.21	\$	37.21	\$	10.00	\$	24.58	\$	21.96	\$	21.96	\$ 36.56	\$	36.56	\$	9.41	\$	28.44	\$	22.02	\$	22.02	\$	39.86	\$	39.86
1-2ac	\$	8.26	\$	20.04	\$	27.69	\$	27.69	\$	37.21	\$	37.21	\$	10.00	\$	24.58	\$	21.96	\$	21.96	\$ 36.56	\$	36.56	\$	9.41	\$	28.44	\$	22.02	\$	22.02	\$	39.86	\$	39.86
40,000 - 43,560	\$	8.26	\$	20.04	\$	27.69	\$	27.69	\$	37.21	\$	37.21	\$	10.00	\$	24.58	\$	21.96	\$	21.96	\$ 36.56	\$	36.56	\$	9.41	\$	28.44	\$	22.02	\$	22.02	\$	39.86	\$	39.86
35,000 - 40,000	\$	8.26	\$	20.04	\$	27.69	\$	27.69	\$	37.21	\$	37.21	\$	10.00	\$	24.58	\$	21.96	\$	21.96	\$ 36.56	\$	36.56	\$	9.41	\$	28.44	\$	22.02	\$	22.02	\$	39.86	\$	39.86
30,000 - 35,000	\$	8.26	\$	20.04	\$	27.69	\$	27.69	\$	37.21	\$	37.21	\$	10.00	\$	24.58	\$	21.96	\$	21.96	\$ 36.56	\$	36.56	\$	9.41	\$	28.44	\$	22.02	\$	22.02	\$	39.86	\$	39.86
25,000 - 30,000	\$	8.26	\$	20.04	\$	27.69	\$	27.69	\$	37.21	\$	37.21	\$	10.00	\$	24.58	\$	21.96	\$	21.96	\$ 36.56	\$	36.56	\$	9.41	\$	28.44	\$	22.02	\$	22.02	\$	39.86	\$	39.86
20,000 - 25,000	\$	8.26	\$	20.04	\$	27.69	\$	27.69	\$	37.21	\$	37.21	\$	10.00	\$	24.58	\$	21.96	\$	21.96	\$ 36.56	\$	36.56	\$	9.57	\$	28.57	\$	25.69	\$	25.69	\$	39.86	\$	39.86
15,000 - 20,000	\$	8.26	\$	20.04	\$	27.69	\$	27.69	\$	37.21	\$	37.21	\$	10.08	\$	25.21	\$	28.18	\$	28.18	\$ 37.02	\$	37.02	\$	9.73	\$	28.70	\$	29.36	\$	29.36	\$	39.86	\$	39.86
12,500 - 15,000	\$	9.14	\$	25.29	\$	34.41	\$	34.41	\$	37.21	\$	37.21	\$	10.15	\$	25.84	\$	34.40	\$	34.40	\$ 37.48	\$	37.48	\$	9.89	\$	28.83	\$	33.03	\$	33.03	\$	39.86	\$	39.86
10,000 - 12,500	\$	10.03	\$	30.54	\$	41.14	\$	41.14	\$	37.21	\$	37.21	\$	10.23	\$	26.46	\$	40.61	\$	40.61	\$ 37.95	\$	37.95	\$	10.06	\$	28.95	\$	36.70	\$	36.70	\$	39.86		39.86
7,500 - 10,000	\$	10.91	\$	35.78	\$	47.86	\$	47.86	\$	37.21	\$	37.21	\$	10.30	\$	27.09	\$	46.83	\$	46.83	\$ 38.41	\$	38.41	\$	10.22	\$	29.08	\$	40.38	\$	40.38	\$	39.86	\$	39.86
5,000 - 7,500	\$	10.91	\$	35.78	\$	47.86	\$	47.86	\$	37.21	\$	37.21	\$	10.30	\$	27.09	\$	46.83	\$	46.83	\$ 38.41	\$	38.41	\$	10.22	\$	29.08	\$	40.38	\$	40.38	\$	39.86	\$	39.86

9.1 Work Plan to Determine Loads of Floatable and Settleable Trash and Debris from the MS4 to Impaired Waterbodies

Work Plan

To Determine the Loading Rate of Floatable and Settleable Trash and Debris Discharged from the New York City Municipal Separate Storm Sewer System (MS4)

August 2018

Prepared in accordance with SPDES Permit Number NY-0287890 Part IV.I.3

Table of Contents

1.0	INTRODUCTION	1
2.0	REVIEW OF METHODOLOGIES TO DETERMINE LOADING RATES	1
2.1	Los Angeles County, California	2
2.2	Baltimore City and County, Maryland	2
2.3	Washington, District of Columbia	3
2.4	San Francisco, California	4
2.5	New York City, New York	4
3.0	ADVANTAGES AND DISADVANTAGES OF DIFFERENT METHODOLOGIES	5
3.1	Metrics for Floatables Quantity and Loading Rates	6
3.2	Inclusion of Various Factors Affecting Floatables Loading Rate	6
4.0	PROPOSED METHODOLOGY FOR NEW YORK CITY	7
4.1	Overview of Proposed Approach	7
4.2	Justification for Proposed Approach	8
4.3	Methodology to Implement Proposed Approach	9
5.0	REFERENCES	17
APPF	NDIX A	18

August 2018 i

1.0 INTRODUCTION

The City of New York's (City) Municipal Separate Storm Sewer System (MS4) Permit requires the development of a floatable and settleable trash and debris (herein referred to as "floatables") management program as part of the Stormwater Management Program (SWMP). In particular, Part IV.I of the MS4 Permit requires the submission of a work plan "to determine the loading rate of floatable and settleable trash and debris discharged, including land-based sources, from the MS4 to waterbodies listed as impaired for floatables" (New York State Department of Environmental Conservation, 2015). This work plan includes a literature search of methods employed by other municipalities, the proposed methodology for New York City, and a discussion as to why the selected method is best for conditions in New York City.

The City submitted a draft of this work plan to NYSDEC on August 1, 2017 for review. The City also posted the draft work plan on the DEP website on August 1, 2017 and presented it publicly at a Trash Free NYC Waters Meeting on October 4, 2017. The public was encouraged to review the draft work plan and submit comments by October 16, 2017. The City modified this work plan as a result of public input. Responses to the comments received at the public meeting and in writing via electronic mail are included in this work plan as Appendix A.

2.0 REVIEW OF METHODOLOGIES TO DETERMINE LOADING RATES

The City conducted a literature review of methods employed by other municipalities to determine the loading rate of floatables from separate storm sewer systems. As the control of floatables is not a common provision of MS4 permits, and trash TMDLs are similarly infrequent, only a few municipalities attempted to determine a floatables loading rate. Those municipalities with published methodologies include San Francisco, Los Angeles County, Baltimore City and County, and Washington, D.C. Each of these municipalities is subject to trash TMDLs except San Francisco, and each of these municipalities calculated loading rates that include both MS4 and combined sewer areas, except Los Angeles, which includes MS4 only. Additionally, the City studied the loading rate of floatables in connection with combined sewer overflows (CSOs).

In general, each municipality conducted field monitoring to determine representative floatables loading rates for various land use types, and then applied those representative rates by land use in each catchment area to generate the overall annual loading rate by area. Municipalities selected this method because associating floatables loading rates with land use provided a logical way to extrapolate loading rates from readily available information. However, some municipalities found that land use alone was not a good

predictor of loading rate, and attempted to account for other factors such as median income, proximity to "downtown" (high commuter activity) areas, frequency of street sweeping and rainfall. Table 1 summarizes the different methods that each of the other municipalities used to determine loading rates. The following sections provide additional information about the methods used by each municipality.

Table 1. Factors Included in Determination of Floatables Loading Rate

Municipality	Metric	Field Sampling	Land Use	Median Income	Rainfall	Street Sweeping
Los Angeles, CA	Volume	Yes	Yes	No	No	No
Baltimore City, MD	Weight	Yes	Yes	No	Yes (2)	No
Baltimore County, MD	Weight	Yes	Yes	No	Yes (2)	No
Washington, D.C.	Weight	Yes	Yes	No	Yes (2)	No
San Francisco, CA	Volume	Yes	Yes	Yes (1)	Yes (3)	Yes (3)

Notes:

- (1) Used in conjunction with certain land use types
- (2) Monitoring period rates per inch of rainfall normalized to long-term annual rainfall
- (3) Application of ratio of frequency of rainfall and street sweeping

2.1 Los Angeles County, California

Los Angeles utilized a method to determine floatables loading rates based on land use. Field monitoring was performed between 2002 and 2004 at about 175 sites, with each site consisting of two to four storm-drain inlet structures fitted with full-capture devices (perforated plates) designed to prevent any items larger than 5 mm from exiting the structure for hourly intensities up to the one-year return period. Each site was characterized according to land use in its catchment area, with five land use types: industrial, commercial, open/parks, high-density residential, and low-density residential. Field monitoring involved quantifying the uncompressed volume of trash accumulated in the structure since the prior cleanout, with sediment and vegetation excluded. Los Angeles expressed the observed loading rate for each site as gallons per day of accumulation per acre of catchment.

2.2 Baltimore City and County, Maryland

Baltimore City and Baltimore County determined floatables loading rates using a method based upon the Los Angeles method. However, Baltimore City and Baltimore County followed different field monitoring practices and, as described below, reduced the calculation method to reflect just two land-use types, urban and non-urban (forest).

Baltimore City monitored five stormwater outfall locations to represent two of the City's three major watersheds. No stations were sampled in the Baltimore Harbor watershed due to lack of accessibility, high wet-weather flows, and limitations regarding the catchments available for characterization. Field monitoring involved collecting trash

accumulated in capture devices at each outfall every two weeks. Field crews separated trash from vegetation, drained liquid from containers, and allowed the trash to air dry before measuring the trash weight. Baltimore City then calculated the observed loading rate for each outfall as weight of floatables per day of accumulation per acre of catchment.

Baltimore County monitored trash generated over a one-year period at 17 stormwater management facilities (detention ponds) and at 20 in-stream sites. The County selected in-stream sites based on their suitability for monitoring stormwater trash, safe access, and the upstream area being predominately one land use category. Monitoring at in-stream sites involved marking out a 500-foot section of the stream from which field crews collected all trash at the start of the study and then on a monthly basis. In addition to excluding vegetative debris, draining all liquids from containers, and allowing the trash to air dry, the field crews also separated the trash into five categories (plastic bottles, glass bottles, aluminum cans, bulk "dumped" items, and other). Field crews measured dry weight for each category and counted the number of items in each of the bottle and can categories.

Baltimore County expressed the observed loading rates for each site as gallons per day of accumulation per acre of catchment. Variability between sites led Baltimore to consider just two land use types: urban and non-urban (forest).

2.3 Washington, District of Columbia

Washington, D.C. utilized a floatables loading rate methodology similar to that of Los Angeles and Baltimore. Using this methodology, D.C. conducted field monitoring at 10 outfall locations and 30 in-stream locations. Field crews collected trash from nets installed on the monitored outfalls after each storm event, and from 500-foot segments along the in-stream sites on a quarterly basis. Field crews quantified the visible trash, excluding vegetative debris, emptying liquids from containers, and allowing the trash to air dry. Field crews also separated the trash into 44 item-type categories and counted each. D.C. then calculated an estimate of total weight based on standardized weights for each item type.

Each site was characterized according to its catchment's predominant upstream land use, based on seven different land use types (roadways, institutional, commercial, industrial, high-density residential, low-density residential and open space/parks). For each site, D.C. calculated the observed loading rate as the accumulated trash weight per acre per inch of rainfall during the accumulation period, and then developed average loading rates for each land use category. D.C. then calculated the overall loading rate by applying each land use category's loading rate (in terms of trash weight per acre of that land use per inch of rainfall) for the total acreage of that land use in the municipality and for the total long-term average rainfall (inches per year).

2.4 San Francisco, California

San Francisco utilized a floatables loading rate methodology that, while based upon land use, also accounted for other drivers such as income level, site-specific factors, and the relative frequency of street sweeping and rainfall.

Field monitoring involved 159 stormwater inlet structures, each draining a catchment with at least 70 percent of its area representing one of 10 different categories: low-, mid-, and high-income retail; low-, mid-, and high-income residential; industrial; commercial; urban park; and schools. Each monitored site was retrofitted with a full-capture device (perforated plate) designed to prevent any items larger than 5 mm from exiting the structure for hourly intensities up to the one-year return period. During the monitoring period, field crews cleaned out all accumulated material from the inlet structure, allowed it to air dry, and separated it into eight material/item categories (plastic recyclable beverage containers, plastic single-use bags, plastic foam food ware, plastic other, paper, metal, other trash, and non-trash debris such as sediment and vegetation). Field crews would then measure the dry weight, uncompressed volume, and item counts (for trash categories).

San Francisco generated field monitoring results by site and by catchment category. Initial results indicated that there was a high variability of observed loading rates, even within a particular catchment category. San Francisco interpreted this to mean that its calculation method had not taken into account other driving factors. In order to account for this variability, San Francisco refined the method to distinguish between the monitored "trashloading rate" from the catchment to the receiving water and the "trash-generation rates" within the catchment. The difference between the two is the "trash-interception rate," whereby some of the generated trash is captured via street sweeping or other controls, preventing material from discharging to the receiving water. Only trash remaining on the street is available for rainfall to transport to the stormwater inlet structures. San Francisco adjusted the loading rates to account for these processes by applying a factor based upon the relative frequency of street sweeping and rainfall in each catchment area.

In calibrating the refined method's results for trash-loading rate, San Francisco incorporated other refinements to manually adjust for geographic variations in loading rates. San Francisco conducted a final, limited validation of the refined method using floatables loading measurements for one cleanout period at two sites.

2.5 New York City, New York

As documented in its 2005 Citywide Comprehensive Floatables Plan - Modified Facility Planning Report, New York City Department of Environmental Protection (DEP) performed floatables monitoring to identify the sources of floatables pollution in New York Harbor and to understand the processes affecting how the City generates and controls floatables. While there are many ways floatables can reach a waterway including, but not

limited to, illegal dumping, shoreline activities, direct disposal or wind action, this study determined that floatables discharging from the storm sewer system are consistent with street litter. However, this conclusion would need to be looked at further as other studies found that the amount of floatables entering the storm sewer system is rainfall dependent but does not necessarily depend on the source (Walker and Wong, December 1999). The amount of trash that enters the sewer system depends on the energy available to remobilize and transport deposited litter on street surfaces rather than the amount of litter deposited on street surfaces.

The 2005 DEP study also concluded that land use was not a good predictor of street litter levels. Based upon various field studies, DEP developed a model capable of calculating floatables loadings from combined and/or separately sewered areas. This model is based upon the following primary inputs for a given catchment:

- 1. Street litter generation rate, in terms of quantity (item count, weight, or visible area) per year. This rate was calculated for study-baseline conditions using a build-up/wash-off submodel given:
 - a. Average annual litter level, in terms of the City's "Street & Sidewalk Cleanliness Ratings"
 - b. Street sweeping schedule (and litter-removal efficiency of sweeping)
 - c. Annual occurrences of storms with at least 0.2 inches of rainfall (and litter-transport efficiency of such storms to flush litter into catch basins)
- 2. Total length of curb in the catchment
- 3. Percentage of hooded and non-hooded catch basins in catchment (and associated floatables-removal efficiency of each)
- 4. Percentage of catchment that is tributary to end-of-pipe controls such as booms or nets (and associated floatables-removal efficiency of each)

During implementation of its catch basin hooding program, DEP applied this model to track the floatables loading rate, relative to baseline conditions, on an annual basis. Along with other measures, such as yields at end-of-pipe facilities and observed levels of floatables at various locations in New York Harbor and along shorelines, the model results satisfied annual reporting requirements associated with the CSO control program.

3.0 ADVANTAGES AND DISADVANTAGES OF DIFFERENT METHODOLOGIES

The survey of municipalities that estimate floatables loading rates revealed a range of methods, from simple, per-day rates based solely on urban or non-urban land uses, to complex calculations based on multiple catchment categories including land use and median income, and adjusted to account for street sweeping frequency and rainfall. Differences between the methodologies do offer advantages and disadvantages. This section describes some of the key areas in which the methodologies differ and the advantages and disadvantages of the different approaches.

3.1 Metrics for Floatables Quantity and Loading Rates

The metric(s) selected for characterization of floatables is an important aspect related to the methodology selected to determine the floatables loading rate. Floatables refers to a class of varied materials that is not easily quantified and for which there is no "standard method" of analysis. Metrics used to quantify floatables include item counts, volume, drained weight, and visible surface-area measurements. Once collected, floatables are most easily described in terms of volumes or weights. However, weight metrics are susceptible to skewing from lightweight materials (such as polystyrene) and heavier materials (such as glass or wet materials). Volume metrics can also be skewed by large-area / small-volume materials (such as plastic sheeting) or the presence of natural materials (such as leaves) that are not the target of a floatables loading rates estimate, but these instances are typically less likely or, in the case of leaves, limited to a relatively short period of time.

Another difference in the commonly applied metric for loading rate is whether to express the rate in terms of "per day" or "per inch of rain." Some municipalities, such as San Francisco, Washington D.C., and New York, see a clear relationship between loading rates and rainfall. Other municipalities, such as Los Angeles, do not see a significant correlation between loading rates and rainfall. While differences in weather patterns may in part explain this situation, direct deposition of litter into catch basins (such as by pedestrians and/or mechanical street sweeping equipment) and the practice of associating per-day catch basin accumulations with per-day discharges may be the reasons for this apparent discrepancy. To some extent, expressing loading rates as an annual average helps to even out seasonal variations in wet weather and the associated variation in loading rates.

3.2 Inclusion of Various Factors Affecting Floatables Loading Rate

Other municipalities' studies to monitor and analyze floatables loading rates clearly demonstrated that floatables loading rates are highly variable from site to site and over time. The most comprehensive studies acknowledged that the primary factors affecting loading rates are litter-generation rates, litter-removal rates, and rainfall, while secondary factors include population, land use, street sweeping methods and frequency, storm-sewer infrastructure (such as numbers and types of catch basins), and storm-sewer maintenance activities (such as catch basin cleaning). Because litter-generation rates are dependent upon human behavior, public education and enforcement of anti-littering laws, as well as litter-basket deployment and servicing, can also affect loading rates.

The studies also indicated that the relationships between the various factors can be dynamic and difficult to characterize. The simplest methods determine loading rates solely on the basis of land use. The advantage of this approach is that land use is a readily

available parameter. Baltimore's approach to land use was simplest, using only two categories for catchment land use (urban and non-urban). Los Angeles, Washington D.C., and San Francisco utilized up to seven different land use types. Although the intent of using multiple land uses was to explain more of the variation in loading rates between different sites, most studies acknowledged that land use alone is a poor predictor of loading rate.

Some municipalities attempted to account for additional factors in their calculation of loading rate. San Francisco performed a correlation analysis and determined that adding median income level to further distinguish catchment land use improved the predictive capability of its method. San Francisco and Washington D.C. determined that accounting for rainfall also improved the results. San Francisco recognized that accounting for street sweeping and rainfall frequency also improved the prediction of loading rate from the catch basins because these actions directly impact the portion of litter on the streets that is captured via sweeping versus flushed into the catch basins.

The primary differences between the methods adopted to determine loading rate were the factors used to differentiate the loading rates from site to site, and over time. The simplest methods based loading rates solely on land use, while the most complex methods attempted to account for other factors, such as median income, street sweeping frequency and rainfall. DEP's approach was unique among this group because DEP based its method on measures of street litter level, rather than on land use as a surrogate for street litter level.

4.0 PROPOSED METHODOLOGY FOR NEW YORK CITY

This section presents an overview of the approach that the City proposes to use to determine the floatables loading rate from MS4 outfalls to floatables-impaired waterbodies, a justification for the proposed approach, and specifics on the methodology to implement the proposed approach. Per the Program Development Compliance Schedule in Part IV.O of the City's MS4 Permit, the City will submit a schedule for completing the floatables loading rate determination within three months after DEC approves the final work plan.

4.1 Overview of Proposed Approach

The City's proposed methodology is a hybrid approach that combines field measurements and model analysis. Using this approach, the City proposes to take field measurements of floatables discharged from catch basins representing various categories of sites that comprise the MS4 drainage areas. These data can then be used to extrapolate a floatables loading rate. In conjunction with field measurements, the City will use an updated version of DEP's existing floatables model to check the results of the field

monitoring and to account for downstream in-water controls such as booms. Figure 1 below describes schematically the application of the existing floatables model to the City's MS4.

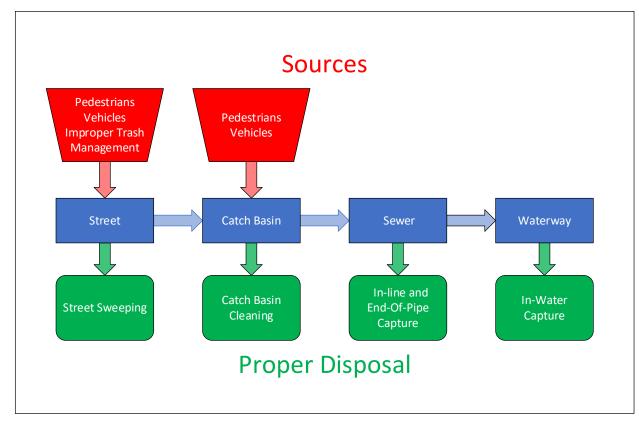


Figure 1. Schematic of MS4 Floatables Sources, Transport, Controls and Fate

4.2 Justification for Proposed Approach

As described in Section 3.0, the approaches utilized by other municipalities for determining floatables loading rates involve a range of complexities in terms of methodologies and factors affecting loading rates. The City's proposed approach, which combines the field measurement component of approaches utilized by other municipalities with the work done by DEP in the past, is suitable for determining floatables loading rates for the following reasons:

 Considers factors beyond land use. Other municipalities found that land use alone was not a good predictor of floatables loading rate. Where the surveyed municipalities characterized the monitored sites based on catchment land use, the City would select monitoring sites based upon important factors already understood to impact floatables discharge rates from catch basins in New York

- City. These factors include catchment characteristics (such as litter levels) and catch basin attributes (such as presence of a hood).
- Utilizes institutional knowledge and already developed tools. DEP previously studied floatables sources and effectiveness of existing floatables controls. Through a combination of field studies and modeling, DEP developed both an understanding of processes and models to estimate the impact of those processes on floatables loading rates.
- Provides opportunities to update previous assessments. Through targeted, focused field studies, the City can update its understanding of how floatables discharge rates are related to differences in certain factors such as street litter levels and existing floatables controls. This approach will also enable the City to observe changes in the types of items that make up street litter and floatables.
- Isolates floatables contribution at the entry point to the MS4. The proposed field monitoring will focus on characterizing the type and quantity of floatables entering the MS4 from the catch basins. This methodology avoids logistical difficulties and inaccuracies associated with monitoring outfalls in tidal systems, and allows characteristics of floatables to be determined for different areas.

4.3 Methodology to Implement Proposed Approach

In summary, the City's proposed methodology involves the following steps:

- 1. Selection of representative sites at which to conduct field monitoring
- Field monitoring using proposed metrics to measure floatables discharge rates from catch basin sites comprising the various site categories within New York City's MS4 areas
- 3. Analysis of field measurements to determine unit loading rates by site category
- 4. Establishment of weather and other conditions suitable for calculation of floatables loadings from MS4 areas
- 5. Application of unit loading rates to individual catch basins, and summation of the results by MS4 outfall and by waterbody, for each waterbody designated as impaired due to floatables.

The following sections describe each of these steps in detail.

4.3.1 SELECTION OF REPRESENTATIVE SITES FOR FIELD MONITORING

In order to represent the full range of factors affecting floatables generation, interception, and loading for MS4 areas in New York City, the City developed 21 site categories to be included in the field monitoring program. Each site category represents a different combination of representative catch basin attributes and catchment characteristics or unique land use types.

Catchment Characteristics

Catchment characteristics include street litter level and street sweeping frequency. Street litter levels directly impact the quantity of floatable material available for discharge into catch basins, and so monitoring sites will be selected to represent each of three different street litter levels (high, medium, low), as well as "typical" levels or conditions for arterial highways, exit ramps/turnouts, and parks. Because street sweeping frequency directly impacts the portion of street litter that is captured versus carried into catch basins during storms, the City will also select monitoring sites to represent each of three different street sweeping frequencies. Preliminary analysis suggests categories of high, medium, and low frequency may be appropriate, but these may change based on further analysis of MS4 areas. For example, categories of high, medium/low, and not applicable (N/A) may better represent conditions in the MS4. Together with rainfall conditions, street sweeping frequency and street litter level represent the secondary factors from which street litter generation can be gauged.

Catch Basin Attributes

The catch basin attribute that most directly impacts the discharge rate of floatables to storm sewers (and hence to receiving waters) is the presence of hoods. Catch basin hoods are designed to prevent sewer gases from venting through the catch basin. Because the hoods shield the catch basin's pipe outlet, they also prevent floatable items from entering the sewer system. Where present, catch basin hoods are effective at retaining floatables in catch basins; therefore, monitoring sites will be selected to represent both hooded and unhooded catch basins.

Land Use

As described above, the City will rely on the above factors known to impact the discharge rate of floatables and not general land use types (such as residential, commercial or industrial) to select catch basin sites for monitoring. However, the City will include three additional categories to represent catch basins located within unique land uses. These land use types include (1) arterial highways, (2) exit ramps/turnouts, and (3) parks. The proposed work plan includes monitoring of catch basins located in these land uses to characterize representative loading rates from catch basins in these site categories.

Catch basins along arterial highways, on exit ramps/turnouts, and within parks may not share characteristics with current standard DEP designs or maintenance practices. As a result, none of the other site category factors may be representative of these catch basins. Additionally, limited information about litter levels is available in these areas. The catch basins in these areas were not included in previous DEP floatables studies because they were not previously subject to SPDES permit requirements on floatables control.

However, these catch basins are now covered by the MS4 Permit and are therefore included in this methodology.

Site Categories for Field Monitoring

Table 2 lists the 21 site categories proposed for the field monitoring program. With three different catch basin sites per category, the proposed field monitoring program will include 63 monitored sites.

Table 2. Site Categories for Monitoring MS4 Catch Basin Discharges

Site Category	Catch Basin Attributes	Street Litter Level	Street Sweeping Frequency	Site Count per Category
1	Hooded	High	High	3
2	Hooded	High	Med	3
3	Hooded	High	Low	3
4	Hooded	Med	High	3
5	Hooded	Med	Med	3
6	Hooded	Med	Low	3
7	Hooded	Low	High	3
8	Hooded	Low	Med	3
9	Hooded	Low	Low	3
10	Unhooded	High	High	3
11	Unhooded	High	Med	3
12	Unhooded	High	Low	3
13	Unhooded	Med	High	3
14	Unhooded	Med	Med	3
15	Unhooded	Med	Low	3
16	Unhooded	Low	High	3
17	Unhooded	Low	Med	3
18	Unhooded	Low	Low	3
19	Arterial Highway	Typical	N/A	3
20	Exit Ramps/Turnouts	Typical	N/A	3
21	Parks	Typical	N/A	3

Total number of catch basin sites to monitor

63

The City will select specific sites for the field monitoring program based upon a combination of desktop analyses and field verification. Desktop analysis will identify candidate areas based upon information made available to DEP. Areas with high, medium, and low litter levels will be identified based on geographical assessments ("heat maps") developed using information including:

1. Recent, annual-average Street & Sidewalk Cleanliness Ratings data, which indicate the relative quantity of litter based on visual ratings conducted twice

- per month on about five percent of city blockfaces by the New York City Mayor's Office of Operations
- 2. Litter information from the Street Conditions Observation Unit (SCOUT) of the Mayor's Office of Operations
- 3. Catch basin cleaning frequency and similar information that DEP logs, which can be used to track the build-up of debris in DEP catch basins.

The City will identify MS4 areas with different street sweeping frequencies based on mechanical sweeper routes and schedules maintained by the New York City Department of Sanitation (DSNY), information concerning sweeping in Business Improvement Districts (BIDs) in MS4 areas, and, as applicable, information concerning sweeping programs such as Ready Willing and Able (RWA). Similarly, the City will use DEP's catch basin database to identify individual catch basins with hoods or no hoods. Finally, the City will also apply desktop analyses to identify potentially suitable catch basin locations along arterial roadways, on exit ramps/turnouts, and within parks that drain directly to waterbodies that are impaired for floatables.

In order to confirm the suitability of candidate sites for inclusion in the monitoring program, the City will visit each site to ensure that it can perform sampling safely and that site conditions match the intended category. Based on this information, the City will revise the site selection as needed.

4.3.2 FIELD MONITORING AND METRICS

The City proposes a field monitoring program that will quantify floatables loading rates using suitable metrics. These metrics include a definition of floatables, methods of quantifying floatables in a manner allowing for scalability, and expression of rates in terms of suitable time periods. This section describes each of these metrics, as well as the general sampling procedure.

Definition of Floatables

The City's MS4 permit refers to control of "floatable and settleable trash and debris." This language is consistent with the definition of floatables that DEP adopted for prior floatables studies. As defined in DEP's 2005 Citywide Comprehensive Floatables Plan - Modified Facility Planning Report, floatables are "manmade materials, such as plastics, papers, or other products which when improperly disposed of onto streets [or] into catch basins [...] can ultimately find their way to [waterbodies] and may create nuisance conditions with regard to aesthetics, recreation, navigation, and waterbody ecology [...]." For clarity, it is noted that "floatables" include materials that are settleable as well as those that may float on the water surface or are neutrally buoyant, and acknowledged that such materials may float or sink depending on the ambient conditions to which they are subject.

In this context, "floatables" does not include natural materials, vegetation, oil and grease, or sediments and small particles.

Floatables Metric

The City proposes to express floatables quantity in terms of volume. Volume is the most appropriate floatables metric for three important reasons. First, volume is an established metric associated with trash (as collected in garbage cans, dumpsters, trucks, barges, and landfills). Second, volume describes both the visual and spatial impact of floatables, and can better represent the impact on wildlife than weight. Third, unlike item count or surface area, volume is relatively simple to measure in large quantities, and is not as susceptible as weight to skewing due to complicating factors such as water content, heavy material such as glass bottles, or light material such as Styrofoam containers. As in prior studies, the City proposes to record other measures, such as weight, item counts, etc., for purposes of establishing typical relationships between metrics.

Rate Metrics for Time Period

New York City proposes expressing loading rates in terms of annual average periods. Expressing the loading rate as an annual average helps to normalize seasonal and weather-related variations. Nevertheless, year-to-year variations in loading rate will occur due to differences in the number, timing, and intensity of storm events. As a result, describing loading rates based on long-term average rainfall patterns will help to highlight the impact of operational factors (such as littering behavior, street sweeping practices, and catch basin retrofits) on year-to-year changes in loading rates.

Field Monitoring Protocols

New York City proposes field monitoring protocols to capture floatables in catch basin discharges to the MS4 using mesh strainer baskets deployed in MS4 manholes, as depicted schematically in Figure 2. Field crews will collect samples with a frequency suitable to characterizing accumulated amounts in dry periods and in wet periods. Floatables collected from each site will be separately sorted to remove sediment and vegetation, quantified at a central processing site, and recorded. This protocol is consistent with the techniques used in DEP's previous floatables study. The City will select a monitoring period that allows for a minimum of 10 storms with at least 0.2 inches of rainfall to be monitored and seasonal differences to be captured.

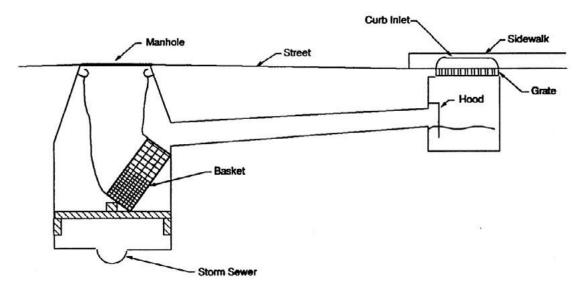


Figure 2. Sampling of Catch Basin Discharges to Sewer

4.3.3 ANALYSIS TO DETERMINE UNIT LOADING RATE BY SITE CATEGORY

In order to develop a unit loading rate that can be scaled appropriately, the results of the field monitoring program will require analyses to normalize the size of the catchment upstream of the monitored catch basin site as well as the number of days and/or amount of rainfall during the accumulation period. The City will calculate unit loading rates for each site category.

As indicated in DEP's previous floatables studies, the length of curb (curb feet) in a catchment more closely correlates to floatables load than the area (acreage) of the catchment does. This is not surprising, because most street litter is located within 18 inches of the curb¹, and because most streets are crowned, with slopes downward to either side of the street, so that drainage is toward and along the curb to the catch basin. As a result, the City proposes using catchment curb length to normalize the measured discharge.

Similarly, the City anticipates that days of accumulation between qualifying storm events will correlate to the quantity of material discharged, and therefore proposes using days of accumulation (or inversely, frequency of qualifying storms) to normalize the measured discharge. As a result, these analyses will require information regarding rainfall during the accumulation period at each monitored catch basin site. For this purpose, the City proposes to utilize the nearest-available rain gauge from the rain gauge networks maintained by the National Weather Service, United State Geological Survey, DEP, and

¹ New York City Law requires the adjacent property owner to clean the curb area 18" into the street.

Work Plan

Work Plan

other reputable organizations, as well as radar rainfall information available from the National Weather Service.

The City will analyze the resulting unit (normalized) loading rates to confirm scalability and adherence to scientific principles (such as mass balance) and relationships established during prior floatables studies (such as relative capture in hooded versus unhooded catch basins).

Given an MS4 catch basin's site category's unit loading rate, catchment size (curb miles), and rainfall pattern (long-term average year), the catch basin's overall floatables load can then be calculated. The following two steps describe that process.

4.3.4 ESTABLISH CONDITIONS FOR CALCULATION OF LOADING RATE

While measured loading rates reflect conditions during the field monitoring program, the expression of loading rates from particular MS4 outfalls or to floatables-impaired waterbodies will be most useful if applied using certain conditions that may be used as a baseline for comparison in the future. For this purpose, the City proposes using long-term average rainfall patterns, as determined from National Weather Service rain gauge data and as applied using the model. The City can also use the model to specify other conditions, such as degree of catch basin hooding, street litter levels, etc., as necessary, to develop an appropriate baseline condition.

4.3.5 CALCULATION OF LOADING RATE

In order to calculate the total floatables loading rate for a specific floatables-impaired waterbody, DEP proposes the following:

- 1. For each catch basin in the MS4 area
 - a. Identify the unit loading rate corresponding to that catch basin's site category. Unit loading rate is expressed in terms of floatables volume per length of curb per days of accumulation (or per number of storms) per year.
 - b. Apply the unit loading rate for that catch basin to calculate the annual floatables load, in terms of volume, by multiplying the unit loading rate by:
 - i. The length of curb in the catch basin's catchment.
 - ii. The number of days of accumulation (or number of storms) in the baseline year.
- 2. Sum the calculated loading rates for each catch basin to determine the total loading rate for the MS4 outfall. This will be a total volume per year.

To calculate the total floatables loading rate from MS4 areas to a particular waterbody, the above procedure would be repeated for each MS4 outfall discharging to the

waterbody, and the sum of these would then represent the total MS4 loading rate to the waterbody.

After developing the unit loading rates as described in the preceding section, DEP will analyze available information on both existing and historical conditions regarding New York City's floatables controls. The current level of floatables control in MS4 areas reflects changes implemented in various New York City programs, such as the catch basin hooding program (completed in 2010 but ongoing per SPDES permit requirements), the recently launched annual catch basin inspection program (required by City local law through the end of fiscal year 2019), and extensive public education and media campaigns. The City will evaluate the impact of these programs on floatables loading rates for MS4 areas before making a recommendation of a particular baseline loading rate year, against which to track and monitor floatables loadings in future years.

Work Plan

5.0 REFERENCES

BASMAA, 2014. "2014 San Francisco Bay Area Stormwater Trash Generation Rates, Final Technical Report." Bay Area Stormwater Management Agencies Association (BASMAA), June 20, 2014.

CRWQCB, 2007. "Trash Total Maximum Daily Loads for the Los Angeles River Watershed," California Regional Water Quality Control Board, August 9, 2007.

DEP, 2005. "Citywide Comprehensive Floatables Plan - Modified Facility Planning Report," prepared by HydroQual Engineers & Scientists, P.C. for the City of New York Department of Environmental Protection, Bureau of Environmental Engineering, July 29, 2005.

DOEE, 2010. "Total Maximum Daily Loads of Trash for the Anacostia River Watershed, Montgomery and Prince George's Counties, Maryland and the District of Columbia," District of Columbia Department of the Energy and Environment, September 8, 2010.

MDE, 2014. "Total Maximum Daily Loads of Trash and Debris for the Middle Branch and Northwest Branch Portions of the Patapsco River Mesohaline Tidal Chesapeake Bay Segment, Baltimore City and County, Maryland," Maryland Department of the Environment, December 3, 2014.

New York State Department of Environmental Conservation, 2015. "State Pollutant Discharge Elimination System Discharge Permit" issued to the City of New York for the Municipal Separate Storm Sewer Systems of New York City, effective August 1, 2015.

Walker, T.A., Wong, T.H.F., 1999. "Effectiveness of Street Sweeping for Stormwater Pollution Control, Technical Report," Report 99/08, Cooperative Research Centre for Catchment Hydrology, December 1999.

APPENDIX A

Response to Public Comments

The MS4 Permit requires the City of New York to develop a work plan to determine the loading rate of floatable and settleable trash and debris discharged from the MS4 to waterbodies listed as impaired for floatables. On August 1, 2017, the City submitted a draft work plan to NYSDEC for review. The City also posted the draft work plan on the DEP website on August 1, 2017 and presented it publicly at a Trash Free NYC Waters Meeting on October 4, 2017. The public was encouraged to review the draft work plan and submit comments by October 16, 2017.

The City prepared the following responses to the comments received at the public meeting and in writing via electronic mail. For convenience and clarity, the City has combined and grouped similar comments. The City also received some comments or questions that, while related to the topic of trash and debris, were not relevant to the work plan. These comments are not included in this document.

Comment: Construction sites can be sources of trash and debris that enter the MS4. Will the City include loads from construction sites in the MS4 Floatables loading rate?

Response: Trash and debris from construction sites is regulated by the New York City Construction Code. Additionally, construction activities that disturb an acre or more of soil are required to obtain coverage under the New York State Department of Conservation State Pollution Discharge Elimination System General Permit for Stormwater Discharges from Construction Activities (GP-0-15-002). The General Permit requires construction activities to use pollution prevention measures to control trash and debris. The construction and post-construction provisions of the Stormwater Management Program further address stormwater runoff from constructions sites within the MS4 area.

The City responds to a variety of public complaints related to construction activities including excessive debris; dumping concrete, cement, sand, or construction material in a catch basin; or dumpsters overflowing with construction debris. To make a complaint of this nature, the public can:

- Visit 311 Online;
- Call 311 or (212) NEW-YORK, (212) 639-9675, from outside New York City; or

374

373 DRAFT FOR PUBLIC REVIEW DRAFT FOR PUBLIC REVIEW

• Text 311-692;

The proposed methodology for determining the floatables loading rate is to sample trash and debris from representative catch basins within the MS4 area. To do this, the methodology divides catch basins in the MS4 into categories based on the characteristics of catch basin attributes, street litter level, and street sweeping frequency, as well as unique land use type. The City will select a sample of catch basins from each category to monitor. While some selected catch basins may be near construction sites, the City does not plan to use proximity to construction sites as a factor in selecting sample locations. If a selected catch basin is near a construction site, and debris happens to enter the catch basin, the City may observe that in the collected samples.

Comment: Highways can be a major source of trash and debris. Places where drivers can pull over or slow down are particularly full of litter. Will the City sample at turnouts, exit ramps and other places where drivers can pull over/stop/slow down?

Response: The City recognizes that trash and debris loads coming from catch basins along highways may be different from the loads coming from other parts of the MS4. To account for this, the City had already included a category of catch basins on arterial highways in the work plan. The City agrees with this comment that highway turnouts and exit ramps may have different trash and debris loads from other sections of arterial highways. In response, the City has amended the work plan to include an additional category of catch basins to be sampled. This new category will sample catch basins located on arterial highway turnouts and exit ramps.

Comment: Will the City select locations impacted by tourists or events (e.g.,. marathons, New Year's Eve, sporting events, etc.) which generate trash and debris?

Response: As proposed, the methodology accounts for sites that have the potential for high trash and debris by using street litter levels as a characteristic for defining categories and selecting catch basins. As a result, it will include locations that may have more trash and debris due to proximity to tourist destinations.

As stated in the NYC Administrative Code and Chapter 14 of the Rules of the City of New York, sponsors and participating vendors of block parties, street fairs, and other similar events are required to arrange garbage collection and ensure appropriate separation of recyclable materials. Additionally, many special events and tourist locations are in Manhattan, outside the MS4 area. Therefore, locations impacted by special events such as marathons, parades, and sporting events, will not be selected for sampling. However, because the City plans to sample each location for at least 7 months, the data would include loads from special events if one does occur at a sampling location during that period.

Comment: Will the City look at catch basins on NYCHA properties?

Response: No. The intent of the study is to determine the loading rate from the MS4. The MS4 Permit does not cover NYCHA properties since NYCHA is not a Mayoral Agency. Therefore, catch basins on NYCHA property are not included in the proposed methodology.

Comment: Will the City look at catch basins on streets not owned by New York City DOT?

Response: The intent of the study is to determine the loading rate from the MS4. Streets not owned by NYC are not part of the MS4 and therefore not included in the proposed methodology.

Comment: Will the City sample even when it does not rain?

Response: Yes. The methodology proposes to sample catch basins weekly, even if it has not rained. However, the City will stop taking samples once it starts snowing.

Comment: Why is the City not taking measurements at outfalls?

Response: Taking measurements at MS4 outfalls presents various challenges that make sampling at the catch basin level the preferred option. First, many booms would need to be built in order to obtain a representative sample size, and construction and operation of booms are expensive. Second, the tide influences many MS4 outfalls, whereby trash and debris captured in a boom or net at the end of the outfall can move back into the sewer system during high tides, making it more difficult to get accurate field measurements. Third, the area draining to a single MS4 outfall can be large and diverse. By taking measurements at the outfall rather than at the catch basin level, we would lose the ability to make connections between the loads and other factors such as street sweeping frequency or catch basin design. Fourth, as emphasized by EPA and NOAA through the Trash Free Waters initiative, addressing marine litter issues at the source is more effective than at the end of the pipe at outfalls.

Comment: In some MS4 areas, stormwater runoff reaches waterways by overland flow without entering the sewer system, for example from areas bordering waterbodies, areas where catch basins are not functioning for some reason, or areas where streets end at waterways. Many of these areas also tend to be litter hot spots. The proposed methodology would not capture trash and debris generated in MS4 areas and reaching waterways by overland flow.

Response: While the areas bordering waterbodies can be sources of trash and debris, it is important to note that areas draining to waterbodies by overland flow are only

considered part of the MS4 area if City-owned or operated. The pollution prevention and good housekeeping provisions of the Stormwater Management Program address trash and debris management at these City facilities and operations. Additionally, to keep catch basins in good working order, DEP regularly inspects catch basins throughout the City. If needed based on inspection, DEP cleans or repairs the catch basins.

Street ends, while also having the potential to contribute trash and debris to waterbodies through runoff or wind impacts, are a relatively small portion of the areas draining to waterbodies compared to the other sources. It is also challenging to establish a practical and scientific sampling plan for estimating the contribution from street ends. The proposed methodology meets the MS4 Permit requirement to quantify the trash and debris discharging from the MS4.

Comment: Will the City do a count of the types of trash and specific brands? Will the City use this information to identify prime offenders?

Response: While the City proposes to report the loading rate as a volume, the City also intends to track other measures such as weight and item counts of types of trash. While tracking specific brands is not part of this study, the City is conducting multiple media campaigns to focus on public behavior and encourage proper disposal of trash.

Comment: Could the City look at some catch basins with stenciling to see if there are any differences in loading rates between painted and not painted catch basins in the same category?

Response: The City plans to explore the impact of catch basin stenciling through a separate, smaller sampling initiative. These catch basins will likely not be the same ones sampled as part of the loading rate study because, in order to assess effectively the impact of stenciling, all other defining characteristics of the catch basins (i.e., street litter level, street cleaning frequency, catch basin hoods) would need to be the same.

Comment: Why isn't the City using median household income as a factor in determining the loading rate?

Response: New York City is fortunate to have a record of street cleanliness levels dating back to the 1970s. Because of this record, we do not need to use proxies such as land use or median household income to represent litter conditions on the street. However, the City may look at a variety of data to see if there are any additional correlations between street cleanliness and neighborhood characteristics.

Comment: Has the City already selected specific sampling locations?

Response: The City has not chosen sampling locations yet and will not do so until NYSDEC approves the final work plan, which will be submitted with the SWMP Plan on August 1, 2018. Since the intent of this study is to determine the loading rate of trash and debris from the MS4, the City will only select sampling locations in MS4 areas. The methodology will divide catch basins in the MS4 into categories based on the shared characteristics of catch basin attributes, street litter level, and street sweeping frequency. The City will then select a sample of catch basins from each category to monitor.

Comment: Will the City also look at bacteria from the MS4?

Response: This work plan seeks to determine only the loading rate of trash and debris from the MS4. However, other provisions of the Stormwater Management Program will address bacterial loads from the MS4. For example, the Illicit Discharge Detection and Elimination (IDDE) Program will monitor waterbodies for elevated levels for fecal coliform and seek to track down and eliminate sources. The Monitoring and Assessment Program will also test stormwater runoff in the MS4 for fecal coliform and enterococcus.

Comment: The cleanliness of a street can vary over the course of a given day. It could be relatively clean on a Friday morning immediately following street cleaning and then relatively dirty later that evening after restaurants and bars close. How will the methodology capture that variation?

Response: Street litter level is a key factor affecting the loading rate of trash and debris from a particular catch basin. As such, the City is proposing to use litter level as a characteristic for selecting catch basins for monitoring. The litter level of a particular street will be determined using information from the Street & Sidewalk Cleanliness Ratings program, the SCOUT program, and the DEP catch basin cleaning program. Because these programs collect information about litter levels at different times and in different ways, the City feels that the data sets give an accurate picture of the average condition of a street. Additionally, because the City will sample at the catch basin, the data will capture any trash and debris that was carried from the street to a catch basin during a rain event.

Comment: Parks and greenways can also be major sources of trash and debris. During the recreational season, park users leave behind trash and debris. City staff may also contribute to the problems by mowing over this litter or by leaving behind supplies. How is the City tackling trash and debris in parks?

Response: The City recognizes that the load of trash and debris coming from catch basins in parks may be different from the loads coming from other parts of the MS4. To account for this potential variation, the City intends to include park catch basins in the loading rate calculation and the sampling plan. In addition, the pollution prevention and

good housekeeping provisions of the Stormwater Management Program include training City staff on pollution prevention and good housekeeping at City facilities and operations.

Comment: Ships and other marine activity can also be sources of trash and debris in waterways. Will the City quantify the loading rate from these sources?

Response: This methodology aims to quantify the trash and debris discharging from the MS4. As such, it does not include marine-based sources, as trash and debris from these sources do not come from the MS4.

MS4 Monitoring Program

New York City Municipal Separate Storm Sewer System (MS4)

Monitoring Program

February 2018

Prepared in accordance with SPDES Permit Number NY-0287890 Part IV.J

Table of Contents

1.0		INTRODUCTION
2.0		PROGRAM OVERVIEW
3.0	3.1 3.2 3.3 3.4 3.5 3.6	PROGRAM IMPLEMENTATION. Identification of Pollutants to Monitor. Phased Monitoring Strategy (Phases 1 and 2). 3.2.1 Phase 1 – Land Use-Based Outfall Monitoring. 3.2.2 Phase 2 – Targeted Outfall Monitoring. Sampling. Flow Metering. Precipitation Monitoring. Ambient Water Quality Monitoring to Characterize Water Quality Condition
4.0	4.1 4.2 4.3 4.4 4.5 4.6	WATER QUALITY METHODS AND TEST PROCEDURES Sampling Procedures for Laboratory Analysis Sample Preservation and Transfer Procedure Sample Handling and Custody Test Procedures Data Management Adjustments
5.0	5.1 5.2 5.3	FLOW METERING METHODS AND TEST PROCEDURESPrecipitationFlow MeteringFlow Data
6.0	6.1 6.2	QUALITY ASSURANCE AND QUALITY CONTROL Quality Objectives and Criteria Instruments and Equipment
7.0		ASSESSMENT AND REPORTING
3.0		SCHEDULE
a n		REFERENCES

1.0 INTRODUCTION

Pursuant to the State Pollutant Discharge Elimination System (SPDES) Municipal Separate Storm Sewer System (MS4) Permit (No. NY-0287890), the City must develop a monitoring and assessment program designed to satisfy Part IV.J, Monitoring and Assessment of Controls. This appendix details the MS4 Monitoring Program to be conducted to achieve the Permit requirements described in Part IV.J.2, including:

- Assess compliance with the requirements of the MS4 Permit
- i. Measure the effectiveness of the Stormwater Management Program (SWMP)
- ii. Characterize and assess the quality of stormwater discharges at representative MS4 outfalls
- iv. Identify sources of specific pollutants
- v. Detect and eliminate illicit discharges, including illegal connections, to the MS4
- vi. Evaluate long-term trends in quality.

Appendix 10.1: MS4 Monitoring Program describes the monitoring strategy and work plan to characterize and assess the quality of stormwater discharges at representative MS4 outfalls, identify sources of specific pollutants, and evaluate long-term trends in receiving water quality after considering the impact of non-MS4 sources and planned controls for those sources. Additional strategies currently being implemented or proposed by the New York City Department of Environmental Protection (DEP) to detect and eliminate illicit discharges and illegal connections to the MS4 and measure the effectiveness of the SWMP are described in Chapter 5: Illicit Discharge Detection and Elimination – IDDE and Chapter 12: Recordkeeping and Reporting of the SWMP Plan.

2.0 PROGRAM OVERVIEW

The MS4 Monitoring Program relies on a multi-pronged, phased approach to assess the pollutant contribution from stormwater and its influence on New York Harbor water quality, as well as existing water quality data collection programs. Two sets of stormwater outfalls will be targeted as part of the MS4 Monitoring Program:

- Phase 1 Land Use-Based Outfall Monitoring, which will focus on six predominant land use types within New York City (mixed, high-density residential, low-density residential, industrial, open space, and highway).
- Phase 2 Targeted Outfall Monitoring, which will target specific MS4 outfalls based on discharge volume, pollutant loading, historic changes, and significance to other water quality programs such as DEP's Long-Term Control Plan (LTCP) program.

Ambient water quality monitoring will be performed concurrently with the Phase 2 monitoring to aid in the assessment of the influence of these stormwater loads on water quality and the role that stormwater plays as a potential pollutant source. Flow metering of targeted outfalls will also be performed.

Sampling for the two sets of outfalls will be staggered such that Phase 1 sampling will occur first, to provide more information on parameter variability. Phase 1 data will then be analyzed to aid development of Phase 2 sampling, which will be implemented after Phase 1 analysis is complete, and the Phase 2 monitoring strategy and work plan is finalized and contracts are procured. In addition to the two sets of outfalls, the receiving water sampling that is performed concurrently and complementary to the Phase 2 monitoring will aid in assessing the influence of stormwater loads in receiving waters.

3.0 PROGRAM IMPLEMENTATION

A central strategy to the monitoring program for MS4 Permit compliance is the continued reliance on the substantial, existing DEP programs. The Harbor Survey, Sentinel Monitoring, Field Sampling Analysis Program (FSAP), and other ongoing monitoring programs will continue to provide valuable information. *This appendix pertains only to the additional metering and sampling to be completed to satisfy Part IV.J.2 requirements of the MS4 Permit.* The data collected under this monitoring program will supplement the ongoing programs, and will be specifically targeted to characterize the water quality, pollutant loadings, and receiving water response associated with the City's MS4 discharges.

3.1 Identification of Pollutants to Monitor

The MS4 Monitoring Program includes sampling for a variety of pollutants identified by existing data sources and reports, as well as the MS4 Permit. However, stormwater from the City's MS4 is not the only load contributor of pollutants to the receiving waters of the New York Harbor. Other contributors include combined sewer overflows (CSOs); wastewater treatment plants (WWTPs); stormwater outfalls not subject to the City's MS4 Permit; coastal inflows from the Long Island Sound and the New York Bight; inflows from the Hudson, Raritan, and Bronx Rivers, as well as lesser natural inflows; and industrial users. Floatables loading rates are addressed in Chapter 9: Control of Floatable and Settleable Trash and Debris of the SWMP and are not discussed in this appendix.

A pollutant is selected for monitoring as part of the MS4 Monitoring Program if it meets one or more of the following criteria:

- Is listed as a pollutant of concern (POC) in Appendix 2 Impaired Water Segments and Pollutants of Concern of the MS4 Permit
- Is listed as a cause for impairment in receiving waterbodies on the Clean Water Act (CWA) Section 303(d) list
- Is identified as being present at representative MS4 outfalls/manholes in the DEP Supplemental Discharge Characterization Report that was prepared for the WWTP SPDES Permits
- Is a POC commonly associated with land uses within an outfall's drainage area
- Has a history of association with the City's MS4 discharges based on existing monitoring programs

3.2 Phased Monitoring Strategy (Phases 1 and 2)

DEP is proposing a multi-phased approach for the MS4 Monitoring Program to assess different MS4 outfalls and drainage areas, and to adapt monitoring approaches based on ongoing data collection, assessments and reviews. Phase 1 – Land-Based Outfall Monitoring and Phase 2 – Targeted Outfall Monitoring are described in more detail below.

3.2.1 Phase 1 – Land Use-Based Outfall Monitoring

Phase 1 outfalls are targeted based on upstream land uses to identify potential sources of specific pollutants, and to characterize and assess the quality of stormwater discharges at representative MS4 outfalls as required by the MS4 Permit (Part IV.J.2). The collected data will be used to determine whether there is any correlation between land use type and pollutant loadings, which in turn could be used to target pollutant reduction measures and practices to help meet water quality goals for a particular land use type.

Per United States Environmental Protection Agency (USEPA) stormwater sampling guidance document (https://nepis.epa.gov/Exe/ZyPDF.cgi/20012RVG.PDF?Dockey=20012RVG.PDF), consideration of land use patterns within a municipality should be a major factor in selecting outfalls to monitor. The Phase 1 monitoring strategy and work plan targets eight outfalls to be representative of six land use types within New York City:

MixedIndustrial

High-Density ResidentialOpen Space

Low-Density ResidentialHighway

The selected outfalls are listed in *Table 1* and their locations are shown on *Figure 1*. Note that each land use type is represented by a single location except for low-density residential and industrial land uses, which are each represented by two locations. The two locations for low-density residential and industrial land uses were selected to aid in the evaluation of similar land uses across boroughs or watersheds. Mixed land use refers to multiple land use types that individually represent less than half of the drainage area to the monitoring location but together comprise a significant portion of the drainage area. For example, multi-family residential, commercial and office buildings, and public facilities and institutions comprise 83 percent of the total drainage area to the HP-640 sampling location in Table 1.


Final monitoring locations for each Phase 1 outfall were determined based on reconnaissance field visits, and monitoring (metering and sampling) will generally occur within the farthest downstream outfall pipe or manhole that is not influenced by tides, has no constant dry weather flows, and is safe and accessible to sampling field crews.

Table 1 - Phase 1 Outfalls to be Monitored

Targeted Outfall			Outfall Size	Borough	Receiving	Land Use
ID	Latitude	Longitude	Outrail Size Bi	Bolougii	Waterbody	Represented
HP-627	40.8957	-73.8632	36" diameter	Bronx	Bronx River	Open Space
HP-640	40.8641	-73.8229	48" diameter	Bronx	Hutchinson River	Mixed

NCQ-632	40.7179	-73.9182	54" diameter	Queens	Newtown Creek	Industrial
OB-722	40.5010	-74.2480	Double barrel	Staten	Raritan Bay	Low-Density
			7'3" x 3'6"	Island		Residential
OH-607	40.6735	-73.9953	12" diameter	Brooklyn	Gowanus Canal	Industrial
TI-604	40.7823	-73.8252	24" diameter	Queens	Flushing Creek	Highway
TI-633	40.7871	-73.7766	54" diameter	Queens	Little Neck Bay	High-Density
						Residential
TI-658	40.7714	-73.7535	40" diameter	Queens	Little Neck Bay	Low-Density
						Residential

Figure 1 - Phase 1 Outfalls to be Monitored

3.2.2 Phase 2 – Targeted Outfall Monitoring

Phase 2 monitoring will be implemented to satisfy stipulations in the MS4 Permit that require assessing compliance, measuring effectiveness of controls, and evaluating long-term trends. As described above, Phase 2 monitoring will be planned and implemented after evaluation of

Phase 1 data so that information collected during the first phase can be used to refine the locations and water quality parameters to be selected for Phase 2. Outfall selection will also be supported by water quality analyses completed as part of DEP's development of LTCPs.

Selection of Phase 2 outfalls will generally be based on the following criteria (as well as consideration of Phase 1 results and other information):

- Drain to impaired waterbodies, including potential Priority MS4 Waterbodies
- Drain the largest upstream area, convey the greatest stormwater volume, and have greater impact on receiving water quality (largest pollutant load)
- Discharge to sensitive areas such as recreational beaches
- Drain areas where source controls such as education and outreach, green infrastructure, stormwater control measures (SCMs), and other SWMP-related programs are expected to be implemented.

In addition to the two sets of outfalls (Phases 1 and 2) to be monitored, receiving or ambient water quality sampling that is performed concurrently and complementary to Phase 2 monitoring will aid in assessing the influence of stormwater loads and long-term trends in receiving waters, as described below.

3.3 Sampling

Phase 1 monitoring will be initiated by 2020, and sampling will be performed once per quarter for two years for a total of 64 samples. After eight quarterly samples have been collected from eight qualifying rain events, the collected data will be evaluated to allow for a more informed determination of the benefits of continuing, modifying, or ceasing the quarterly monitoring. As part of this evaluation, land-use-based monitoring may be suspended if either the relevant findings are definitive after eight rain events, or it is clear that the benefits of further sampling during Phase 2 are limited due to a high degree of variability.

During both Phase 1 and Phase 2 monitoring, sampling will occur quarterly based on precipitation forecasts. At the start of the scheduled quarter, weather forecasts and precipitation totals will be monitored. Once 48 hours of relatively dry weather (no rain in excess of 0.1 inch in the outfall catchment area) occurs, crews will be deployed to sample when there is an 80 percent probability of a rain event that will result in 0.2 inch of rain or greater occurring within the next day. (An average rain event for NYC is 0.4 inch; therefore, the acceptable range for an event, plus or minus 50 percent, is 0.2–0.6 inch. Any rainfall event outside the average storm volume and duration for NYC will be excluded from the evaluation.) Once samples are collected, the storm total should be obtained from the nearest or most appropriate rain gauge.

3.4 Flow Metering

Flow metering will be conducted so that stormwater discharge rates may be correlated with rainfall and combined with water quality pollutant data to estimate loadings. Both Phase 1 and Phase 2 outfalls will be metered during a portion of the duration for which they will be sampled, with the deployments focusing on summer months, when water quality impacts to uses are greatest. Each meter deployment will cover six consecutive weeks at a given location, with the

goal of at least one Phase 1 sampling event occurring during meter deployment. This period may be extended if insufficient precipitation occurs during that period to develop valid precipitation-response relationships.

3.5 Precipitation Monitoring

Rain data will be collected from the certified National Weather Service (NWS) rain gauges routinely used by NYC for both Phase 1 and Phase 2 monitoring. Data from these gauges are highly reliable, and all stormwater outfalls are sufficiently close to at least one of these gauges. Therefore, rain data from these gauges may be considered representative of the tributary catchment. In addition, temporary rain gauges will be deployed synoptically during flow metering to supplement the assigned NWS gauge and to provide a measure of spatial variability.

3.6 Ambient Water Quality Monitoring to Characterize Water Quality Condition

Ambient water quality will be monitored on a periodic basis in association with the Phase 2 – Targeted Outfall Monitoring to evaluate the role that stormwater plays as a potential pollutant source, and in support of evaluations of long-term trends in receiving water quality. Ambient water quality monitoring will be performed at the nearest ongoing Harbor Survey or Sentinel Monitoring station location as practicable for historical comparisons. Slight spatial adjustments may be necessary depending on the sample results. The timing of receiving water monitoring will be connected to the outfall monitoring, tides, and precipitation in order to collect samples most reflective of the receiving water response to MS4 discharges.

4.0 WATER QUALITY METHODS AND TEST PROCEDURES

Table 2 lists the water quality parameters and sampling methodologies (sample type and holding time) for the monitoring program. Field or in-situ parameters will be analyzed in the field. The remaining parameters will be collected and analyzed at a laboratory certified by the New York State (NYS) Environmental Laboratory Approval Program (ELAP). The goal is to collect data during rainfall events that are average in volume and/or duration for NYC. Once samples are collected, the storm volume and duration should be obtained from the nearest or most appropriate rain gauge. Storms that are outside the target (plus or minus 50 percent) will be excluded from the evaluation.

Table 2 – Water Quality Parameters and	Sampling Methodologies
--	------------------------

	Sam	ple Type		
Parameter	Outfall Sampling	Receiving Water Sampling	Holding Time	
Temperature	In-Situ	In-Situ	Analyze Immediately	
Salinity	In-Situ	In-Situ	Analyze Immediately	
Dissolved Oxygen	In-Situ	In-Situ	Analyze Immediately	
pH	In-Situ	In-Situ	Analyze Immediately	
Fecal Coliform	Grab	Grab	6 hours	
Enterococcus	Grab	Grab	6 hours	
Total Dissolved Solids (TDS)	Composite	Grab	7 days	
Total Suspended Solids (TSS)	Composite	Grab	7 days	
Total Phosphorus	Composite	Grab	28 days	
Dissolved Phosphorus	Composite	Grab	28 days	
Total Nitrogen	Composite	Grab	28 days	
Total Ammonia (as N)	Composite	Grab	28 days	

	Sam		
Parameter	Outfall Sampling	Receiving Water Sampling	Holding Time
Total Kjeldahl Nitrogen (TKN)	Composite	Grab	28 days
Total Cadmium	Composite	Grab	180 days
Total Chromium	Composite	Grab	180 days
Total Copper	Composite	Grab	180 days
Total Lead	Composite	Grab	180 days
Total Nickel	Composite	Grab	180 days
Total Arsenic	Composite	Grab	180 days
Total Mercury	Composite	Grab	28 days
Total Zinc	Composite	Grab	180 days
Oil and Grease: Total Recoverable n-Hexane Extractable Material (HEM)	Grab	Grab	28 days

4.1 Sampling Procedures for Laboratory Analysis

Sampling locations will be identified using latitude/longitude coordinates with a Global Positioning System (GPS) device. When sampling is conducted from a boat, where necessary, the boat will not be anchored during sampling, but care will be taken to monitor latitude and longitude throughout the sampling process, and the boat location will be adjusted as necessary.

Landside Outfall Sampling. Using a stainless steel dip bucket, aliquots of water will be collected approximately every 20 minutes during a 3-hour continuous period of a qualifying rain event (10 grabs to make a single composite for laboratory analysis). The aliquot volume to be collected will depend on the total volume needed for laboratory analyses of all the composited parameters. For example, if the laboratory requires a total of 10 liters of sample water, each aliquot collected should be at least 1 liter. Additional volume per aliquot is recommended in case of accidental spillage. All aliquots must be of the same volume for the sample to be representative of the sampling period. The compositing container (e.g., a clean, glass carbuoy) will be kept on ice during the sampling period to keep the composited sample cool. Once the last aliquot is collected, the composite sample will be gently agitated and poured into the designated sample bottles. Sample identification, date, and time will be recorded on the field datasheet. Time of sample should be the time of the last aliquot collected.

Receiving Water Sampling. Receiving water sampling will conform to the Harbor Survey's Ambient Water Quality Monitoring Quality Assurance Project Plan (2014) as approved by USEPA and insofar as the sampling parameters coincide. Receiving water samples will be collected using a pump sampler at the desired depth. Sample water will be directly poured from the sampler tubing into the designated sample bottles.

4.2 Sample Preservation and Transfer Procedure

All samples for laboratory analysis will be preserved per laboratory methods and transferred to a contract laboratory for analysis. Analysis will be performed by a certified NYS ELAP Laboratory for analytes and laboratory parameters will be reported. All sample bottles used for laboratory analysis will be new and provided by the sampling contractor or the contracted laboratory, including equipment blanks.

387 DRAFT FOR PUBLIC REVIEW DRAFT FOR PUBLIC REVIEW 388

4.3 Sample Handling and Custody

Samples that are collected will be transferred to a contract laboratory under standard chain-of-custody (COC) protocols and within required holding times. COC documentation tracks the progress of samples from their collection in the field through laboratory analysis. The forms will be completed by field personnel and will accompany the samples to the laboratory. Each time the samples change hands, the COC form will be signed by the person relinquishing the samples, and then by the person receiving them.

Collected samples will be immediately stored on wet ice in a cooler. The temperature of the first sample taken by each sampling crew will be measured upon delivery of samples to the contractor laboratory and will be recorded on COC forms. Note that the last samples taken, depending on the temperature of the sampling waters, may not have time to reach the cooling temperature of approximately 4°C or lower before delivery to the laboratory. Data will be evaluated for conformance based on holding time, sample collection temperature, and laboratory receiving temperature.

4.4 Test Procedures

It is the intent of the long-term MS4 Monitoring Program to utilize the same analytical methods followed by the Harbor Survey and other existing monitoring programs. *Table 3* summarizes the sample analysis methods preferred for this monitoring program. However, should it be necessary to employ an alternative method, DEP will be contacted and this appendix will be revised to document method changes and any resulting quality control (QC) changes required by DEP.

Table 3 - Prefer	red Laboratory	y Analytica	l Methods
------------------	----------------	-------------	-----------

Parameter	Analysis Method*	Reporting Limit**	Preservation**
Fecal Coliform	USEPA 1978 p124	1, 2, 4, 10 CFU/100 mL	4°C
Enterococcus	USEPA 1600	1, 2, 4, 10 PE/100 mL	4°C
Total Dissolved Solids (TDS)	USEPA 160.1	20 mg/L	4°C
Total Suspended Solids (TSS)	SM 2540 D	1 mg/L	6°C
Total Phosphorus	SM 4500-P B,E	0.05 mg/L	H ₂ SO ₄ , pH<2, 6°C
Dissolved Phosphorus	USGS I-4650-03	0.02501 mg/l	4°C
Total Nitrogen	USGS I-4650-03	0.088 mg/l	4°C
Total Ammonia (as N)	USEPA 350.1	0.0408 mg/L	H ₂ SO ₄ , pH<2, 6°C
Total Kjeldahl Nitrogen (TKN)	USEPA 351.2	0.30 mg/L	H ₂ SO ₄ , pH<2, 6°C
Total Cadmium	USEPA 200.7	0.0020 mg/L	HNO ₃ , pH<2, 4°C
Total Chromium	USEPA 200.7	0.0050 mg/L	HNO ₃ , pH<2, 4°C
Total Copper	USEPA 200.7	0.010 mg/L	HNO ₃ , pH<2, 4°C
Total Lead	USEPA 200.7	0.0050 mg/L	HNO ₃ , pH<2, 4°C
Total Nickel	USEPA 200.7	0.0050 mg/L	HNO ₃ , pH<2, 4°C

Parameter	Analysis Method*	Reporting Limit**	Preservation**
Total Arsenic	USEPA 200.7	0.010 mg/L	HNO ₃ , pH<2, 4°C
Total Mercury	USEPA 200.8	0.10 μg/L	HNO ₃ , pH<2, 4°C
Total Zinc	USEPA 200.7	0.050 mg/L	HNO ₃ , pH<2, 4°C
Oil and Grease: Total Recoverable n-Hexane Extractable Material (HEM)	USEPA 1664	5 mg/L	HCI, pH<2, 4°C

^{*} USEPA: US Environmental Protection Agency; USGS: US Geological Survey; SM: Standard Methods ** CFU = colony forming unit; C = Celsius; PE = phenytoin sodium equivalents; mL = milliliters; mg/L = milligrams per liter; μ g/L = micrograms per lite

4.5 Data Management

Primary data will be recorded on data sheets or in laboratory notebooks, and will be retained according to the participating laboratory's procedures. The sampling contractor will maintain copies of primary data and summary data reports for at least seven years in an organized and easily retrievable manner. Other project documentation, such as sample COC records and instrument maintenance and calibration information, will be kept on file at each laboratory within their normal documentation systems.

Data records for this project will be kept using basic laboratory practices, such as writing corrections in ink, using a single-line to cross out incorrect information, and labeling documents with sample identification, date, and signature of analyst. Data records will be stored in each laboratory's normal data files using either data sheets or laboratory notebooks.

Data will be compiled for analysis using Microsoft Excel. Excel functions will be applied to calculate basic mathematical values (e.g., monthly or seasonal averages, geometric means, data ranges) for each analytical parameter from each sampling site.

4.6 Adjustments

The MS4 Monitoring Program strategy and work plan described above is based on a good faith effort to determine the best locations, the most appropriate parameters, and reasonable sampling volumes to meet the stated goals of the long-term MS4 Monitoring Program. However, it is likely that data collection will reveal opportunities for improvement.

Therefore, an evaluation of the MS4 Monitoring Program will be performed. The data will be evaluated in the context of the goals of the SWMP and SWMP-related programs. Where data collected is ambiguous or otherwise uninformative, consideration will be given to changing sampling frequency or replacing one sampling location with another anticipated to yield more meaningful results. Data that have failed quality assurance (QA) or quality control (QC) criteria may also trigger adjustments and additional data reviews.

Any adjustment to the MS4 Monitoring Program will first be proposed to New York State Department of Environmental Conservation (NYSDEC) in writing for review and approval, and no change will be implemented without prior NYSDEC approval.

5.0 FLOW METERING METHODS AND TEST PROCEDURES

Precipitation monitoring and flow metering will be conducted so that stormwater overflow rates may be correlated with rainfall and combined with water quality pollutant data to estimate loadings. Stormwater outfalls are not expected to discharge continuously. Therefore, meter setup will be designed to measure flow from as close to a dry condition as possible, to capture the fullest extent of a flow event. Eight stormwater outfalls will be metered during the Phase 1 sampling period (two years), with the deployments focusing on summer months, when water quality impacts to uses are greatest. Each deployment will cover six consecutive weeks at a given location. Eight locations at six weeks each results in 48 meter-weeks of deployment. Phase 2 will follow a similar methodology; the number of locations will be established during the Phase 1 data review.

5.1 Precipitation

Hourly rain data will be collected from the certified NWS rain gauges routinely used by NYC (*Table 4*). In addition, a temporary rain gauge will be deployed synoptically with the flow meters to supplement the assigned NWS gauge and to provide a measure of spatial variability. A minimum of one recording tipping bucket rainfall gauge will be installed at a central location within the tributary catchment area. The rain gauge will be capable of recording rainfall data in 15-minute increments.

Table 4 - NWS Rain Gauge

Station Name (Call Sign)	City	Latitude	Longitude	Start Date of Precipitation Data
Newark Liberty International	Newark, NJ	40°41'N	74°10'W	1929
Airport (KEWR)				
John F Kennedy	Jamaica, NY	40°38'N	73°46'W	1948
International Airport (KJFK)				
La Guardia Airport (KLGA)	Flushing, NY	40°47'N	73°53'W	1935
Central Park (KNYC)	New York, NY	40°47'N	73°58'W	1869

Hourly data will be aggregated into discrete events to assist in developing relationships between rainfall, runoff/overflow volume, pollutant loads, and timing. Precipitation events will be defined by a minimum inter-event time (MIT) determined with NYSDEC's concurrence. For comparison, New York City's LTCP program uses a 12-hour MIT for calculating wet weather capture at its WWTPs to ensure that the collection system has completely returned to a dry weather condition between storms, but a 4-hour MIT for calculating return-period statistics to be consistent with the National Oceanic and Atmospheric Administration (NOAA) and others.

5.2 Flow Metering

Flow data will be collected at stormwater outfalls for a period of six weeks at each outfall being sampled. The monitoring will rely on a specialty company with expert knowledge in the science of flow measurements that will install, maintain, and remove the equipment.

All meters will be tested for flow and/or level accuracy and stability before installation and will be calibrated on installation for velocity and/or level. Meters will be located along free-flowing portions of storm sewers using redundant level sensors (typically one pressure and one ultrasonic meter). The precise location of the sensors will be determined during an initial site reconnaissance with the flow monitoring company to ensure that logistical and practical considerations unique to each site are addressed (e.g., access, proximity to changes in flow patterns, depth of flow initially observed, sediment deposition). Each site will be visited periodically for maintenance, including a visual inspection of all meter and sensor components, a review of the previous period's data to search for anomalies in the meter performance, physical calibration of velocity and/or level, and replacement of any questionable equipment.

5.3 Flow Data

Sensors will measure depth of flow and velocity, and data from each sensor will be downloaded electronically using telemetry to a central data collection center approximately every four hours. In addition, receiving water tidal stage will be retrieved from appropriate NOAA gauges to adjust data for backwater effects on tide gates and resulting calculated discharge volumes. All data will be reviewed two or three times per week by a dedicated data analyst who will report any anomalies and dispatch a field crew for a maintenance visit.

Data reduction and review will be performed on all data obtained for each flow monitoring location. In addition to the preliminary data review noted above, a final quality assurance/quality control (QA/QC) review of the data will include checking the validity of each data point, checking flow balance, comparison of observed flow to expected flow (pipe rating curve), and similar tests. Questionable data will be flagged or discarded as appropriate to their final use.

The depth and velocity measurements will be used to calculate flow in a manner suitable for the particular deployment. For example, different pipe cross-sections may rely on different metering approaches. Generally, flow area will be calculated based on depth, and volumetric flow will be calculated based on area-velocity. Other approaches may be necessary in instances such as weir overflow or orifice flow, where calculations may be based on height of flow over some critical elevation or through use of scatter graphs and other graphical techniques. In all cases, flow will be adjusted for tidal or high water influences.

6.0 QUALITY ASSURANCE AND QUALITY CONTROL

To ensure adequate data quality, numerous institutional controls will be implemented throughout the sample collection, transport, and laboratory analysis process. The QA/QC program includes QA (process-oriented) procedures related to documentation, COC, decontamination procedures, as well as QC (product-oriented) procedures such as duplicate sampling and replicate laboratory analyses.

Primary data records (forms, notebooks, or electronically generated data) will be checked for completeness and accuracy. All data that are electronically entered into the Excel study records

will be checked by someone other than the person entering the data. An Excel file will be used to compile data into a single file. The entry of data into this single file will be checked again for correctness to eliminate the possibility of typographical errors.

6.1 Quality Objectives and Criteria

Most laboratory methods are prescriptive regarding calibration procedures, numbers of duplicates and spikes, and other procedures necessary to document data quality. Reliance on NYS ELAP-certified laboratories ensures that these minimum requirements are being met. Field sampling procedures will be dictated by the requirements prescribed in the laboratory methods. The primary criteria to be used will be precision, accuracy, sensitivity, completeness, comparability, and representativeness, as discussed below.

Precision. Precision is a measure of how much repeated measurements deviate from one another, and assesses the variability associated with sample collection, handling, and storage in the field, as well as variability associated with the analytical processes. Precision will be evaluated by collecting and analyzing a duplicate sample, with the original and duplicate values being compared on a relative percent difference (RPD) basis. At a minimum, one sample from each sampling event and sampling group will be collected in duplicate. As an additional assessment of analytical precision, every 20th sample, or at least one sample per batch, will be split in the laboratory for duplicate analysis.

Accuracy. Accuracy is a measure of how close a given result is to the true value. It will be assessed by analyzing a second source QC sample of known concentration with each batch of samples for methods where applicable. Those QC samples can be in the form of laboratory-fortified blanks or matrix spikes, depending on the analytical method, and the percent recovery of the known concentration will be reported with the data associated with that spike.

Sensitivity. Sensitivity of the methods will be assessed using predetermined method detection limits (calculated annually as necessary) and reporting limits or levels. Detection limits and similar terms are used to describe the minimum threshold concentration that can be reliably detected for a given method.

Completeness. Even with rigorous QA/QC measures in place, no sample collection program is perfect. Samples are lost or damaged, holding times may be violated, or COCs may be illegible. In addition, QC samples are analyzed after the collection effort is done, and the result may render a set of analyses invalid retroactively. Completeness is a measure of the amount of valid data obtained relative to the amount of data planned, and it should be expected that at least 90 percent of data collected will be valid, usable data, meeting all quality objectives.

Comparability. Comparability is a measure of the confidence with which one data set (or method) can be considered equivalent to another, and is assessed using performance test (PT) samples as part of annual laboratory and method certification for each laboratory participating in the analysis of program samples. Comparability is thus built into the program by using only USEPA-approved methods and relying on NYS ELAP-certified laboratories.

Representativeness. Representativeness is a measure of the degree to which data represent the environmental condition at the sampling point. Representativeness is established by adhering to sampling and sample handling procedures, equipment maintenance, calibration,

and use procedures, and by uniform implementation of all program-related standard operating procedures (SOPs). In addition, equipment blanks using laboratory de-ionized water will be generated each day that samples are collected and for each sampler to use during that event (includes all sampling groups within each sampling event). At least one equipment blank will be collected during each sampling event to be analyzed with each parameter of interest.

6.2 Instruments and Equipment

Many of the quality objectives and criteria can be met only through the use of well-maintained, clean equipment. The rigorous care of field and laboratory equipment is a vital element of monitoring and related QA/QC programs so that accurate, precise, repeatable measurements can be made.

Testing, Inspection, and Maintenance. Field equipment will be maintained and operated according to the specific equipment manuals. Routine preventive maintenance will be performed at the frequency recommended by equipment manuals to minimize the occurrence of field and laboratory instrument failure and other system malfunctions. All maintenance performed will be documented in the appropriate instrument operating and maintenance record books.

Calibration and Frequency. Laboratory equipment used in this project will be maintained, calibrated, and operated according to NYS ELAP requirements and applicable project SOPs. Calibrations for laboratory equipment and instrumentation will be performed prior to sample analysis. Field equipment, including meters, will be calibrated according to the specific equipment manuals. Calibrations for field equipment will be performed prior to each day of use for sample analysis. Instruments will be recalibrated after any maintenance activity is conducted. All calibration activities will be recorded on the field data sheets or in field calibration log books.

Decontamination. Field equipment will be cleaned with mild detergent, rinsed with de-ionized water, and inspected for cleanliness and usability before each use in the field.

Operator Training. A clear understanding of project objectives and data quality criteria is necessary for project personnel to successfully participate in this project. Field personnel are trained in routine field water sampling and in-situ testing techniques. Lab personnel are trained in quality laboratory techniques and in the analyte tests that they will perform. Each laboratory that performs testing for this project will be certified by the NYS ELAP for applicable parameters.

Inspection/Acceptance for Supplies and Consumables. Supplies will be inspected to ensure they will meet the needs of the project. Any specialized replacement equipment will be tested prior to use.

7.0 ASSESSMENT AND REPORTING

The Phase 1 monitoring report will be prepared two years (i.e., eight quarterly sampling cycles) after the Phase 1 monitoring has commenced. The report, which will include assessments and recommended adjustments, as appropriate, will be submitted along with comparisons to historical data where available. Values will be compared to nationwide sources and to directly applicable New York State standards. Data that fail QA/QC criteria will be documented as part

of the data packet, along with an evaluation of the cause and severity of the QA/QC contravention.

The Phase 2 monitoring report will be developed similar to Phase 1 assessment and reporting procedures, unless Phase 1 results suggest alternative procedures for assessing and reporting monitoring data and results during the future phase.

Therefore, it is currently anticipated that the final results for both Phase 1 and Phase 2 monitoring will include the following information for each monitoring location:

- An assessment of potential sources of discharge of stormwater POCs
- Identification of potential additional reduction measures
- Figures showing metering locations and configuration of sensors, with photos of installed flow monitors provided in the Sewer System Characterization Report
- A summary of daily flow information for a selected time period, including minimum rate, peak rate, total daily flow, total rain, peak hourly rain, and peak 15-minute rainfall, if applicable
- Detailed flow reports of the flow rate data in 15-minute time increments, including depth of flow, velocity of flow, incremental flow rate, cumulative flow rate, and recorded rainfall
- Flow hydrographs comprised of a plot of the recorded flow rates for a selected time period along with a bar graph of associated rainfall for each flow monitoring location
- QA/QC data demonstrating the validity of the results and flags on questionable data, including the preliminary and final QA/QC data checks
- Calibration and maintenance procedures, available upon request
- Data in an electronic format, available upon request.

8.0 SCHEDULE

Part IV.O, Program Development Compliance Schedule, of the MS4 Permit identifies the deliverables and related submittal schedule that the City must meet for Permit compliance. The Effective Date of Permit (EDP) is August 1, 2015, and the Permit remains effective through July 31, 2020. The milestones relevant to the Monitoring Program are:

- Stormwater Management Program Plan Draft (Part III.A), due EDP plus three years (August 1, 2018)
- Monitoring and Assessment of Controls (Part IV.J.3), certification of implementation due EDP plus five years (August 1, 2020; i.e., the beginning of the next five-year Permit cycle).

The Phase 1 outfall sampling and metering will be initiated prior to August 1, 2020. Subsequent to the two-year collection period, data will be evaluated before the Phase 2 monitoring strategy and work plan is finalized and contracts are procured for implementation.

9.0 REFERENCES

APHA/AWWA/WEF. 2017. "Method SM 2540 D: Total Suspended Solids Dried at 103-105o," Standard Methods for the Examination of Water and Wastewater, 23rd Edition.

APHA/AWWA/WEF. 2017. "Method SM 4500-P E: Phosphorus by Ascorbic Acid," Standard Methods for the Examination of Water and Wastewater, 23rd Edition.

USEPA. 1978. "Microbiological Methods for Monitoring the Environment Water and Wastes," p. 124.

USEPA. 1993a. "Method 350.1: Determination of Ammonia Nitrogen by Semi-Automated Colorimetry," Revision 2.0.

USEPA. 1993b. "Method 351.2: Determination of Total Kjeldahl Nitrogen by Semi-Automated Colorimetry," Revision 2.0.

USEPA. 1994. "Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry," Revision 5.4.

USEPA. 1999."Total Dissolved Solids (TDS): USEPA Method 160.1 (Gravimetric, Dried at 180 degrees C)."

USEPA. 2001. "Method 200.7 Trace Elements in Water, Solids, and Biosolids by Inductively Coupled Plasma-Atomic Emission Spectrometry," Revision 5.0.

USEPA. 2006. "Method 1600: Enterococci in Water by Membrane Filtration Using membrane-Enterococcus Indoxyl-B-D-Glucoside Agar (mEI)."

USEPA. 2010. "Method 1664: n-Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated n-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry," Revision B.

USGS. No date. "Method I-4650-03: Nitrogen and phosphorus, total whole water (mg/L as N or P)," Water-Resources Investigations Report 03–4174.