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1. Introduction

This status report describes work completed for DEP’s Multi-Tiered Water Quality Modeling
Program during October 2012 — December 2013. The report presents progress on activities
discussed in Section 2.4.2 of the New York City’s Long-Term Watershed Program (DEP,
2006a). The following activities are reported herein:

Application of DEP’s reservoir, watershed and system models to inform operational
decisions during the reporting period (Section 2);

Model applications and projects related to climate change analyses including a summary
of the findings of Phase I of the Climate Change Integrated Modeling Project (CCIMP),
an analysis of the seasonal changes in phytoplankton under climate change, a study of
climate change effects on reservoir thermal properties, a study of climate change effects
on streamflow hydrologic indicators and description of the WRF 4262 and WRF 4305
projects on vulnerability assessment and risk management tools (Section 3);

Studies related to model development including: an application of SWAT for sediment
loading; a study of THMs using an empirical model; a description of the hydro-ecological
modeling project; a description of SWAT model upgrades current being developed; a
description of recent improvement to the CEQUAL-W?2 turbidity models; application of a
lake ice model; and a study of 1D reservoir model uncertainty. (Section 4);

Data analyses that support model development and the understanding of watershed
processes including: a description of USGS monitoring of sediment and turbidity in
Esopus Creek watershed; a study of phosphorus loading hysteresis; and a study of recent
trends in precipitation and snowfall. (Section 5);

Model data acquisition, development and organization (Section 6);

Collaboration of the Water Quality Modeling Section with other projects and
organizations including cooperative arrangements, contracts and proposals. (Section 7);
and

Summary of scientific journal papers and presentations at scientific conferences that the
Water Quality Modeling Section has given over the last year (Section 8).



2. Use of Models for Support of Operational Decisions

In total, the Water Quality Modeling Section performed eight separate turbidity modeling
analyses for Kensico, Ashokan and/or Schoharie Reservoirs during the October 2012- December
2013 reporting period. Turbidity model simulations to support operational decisions during the
reporting period were necessitated by elevated Catskill System turbidity due initially to a large
streamflow event in Esopus Creek during September 2012. In addition, during the fall of 2012 a
series of smaller events continued to impact the Catskill System. A rain and snowmelt driven
event in March 2013 also resulted in slightly increased turbidity in the system, further requiring
application of turbidity modeling runs. As the turbidity generated by these events affected the
Catskill and Delaware Systems, these model simulations were used to better guide the operations
of the system to ensure the delivery of high quality water without the use of alum. In addition to
these model simulations, the Water Quality Modeling Section continued to support development
of the Operations Support Tool (OST) through collaboration with DEP’s Operations Support
Section and the OST contractors.

Simulation Descriptions

Two types of model simulations were used for operational support during the reporting period:
(1) Kensico Reservoir sensitivity simulations and (2) Operation Support Tool (OST) (DEP 2011)
applications. For both types of simulations, a “position analysis” strategy was used. The initial
conditions of the reservoir water quality and storage are used as the starting point for the model
simulations. Then the models are run for a forecast period which ranges from 1 to 6 months into
the future, depending on the simulation goals. For the forecast period, inputs of streamflow,
meteorology and/or inflow water temperature are based on the historical record (1948-2004 for
OST runs and 1987-2004 for Kensico model runs). Each forecast trace is therefore driven using
historical data occurring over the forecast period. Each year of data becomes a separate
realization (or trace) of the simulated model outcomes. The complete set of position analysis
traces, can then be used to develop a statistical probability of future simulated reservoir storage
levels and effluent turbidity.

For the Kensico Reservoir sensitivity simulations LinkRes and its component 2D reservoir model
CEQUAL W2 (DEP 2004, Cole and Buchak 1995) were used to simulate turbidity values within
the reservoir and aqueduct withdraws. The initial conditions of reservoir water quality and
temperature are set to most recently measured values based on a combination of limnological
survey data and in-lake automated buoy measurements. For the forecast period, input aqueduct
flows and turbidity are set at fixed values associated with the range of the sensitivity analyses,
while inputs of meteorology and aqueduct water temperature are based on each year in the
historical record. This allows for sensitivity analysis of the Kensico effluent based on a series of
fixed aqueduct turbidity and flow influent conditions with the year-to-year variability in the
traces representing the potential variability in forecast weather conditions. The results can then
be used to better understand the implications of given influent flow rates and turbidity on future
Kensico Reservoir effluent turbidity.



For OST simulations the forecast reservoir input streamflows and turbidity are based on the
historical record and are conditioned to recent history. These flows and corresponding turbidity
loads are input to the OASIS model, which predicts reservoir storage, water quality and aqueduct
flows based on a set of operating rules. In these cases, each trace represents a simulated outcome
incorporating both climatic and flow variability of the forecast period. To help guide operations,
the model is run using different sets of operating rules, and the resulting ranges of future
reservoir storage and water quality, are compared for simulations using varying operating
strategies

Figure 2.1 shows the Esopus Creek streamflow and turbidity and the Catskill Aqueduct turbidity
in the Ashokan effluent for the reporting period along with the dates of water quality modeling
analyses performed to aid in operational decisions. Table 2.1 details the modeling analyses
performed during the period. A storm event in mid-September 2012 caused elevated turbidity in
the Ashokan West Basin and in Neversink Reservoir. Since the West Basin was already drawn
down, the East Basin was not severely impacted by the event. After more storm events in the fall
the higher turbidity from the West Basin began to impact the East Basin of Ashokan. In
response to these fall events OST runs were conducted to understand (a) the potential timing and
magnitude of movement of water and turbidity from the West Basin to the East Basin, (b) the
extent to which the use of the Ashokan Release Channel (ARC) would change the this timing
and magnitude of turbidity movement from West to East; (c) the effects of ARC use on potential
Catskill Aqueduct flow reductions due to turbidity, and (d) the temporary loss of the Neversink
diversion on reservoir storage. In addition, during the fall of 2012, three Kensico Reservoir
sensitivity simulations were performed to help determine optimal Catskill Aqueduct flows that
would maintain water quality standards at Kensico effluents while avoiding alum use.

In January 2013, OST was used to understand the possible timing and magnitude of the expected
peak turbidity in Ashokan Reservoir due to upcoming spring runoff events. This was of
particular importance as more Catskill water would be needed during the spring due to a
drawdown of Rondout Reservoir. After a rain and snowmelt event in mid-March a Kensico
Reservoir sensitivity simulation was run to continue to ensure that Kensico effluents would meet
turbidity standards. Finally, in April 2013, OST was used once more to ascertain the water
quality benefits versus the storage draw down trade-offs of using the ARC to reduce the impact
of West Basin to East Basin movement of water and turbidity in Ashokan Reservoir.
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Figure 2.1. Time series of (a) flow at Esopus Creek at Coldbrook (USGS gage# 01362500); (b)
turbidity as measure by automated sampling at station E161 along the Esopus Creek and (c)
turbidity at keypoint sitt EARCM at the Catskill Aqueduct effluent from Ashokan Reservoir.
The vertical lines show dates of water quality modeling runs to support operation decisions
including OST runs (solid lines) and Kensico sensitivity runs (dashed lines).



Table 2.1. List of modeling analyses performed during the reporting period including descriptions of each analysis.

Date

Turbidity Modeling Runs October 2012-December 2013

Background

Modeling Description

Results

10/03/2012

A turbidity event on September 18, 2012
produced a large input of turbidity into
the Ashokan West Basin (Figure 2.1).
The event did not fill the West Basin,
but created a plume of 200-300 NTU
water just above the thermocline with
values of >30 NTU at other depths.
Since West Basin was not filled, the East
Basin was only impacted to the extent
that the dividing weir was required to
stay partially open. East Basin turbidity
near the gate house was about 7-9 NTU
near the surface with a plume of about
25 NTU at the thermocline and greater
turbidity near the bottom.

Kensico reservoir sensitivity simulations
were run to provide guidance for the
turbidity that could be tolerated as input to
Kensico Reservoir from the Catskill
Aqueduct given the current turbidity and
possible future turbidity increases as the
flow through the dividing weir continued to
affect the East Basin turbidity. The tested
Catskill inflow rates were 200, 275, 350 and
400 MGD aqueduct turbidity of 8, 10, 12
and 15 NTU.

Results gave an indication that
effluent turbidities would stay below
about 2.5 NTU with input flow and
turbidity combination s of 350 MGD
at 8 NTU; 200 MGD at 10 NTU; and
less than 200 MGD at 12 NTU.




Turbidity Modeling Runs October 2012-December 2013 (cont’d)

Date Background Modeling Description Results
10/12/2012 The turbidity event on September 18, These OST simulations were performed to Greater use of release channel resulted
2012 continued to impact the Ashokan provide an estimate of (a) the period of time  in a delay and/or a reduction in the
and Neversink Reservoirs. In Ashokan,  that it would take Ashokan Reservoir West ~ movement of turbid water from West
there continued to be a plume of 100- Basin turbidity to reach the East Basin, (b) Basin to East Basin, and therefore,
200 NTU water near the thermocline the extent to which the use of the ARC reduced the potential magnitude of
with values of >30 NTU at other depths.  would change the timing and magnitude of  elevated turbidity in the East Basin,
East Basin was still not severely turbidity movement from West to East; (c) especially under the effects of medium
impacted as West Basin was not yet the effects of ARC use on potentially sized storms. The modeling also
filled. East Basin turbidity near the gate  necessary Catskill Aqueduct flow indicated that greater use of the ARC
house was about 5-10 NTU near the reductions due to turbidity, and (d) the did not reduce the number of traces
surface with a plume of about 20-30 effects of the temporary loss of the that required alum use, since these
NTU at the thermocline. Neversink Neversink diversion on reservoir storage. simulation traces all were all
Reservoir was also impacted by the As part of the run, there were a number of associated with extremely large
event and was offline at the time with operating rules related to the Ashokan streamflow events that overwhelmed
the diversion expected to remain offline  dividing weir gate, the ARC and the the system. Reduction of Catskill
for at least the remainder of the month. Schoharie diversion that were updated to Aqueduct flow could be used to
better simulate anticipated operations. reduce Kensico Reservoir turbidity
inputs such that alum treatment might
be avoided, however, this might result
in some drawdown of West Branch
and Kensico Reservoirs. Greater use
of the ARC provided some reduction
in the number of traces that would
result in drawdown of West Branch
and Kensico Reservoirs.
11/02/2012 A number of events during fall 2012 Kensico Reservoir sensitivity simulations Results suggested that effluent

moved elevated turbidity from the West
Basin to the East Basin of Ashokan. East
Basin turbidity near the gate house was
above 15 NTU and the reservoir was
isothermal. Stop shutters were in place
to limit Catskill Aqueduct flow to
Kensico. Kensico Reservoir turbidity
generally ranged from 0.7-1.5 NTU with
higher turbidity of 2.4-2.8 NTU at site 5
near the Catskill influent.

were run to provide guidance for the
turbidity that could be tolerated as input to
Kensico Reservoir from the Catskill
Aqueduct given the current turbidity and
possible future turbidity increases as the
flow over the dividing weir continues to
affect the East Basin turbidity. The tested
Catskill inflow rates were 50, 150 and 250

MGD with aqueduct turbidity of 15, 20, and

25 NTU.

turbidities would stay below about 2.5
NTU with input flow and turbidity
combination s of 150 MGD at 15
NTU and 50 MGD at 20 NTU.




Date

Turbidity Modeling Runs October 2012-December 2013 (cont’d)

Background

Modeling Description

Results

11/05/2012

Ashokan West was continuing to spill
over the dividing weir. The Ashokan
West automated buoys indicated
turbidity of 25-35 NTU with a plume of
higher turbidity at the lower portion of
the profile. East Basin turbidity near the
gate house was above 15 NTU and the
reservoir was isothermal as indicated by
the Ashokan East automated buoy. Stop
shutters were in place to limit Catskill
Aqueduct flow to Kensico.

The OST was used to investigate the
potential effects of the usage of the ARC on
East Basin turbidity and future reservoir
storage. These simulations were set up in a
manner similar to that used on Oct. 12.
Two alternatives were explored: using the
ARC with and without operational releases
as defined by the DEC interim release
channel protocol. In both alternatives the
conservation and discharge mitigation
releases were used. In addition a number of
operating rules pertaining to the Ashokan
Dividing Weir Gate, the ARC and the
Schoharie Diversion were updated to better
simulate anticipated operations.

The modeling indicated that use of
operational releases for the ARC
decreased the predicted East Basin
turbidity for cases when the turbidity
was below about 15 NTU. For cases
of greater turbidity operational use of
the ARC had little effect. Without use
operational releases for the ARC the
need for discharge mitigation releases
was predicted to increase later in the
winter. Reduction of Catskill
Aqueduct flow could be used to
reduce Kensico Reservoir turbidity
inputs such that alum treatment might
be avoided, however, this might result
in some drawdown of West Branch
and Kensico Reservoirs. Use of ARC
provided reduction in the number of
traces resulting in significant
drawdown of West Branch Reservoir.
Operational use of ARC reduced the
probability of refill for WOH Catskill
System reservoirs and had no effect on
refill of Delaware System reservoirs.




Date

Turbidity Modeling Runs October 2012-December 2013 (cont’d)

Background

Modeling Description

Results

12/28/2012

01/23/2013

An early winter storm event moved
slightly elevated turbidity from the West
Basin to the East Basin of Ashokan. East
Basin turbidity near the gate house
ranged from 11-14 NTU and the
reservoir was isothermal at <4°C as
indicated by the Ashokan East
automated buoy. Stop shutters were
being installed to limit Catskill
Aqueduct flow to Kensico. Based on
limno survey of Dec. 26, Kensico
Reservoir turbidity generally ranged
from 1.3-1.7 NTU with higher turbidity
of 6.8-7.0 NTU at site 5 near the Catskill
influent.

Events from the fall continued to have
an impact on the turbidity in the
Ashokan Reservoir with turbidity in the
East Basin Aqueduct withdrawal of 5-7
NTU and West Basin turbidity near the
dividing weir of 10-11 NTU. At the
beginning of February it was planned to
lower the storage elevation of the
Rondout Reservoir by about 10 feet to
accommodate a construction project.
After this drawdown a greater reliance
on Catskill System water would be
needed so that Delaware system water
could refill Rondout Reservoir to normal
seasonal levels.

Kensico Reservoir sensitivity simulations
were run to provide guidance for turbidity
that could be tolerated as inputs to Kensico
Reservoir from the Catskill Aqueduct given
the current and possible future East Basin
turbidity. The tested Catskill inflow rates
are 50, 150 and 250 MGD with aqueduct
turbidity of 8, 10, and 15 NTU.

OST was used to evaluate the range of
potential turbidity levels in the Ashokan
Reservoir Catskill Aqueduct effluent during
the period from late February through the
spring when greater use of Catskill water
would be necessary to allow Rondout

Reservoir to refill to normal storage levels...

Results gave an indication that
effluent turbidities would stay below
about 2.5 NTU with input flow and
turbidity combination s of 250 MGD
at 10 NTU and 150 MGD at 15 NTU

The model results indicated that the
peak of the median simulated turbidity
for the Ashokan East would occur
near mid-April with ~60% of the
traces exceeding 5 NTU and ~25% of
the traces exceed 8.3 NTU. Generally
there was lower probability of
elevated turbidity at mid-March as
compared to mid-April.




Turbidity Modeling Runs October 2012-December 2013 (cont’d)

Date Background Modeling Description Results

03/22/2013 Catskill Aqueduct turbidity increased to  Kensico Reservoir sensitivity simulations Results gave an indication that
about 6-7 NTU due to a spring were run to provide guidance for aqueduct Kensico effluent turbidities would stay
snowmelt/rain event (Figure 2.1). flow rates into Kensico Reservoir for given  below about 2.5 NTU with input flow
Snowpack in the Esopus watershed was  current and possible future East Basin and turbidity combination s of 400
about normal for mid-late March and turbidity. The tested Catskill inflow rates MGD at 6 NTU and 300 MGD at 8
spring events were expected to beginto  are 300, 400 and 500 MGD with aqueduct NTU and less than 300 MGD at 10
impact the watershed in the upcoming turbidity of 6, 8, and 10 NTU. NTU
weeks. Kensico Reservoir turbidity
generally ranged from 1.3-1.7 NTU with
somewhat higher turbidity >3 NTU near
the Catskill influent.

4/19/2013 Turbidity in Ashokan Reservoir OST was used to investigate the potential Operational releases from the ARC

continued to be elevated slightly with
West Basin turbidity ranging from 10-12
NTU and East Basin Turbidity ranging
from 2.5-6.5 NTU. Both basins were
just beginning to thermally stratify. The
West Basin was near capacity and was
expected to spill into the East Basin
following any significant runoff event.

effects of implementing operational releases
via the ARC on turbidity in the Ashokan
Reservoir Catskill Aqueduct effluent and on
reservoir storage levels during the
upcoming spring through mid-summer
period.

only slightly decreased the predicted
East Basin turbidity through mid-
summer. Alum treatment was not
indicated in any of the simulations
(with or without operational releases)
Operational use of ARC slightly
reduced the probability of refill for
WOH Catskill System reservoirs and
had virtually no effect on the predicted
refill of Delaware System reservoirs




3. Modeling Applications of Climate Change Impacts
3.1. Completion of Phase I of the Climate Change Integrated Modeling Project

The Climate Change Integrated Modeling Project (CCIMP) is led by the water quality modeling
group and has the goal to evaluate the effects of future climate change on the quantity and
quality of water in the NYC water supply. The project is an element of DEP’s Climate Change
Action Plan released in 2008. The CCIMP is designed to address three issues of concern to
NYC: (1) overall quantity of water in the entire water supply; (2) turbidity in the Catskill System
of reservoirs, including Kensico; and (3) eutrophication in Delaware System reservoirs. In the
first phase of the project an initial estimate of climate change impacts was made using available
GCM data sets and DEP’s suite of watershed, reservoir and system operation models. Phase |
focuses on water quantity in the West of Hudson (WOH) System, turbidity in the Schoharie
Reservoir and eutrophication in the Cannonsville Reservoir.

During 2013 the first phase of the CCIMP was brought to a close with the holding of a review
workshop in September and the subsequent publication and distribution of a report detailing our
Phase | activities and expert panel review. (The report is available online at DEP

website: http://www.nyc.gov/html/dep/html/about_dep/climate_resiliency.shtml)

Some of the general findings of Phase | of the CCIMP were:

e The timing of the spring snowmelt was predicted to shift from a distinct peak in late
March and April to a more consistent distribution throughout the winter and autumn. This
shift is a function of increased temperatures, which will cause less precipitation to fall as
snow and faster melting of the snowpack that does develop. The consequent shift in
streamflow drives many of the findings obtained from applications of the water system
and reservoir water quality models.

e Greater winter streamflow will cause the WOH reservoirs to fill earlier in the year, and
for spill from the reservoirs to increase during the winter. The increased winter spill will
come at the cost of lost storage in the spring snowpack.

e For the WOH System, drought seems to be less prevalent, because the GCM simulations
used in the study predict increased precipitation throughout the year, which compensates
for lost snow storage and increased evapotranspiration due to higher temperatures.

e The shifting seasonal pattern in streamflow will similarly affect the turbidity loads into

Schoharie Reservoir, which in turn will impact the Schoharie withdrawals, resulting in
increased turbidity in the autumn and winter and decreased turbidity in the spring.
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e The nutrient loads to Cannonsville Reservoir will also exhibit shifts similar to the
streamflow shifts noted above. However, despite increased nutrient loads during the
winter and autumn, the response of the phytoplankton will be small, presumably due to
unfavorable growth conditions at this time of the year. The thermal structure of the
reservoir will be impacted by the higher temperatures of the future climate, with thermal
stratification beginning earlier in the spring and lasting longer into the autumn.

Phase Il of the CCIMP is now underway. The general goals are the same but in this phase of the
project we will be making use of a more extensive set of GCM data and improved downscaling
methods to develop a wider variety of future climate scenarios. We will also be making use of
additional models and subject all models to increased testing and scrutiny in respect to their
climate change predictions.

Initial results of the Phase Il of the CCIMP are presented in this report. Section 4.3 describes our
work to develop an initial application of the RHESSys hydro-ecological model that we hope will
be of value for estimating the effects of climate change on water supply forested lands. Section
4.4 describes work to improve the SWAT watershed model to better represent the hydrology in
the West of Hudson watershed area, particularly Cannonsville watershed. If successful, these
improvements should allow for more realistic future simulation of hydrology and
biogeochemistry using SWAT. Section 3.4 examines the effects of simulated future changes in
hydrology on indices of stream biotic habitat. In terms of reservoir limnology Section 3.3
evaluates the effects of future climate conditions on reservoir thermal structure, and Section 3.2
further evaluates how such changes can affect the phytoplankton community.
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3.2. Seasonal Effects of Climate Change on Cannonsville Reservoir Phytoplankton
Introduction

Cannonsville Reservoir has in the past been affected by phytoplankton blooms that exceeded 40
mg m™ of chlorophyll and included cyanobacterial species (Effler and Bader 1998). The
eutrophic state of Cannonsville Reservoir was linked to excessive nutrients, and beginning in the
early 1990s, a variety of FAD mandated programs were implemented to reduce point and non-
point source nutrient loading. To evaluate the effects of these programs, the water quality
modeling group developed a system of linked watershed and reservoir models that are currently
used to evaluate the effects of changing land use, watershed management, and climate change on
Cannonsville Reservoir (Figure 3.1).

When considering the potential impacts of climate change on Cannonsville Reservoir trophic
status there are two potential drivers of change in phytoplankton community biomass and
composition: 1) changes in the amount and seasonality of nutrient loading to the reservoir; and
2) changes to the reservoir thermal and mixing regime. Previously, it has been the first factor,
nutrient loading that has received the greatest attention. DEP has simulated long term variations
in nutrient loading under different levels of watershed management and changing land use, and
demonstrated that FAD program-driven reductions in nutrient loading have led to reduced
reservoir chlorophyll concentrations (DEP 2006b). The second factor while not directly
examined in the FAD evaluation is implicitly recognized by the use of an evaluation method
(Owens et al. 1998) which examines the long-term shift in the frequency distribution of reservoir
water quality data. One important source of the year to year variability captured by the
frequency distributions is inter-annual variations in stratification and mixing.

Air Temperature

Air Temperature Stream discharge Solar Radiation
Precipitation MNutrient Loads Wind Speed
Downscaled GWLF Reservoir Model UFI System
GCM Data Preprocessor Water Inflow PROTBAS Indicators
Mutrient Inputs
Inflow Water Temperature Thermal structure
Volume of withdrawal, spill, release Chlorophyll
TP, TDP, NO3
Historical Reservoir 'F:’hY‘C’P'a"'l'“O”
Operations unctional groups

Figure 3.1. Diagram of linked watershed and reservoir models used by the DEP modeling group
to evaluate Cannonsville Reservoir trophic status. The configuration shown here is used to
evaluate the effects of climate change. The same system driven by historical meteorological data
instead of the downscaled GCM data can be used to evaluate changes in land use and watershed
management.
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Figure 3.2. Seasonal patterns in mean monthly air temperature driving the GWLF watershed
model, and GWLF simulated mean monthly snowpack water equivalent, stream discharge, and
nutrient loads. Effects of future climate change can be seen by comparing the historical mean
patterns plotted as a line with the range of mean monthly values associated with future scenarios
and shown as box plots. In months where the boxplots do not intersect with the line all future
scenarios were different from the historical conditions.
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Future changes in watershed hydrology and nutrient loading simulated by the GWLF model are
shown in Figure 3.2 The solid line shows the pattern of mean monthly historical data, while the
bar plots show the range in the monthly means obtained from simulations driven by 36 different
GCM/emission scenarios. More information on the climate scenarios is available from (Pierson
et al. 2013)

As a result of higher winter air temperatures we simulate reduced snow water storage, and
increased winter snow melt. This combined with increased winter and fall precipitation (not
shown) leads to a distinct change in the seasonality of the streamflow and nutrient loads entering
Cannonsville Reservoir. For example, the median annual loading of total dissolved P increases
by about 6 %, while there are much greater changes in the seasonality of the nutrient inputs with
an approximately 15-33% increase in the median November-February loading as a consequence
of the changing seasonality of streamflow.

Changes in reservoir thermal structure as a result of future changes in the climate inputs to the
reservoir model are discussed in detail in Section 3.3 of this report. In summary, it can be stated
that under future climate scenarios the reservoir will become thermally stratified earlier in the
year and become de-stratified later in the year. Epilimnetic water temperatures will be warmer,
and the vertical temperature gradient will become greater leading to more stable thermal
stratification. These changes are most strongly related to future changes in air temperature and
its effect on reservoir thermal structure. Since air temperature is a climate parameter that is
consistently projected to increase in the future simulations (Figure 3.2), our confidence in these
projected changes in reservoir thermal structure is high.

The coupled modeling system (Figure 3.1) simulates the combined effects of increased nutrient
loading, a shift in the seasonality of nutrient loading, increased reservoir water temperature and
longer lasting and more stable thermal stratification. To separate these effects, two additional
sets of model simulations were run. These (Figure 3.3) were done by manipulating the climate
data sets that are inputs to the watershed and reservoir models so that one model was driven by a
contemporary historical data set, while the other model was driven by a future climate scenario
derived from the same historical data set (Anandhi et al. 2011). Using this scheme, illustrated by
Figure 3.3A , we are able to simulate the watershed effects of climate change on the timing and
magnitude of nutrient loading to the reservoir, while keeping the hydrothermal regime of the
reservoir as that which would occur under a contemporary climate. Conversely, in (Figure 3.3B),
we isolate the effects of changing hydrothermal conditions by using future climate data to drive
the reservoir model, while the watershed model is driven with historical data.

The simulations of the combined watershed and hydrothermal effects of climate change on
reservoir chlorophyll concentration, using the data coupling shown in Figure 3.1 are shown in
Figure 3.4A, while the simulations that isolate watershed and hydrothermal effects using the data
coupling shown in Figure 3.3 are shown in Figures 3.4B and C. When examining the total effect
of climate change on both watershed and reservoir hydrothermal processes (Figure 3.4A), it is
clear that in most months there is a modest (10-15%) increase in reservoir chlorophyll
concentration
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Figure 3.3. Schematic of the coupling of models and data sets used to simulate the effects of
climate change on A) watershed processes only and B) reservoir hydrothermal processes only.
In A) downscaled GCM scenarios are used to influence only the watershed model and
consequently the inputs of water and nutrient to the reservoir. In B the downscaled GCM
scenarios are used only to as input to the reservoir model and the model that simulates inflow
stream temperature. The future climate scenarios therefore, only affect reservoir thermal
structure and mixing.
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Figure 3.4. Average seasonal patterns of reservoir monthly mean mixed layer chlorophyll
concentration. Solid line shows the results with the model driven by historical conditions, box
plots show the range from future scenarios The box plots in A show the range in future
conditions when both watershed and hydrothermal effects are allowed to impact the
phytoplankton, while B and C show the separate effects of watershed and hydrothermal effects.
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Table 3.1. The eight indicator species used to define the major phytoplankton functional groups
used in the UFI-PROTBAS model. In addition to these properties the growth rates are related to
morphological characteristics of the species — namely the typical longest dimension of the cell or
colony and the surface area to volume ratio.

Indicator Functional group
species Special property  Floating/Sinking Rate name in this study
Aulacoseira Need silica, Sink 0.4-1.0 m/d depending on Diatom
sinks fast light exposure
Stephanodiscus  Need silica, Sink 0.1 m/day Diatom
Grazed
Aphanizomenon  Nitrogen fixer, Sink 0.3-Float 0.1 m/d depending Cyanobacteria
actively moves on light exposure
Anabaena Nitrogen fixer, Sink 0.3-Float 0.1 m/d depending Cyanobacteria
actively moves on light exposure
Microcystis Actively moves Sink 0.5-Float 3.0 m/d depending Cyanobacteria
on light exposure and water
temperature
Rhodomonas Grazed, Sink 0.5 — Swim Upward 0.1 m/d Flagellate
actively moves depending on light exposure
Cryptomonas Grazed, Sink 1.0 — Swim Upward 1.0 m/d Flagellate
actively moves depending on light exposure and
nutrient levels
Ceratium Actively moves Sink 5.0 — Swim Upward 1.0 m/d Flagellate

depending on light exposure and
nutrient levels

More striking are the results of the simulations that attempt to separate the effects of the future
changes in reservoir loading from future changes in reservoir thermal structure and mixing.
These suggest that despite an overall increase in future levels of nutrient loading (Figure 3.2),
these effects on their own (Figure 3.4B) have virtually no effect on the seasonal patterns of
chlorophyll concentration, and in fact actually lead to a slight decrease in chlorophyll
concentration during thermally stratified conditions in May- October. The reason for this was
discussed by Pierson et al. (2013) — shifts in the seasonality of nutrient loading (Figure 3.2)
results in greater amounts of nutrient loading in the late fall to winter when conditions are not
favorable to phytoplankton growth. It was further hypothesized that in the time between nutrient
input and favorable growth conditions, nutrient bioavailability could decrease, and nutrients
could be lost from the reservoir in spills and releases. This effect is illustrated by the results of
Figure 3.4B.

Simulations which allowed future climate conditions to affect only reservoir thermal structure
(Figure 3.4C), show that it is largely these effects that account for future increases in reservoir
chlorophyll concentration. Hydrothermal effects enhance phytoplankton growth due to a
positive effect of the warmer water temperatures on the simulated rate of growth, as well as
stratification’s effect on phytoplankton light exposure (Huisman et al. 2004). This is an
important result that does not invalidate global relationships between nutrient loading and
phytoplankton biomass as measured by chlorophyll (Vollenweider 1968). Rather, it does
illustrate that the interaction between nutrient loading and variability in the physical environment
moderates nutrient impacts on phytoplankton biomass. In fact, both the negative effects
associated with changes in the seasonality of hydrology and nutrient loading (Figure 3.4B) and
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the positive effects associated with changes in thermal structure (Figure 3.4C) are illustrated by
these simulations.

The UFI-PROTBAS model simulates the biomass of 8 functional phytoplankton groups (Table
3.1) which have different growth characteristics and successional strategies (Reynolds et al.
2001, DEP 2008a). The seasonal variations in total biomass show in Figure 3.4 are obtained by
summing the biomass of all groups. In Figure 3.5 the seasonal variations in the biomass of
diatoms and cyanobacteria, the two major groups dominating the phytoplankton biomass, are
plotted as in the previous figure. Again, there is a striking difference in the climate effects
influencing watershed vs. hydrothermal processes, with the hydrothermal effects having the
largest potential influence on future levels of phytoplankton biomass.
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Figure 3.5. Average seasonal patterns of reservoir monthly mean mixed layer chlorophyll
concentration associated with the two dominant phytoplankton functional groups. Panel C shows
the importance of changes in reservoir stratification and mixing on the responses of diatoms and
cyanobacteria. This may cause a shift in their relative abundance.
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Figure 3.5 also shows an additional result: The increased phytoplankton chlorophyll under
future conditions is simulated to come as a consequence of a successional change which favors
the growth of cyanobacteria, at the expense of diatoms. This simulated change is consistent with
the physiology and ecology of these phytoplankton functional groups. The diatoms (Table 3.1)
generally have no upward motility, a relatively high sinking rate and grow well at lower light
intensity. They tend to dominate under conditions of energetic mixing that keeps them in
suspension, even when this mixing results in reduced light exposure. Cyanobacteria are
expected to dominate future climate conditions and warmer water temperatures (Paerl and
Huisman 2008, Paul 2008, Paerl and Huisman 2009, Kosten et al. 2012) since their maximum
rate of growth generally occurs at higher temperatures than other phytoplankton groups
(Reynolds 2006) although there are some contradictory studies (Lurling et al. 2013).
Furthermore, cyanobacteria are positively buoyant, allowing them to remain suspended in the
euphotic zone during the more persistent stratification simulated to occur under future
conditions. Some of the large colonial cyanobacteria simulated here can exhibit relatively rapid
rates of upward vertical movement. This can also be of competitive advantage in a stable,
seasonally-stratified epilimnion that nevertheless experiences intermittent vertical mixing i.e.
diurnal cycles of weak stratification in the upper mixed layer (Imberger 1985). Under such
conditions, buoyant cyanobacteria can migrate to the upper water column during periods of
intermittent stratification, and gain a competitive advantage from greater light exposure
(Reynolds and Walsby 1975, Huisman et al. 2004, Johnk et al. 2008).

The consequences of future climate conditions on cyanobacterial growth and succession is a
topic that is receiving intense scrutiny in limnological literature (Carey et al. 2012, Reichwaldt
and Ghadouani 2012, Rigosi et al. 2014). The simulations here suggest that future climate
conditions, while leading to moderate increases in total phytoplankton biomass, can result in up
to a doubling in the biomass of cyanobacteria. This could be a concern for the future water
quality of Cannonsville Reservoir given cyanobacteria can lead to taste and odor problems and
also in some cases produce cyanotoxins (EI-Shehawy et al. 2012). However, with a new steady-
state set by major nutrient reductions as a result of the watershed protection programs, the
changes in cyanobacteria due to thermal changes will still likely be lower than levels observed in
the past.

It is however, important to remember that these are simulations and as such are highly dependent
on a multitude of assumptions embedded in the coupled models and climate scenarios used here,
especially so in regards to the phytoplankton growth characteristics (Reynolds et al. 2001) as
parameterized by the UFI-PROTBAS model. The results here are an indication of what could
occur, but are not absolute predictions. The most important consequence of these simulations is
to heighten awareness of the possibility that future climate change could possibly lead to impacts
on the drinking water quality as a result of increased cyanobacteria levels, and that it is the
changes in thermal stratification that will the major factor leading to this potential impact. Such
a concern for water resources in general has already been raised in the literature (Paerl and
Huisman 2008, 2009). For DEP this highlights the importance of continuing to examine the
validity of our modeling assumptions, and to also heighten awareness of the possible future
increases in cyanobacteria, so that monitoring and management strategies are in place to mitigate
these blooms if they do in fact become more frequent.
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3.3. Sensitivity Analysis on Reservoir Water Temperature under Future Climate Change
Scenarios Using Hydrologic and Hydrothermal Models

Introduction

Water temperature in lakes and reservoirs is the major driving force that governs all
biogeochemical changes and has considerable influence on water quality and ecosystem
dynamics (Stefan et al. 1998). Variations in local weather affect water temperature, patterns of
thermal stratification and mixing in lakes. Thermal stratification represents the vertical
temperature structure of the water column and consists of: epilimnion (a surface mixed layer of
approximated uniform temperature maintained by wind induced turbulence); the hypolimnion (a
bottom mixed layer of also approximately uniform temperature maintained by the turbulence
generated by bottom shear); and the metalimnion (an intermediate depth between possessing
large vertical temperature and density gradients between the higher temperature epilimnion and
the generally lower temperature hypolimnion). The thermocline, within the metalimnion,
represents the depth of the greatest rate of temperature decrease. The development of the
thermal stratification limits the vertical transport of nutrients and gas vertically through the water
column. Thermal stratification strongly influences the kinetics at the sediment-water interface
(Condie and Webster, 2001; Lorke et al. 2003), and it also influences algal growth rates (Peeters
et al. 2002; Joehnk et al. 2008). Thus the timing and duration of seasonal patterns of thermal
stratification is an important influence to freshwater systems supplying drinking water.
Sensitivity of thermal structure to observed changes in meteorological factors (surface air
temperature, wind speed and ice cover) has been studied on Lake Superior by Austin and Allen
(2011) They found that observed trends in air temperature and ice cover led to higher summer
water temperatures, while trends of increased wind speed led to a reduction in summer surface
water temperature. Surface water temperatures are strongly affected by meteorological forcing,
such as air temperature and dew point temperature (Hondzo and Stefan, 1992). Variation in air
temperature is also responsible for onset and loss of ice along with ice cover formation in small
lakes (Livingstone and Adrian 2009), while the wind speed induces turbulence at the water
surface layers and may form surface mixed layer. The increase in wind speed controls the surface
heat exchange at the air-water interface and it is found to be the dominant variable in the
destruction of the thermocline (Henderson-Sellers, 1977).

Projected scenarios of water availability and water quality under future climate conditions will
be affected by changes in lake and reservoir thermal structure. Changing climatic conditions
affecting local meteorological forcing will alter both thermal structure and vertical transport by
mixing (Samal et al., 2012), which in turn will affect the limnological attributes of lakes and
reservoirs (Austin and Colman 2007; 2008). Thermal structure is accurately simulated with
mathematical models driven by readily available meteorological data (Ahsan and Blumberg,
1999; Samal et al. 2009). Modeling has been widely used to evaluate the thermal responses of
lakes of varying size, in watersheds of different topography and geographical location to climate,
making it possible to detect gradual as well as abrupt shifts in their thermal characteristics
(Peeters et al. 2002; Sahoo et al. 2011; Rao et al. 2012; Fang et al. 2009; Komastu et al. 2007,
Samal et al. 2009; 2012). Observed meteorological forcing commonly used in lake water
temperature modeling are air and dew point temperature, solar radiation or cloud cover and wind
speed.
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The ability of lake and reservoir hydrothermal models to simulate water temperature and thermal
structure under future as opposed to present climate conditions is of paramount importance and
necessitates evaluation of the sensitivity of model output to projected future variations in
meteorological parameters. Sensitivity analysis (SA) may be used as a tool to evaluate variations
of model outputs that occur as a consequence of different sources of variation in model
components such as parameters, sub-models and forcing data (Saltelli et al., 2000; 2008). SA
may be used to identify the governing parameters and processes subjected to certain drivers or
even to improve the mathematical formulations in the model. Sensitivity analysis of model
parameters can be carried out by adjusting them within acceptable ranges and observing the
corresponding response in the output variables. Likewise, the sensitivity analysis of forcing
functions needed to drive the model can be made by changing them with certain
factors/percentages and observing the response of output variables and their possible
implications on the system.

Even though the potential impact of climate change on lakes and reservoirs will be strongly
influenced by changes in thermal stratification and mixing, systematic investigations of the
effects of climate change on reservoir hydrodynamics are not common (Stefan et al. 1998; Fang
and Stefan, 2009; Samal et al. 2013). This paper is centered on the analysis of model sensitivity
and climate scenario sensitivity. The sensitivity of a reservoir hydrothermal model to realistic
variations in atmospheric forcing is evaluated by changing individual meteorological drivers by
fixed factors/percentages and evaluating model output. To further test the sensitivity of model
output to variations in individual meteorological drivers as they occur in the A2 climate
scenarios, individual A2 scenarios drivers are substituted into the historical meteorological data
set used to drive the reservoir model under baseline conditions. Stratification characteristics,
such as onset, loss, and duration of stratification are estimated under varied atmospheric forcing
and A2 scenario characteristics and compared to the baseline conditions. By identifying the
dominant physical processes affecting the reservoir water temperature, these results can provide
guidance for others simulating the effects of climate change on lake and reservoir
hydrodynamics.

Methodology
Study area: Cannonsville Reservoir

Cannonsville Reservoir is a dimictic, mesotrophic reservoir, one of the four located at the
western edge of Delaware County, New York about 190 km northwest of New York City. The
reservoir has a contributing watershed area of 1178 km? (Figure 3.6) consisting largely of
forested land use with some dairy agriculture and a few small hamlets. The reservoir supplies
325,000 m®day™ or roughly 7.1% of the total average daily consumption, to 9 million people in
New York City and other New York State localities. The detailed descriptions of the reservoir’s
morphometry, hydrology and operation have been published elsewhere (Samal et al. 2012;
Owens et al. 1998). The climate in this region is strongly influenced by elevation with mean
annual air temperature ranging from -1.17 °C to 18.85 °C and mean annual precipitation about
1100 mm, of which approximately one-third falls as snow (Pradhanang et al. 2011). Regular
water quality monitoring of this reservoir is conducted by DEP.

21



Vertical variation in water quality constituents associated with eutrophication has been simulated
using a coupled hydrothermal model (Owens, 1998a) and eutrophication model (Doerr et al.
1998). Previous studies on the thermal structure in Cannonsville Reservoir indicate that vertical
transport of heat to the lower waters of the reservoir in summer is largely associated with
advection caused by release of water at the base of the dam and is less sensitive to vertical
diffusion (Owens, 1998a).

The reservoir experiences stratification during summer and winter (inverse thermal stratification
under the ice), with turnover occurring in fall and spring. Previous studies indicate that the
substantial year to year to differences in the stratification regime of the reservoir are influenced
by interannual differences in reservoir operation (Effler and Bader, 1998). Based on measured
temperature data collected over a period of 8 years (1988-1995), Owens (1998b), estimated that
the duration of stratification ranges from 164 to 221 days and the range of August hypolimnetic
temperature is 8.3 to 13.9 °C. Gelda et al. (1998) have documented the application and testing of
a two-dimensional simulation model (CE-Qual-W2(t)) to Cannonsville Reservoir and evaluated
the accurate simulation of all important features of the stratification regime of the reservoir for
the 1988-1994 interval, a period in which wide interannual differences were related to variations
in meteorology and operations.
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Figure 3.6. Location of Cannonsville Reservoir and its watershed area
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Hydro-meteorological data

Daily historical meteorological data for Cannonsville Reservoir were obtained from
meteorological station located at the reservoir dam (Figure 3.6) since 1995. Prior to 1995,
meteorological data were collected at a National Weather Service (NWS) station located at
Binghamton, NY - approximately 64 km northwest of the reservoir. The one-dimensional
reservoir model used in the present study is driven by daily air temperature, dew point
temperature (approximated as minimum daily temperature), solar radiation and/or cloud cover
and wind speed. Daily inflows of the major tributaries entering the reservoir are measured by the
United States Geological Survey (USGS), while daily outflows, and water surface elevation for
the reservoir are measured by the DEP. These water balance components are also inputs to the
model. The major inflow to the reservoir is the West Branch Delaware River (WBDR) which
contributes 80% of the total inflow; 5% and 15% of the total are contributed by Trout Creek and
other ungauged tributary inflows respectively. USGS stream gages measure flow at the WBDR
and Trout Creek inflows. Outflows from the reservoir are spillway, dam-release and drinking
water withdrawal, which on average represent approximately 40%, 32% and 28% of the total
outflow (Owens et al. 1998a). The daily inflow temperatures were estimated based on air
temperature measured near the mouth of tributaries using a simple empirical model that was
incorporated into a data preprocessing program (Figure 3.7).

Daily tributary temperature is estimated as:
W = maX(O , W + S*(At-]_ - Wt-]_)) (31)

where W, is the predicted water temperature on day t; Wy.; is the predicted water temperature on
day t-1; A, is the average air temperature on day t-1 (average air temp is calculated by (Tmin +
Tmax)/2); Tmin 1S the minimum daily air temperature; Tmax IS the maximum daily air temperature;
and S is the slope of change (two constants for either rising (0.412444) or falling (0.078582)
water temperature). The rising temperature constant is used when A1 > W, and the falling
temperature constant is used when Wy.q >A¢1. W is set such that it does not go below 0°C and
assuming the first day stream water temperature to be zero.

General Circulation Model and Climate Change Scenarios

Increasing concentrations of atmospheric CO, and other greenhouse gases lead to the possibility
of future climatic warming, the extent of which has been projected using General Circulations
Models (GCMs). This study uses the output from three GCMs: the Canadian Center for Climate
Modeling and Analysis (CGCM3); the European Center Hamburg Model (ECHAM); and the
Goddard Institute of Space Studies (GISS).

Future scenarios of mean daily air temperature, wind speed, and solar radiation have been
previously derived (Samal et al. 2012) using three emission scenarios (A1B, A2 & B1) for the
2081-2100 future periods. GCM simulated values were used to produce monthly change factors.
Here, change factors were calculated from the differences between simulations of baseline
(1981-2000) and future (2081-2100) time periods associated with the three GCMs and the A2
emission scenarios. The A2 emission scenario, representing the highest expected future
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greenhouse gas emissions, was used with the 2081-2100 time period in order to produce
scenarios of the greatest possible climate change... Single monthly change factors were
developed, by pooling all of the data in a scenario for any given month and then calculating a
scenario monthly mean. For air temperature, additive monthly change factors were calculated as
the difference between the monthly means of a given future scenario and the baseline scenario.
For all other meteorological variables (precipitation, solar radiation and wind speed) monthly
multiplicative change factors were calculated as the ratio of the mean monthly future to mean
monthly baseline values. These change factors were then used to adjust a 39 year record of
meteorological observations, that was based on local measurements made at the reservoir (for the
reservoir model), and another set of measurements that were representative of the entire reservoir
watershed as a whole (for the watershed model). Additive change factors associated with a future
scenario were added to the daily temperature data in the month corresponding to the change
factor. In the case of multiplicative factors, the daily data were multiplied by the change factor
associated with a given month. The detailed method of producing the future climate change data
is described elsewhere (Anandhi et al. 2011).

Description of the coupling of hydrothermal and hydrologic model

A deterministic one dimensional lake hydrothermal model (Owens, 1998b; UFI, 2001) was used
to simulate lake thermal conditions under historical and future climate conditions. The model
was calibrated with long-term observed temperature data (1986-2004) measured by DEP. The
calibration results and calibrated parameter values are discussed in detail elsewhere (Samal et al.
2012).

The hydrothermal model is driven by daily meteorological forcing, and daily hydrological
parameters (inflow, outflow and water surface elevation). For future climate simulations the
hydrologic inflows are simulated using the Generalized Watershed Loading Function-Variable
Source Area (GWLF-VSA) watershed model (Schneiderman et al. 2007. The driving
meteorological data needed for the watershed model are daily precipitation and air temperature.
GWLF-VSA has been successfully calibrated for the West Branch Delaware River basin by
Schneiderman et al. (2007) and generates daily average streamflow and nutrient loads, which are
in turn, the inputs to the hydrothermal model. The coupling of the hydrothermal and hydrological
model driven by the historical and future meteorological forcing is depicted in Figure 3.7. When
simulating future climate scenarios using the coupled reservoir watershed model a simple
reservoir model pre-processing program was developed which calculated reservoir spill in
response to future inflows, adjusted reservoir withdrawal in order to prevent unrealistic
drawdown in response to future low flow periods, and adjusted tributary inflow temperatures in
response to future increases in air temperature.
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Figure 3.7. Coupling of hydrothermal and hydrological model run with climate data
Strategies for forcing sensitivity and scenario sensitivity analysis in the 1-D model

Model simulations were used to evaluate future changes in reservoir thermal structure that could
occur in the 2081-2100 time periods under A2 emissions. Simulations were made that included
the simulated effects of changes in meteorological conditions directly acting on the reservoir, and
the indirect effects of climate change on watershed processes that effect the volume and timing
of reservoir inflows and the temperature of the inflowing waters. Direct reservoir effects and
watershed effects were examined both together and separately (Table 3.2). Future changes in
meteorology can affect the hydrothermal model inputs in two ways. The changes in meteorology
can have a direct effect on the forcing applied at the reservoir surface-atmosphere boundary (e.g.,
air temperature at the water surface, wind speed, incoming solar radiation), or the changes in
meteorology can have an indirect effect by changing the hydrology of the contributing watershed
(e.g., inflow quantity and timing, input water temperature). To further understand the model
sensitivity to changes in meteorological forcing directly on the reservoir versus the changes in
watershed hydrology, three scenarios were developed: (1) using all input both direct meteorology
and the watershed hydrology based on the future climate scenarios discussed above, (2) using the
direct meteorology as developed from the GCMs in combination with the baseline hydrologic
inputs and (3) using the baseline direct meteorology combined with the hydrology as predicted
under the future climate scenarios.

To understand the effects of each individual direct meteorologic input on reservoir thermal
structure, two additional sets of sensitivity analyses were performed. The first examined the
effects of each individual meteorological variable in influencing reservoir thermal structure
under A2 scenario conditions. For these simulations all but one meteorological variable used by
the reservoir and watershed models (Table 3.2) were taken from the time series of historical
baseline conditions while the remaining variable was drawn from the A2 scenario averaged over
the three GCM (CGCM3, ECHAM and GISS) scenarios. The results of this first sensitivity
illustrate the effects of A2 level variation in meteorology, but do not show the absolute
sensitivity of the reservoir hydrothermal model to variation in the different meteorological
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variables, since these changed by differing degrees under the A2 conditions. To gain a better
understanding of the absolute sensitivity of the hydrothermal model, a second set of sensitivity
analyses were run (Table 3.2 and Figure 3.8) using uniform changes to the entire time series of
historical input data. In these scenarios each meteorologic input was changed individually by a
constant additive amount or percentage: the air temperature was shifted by -6, -4, -2, 2, 4, and

6 °C; the dew point temperature was shifted by -6, -4, -2, 2, 4, and 6; the wind speed was shifted
by -6, -4, -2, 2, 4, and 6%; and the solar radiation was shifted by -6, -4, -2, 2, 4, and 6%. .When
estimating the sensitivity of the reservoir model to changes in air temperature or dew point
temperature the coupling between air temperature and dew point temperature was considered
(Table 3.2).

The onset, loss and duration of stratification is defined here as occurring when the difference in

surface temperature (Ts) at Im and the temperature at Im above bottom > 5 °C., The duration of
seasonal stratification is defined as the longest period between the beginning of stratification and
the loss of stratification is defined by the 5 °C temperature difference.

A2 scenarios averaged over three GCMs:
. A2 Air Temperature

. A2 Dew point Temperature

. A? Solar Radiation

. A2 Wind Speed

Air Temperature
(+2. +4. 46_ -2, -4 -6)

Dew point Temperature
(+2. +4. +6_-2_ -4, -6)

3
Solar Radiation Thermal characteristics:

+2%, +4%, +6%, -2%, -4%, -6% \ . Onset of Stratification
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Figure 3.8. Schematic summary of the effect of changes in meteorological forcing on water
temperature
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Table 3.2. Sensitivity analysis using the 1-D hydrothermal model and detailed description of

model run

Table 1a.Watershed model and Reservoir model using baseline and A2 Scenarios meteorological forcing

Reservoir model

Watershed model meteorological data  meteorological data

Remarks

A2 Scenarios A2 Scenarios

Baseline A2 Scenarios

A2 Scenarios Baseline

Effects of climate change on watershed
and reservoir processes

Effects of climate change on Reservoir
meteorology while watershed inflows and
tributary temperatures are unchanged

Effects of climate change on watershed
inflows and tributary temperatures.
Meteorological forcing to the reservoir is
not changed.

Table 1b. Single future meteorology runs

Changes in individual meteorological parameters

Scenario sensitivity analysis

Baseline: solar radiation, wind speed;
A2 tributary temperature (A2T ), New
dew point temperature estimated using
baseline relative humidity and A2
saturation vapor pressure

A2 air temperature
(A2AT)

Baseline: air temperature solar radiation,
wind speed; tributary temperature (T ),
New dew point temperature estimated
using A2 relative humidity and baseline
saturation vapor pressure

A2 dew point temperature

Baseline: air temperature, relative
humidity, wind speed, tributary
temperature (Tr)

A2 solar radiation (A2SR)

Baseline: air temperature, relative
humidity, solar radiation, tributary
temperature (Trp)

A2 wind speed (A2WS)

A2 emission scenario is chosen since
atmospheric CO, concentrations reach
850 ppm the maximum in the year 2100
(Girod et al. 2009). Only A2 specific
meteorological parameter is changed in
each run while others are baseline

Table 1c. Meteorologic fixed change sensitivities

Meteorologic sensitivity analysis

Baseline: solar radiation, wind
speed; new tributary temperature
(T ) and new dew point
temperature

air temperature

Baseline: air temperature, solar
radiation, wind speed; new
tributary temperature (T,) and
new dew point temperature

dew point temperature

Baseline: air temperature, dew solar radiation
point temperature, wind speed;

new tributary temperature (T,)

Baseline: air temperature, dew
point temperature, solar radiation;
new tributary temperature (T,)

wind speed

Increased/decreased by +2, +4, +6, -2, -4,
6 °C

Increased/decreased by +2%, +4%, +6%,
-2%, -4%, -6%
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Results and discussion

The annual average air temperature, simulated water temperature, dew point temperature and
solar radiation all show a slight increasing trend while wind speed shows a slight decreasing
trend (Figure 3.9). The slopes of these trends while suggestive of ongoing climate change were
not significantly different from zero. We therefore assumed that the 39 year record approximated
a stationary baseline climate.

Model Verification - simulations under present conditions in Cannonsville Reservoir

Historical baseline simulations of water temperature closely match water temperature profiles
measured in the reservoir (Figure 3.10). Simulated and measured water temperature profiles
beginning with well mixed spring conditions and continuing through the fall turnover are
presented in Figure 3.10. These figures demonstrate the model’s ability to reproduce the entire
vertical profile of the measured water temperature. In general, the model captures both the
seasonal and vertical distributions observed in the data. Usually, the onset of stratification begins
from mid-April and in early May, permanent stratification occurs between June through
September and breaks down in October. The model was able to reproduce all these events
successfully.

—e&— Air temperature (°C) —8— Water tempearture (°C) —e— Dew point temperature...
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Figure 3.9. Variations of annual average air and water temperature, dew point temperature, mean
solar radiation and wind speed for Cannonsville Reservoir (over 39 years)
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Figure 3.10. Model comparison results for temperature profile during summer stratification
months. Solid lines represent measured temperatures profiles and the open circles represent
model-computed temperature profiles
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Relationship between monthly air temperature and simulated water temperature in Cannonsville
Reservoir

Monthly mean air temperature and the simulated water temperature were compared on a monthly
basis during the stratification period (April to October), and regression equations are derived
(Figure 3.11).

The mean monthly surface water temperature of the reservoir was shown to be directly related to
changes in air temperature. However, distinct differences were observed in the relationships
between temperature of air and surface water on monthly basis, differentiating a warming phase
(April, May, June and July) having rising slope range from 0.6 to 0.9 and a cooling phase
(August, September, October), in which the slope in the regression lines range from 0.4 to 0.8.
April represents a transition from winter to the warming phase as shown by the negative (low)
intercept. The lower slopes (May-October) indicate that there is a smaller year to year variation
in the water temperature than in the air temperature both during warming and cooling phase. This
smaller water temperature variation reflects the higher specific heat and consequent greater heat
capacity of the water. It may be possible that the greater scatter in October with small R? (0.3) is
associated with the final breakdown in thermal stratification.
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Figure 3.11. The relation between the monthly means of air and simulated water temperature in
Cannonsville Reservoir (based on 1966-2004 baseline period)

30



Comparison of vertical temperature distribution under baseline and A2 emission scenario (2081-
2100)

Isopleths of the vertical variation of simulated water temperature are presented in Figure 3.12 for
historical baseline conditions and for future A2 scenario conditions, where both watershed and
reservoir models were driven by the A2 scenarios (Figure 3.7). The isopleths are constructed
using daily average water temperature profiles associated with the 39 years baseline period and
the combined mean daily profiles derived from the three A2 scenarios. The figures show the
overall seasonal variation of water temperature and comparison of the two figures show the
predicted increase in future mixed layer depth and surface temperatures in the A2 scenario in
comparison to baseline. Overall the A2 emission scenario is simulated to have warming water
temperatures, a longer stratification period, greater vertical temperature gradients and more
stable thermal stratification.

Statistics describing stratification characteristics, such as onset, loss and duration of stratification
and the surface and bottom temperature in baseline and A2 scenario are listed in Table 3.3. It is
estimated that on average for the future A2 scenarios, the onset of stratification will begin 19
days earlier; loss will occur 4 days later with duration of stratification will increase by 23 days.
The surface water temperature will on average increase by + 1.8 °C and the bottom water
temperature will increase by 0.8 °C.

Baseline

10
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30
40
50

Depth (m)

T T T T T ! T 50 T T T T T T
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Temperature (°C) -
-2 0 1 3 5 6 8 0 11 13 15 16 18 20 21 23 25 26 28

Figure 3.12. Mean annual isopleths of simulated temperature under baseline and A2 emission
scenario. Profiles from which these were calculated are the mean daily profiles of all baseline
scenario years and the combined means of all A2 scenarios (CGCM3, ECHAM & GISS)
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Table 3.3. Thermal characteristics under baseline and A2 scenario (Surface Water Temperature, T
= temp at 1m; Bottom Water Temperature, Ty, = temp at 1 m above bottom) Days are Julian day (1-365)
of the year. All values are means calculated over all the years from a given scenario.

Stratification under baseline (in days)

Onset Loss Duration Ts Th
(day) (day) (days) (°C) (°C)
Average  129.64 295 165.35 19.93 5.31

Range 111-148 267-325  139-204 18.28-21.54  2.14-8.53
Stratification under A2 (in days)

Onset Loss Duration Ts Tb
(day) (day) (days) (°C) (°C)
Average  110.89 298.79 187.89 21.7 6.09

Range 95-132 275-330  160-221 20.20-23.43 4.21-9.50

A2 Scenario sensitivity run

The annual average increase in air temperature (+4 °C) and dew point temperature (+2 °C), as
well as the percent increase in wind speed (+2%) and solar radiation (+0.25%) in A2 emission
scenario in comparison to baseline conditions are presented in Figure 3.13 and Table 3.4.

In order to evaluate the relative sensitivity of water temperature and thermal stratification to the
changes in the different meteorological drivers that occur in the A2 future scenario, a set of
sensitivity simulations was run which used the baseline meteorological data for all but one
meteorological variable which was instead drawn from the A2 scenario time series. When the
coupled model system was driven using these hybrid data it is possible to see the relative effects
of A2 level changes in a single meteorological variable.

The onset loss and duration of stratification during the 39 years of the baseline simulations and

the sensitivity simulations which used single A2 meteorological variables with the remaining
variables being baseline are shown in Figure 3.14.
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Table 3.4. Variation in meteorological data under baseline and A2 scenario

Baseline
Tair Tdp mSR Wind Speed
(°C) (°C) (Kcal m?h™) (km/hr)
Average 7.79 2.95 8.61 117.51

Range (9.29-6.93) (6.20-1.75)  (10.00-7.16) (126.36-109.10)
A2 Scenarios

Tair Tdp mSR Wind Speed
(°C) (°C) (Kcal m?h™) (km/hr)
Average 11.86 4,95 8.78 117.80

Range  (13.35-11.00) (6.92-3.62) (10.23-7.29)  (126.40-109.39)

2.5

H Airtemp H DPtemp B WindSp H mSRad

£%15
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Airtemp DPtemp WindSp mSRad

A2 met parameters
% increase in A2 met
parameters
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Figure 3.13. Increase in mean annual values of meteorological data compared from the baseline
run and the combined A2 scenario data set. Differences in air temperature and dew point
temperature are absolute and in degrees C. Differences in wind speed and solar radiation are
expressed as a percent change from the baseline.
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Figure 3.14. Inter-annual variation in the onset loss and duration of thermal stratification for
baseline conditions, and for hybrid data sets of baseline conditions and a single meteorological
driver from the A2 scenario.
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From the results in Figure 3.14, it is clear that the onset of stratification is most sensitive to air
temperature in comparison to the other A2 meteorological drivers. In fact variations in the other
sensitivity runs were very similar to the baseline run, showing that simulated changes in the
onset of thermal stratification were largely the result of A2 level changes in air temperature.
There are a few interesting occasions (1997, 1999, 2002) where A2 level changes in dew point
temperature also led to variations in the onset of thermal stratification, and these are currently
under investigation.

Usually, the loss of stratification is also found to be sensitive to A2 level changes in air
temperature, although to a lesser extent than was the case for the onset of stratification. This is
the result of the onset of stratification being most strongly influenced by the conductive warming
by significantly warmer air temperatures (Figure 3.13), while the loss of stratification is more
strongly related to cooling and convective mixing that are closely linked to the seasonal cycle of
air temperature, and not as strongly linked to changes in the absolute magnitude of the surface air
temperature. As a result of changes in the onset of stratification and to a lesser extent the loss of
stratification, the duration of stratification is longer throughout the simulation period except the
year 1976, which was storm affected. The results shown in Figure 3.13 clearly show the
sensitivity of stratification and water temperature to A2 level changes in air temperature,
followed by dew point temperature. Changes in wind speed and solar radiation simulated to
occur in our A2 scenarios had only minimal impact on reservoir thermal structure.

Simulations with the 2081-2100 A2 scenarios clearly indicate that there will be important
changes in reservoir thermal structure, and that these changes are largely the result of the air
temperature increases expected under these future conditions. However, it is also clear that in the
future scenarios it is air temperature which shows the greatest and most consistent increase
(Figure 3.13). As a consequence, the changes simulated in Figures 3.12 and 3.14 can be related
to the greater climate sensitivity of air temperature and also possibly to a greater model
sensitivity to changes in air temperature. To better separate the effects of model sensitivity from
climate change sensitivity a second set of model sensitivity analyses was run where each
meteorological driver was varied over a series of fixed steps.

Model sensitivity run (changing meteorological forcing) under baseline conditions

The hydrothermal model was run with uniform changes in meteorological forcing, i.e. +2, +4,
+6, -2, -4 and -6 °C for air temperature, and dew point temperature, and with +2%, +4%, +6%, -
2%, -4% and -6% changes in mean solar radiation and wind speed. The thermal characteristics
of each run are analyzed and are presented in Table 3.5. Changes in the onset, loss and duration
of stratification in response to changes in each of the four meteorological forcing are shown in
Figure 3.15. The results show that model sensitivity for simulating changes in stratification is
most sensitive to changes in air temperature.

For a rise in air temperature of +2, +4 and +6 °C, the onset of stratification begins 5, 9 and 18
days earlier and the loss of stratification occurs 1, 3 and 5 days later resulting in a longer
duration of stratification in comparison to the baseline. With a decrease of air temperature, the
onset of stratification occurs 5, 10 and 18 days later while the loss of stratification occurs 4, 8
and 12 days earlier resulting in a shorter duration of stratification.
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The stability of the water column also changes markedly with changing air temperature,
becoming more stable with increased air temperature and less stable with decreased air
temperatures. This change is caused by a more rapid and greater response in epilimnion
temperatures compared to the hypolimnion temperatures, so that increased air temperature
increases the vertical temperature gradient and water column stability. A similar change in dew
point temperature results in no significant change in onset, loss and duration of stratification.
This implies the effects of dew point on the evaporative latent heat flux are much less than the
conductive heating associated with air temperature increases.

When the solar radiation and wind speed are increased or decreased by 2%, 4% and 6%; there is
only a marginal change in onset of stratification (1-2 days earlier for maximum changes in solar
radiation and 1-2 days later for maximum changes wind speed). There is no change in the loss of
stratification with the same changes in solar radiation while there is 1-2 days earlier occurrence
of loss of stratification with increase in wind speed. With decrease in wind speed, the loss of
stratification occurs 1-3 days later. Thus, wind speed has a measureable effect on the onset and
loss of stratification. Such effects in reality could be greater since actual changes in wind are
unlikely to occur as a fixed percentage as in this sensitivity test. Rather, wind changes could be
more episodic with larger but temporally shorter increases having more significant effects on the
timing of stratification

Table 3.5. Thermal characteristics resulting from a change in each meteorological forcing.
Positive values for onset and loss signify the number of day later in the year for the event, values
for the duration signify the change in the number of days of stratified conditions.

Air Temperature Dew Point Temperature
Change onset loss duration Ts Change onset loss duration Ts
2 -5 +1 +5 1.51 2 0 +1 +2 -0.06
4 -9 43 +12 2.89 4 +1 +1 +1 -0.01
6 -18 +5 +22 4.08 6 +1 +1 +1 0.00
-2 +5 -4 -10 -1.24 -2 +1 +1 +1 -0.06
-4 +10 -8 -18 -2.65 -4 +1 +1 +1 -0.09
-6 +18 -12 -29 -3.92 -6 +1 0 0 -0.08
Solar Radiation Wind Speed
Change onset loss duration Ts Change onset loss duration Ts
2% -1 0 +1 0.09 2% +1 -1 -1 -0.04
4% -2 0 +2 0.13 4% +1 -2 -3 -0.06
6% -1 0 +2 0.26 6% +2 -2 -4 -0.11
-2% 0 0 0 -0.12 -2% 0 +1 +1 0.00
-4% +1 0 -1 -0.14 -4% 0 +2 +2 0.07
-6% +1 -1 -2 -0.22 -6% -1 +3 +4 0.09
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Figure 3.15. Comparison of Stratification Characteristics for various runs under changes in
meteorological forcing
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Figure 3.16. Selected vertical temperature profiles with under baseline conditions and from the
sensitivity runs that increased air temperature and dew point temperature by +6 °C and wind
speed and solar radiation by +6%
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Response of water temperature profiles to the changes in meteorological variables

Several examples of vertical temperature profiles are selected at times when there was a
measured well established thermocline (Figure 3.16). These show changes in the vertical
variation of water temperature with respect to the changes in air temperature and wind speed. It
was observed from these vertical temperature profiles that with the rise in air temperature, the
water temperature is fairly uniform within the depths of the upper mixed layer (epilimnion),
showing that the induced warming is distributed vertically by convective mixing. It may be
concluded that the model is very sensitivity to changes in air temperature in comparison to other
meteorological forcing. As was the case with Figures 3.14 and 3.15 the simulated temperature
profiles in Figure 3.16 are insensitive to changes in any of the meteorological parameters other
than air temperature.

Conclusions

The coupled hydrologic and hydrothermal models used in the present study are capable of
reproducing the physical processes affecting the thermal structure of the Cannonsville reservoir
system. In general, the onset of stratification begins from mid-April and by early May, a
permanent stratification becomes established, which stays until mid-October). It is estimated that
under the future A2 emission scenario in the 2081-2100 time period, the onset of stratification
will begin 19 days earlier, loss will occur 4 days later with duration of stratification 23 days
more. The surface water temperature will increase by 1.8 °C and the bottom water temperature
will increase by 0.8 °C.

By selectively examining the effects of different meteorological parameters in the A2 emission
scenario, it was concluded that the onset of stratification is most sensitive to air temperature in
comparison to other meteorological drivers of the reservoir hydrothermal model. A separate
sensitivity analysis that systematically varied each of the meteorological drivers over a similar
range of variation confirmed that the simulated timing of thermal stratification was most
sensitive to changes in air temperature.

The sensitivity of future simulations of reservoir thermal stratification to changes in air
temperature is therefore, related to two different sensitivities: 1) Climate sensitivity of air
temperature. It is changes in air temperature embodied in the GCM data which are predicted
with the greatest certainty, and which show the greatest change relative to other reservoir model
meteorological drivers. 2) Model sensitivity to changes in air temperature. Sensitivity analyses
which varied each meteorological driver by a similar amount also show that simulations of
thermal stratification are most strongly influenced by variations in air temperature, and the model
is therefore most sensitive to this meteorological driver...

The timing and pattern of thermal stratification, is of fundamental importance in regulating the
ecology and biogeochemistry of lakes and reservoirs. Based on our results it appears predictions
of changing thermal stratification can be made with a high level of certainty that is similar to that
now attributed to future scenarios of air temperature.

38



3.4. Streamflow Responses to Climate Change: Analysis of Hydrologic Indicators
Introduction

Streamflow and its components reflect the combined impact of climate change because of the
spatially integrated hydrologic response that they provide. Small perturbations in precipitation
frequency and/or quantity can impact mean annual streamflow (Risbey and Entekhabi, 1996). An
examination of historical data and results of model simulations in the northeastern US have
shown an increasing trend in precipitation and streamflow during the last fifty years (Burns et al.,
2007; Zion et al., 2011). Changes in precipitation and even temporal shifts in the water balance
may bring changes in hydrologic regimes and affect stream habitat, ecosystem diversity, and
water resource management. The characteristics related to the amount and variability of
discharge are considered to be the most fundamental variables defining the stream ecosystem
(Bunn and Arthington, 2002; Poff and Ward, 1990) and the alteration of flow regimes is
identified as a potentially serious threat to the ecological sustainability of rivers (Richter et al.,
1996). Ecologists have consistently identified flow magnitude, duration, frequency, timing, and
rate of change (Poff and Ward, 1990; Poff et al., 1997) as the most influential responses to
consider in ecological studies. The goals of this study are:

1. To examine how changes in precipitation and air temperature translate into changes in
streamflow responses in the Cannonsville Reservoir Watershed (CRW) using a physically
based semi-distributed SWAT-WB model (Easton et al., 2010; White et al., 2011).

2. To analyze baseline and future streamflow scenarios using the Indicators of Hydrologic
Alterations (IHA) tool (Richter et al., 1996) to gain an overall indication of the extent of
hydrological change from reference conditions.

The potential effect of climate change on streamflow was assessed using scenarios derived from
a suite of nine Global Climate Model (GCMs) that represent a range of future (2081-2100)
climate conditions (Table 3.6) for A1B scenario (representing rapid economic growth with
balanced emphasis on all energy sources) (IPCC, 2007). Climate scenarios were downscaled
using change factor methodology described in (Anandhi et al., 2011).

Methods
Hydrologic Assessment

The general approach for hydrologic assessment consisted of defining a series of 33 hydrologic
attributes that characterize intra-annual variability in streamflow conditions and then analyzing
these variations as a foundation to compare baseline streamflow versus the impact of climate
change on streamflow. The hydrologic attributes are based upon five characteristics of
hydrologic regimes, known as Indicators of Hydrologic Alterations (IHA). Details on IHA tool
can be obtained from IHA Manual (Richter et al., 1996). A summary of the parameters, and their
characteristics, used in the IHA is provided in Table 3.6. The IHA analysis statistically
characterizes inter-annual variation in flow regimes and, because the methodology uses median
daily streamflow, it is suitable for detecting the hydrological characteristics relevant to sustaining
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Table 3.6. Indicators of Hydrologic Assessment (Richter et al., 1996)

IHA group

Hydrologic parameters

Ecosystem Influences

Magnitude of
monthly water
conditions

Median value for each calendar year (12
parameters)

Availability of habitat for aquatic organisms
Availability of soil moisture for plants
Availability of water

Reliability of water supplies for wildlife
Effects of water temperature and dissolved
oxygen

Magnitude and
duration of annual
extreme water
conditions(median
daily flow)

Annual 1-day minima
Annual 3-day minima
Annual 7-day minima
Annual 30-day minima
Annual 90-day minima
Annual 1-day maxima
Annual 1-day maxima
Annual 1-day maxima
Annual 1-day maxima
Annual 1-day maxima
Number of zero flow days
7-day minima/median for year

Balance of competitive and stress tolerant
organisms

Creation of sites for plant colonization
Structure of river channel morphology and
physical habitat conditions

Soil moisture stress in plants

Dehydration of wildlife

Duration of stressful conditions
Distribution of plant communities

Timing of annual
extreme of high
and low pulses

Julian date of each annual 1-day maxima
Julian date of each annual 1-day minima

Predictability and avoidability of stress for
organisms
Spawning cues for migratory fish

Frequency and
duration of high
and low pulses

Number of low pulses within each year
Median duration of low pulses each year
Number of high pulses within each year
Median duration of high pulses each year

Frequency and magnitude of soil moisture stress

for plants

Availability of floodplain habitat for aquatic
organisms

Effects of bedload transport and channel

sediment distribution, and duration of substrate

disturbance

Rate and
frequency of
water condition
changes

Medians of all positive difference between
consecutive daily values

Medians of all negative difference between
consecutive daily values

Number of hydrologic reversals

Drought stress on plants

Desiccation stress on low-maobility stream-edge

organisms

Table 3.7. Global Climate Models (GCMs) used in this study

GCM ID* Acronym used
CGCM3.1(T47) Cc4
CGCM3.1 (T63) CC6
CSIRO-MK 3.0 CSo
GISS-AOM GAO
GFDL-CM 2.0 GF0
IPSL-CM4 IPS
MIROC3.2 (HIRES) MIH
ECHAM5/MPI-OM MPI
MRI-CGCM 2.3.2 MRI
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aquatic ecosystems. Seventeen of the 33 IHA parameters (Groups 2, 3 and 4 in Table 3.6) focus
on the magnitude, duration, timing and frequency of extreme events, whereas the other 16
parameters (Groups 1 and 5 in Table 3.6) are measures of the median of the magnitude of flows
or the rate of change of water conditions.

The steps used in hydrologic assessment are as follows:

1. The streamflow time series for baseline simulation (1964-2008) and nine climate change
scenarios were defined. During the data set up, baseline simulation was treated as pre-
impact scenario and each climate change scenario as post-impact scenarios.

2. The values for the ecologically relevant 33 parameters (Table 3.6) for each year in each
time series were calculated.

3. Inter-annual statistics such as measures of central tendency and dispersion were
calculated for each time series for 33 parameters.

4. The median and coefficient of variations for each parameter was then compared between
simulated streamflow and streamflow as a result of climate change.

Changes in daily streamflow metrics were analyzed to identify changes in dynamics of
streamflow in the CRW between the baseline simulation period and the various climate change
scenarios (Table 3.7). When examining the hydrologic effects of climate change scenarios, the
change in the hydrologic responses were calculated relative to the results from the calibrated
baseline simulation, rather than the historic observations.

Results and Discussion

We used the median as an estimate of central tendency and the variance as an estimate of
dispersion. For each 33 hydrologic parameters the differences between the baseline and climate
change ensemble scenario was expressed as both a magnitude of difference and a deviation
percentage (Table 3.8).

Magnitude of the monthly median of daily flows

The hydrologic assessment showed an increase in median monthly streamflow for winter
months. The highest increase in median daily flow was observed for during January (379%).
Such a large increase in winter flow can affect not only habitat suitable for winter flora and
fauna, but can increase stream bank erosion and mass flux of pollutants. The streamflow
decreased from April through September. The reduced flow during April and summer months
can have adverse impacts on fish habitats and spawning. A study specific to the Catskill
Mountain region of NYS (Burns et al., 2007) reported that there was a notable shift in peak
snowmelt from early April at the beginning of the historic record to late March by the end of the
record, and an increase in runoff from June to October. Annual mean streamflow increased for
all the climate change scenarios. (Gan, 1998), in a study of the Canadian Prairies, found that over
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Table 3.8. Results of indicators of hydrologic alteration analysis for stream at Walton, NY

Medians Dispersion
Ensemble Baseline Ensemble
Baseline scenario b Condition scenario
Condition (2081- Deviation™/ (1964- (2081- Deviation/
(1964-2008) 2100) Magnitude% 2008) 2100) Magnitude%

Parameter Group #1: Monthly magnitude (streamflowa)
January 4.07 19.5 15.4/ 379 2.10 1.02 -1.08/-51.4
February 4.99 22.2 17.2/ 344 2.44 0.81 -1.63/-66.9
March 255 31.6 6.10/23.9 0.98 0.47 -0.51/-52.0
April 40.8 24.7 -16.1/ -39.5 0.40 0.52 0.12/29.2
May 19.9 12.9 -7.03/-35.3 0.47 0.67 0.20/41.5
June 9.69 8.06 -1.63/-16.8 0.81 1.01 0.20/ 24.6
July 7.00 6.58 -0.42/ -6.0 0.84 0.83 -0.01/-1.20
August 4.71 4.44 -0.27/-5.8 0.68 0.65 -0.03/-5.00
September 4.61 411 -0.50/ -10.9 0.88 0.91 0.02/2.80
October 7.12 7.59 0.47/ 6.6 1.63 1.74 0.11/6.80
November 12.5 20.2 7.68/61.2 0.99 0.98 -0.02/ -1.50
December 8.73 19.2 10.5/ 120 0.82 0.82 0.00/-0.20
Group averages ° 68.4% -6.11%
Parameter Group #2: Magnitude and duration of annual extremes (streamflowa)
1-day minimum 0.21 0.50 0.29/ 140 2.81 1.38 -1.43/-50.8
3-day minimum 0.27 0.65 0.38/ 144 2.55 1.27 -1.28/-50.4
7-day minimum 0.47 1.04 0.58/ 124 2.16 0.89 -1.27/-58.9
30-day minimum 2.44 2.73 0.29/12.0 0.95 0.70 -0.24/ -25.5
90-day minimum 5.20 5.11 -0.09/ -1.80 0.46 0.49 0.03/6.0
1-day maximum 130.0 137.4 7.40/5.70 0.59 0.57 -0.10/ -2.30
3-day maximum 98.3 105 6.57/6.70 0.54 0.49 -0.05/-9.30
7-day maximum 80.2 82.4 2.17/2.70 0.54 0.39 -0.15/-28.0
30-day maximum 51.7 53.5 1.80/ 3.50 0.49 0.37 -0.12/-24.0
90-day maximum 36.5 35.3 -1.14/-3.10 0.30 0.35 0.50/17.0
Base flow index 0.02 0.07 0.05/ 222 241 0.80 -1.61/-66.7
Group averages 54.6% -24.4%
Parameter Group #3: Timing of annual extremes
Date of minimum 50.0 253.5 202.5/ 397 0.14 0.11 -0.03/-23.6
Date of maximum 84.0 79.8 -4.22/ -5.0 0.14 0.19 0.04/29.2
Group averages ° 196% 2.80%
Parameter Group #4: Frequency and duration of high and low pulses
Low pulse count 11.0 9.11 -1.89/-17.20 0.55 0.56 0.02/3.30
Low pulse duration 5.00 4.67 -0.33/-6.70 0.60 0.68 0.08/13.9
High pulse count 12.0 14.2 2.22/18.50 0.42 0.44 0.027/5.1
High pulse 4.00 3.94 -0.66/ -1.40 0.50 0.58 0.08/16.9
Group averages ° -1.70% 9.80%
Parameter Group #5: Rate and frequency of change in conditions
Rise rate 2.16 2.33 0.17/8.1 0.61 0.42 -0.19/-31.5
Fall rate -1.12 -1.37 -0.25/22.5 -0.28 -0.35 -0.07/24.3
Number of 116 126.2 10.22/ 8.8 0.15 0.11 -0.04/ -24.5
Group averages ° 13.1% 10.6%

%Daily median streamflow in m*sec™.
PThe deviation represent the Indicators of Hydrologic Alternations.
c .. iy -
Group averages are computed as the mean of all deviations within the group.
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the last 40-50 years many stream and river gauging stations observed an increase in streamflow
during March, attributed to earlier snowmelt, followed by reduced flow in May and June. Lower
summer flows can lead to increase in water temperatures and reduced dissolved oxygen. Lower
flows also indicate a reduced wetted perimeter, which would decrease habitat availability and
impact lateral exchanges between the riparian zone and the stream.

Magnitude and duration of extreme annual conditions

The percent change values are less for the annual maximum daily streamflow compared to the
annual minimum and median daily streamflow for non-winter months, similar to the
observations made by (McCabe and Wolock, 2002) for the conterminous United States. Our
study indicates that streamflow will become much more extreme with increases in both
consecutive 7-day low flow (124% increase from baseline) and in 7-day high flow (3.5%
increase from baseline) under future climate scenarios. The magnitude of increase however is
higher for annual daily minimum flow. A study in Monroe County, NY (Coon, 2005) assessing
trends from 1965 to 2005 noted an increase in temperature, precipitation, and 7-day low-flows in
rural streams, consistent with trends observed elsewhere in the U.S. Because the amount of water
available in a river system defines the suitability of a habitat to aquatic organisms, flow
alteration, especially at low flows, may create unfavorable conditions for native species (Poff et
al., 1997).

Timing of the annual extreme conditions

The timing of the maximum 1-day flow shifted back from March 25 to March 19 (by
approximately 6-days), while there was a forward shift in the timing of minimum flow as it
shifted from early February to late October. This degree of shift would likely adversely affect
the fall spawners such as brook trout due to reduced habitat availability resulting from extended
low flow conditions. A shift in the timing of peak flow can alter the retention time of organic
matter (Mulholland et al., 1997), disrupt the recruitment of riparian species that rely on
appropriately-timed high flows to disperse seeds on the flood plain (Auble et al., 1994; Rood et
al., 1995), and impact the survival of certain fish species whose larval emergence is timed to
avoid high spring flows (Hauer et al., 1997).

Frequency, Rate and frequency of change in conditions

The pulsing behavior of the stream at the USGS gauge in Walton NY shows a reduced (17.2%)
number of low pulse events but an increase of 18.5% in high pulse events compared to the
baseline scenario. Changes in flow pulses will lead to changes in channel geometry depending on
the channel substrate. Increase in high flow pulses also lead to shift towards weedy invertebrate
species and loss of species with poor re-colonization ability. Our results showed an increase in
both rise and fall rate of the hydrograph (e.g., steeper rising and receding limbs) resulting in
increase in number of reversals.

Table 3.8 shows the temporal variability in streamflow for baseline and climate change
scenarios. The variability has been reduced for the summer monthly median flows, the 90-day
minimum and maximum flow, the timing of annual highs, the frequency and duration of low
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pulses, and the duration of high pulses. Temporal variance increased for April through June and
during fall months, specifically the 90-days minimum and maximum, timing of annual extremes
and hydrograph rise rate. These results of IHA analysis for Walton, NY reflect the effect that
climate change may have on stream flow conditions. This higher variability in rise and fall rate
of hydrograph may affect aquatic invertebrates inhabiting the littoral zone along the river’s edge
(Richter et al., 1996; Richter et al., 2003).

Conclusions

This study used the SWAT-WB model to simulate streamflow and evaluate effects of climate
change on streamflow, and flow regime, including metrics calculated using the IHA tool. These
indicators are important for understanding how river flow dynamics will impact the health of the
aquatic environment as well as water supply and other infrastructure. Based on the future climate
scenarios used in this study, the indicator analysis showed that watershed water yield is expected
to increase at an annual scale. Winter and spring streamflow will increase but summers will be
drier in future. Lower flows indicate a reduced wetted perimeter, which would decrease habitat
availability and impact lateral exchanges between the riparian zone and the stream. The
magnitude and duration of annual extremes are also expected to increase due to climate change.
Baseflow index increase, i.e., decrease in baseflow may result due to the change in projected
climate effecting soil moisture and soil water storage. The timing of annual extremes will be
shifted for maximum flow by approximately 6 days backward and minimum flow from early
winter to late October. Such shifts can impact the survival of certain fish species whose larval
emergence is timed to avoid high spring flows. Both the rise and fall rates of the hydrograph will
increase indicating the increase in flashiness. Changes in land surface hydrology due to changing
climate, such as changes in the discharge of large rivers, have potentially far reaching
implications both for human populations and for regional-scale physical and ecological
processes.

44



3.5. WRF Project 4262 - Vulnerability Assessment and Risk Management Tools for
Climate Change: Assessing Potential Impacts and Identifying Adaptation Options

The WRF Project 4262 — Vulnerability Assessment and Risk Management Tools for Climate
Change — was completed in 2013 and the final report entitled “A Framework for Assessing
Climate Change Vulnerability and Defining Robust Risk Management Strategies for Water
Utilities” was published by the Water Research Foundation. Project collaborators included
researchers from Stockholm Environment Institute, Rand Corporation, Hydrologics, Hazen and
Sawyer, NYC DEP, and National Center for Atmospheric Research (NCAR). The project
focused on the use of a quantitative, iterative analytical framework called Robust Decision
Making (RDM) to assess climate vulnerability for water supply systems. Guidelines for
application of RDM were provided by means of examples in two pilot studies — Colorado
Springs Utilities and the New York City Water Supply. RDM was demonstrated to be an
efficient tool for testing the sensitivity of water supply systems to climate change, and may prove
useful in future studies of the effects of climate change on the NYC Water Supply.

3.6. WRF Project 4306 — Dynamic Reservoir Operations: Managing for Climate
Variability and Change

The WREF Project 4306 — Dynamic Reservoir Operations: Managing for Climate Variability and
Change — was completed in 2013 and the final report was published by the Water Research
Foundation. The project focused on the use of Dynamic Reservoir Operations (DRO) in
improving system reliability, resilience and performance under challenging climate conditions.
DRO are operating rules that change based on the present state of the system, such as storage
levels, current inflow, and/or forecasted conditions. The project included a literature review;
creation of a DRO development guide with step-by-step guidelines for developing effective
rules; and case studies that included the Washington D.C. Metropolitan Area, New York City,
and the City of Calgary. The NYC case study focused on the use of dynamic hydrologic forecast-
based rules. An assessment of the incremental effect of increasingly sophisticated forecasting
techniques on performance measures under historical and climate-adjusted hydrology showed a
substantial benefit of the use of forecasts. The DRO guide and case studies provide valuable
guidance for application of DRO in future studies of the effects of climate change on the NYC
Water Supply.
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4. Model Development and Applications
4.1. Simulating Spatial Sediment Loading in the Esopus Creek Watershed
Introduction

In the United States sediment is one of the leading pollutants impacting water quality in over
100,000 miles of assessed streams and rivers (USEPA, 2009). Sediment source assessment is
thus not only important to our understanding of sediment dynamics in fluvial systems but is
increasingly becoming an important management tool. The New York City (NYC) water supply
is currently the largest unfiltered water supply in the world and supplies over 1 billion gallons
(~3.78 x 10° m®) of water per day to more than 9 million residents of NYC and upstate
communities. While water quality is usually pristine, high magnitude runoff events can cause
significant increases in stream and reservoir turbidity, which at times limit the use of this
unfiltered drinking water supply (Effler et al., 1998; Gelda et al., 2009). This is particularly true
for the Upper Esopus Creek (UEC) that drains into the Ashokan Reservoir (Figure 4.1)
(Mukundan et al., 2013a). Previous modeling analysis of sediment sources in the UEC watershed
indicated that the majority of suspended sediment in the UEC originated from stream channels
(NYCDEP, 2008). And while there is a general consensus on the dominant source of suspended
sediment in the UEC watershed, the spatial distribution of suspended sediment sources as well as
the relative contribution by stream channels, uplands, and point sources is not well documented.

An approach for estimating sediment at the watershed scale is application of the Soil and Water
Assessment Tool (SWAT) model (Gassman et al., 2007; Arnold et al., 2012). While calibrated
models are cost effective tools to quantify sediment loading, lack of data for model
parameterization remains a problem. (Moriasi et al., 2011a). This is particularly true for the
application of SWAT model in the UEC watershed where sub-watersheds behave
heterogeneously in respect to sediment transport rates. Recently, the NYC Department of
Environmental Protection (NYCDEP) and the U.S. Geological Survey (USGS) developed and
completed a monitoring project to collect detailed spatial and temporal turbidity and suspended
sediment data in the UEC and its tributaries (McHale and Siemion, in press Section 5.1). One of
the objectives of this three year (October 1, 2009 to September 30, 2012) project was to generate
field data that can support water quality modeling analysis. In this study we use information
generated from this monitoring project to guide a spatially distributed model parameterization
and modeling analysis. The specific objectives of this study are:

e To use short-term monitoring data from multiple sites across the study watershed for
model parameterization and develop a predictive model for long-term simulation of
sediment transport.

e To simulate spatial variations in sediment entrainment within the Upper Esopus Creek
watershed and its tributaries and predict sediment concentrations at the watershed outlet.

e To quantify sediment yield at the watershed outlet.
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Figure 4.1. Location of the Upper Esopus Creek Watershed (UECW) and tributary sub-basins
Materials and Methods
Description of study area and water quality monitoring

The Upper Esopus Creek watershed drains 493 km? and is dominated by forests which occupy
more than 90% of the watershed area. The elevation of the watershed ranges from about 194 m
near the watershed outlet at Coldbrook to 1275 m at the headwaters. An automated turbidity
monitoring system was installed on the main stem of the watershed near the confluence of the
creek and the Ashokan reservoir. Water was pumped into a riverside hut where measurements of
turbidity were made using a YSI water quality sonde. A strong relation (not shown) between
turbidity and TSS permitted the use of turbidity data from the field sonde to be used as a
surrogate for TSS in our modeling analysis. While the above data were used for model
calibration at the watershed outlet, sub-basin level parameterization of the model for simulating
sediment entrainment used the information generated by the monitoring project discussed in the
Section 5.1 (McHale and Siemion, in press).

Model description and set up
The SWAT model estimates water, nutrient, and sediment loading from a watershed. In SWAT,

sediment is generated by landscape and stream channel erosion and routed through the stream
which is explicitly characterized as a network of connected reaches.
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The UEC watershed was delineated from a 10-m resolution Digital Elevation Model (DEM) into
89 SWAT sub-basins using the automatic delineation tool in the ArcSWAT2012 interface. This
ensured that the stream reaches within each major sub-basin were sufficiently small in length for
channel parameterization and to simulate reach scale variability in channel processes. A land use
map from 2001 with 39 classes derived from Landsat Enhanced Thematic Mapper Plus (ETM+)
satellite imagery and ancillary data was used for land use information. For soil information, the
SSURGO soils database was used. Daily precipitation and air temperature data were obtained
from cooperator stations recognized by the National Climate Data Center (NCDC). All other
regional weather parameters were simulated by the model using a weather generator encoded
within SWAT. The contribution of water and sediment by the Shandaken Tunnel diversion from
the nearby Schoharie Reservoir (point source) was input from a measured daily time series of
flow and turbidity at the sub-basin where the tunnel entered the Esopus Creek.

Model parameterization, calibration and validation

A three step approach was used for model parameterization and calibration for spatially
distributed sediment entrainment and transport simulation. A combination of automatic and
manual calibration approach was used in this study.

In the first step, the model was calibrated for streamflow using measured values from the USGS
gauge (#01362500) at Coldbrook. The calibration parameters related to processes involved in
streamflow generation, including partitioning precipitation into infiltration and runoff, baseflow
recession, and the rates of snowpack development and depletion, were adjusted using the ParaSol
method in the SWAT-CUP automatic calibration tool (Abbaspour, 2008). The calibrated
hydrology model was used to derive estimates of landscape erosion using default MUSLE
parameters. We expect the model to perform adequately well with default parameters as there is
very little disturbance for causing significant landscape erosion in this predominantly forested
watershed.

In the second step channel parameters were adjusted one major sub-basin at a time to simulate
sediment entrainment from the channel reaches. With land use being uniform across the
watershed, a constant value for the channel cover [CH_COV] parameter was used. The channel
erodibility parameter [CH_EROD)] was adjusted so that the proportion of sediment contributed
by each major sub-basin to the total sediment load at the entire watershed outlet matched
estimates from the monitoring project described above (McHale and Siemion, in press). For
major sub-basins channel erodibility was adjusted for the outlet reaches to represent the
cumulative rates of channel erosion that resulted in sediment yields ranging between 2% and
37% of the total. The main stem of the watershed was parameterized to produce about 25% of
the total yield as estimated by the monitoring project. The SWAT check program (White et al.,
2012) was used in this step to determine the simulated contribution of stream channels to the
overall sediment yield at the watershed outlet using the one sub-basin at a time parameterization
approach described above. In the final step three parameters related to channel transport capacity
(I[SP_CON], [SP_EXP], and [PRF]) were optimized using SWAT-CUP. Model predicted TSS
concentrations were calibrated against TSS estimated from high frequency turbidity
measurements.
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The period from June 2003 to December 2006 was considered as the calibration period for both
streamflow and sediment concentration. The calibrated model was validated for streamflow and
sediment concentration during the period from October 2008 to September 2010. The validated
model was continuously simulated for the period from 1997 to 2010 (14 yr. with a 2 yr. model
warm up period) under a wide range of hydrologic conditions observed during this period.

Results and Discussion
Model simulation of flow and sediment

The calibrated model made reasonable predictions of streamflow (Figure 4.2) and sediment
concentrations (Figure 4.3) at the watershed outlet. The relative contribution of suspended
sediment from the three sources in the UECW based on long-term simulation of the calibrated
model was: stream channel processes — 85%; surface/upland erosion — 11%; and point source —
4%. This finding on the contribution of stream channels as the major source of suspended
sediment in the UECW is consistent with previous estimates (NYCDEP, 2008) and field
observations.

Sediment yield at the Esopus Creek watershed outlet and tributaries

Sediment yield (t km yr'*) from sub-basins (tributaries) and main stem of the Esopus Creek
watershed based on a 12 year simulation (1999-2010) of the calibrated model are presented in
Figure 4.4. The simulated average annual sediment yield at the watershed outlet at Coldbrook is
about 80 t km™ yr’. In comparison all tributaries except Stony Clove had much lower average
annual sediment yields ranging between 12 t km? yr*to 57 t km? yr*. At 161 t km? yr* the
Stony Clove sub-basin had an area normalized average annual sediment yield value that was
twice that as at the watershed outlet.

The contribution of Stony Clove was estimated as 37% of the total sediment load; Woodland
Creek (7%) contributed the next highest, followed by Beaverkill (5%). All other tributaries
contributed less than 2% of the total sediment load at the outlet. In terms of a sediment load, this
study, along with data collected by USGS (Section 5.1), indicate that Stony Clove is a critical
watershed for sediment reduction efforts. Two major stream restoration projects were completed
in this tributary in 2012-2013; they included channel realignment, regrading and bank
stabilization. This study shows that short-term detailed water quality monitoring programs
complemented with watershed modeling efforts can help to quantify the sub-basin sources of
suspended sediment and help to inform management options.
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Figure 4.2. Comparison of measured and SWAT simulated average monthly streamflow at the
Esopus Creek watershed outlet at Coldbrook
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Figure 4.3. Comparison of measured and SWAT simulated average monthly stream sediment
concentration at the Esopus Creek watershed outlet at Coldbrook
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4.2. Trihalomethanes in the New York City Water Supply - Empirical Modeling and
Tropical Storm Effects

Introduction

Chlorine is commonly used to achieve disinfection in most water supply systems in North
America (USEPA, 2006; Health Canada, 2006), and can combine with organic carbon to produce
a number of disinfection byproducts (DBPs) including trihalomethanes (THMSs) and haloacetic
acids (HAAs); some of which are probable carcinogenic compounds (Sadig and Rodriguez,
2004; USEPA, 2006; Chowdhury et al., 2009). Regulatory agencies around the world have
imposed regulations to meet certain levels for specific DBPs in drinking water. The USEPA has
set a MCL of 80 ug/L for total trihalomethanes (TTHMs) and 60 pg/L for the sum of 5

haloacetic acids (HAADS) as site-specific running annual averages (USEPA, 2006).

A number of factors are involved in the formation of DBPs that can potentially cause operational
challenges for a drinking water supply. These factors include disinfectant reaction time with
natural organic matter (NOM) (Rathburn, 1996; Rodriguez and Serodes, 2001), pH (Nokes et al.,
1999; Liang and Singer, 2003; Chowdhury and Champagne, 2008), temperature (Ozekin, 1994),
types and amounts of NOMs (Tyrovola and Diamadopoulos, 2005), chlorine dose (Sadiq and
Rodriguez, 2004), and the presence of bromide ions (Hong et al., 2007). A number of predictive
models have been developed which consider at least some of these factors (Sadiq and Rodriguez
2004, Chowdhury et al. 2009). Predictive models developed both empirically using operational
and water quality parameters or based on kinetics of DBP formation can be a useful complement
to field monitoring. Typically DBP concentrations in drinking water are measured in the
laboratory using gas chromatography (GC) analysis that can be both time consuming as well as
expensive. Predictive models can provide quick and reasonable estimates of DBPs to help
managers decide how to best optimize water supply operations (Westerhoff et al., 2000).
Moreover, predictive models can be used to determine the relative importance of water quality
and operational parameters influencing DBP formation for a particular region.

The objective of this study was to develop an empirical predictive model of total trihalomethanes
(TTHMSs) for the New York City (NYC) water supply. The 600 billion gallon water supply is
currently the largest unfiltered water supply in the US, operating under a renewable Filtration
Avoidance Determination (FAD) granted by the New York State Department of Health and the
US Environmental Protection Agency. In October and November 2011, following Hurricane
Irene and tropical storm Lee, TTHM levels in the water supply often exceeded the 80 pg/L
MCL. A recent study by Van Dreason (2012) investigated the factors associated with the TTHM
increase including quantity of NOM, water temperature, water age, chlorine dose and pH. In this
study we develop a predictive model of TTHMs and quantify the relative importance of these
factors that are specific to the NYC water supply system. Models that can reasonably estimate
TTHM levels can also be used for evaluating strategies to minimize its formation and for
simulating future scenarios of varying water quality and operational variables reflecting changes
in land use, climatic conditions and water demand.
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Materials and Methods
Empirical model development

Water quality data based on monthly analysis of water samples from 24 locations from within
the NYC water supply distribution system, obtained from the New York City Department of
Environmental Protection (NYCDEP) were used in this analysis. This dataset includes 866
measured values for TTHMSs and other measured water quality parameters that include pH, total
organic carbon (TOC), and water temperature, collected between January 2009 and April 2012.
All analyses used Standard Methods (pH — 4500H B; Temperature — 2550B; THMs — EPA
method 524.2; TOC - 5310B) as seen in APHA (1995). Chowdhury and Champagne (2008)
recommended the use of one parameter related to NOM along with chlorine dose, pH,
temperature and reaction time for future modeling of THMs. Empirical models for predicting
DBPs in drinking water supplies are found in the literature (Sadiq and Rodriguez, 2004; Hong et
al., 2007; Chowdhury et al., 2009) in the general form:

Y = 10%° x, Pt x,%%. . X, " (4.1)

where Y is the concentration of DBP in drinking water supply on any given day, Xi, Xz,... X, are
predictor variables, and b0, b1, b2....bn are the regression coefficients. Empirical models of
TTHMs were developed using a multiple regression procedure with SAS software version 9.3
(SAS Institute Inc, 2012). The TTHM level (ug/L) for any given day was used as the response
variable and water quality parameters; pH (pH), water temperature (Temp, °C), and total organic
carbon (TOC, mg/L) were used as predictor variables. In the absence of water age (reaction time)
at the time of sampling, modeled estimates of the average water age (Time, hours) for each site
was used. Water age estimates ranged from 26-95 hours for the 24 sites used in our study
(NYCDEP, 2010). Chlorine dose and bromide levels may also contribute to TTHM formation
but chlorine dose data were not available to test in our model. The only detected brominated
DBP was bromodichloromethane with a 3 year average concentration of 4.0 pg/L and range of
1.6-6.1 pg/L. Since brominated DBPs are relatively low in the NYC system they were not
considered in our model. Model predictions relative to the measured values were evaluated using
coefficient of determination (R?), root mean square error (RMSE) and mean absolute error
(MAE). Model performance was validated independently using quarterly data for TTHMSs and
predictor variables (96 measured values) collected from April 2012 to March 2013 from the
same 24 sites. To quantify the contribution of each independent variable to the model
predictions, sensitivity analysis was performed using the 5th and 95th percentile data points
(representing boundary conditions of water quality range for which the model is expected to be
accurate) for each variable as inputs in the empirical model keeping other predictors as
measured. For water temperature only values above 10°C were used as THMs are usually formed
above this temperature (\VVan Dreason, 2012).
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Results and Discussion
Empirical model and relative importance of predictor variables

The empirical model (Equation 4.2) made reasonable estimates of TTHM levels in the NYC
water supply distribution system. The model evaluation statistics showed good agreement
between measured and predicted values with an overall R? of 0.75 (Figure 4.5) during both
calibration and validation periods. The average RMSE and MAE values were 7.89 and 6.16
respectively for the calibration period and 6.72 and 5.5 respectively for the validation period.
Although the overall model performance was acceptable we noticed that the model consistently
over predicted the measured values by 13% during the validation period (Figure 4.5b).

TTHMs = 0.0072 pH?%%° Temp©®3°® Time®*7°> TOC3%7 4.2)

About 25-50% increase in THMs formation is estimated per 10°C increase in water temperature
(Chowdhury and Champagne, 2008) and in general TTHMs in the NYC water supply system
peak during the warmest summer months. However, higher water demands in the summer,
resulting in shorter reaction time within the distribution system may offset the effect of
temperature to a certain extent. Sites receiving sodium hypochlorite have higher pH which tends
to favor TTHM formation. Because water from all upstate reservoirs typically flows through
Kensico Reservoir and is well mixed before entering the distribution system, TOC
concentrations are generally uniform throughout the distribution system at any given time.
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Figure 4.5. Predicted versus measured TTHM concentrations (a) Calibration (b) Validation
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Table 4.1. Predicted range in TTHM levels (ug/L) based on sensitivity analysis. Values in
parenthesis are predictor values used.

Predictor 5™ percentile Average 95™ percentile
pH 38 (7.12) 41 (7.31) 45 (7.57)
Temp* 41 (11.1) 49 (16.7) 54 (21.7)

TOC 33 (1.38) 41 (1.62) 53 (1.94)
Water age 31 (26) 42 (49) 50 (70)

*For water temperature only values above 10°C were used in the analysis

Relative importance of predictor variables (natural and management related) estimated using
sensitivity analysis were in the following order: TOC, water age (reaction time)>water
temperature>pH. Model predictions based on the 5™ and 95" percentile values of TOC indicated
that TTHM levels changed by 20 pg/L (Table 4.1). Similar predictions for average water age
(reaction time), water temperature and pH resulted in TTHM changes of 19 pg/L, 13 pg/L, and 7
ng/L respectively. Although TTHM changes associated with TOC and water age were similar, it
is possible that the importance of water age would increase if it were known at the time of
sample collection rather than as an estimated average. Nonetheless, our finding on the relative
importance of predictor variables is generally consistent with observations made by Wert et al.
(2012) in a water supply distribution system in Las Vegas, Nevada.

TTHM levels in the aftermath of Hurricane Irene and Tropical Storm Lee

During 2011, Hurricane Irene (August 26-29) and Tropical Storm Lee (September 5-8) resulted
in total rainfall ranging from 38cm to 50cm in the NYC water supply watersheds located in the
Catskill Mountain region. In one major stream, Esopus Creek, about 43% of the average annual
DOC flux was transported by Hurricane Irene alone in a span of 5 days (Yoon and Raymond,
2012). The TTHM levels in the water supply distribution system increased post Irene and Lee
with 45% (17/38) of the samples recording values higher than the maximum contaminant level
(MCL) of 80 pg/L in October and November 2011. However, since compliance during this
period was based on a system-wide running quarterly average, the water supply was able to
maintain compliance throughout 2011. We found that samples which exceeded the MCL in
October and November of 2011 were mostly from 10 monitoring sites, eight of which were in
Manhattan, one each in Queens and Staten Island. In Table 4.2 we compare the difference in
TTHM levels and associated water quality parameters between 2011 and the previous two years
during the same months (October and November) for the 10 sites where MCLs were exceeded in
2011 in the aftermath of the tropical storms.

Following these extreme events usage of WOH reservoirs was greatly reduced due to elevated
levels of fecal coliform, turbidity and TOC (Klug et al., 2012). To compensate for the loss of
WOH water, usage of less storm impacted EOH reservoirs, West Branch and Boyd Corners, was
correspondingly increased. Because the TOC concentration of West Branch and Boyd Corners is
typically higher than the WOH reservoirs (more wetlands and algal contributions) the TOC
increase observed in distribution was not only due to the storm related TOC loading to WOH
reservoirs but also to the necessary reliance on relatively high TOC water from West Branch and
Boyd Corners. Compared to October and November of 2009 and 2010, there was a 0.51 mg/L
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increase in median TOC during October and November of 2011 at the 10 sites discussed above.
The TOC increase translates to about a 24 ug/L increase in TTHMSs based on our empirical
model. Increases of 0.14 pH units (38% increase in H+ ion concentration) and in water
temperature (1.4 °C) were also observed in October and November 2011. Our model predicts
that TTHM would increase about 4.0 pg/L for the pH change and about 3.0 pg/L for the increase
in water temperature. The sum of these effects, 31 ug/L, is very close to the observed TTHM
increase of 35 pg/L post tropical storms Irene and Lee. Inclusion of chlorine dose (not available
for this analysis) may have resulted in even better agreement. Even without chlorine dose such
close agreement provides a level of confidence in our model results. Water age (i.e. reaction
time) was similar during post- and pre-storm periods (S. Freud, Personal Communication), and
therefore, was not considered a factor responsible for increased TTHM formation.

Discussion

The empirical model explains the relative importance of predictor water quality variables.
Management scenarios can be simulated for each site or region using the empirical model (e.g.,
effect of choosing low TOC source water on TTHM levels). Natural organic matter levels as
measured by TOC vary between and within the NYC water supply reservoirs (SWRC, 2008).
The importance of TOC as a predictor variable highlights the need to improve our understanding
of the sources, fate, and transport of TOC in the NYC Water Supply system. In some
circumstances TTHM levels may potentially be reduced by altering reservoir operations (i.e.,
withdrawal patterns) as discussed in Weiss et al. (2013). Advanced warning capabilities could be
enhanced by using automated water quality sensors, such as those recommended by the USEPA
(e.g., Panguluri et al., 2009) to provide the inputs to our model. Advanced warning of TTHM
levels may allow utilities to make adjustments in the treatment process to avoid violations and to
reduce costs.

Further improvement in model predictions may be obtained by using site specific and real time
estimates of water age using methods described in Wert et al. (2012). The empirical model
presented in this study clearly demonstrates its utility in a water supply system for understanding
formative factors of TTHM and their relative importance. This has implications for developing
management scenarios and real-time estimation of TTHMs in water supply systems under
changing land use, climatic conditions and water demand.

Table 4.2. Comparison of median TTHM levels and water quality parameters between 2011 and
2009-2010 periods. These values are for October and November from 10 sites where TTHM
levels exceeded the regulatory limit in 2011

Year TTHM (pg/L) TOC (mg/L) pH TEMP (°C)
2011 85 2.03 7.48 18.3
2009-2010 50 1.52 7.34 16.9
Difference +35 (+70%) +0.51(+33%) +0.14 (+38%) +1.4 (+8%)
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4.3 Hydro-Ecological Modeling Project

One of the great challenges in assessing the potential consequences of global climate change is to
understand and quantify fine scale vegetation response, such as the response of an individual
forest stand on an individual hillslope. This is true because even after the complicated process of
downscaling global climate change model (GCM) predictions to local scale has been
accomplished, the equally daunting task of interpreting potential interactions between
topography, vegetation and climate still remains. Complex ecological problems such as this are
often advantageously approached through modeling, where numerous scenarios and
permutations can be assessed across varying spatial and temporal scales. To this end,
implementation of a hydro-ecological forest model (RHESSys) has been undertaken by NYC
DEP Modeling Group using Biscuit Brook (in the headwaters of the Neversink Basin, Catskill
Mountains, New York, USA) as a test basin.

RHESSys (Tague and Band 2004; RHESSys homepage: http://fiesta.bren.ucsb.edu/~rhessys/) is
a spatially distributed hydro-ecological model that simulates integrated water, carbon and
nutrient dynamics over spatial scales ranging from a small catchment (a few square hectares,
e.g., the combined area of a few football fields) to regional scale extents (i.e., multiple square
kilometers). RHESSys models landscapes by using a DEM (digital elevation model) to delineate
progressively nested basins (catchments), hillslopes (land areas draining into either side of, or the
headwater of a stream segment), zones (micro-climatic zones), patches (portions of hillslopes
having relatively uniform slope, aspect and soil characteristics) and strata (the vegetation types
and vertical layers modeled within each Patch). RHESSys does not model individual plants, but
rather the carbon content of various sinks that represent physiological vegetation compartments,
where carbon content serves as a proxy for biomass accumulation (e.g., leaf carbon, stem carbon,
coarse root carbon, fine root carbon etc.). Likewise, RHESSys does not model individual tree
canopies but rather uses a dual “Big-leaf” paradigm in which one leaf represents the shaded rate
of photosynthesis and the other represents the unshaded rate of photosynthesis, and the result is
mathematically scaled-up to forest canopy scale based on leaf area index (LAI), mean canopy
height, sun angle, and day of the year.

Carbon assimilation rates are controlled based on the Jarvis model (Jarvis and Davies 1998) of
stomatal conductance, in which stomatal conductance stress multipliers are used (e.qg., soil water
status, ambient air temperature, vapor pressure deficit, PAR radiation absorption, etc.) to
decrease the maximum rate of stomatal conductance, which in turn limits CO, uptake and
reduces gross photosynthesis (GPSN). Carbon assimilation is also limited by plant available
mineralized soil nitrogen (i.e., the nitrogen available after microbial uptake requirements have
been met) and/or by the amount of nitrogen available from retranslocation within the Stratum.
The effects of growth limitation by other micro-nutrients (e.g., phosphorus, calcium) and by soil
pH are not modeled at present. Vegetation is modeled as individual species (e.g., Sugar Maple,
Red Maple, White Pine, etc.) or as vegetation biomes (e.g., deciduous broad-leaf, evergreen
needle-leaf, grassland, etc.). Soils are modeled based on data from the NCSS (National
Cooperative Soil Survey, http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm)
categorical descriptions of soil types and the accompanying data concerning texture, porosity,
saturated hydraulic conductivity and other related soil characteristics.
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RHESSYys is particularly well-suited to the water management needs of NYC DEP for several
reasons. First, because of the flexibility of RHESSys to model both small catchments (e.g.,
Biscuit Brook) and large basins (e.g., Neversink). Second, because the model can be customized
for a particular site using NYC DEP data such as high resolution LiDAR data (i.e., laser-based
remote sensing data, which permits highly detailed landscape delineations, Figure 4.6) and forest
inventory data, which permits the model to be parameterized with spatial patterns of vegetation
that are consistent with actual vegetation patterns on the landscape. Third, because fine-scale
outputs from RHESSys (e.g., DOC, DON, litter loading, stream discharge, etc.) can be used as
inputs to inform larger scale models such as those used to assess and manage NYC watersheds
and reservoirs. And finally, because the model is process-based, spatially distributed, and utilizes
a three-dimensional landscape representation, the complex west of Hudson terrain can be
incorporated into modeling results (for example, RHESSys considers topographic shadowing,
slope, and aspect as these factors interact to affect radiation loading, which in turn generates
differential rates of snow melt across the landscape).

Biscuit Brook landscape: detail of confluence with contours
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Figure 4.6. Detail of Biscuit Brook topography
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At present, RHESSys version 5.18r2 (January 2014) has been implemented for Biscuit Brook.
Model calibration (utilizing USGS stream discharge data from Frost Valley) is presently
underway. Two different hydrological modes of RHESSys will be tested: Topmodel (Beven and
Kirkby 1979), which is a statistically based quasi-distributed approach utilizing a GIS-derived
wetness index to re-distribute hillslope moisture as a function of landscape steepness and specific
catchment area (i.e., the total area draining through a particular landscape pixel); and explicit
routing which is based on DHSVM (Distributed Hydrology Soil and Vegetation Model,
Wigmosta et al 1994) which calculates the actual surface and sub-surface movement of water
between individual RHESSys landscape Patches. Topmodel has the advantage of being less
computationally expensive. However, under certain circumstances, the underlying assumptions
of the approach can limit its applicability. General speaking, these limitations would rarely be
applicable to NYC DEP watersheds, and therefore both Topmodel and DHSVM modes of
RHESSys will be used.

The calibration process involves adjusting parameter values for soil moisture infiltration rate,
decrease/increase in infiltration rate with soil depth, rate of movement of water from soil water to
ground water and rate of movement of water from ground water to stream base flow. Figure 4.7
provides an example of preliminary Biscuit Brook calibration results against USGS stream
discharge data (Frost Valley) from the period January 1999 through June 1999 using the
Topmodel approach. Figure 4.8 illustrates the period July 1999 through December 1999. The
modeled vegetation cover was equally divided in the simulation across four common West of
Hudson tree species (red maple, sugar maple, American beech and red oak). Generally speaking,
in the first half of the year underestimations of peak streamflow occurred more often, typically at
points in the year suggesting that snow-melt and/or snowpack depth was being underestimated
(e.g., late January 1999). In the second half of the year, peak flow events were generally
overestimated (e.g., September 19th). This overestimation could result from any number of
factors, including incorrect infiltration rates, incorrect soil types and/or spatial distributions and
incorrect vegetation types and/or spatial distributions. Through feedback from DEP staff who
have expert knowledge of conditions in the field, it might be possible to determine which
potential causes of peak flow overestimation are most likely.

As an additional part of the calibration process, the sensitivity of the model is also assessed, in
particular, its sensitivity to modeled vegetation type. In Figure 4.9, a comparison of modeled
stream discharge for red maple, sugar maple, beech and red oak mono-crop simulations is
illustrated. Modeled red oak and beech simulations have higher peak flow than do modeled red
maple and sugar maple simulations. This is due to modeled differences in LAI across species,
Figure 4.10 (note: these results are from a different simulation year from Figures 4.7 and 4.8)
and modeled differences in interception capacity (both, canopy and litter). Also, differential
sensitivity to environmental stress across species is an important factor that influences evapo-
transpiration rates, resulting in differences in water budgets across species (Figure 4.11).
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Modeled streamflow (uncalibrated) vs. USGS data:
1st half of 1999
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Figure 4.7. Modeled streamflow results against USGS stream discharge for Biscuit Brook from
the period January 1999 through June 1999

Modeled streamflow (uncalibrated) vs. USGS data:
2nd half of 1999
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Figure 4.8. Modeled streamflow results against USGS stream discharge for Biscuit Brook from
the period July 1999 through December 1999
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Modeled Biscuit Brook Base Flow for Five Forest Types
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Figure 4.9. Modeled baseflow for different forest types.
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Mean basin leaf area index:
4 monocrop simulations 2001
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Figure 4.10. Mean basin leaf area index for different monocrop types.
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Figure 4.11. Modeled water balance for different monocrop types.
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4.4 SWAT Watershed Model Development

A version of the USDA SWAT model for use in NYC watershed studies is under development.
The following describes the rationale and methods of SWAT model development. Model
development continues along with model testing which will be reported on in future reporting.

Introduction

In temperate climate hilly landscapes a perched aquifer forming above a relatively impervious
soil layer plays a major role in hillslope hydrology, transmitting subsurface flow laterally
through the hillslope, controlling soil saturation as the perched water table approaches the
surface, providing water for plant use, and influencing biogeochemical transformations related to
saturated conditions in soils. Two different approaches have been used for simulating a perched
aquifer and hillslope hydrology in watershed models (Wigmosta et al 1994). In the explicit
modeling approach (as in DHSVM, Wigmosta et al 1994, and CSMR, Frankenberger et al 1999)
the catchment is discretized into a contiguous grid, water is explicitly routed from cell to cell
based on topography, and a water balance is performed at each time step to determine stored
water and the height of the perched water table for each cell location. In the statistical-dynamical
(SD) approach (as in TOPMODEL, Sivapalan et al 1997; VIC , Wood et al 1992; PDM, Moore
2007; and the XINANJIANG model, Zhao and Liu 1995) the mean height of the perched water
table is modeled as a time-varying dynamic process while the shape of the water table (i.e. the
spatial distribution of depth to water table) within the hillslope is modeled by a statistical
relationship. The explicit approach can account for fine temporal and spatial scale variability but
is computationally expensive with high input data requirements and has typically been used for
small watersheds and highly detailed applications, although advances in computing power makes
applications to larger catchments possible. The SD approach is more computationally efficient
and less demanding in data requirements.

Representation of hillslope hydrology in the official USDA SWAT model has evolved. In early
versions of SWAT an isolated perched aquifer could be simulated for a specific HRU by
specifying an impervious layer at depth dep_imp, but there was no lateral connectivity between
HRUSs to transmit water through the hillslope. Du et al (2005) in the modified SWAT version
SWAT-M utilized the impervious layer set at the bottom of the soil profile to generate a perched
aquifer which supplies tile flow when the perched water table is located above the tile drain; this
tile drainage algorithm was incorporated into a later official version of SWAT. Moriasi et al
(2009, 2011b) and Vazquez-Amabile and Engel (2005) also set the impervious layer at the
bottom of the soil profile and calculated shallow water table depth by tracking daily change in
soil profile water storage and translating unoccupied drainable volume into water table depth
based on soil physical properties as in DRAINMOD. In the 2012 version of SWAT lateral
connectivity and explicit landscape unit routing was added along with two catchment
discretization schemes: grid cells or hillslope catena. SWAT2012 routing with grid cells is a
fully-distributed explicit approach with similar computational and data requirement limitations to
other explicit models. The catena discretization routes water downslope through hillslope
elements defined by landscape position (ridge, slope, valley) rather than cell to cell which
improves computational efficiency; but defining meaningful catena-based landscape units for
large heterogeneous catchments may be problematic.
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Parallel to the development of explicit routing in SWAT have been efforts to apply an SD
approach. Easton et al (2008) used a topographic index to define HRUs by probability of
saturation and curve numbers related to saturation excess runoff in an alternative SWAT
application methodology (SWAT-VSA) designed for simulating variable source areas. White et
al (2011) in SWAT-WB used a statistical distribution of soil water storage capacity and applied a
water balance in place of the curve number method to calculate runoff as water in excess of local
soil water capacity. Both SWAT-VSA and SWAT-WB were found to capture the spatial
distribution of saturation excess runoff, but in both models the underlying mechanism of a
perched water table that rises to the surface creating saturated conditions and saturation-excess
runoff is not incorporated in the model.

Application of the SD approach in hillslope hydrology models is varied. In TOPMODEL a
topographic index (TI) that represents the relative probability of soil saturation based on
topography is calculated for each cell in a catchment. The statistical distribution of storage
capacity (Figure 4.12a) is a function of the T1 that defines a constant offset from the average
water table depth for each cell, and this distribution is assumed to express an equilibrium water
table shape. Thus, in TOPMODEL the water table as a whole moves up and down as the average
depth of water in the perched aquifer changes, while the shape of the water table remains
constant over time (Figure 4.13). VIC, XINANJIANG and PDM models use a pareto
distribution (Figure 4.12b) of moisture storage capacity to derive the saturated fraction of the
catchment without simulating the specific spatial locations of saturated areas. SWAT-WB uses a
statistical soil moisture distribution based on the USDA Curve Number equation interpreted as a
saturation excess runoff process (Figure 4.12c, Steenhuis et al 1995). The soil moisture
distribution is spatially referenced to specific catchment locations by associating the moisture
distribution with the TI.

Here we present a generalized SD approach that incorporates a dynamic perched aquifer and its
implications for runoff generation, plant growth, evapotranspiration, and soil biogeochemistry in
SWAT. Any of the above-mentioned soil moisture capacity distribution functions can be used to
define the shape of the perched water table, or an empirically-defined distribution based on water
table depth measurements in a catchment can be specified. If the TOPMODEL moisture
capacity distribution function is used the resulting SWAT model is essentially an implementation
of TOPMODEL. The Tl is used to define wetness classes of increasing probability of soil
saturation, and the T1-based wetness classes are referenced to the moisture capacity distribution
function as in SWAT-WB. A perched aquifer is explicitly added to the model. For any given
precipitation or snowmelt event infiltration-excess surface runoff is first calculated by Green-
amp method; then saturation-excess surface runoff by HRU is calculated as water inputs in
excess of available soil moisture storage capacity. Soil percolation and lateral flow calculations
are adjusted to accommodate the explicit perched aquifer as the source of lateral flow. Tile
drainage and plant water use are calculated based on the location of the perched water table
relative to the rootzone and tile drains. Nitrate calculations are adjusted to account for effects of
the perched aquifer.
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Figure. 4.12: Moisture Storage Capacity distribution functions commonly used in saturation-

excess runoff models. Af (x-axis) is fraction of area of watershed with normalized storage
capacity less than or equal to corresponding y-axis value. a) based on TOPMODEL topographic

index. b) Pareto distributions with b=0.1, 1, and 10. c) based on USDA Curve number equation.

Ground surface

Saturated

area

Root zone

Dynamic water table

Datum water table

Figure 4.13. Idealized hillslope profile with datum water table that defines shape of dynamic

equilibrium water table. Water table at depth (a) saturates location 1, intersects the root zone at
location 2, and is below the root zone at location 3. As perched aquifer depletes, water table

drops to depth (b).
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Methods
HRUs defined by Wetness Class

SWAT is a spatially-distributed model which discretizes the watershed into HRUs (Hydrologic
Response Units) spatially-defined by land use, soils, and slope. For the SDH model the
watershed is further discretized into wetness classes ordered by soil water storage capacity. In
our application we define these classes from a raster map of the scaled topographic index
(Ti_scaled) from the TOPMODEL distribution of storage capacity (Sivapalan et al 1997)

Ti_scaled = Imax — In(a/tanb) 4.3)

where a is contributing area of grid cell i, tanb is slope of i, Imax is maximum In(a/tanb) in the
watershed. Raster map grid cells are aggregated into 10 wetness classes representing successive
slices of the cumulative distribution of scaled Ti values, following Easton et al (2008, SWAT-
VSA) and White et al (2011, SWAT-WB). The wetness classes 01 to 10 are ordered by
increasing soil water capacity. Each wetness class is defined in this ordering by the fraction of
the watershed area (Af) with less water storage capacity (the lower Af boundary of the wetness
class) and the fraction of the watershed with higher storage capacity (the upper Af boundary of
the wetness class).

The wetness class map is combined with the soils map, essentially redefining the soils
component of the traditional SWAT discretization to include a wetness class assignment for each
HRU in the final discretization. The wetness class and soils maps can be combined in several
ways: 1) Use the wetness maps to spatially-define soil type; derive the dominant soil type within
each wetness map unit; rename the wetness map units ETIxx_DominantSoil Type where xx is the
wetness class 01 thru 10; for each renamed map unit add a record to SWAT usersoils database
with map unit name and DominantSoilType soil properties; use ARCSWAT soil definition and
HRU creation tool; 2) same as 1 but rather than using dominant soil type properties, derive
weighted average soil properties within each wetness map unit; 3)Intersect the 2 maps to get all
combinations of wetness class and soil type; rename each resultant combination ETIxx_SoilType
where xx is wetness class 01-10; for each wetness class/soil type combination add a record to
SWAT usersoils database with ETIxx_SoilType name and SoilType soil properties; use
ARCSWAT soil definition and HRU creation tool. This option allows multiple soil types in same
wetness class. With this option it may be useful to lump similar soil types prior to combining the
2 maps to minimize the number of resultant HRUS.

Maximum Soil Water Storage Capacities

Each wetness class is initially assigned an effective depth coefficient (edc) based on a statistical
distribution of storage capacities across the catchment. An input flag (pareto_flg) determines
whether the set of edc values are calculated in the model ((pareto_flg =1) or input in the
BASINS.bsn parameter file. The model calculation of edc values is based on the pareto
distribution:

Ci = Cmax*(1-(1-AH™(L/b)) (4.4)
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where Cmax is the maximum storage capacity in the basin, Af is the fraction of the basin where
storage capacity is less than Ci, and b is a shape parameter. For any wetness class, the maximum
storage capacity (edc) is the areally integrated Ci between the upper Af boundary (x) and lower
Af boundary(y) of the wetness class:

edc(pareto distribution) =
cmax *b/(b+1)*((1-y)((b+1)/b) -(1-x)N((b+1)/b)/(y-x) +cmax  (4.5)

Alternative soil water distributions may be developed and input as edc parameter values to the
model. The TOPMODEL topographic index (Eqgn. 4.3) associated with the defined wetness
classes may serve as a soil water storage distribution, whereby the mean Ti_scaled value for each
wetness class is input as an unadjusted edc.

An alternative storage capacity distribution function based on the SCS Runoff Curve Number
equation (Steenhuis et al 1995, Schneiderman et al 2007) is:

Ci = Cavg (sqrt(1/(1-As))-1) (4.6)

where Cavg is the is the spatially-averaged storage capacity for the basin when runoff begins.
For any wetness class, the storage capacity is the areally integrated Ci between the upper and
lower Af bounds of the wetness class:

edc(Curve Number Distribution) =
2*Cavg*(sqrt(1-x)-sqrt(1-y)) / (y-x) —Cavg 4.7)

Also, If adequate soil moisture data under datum conditions exist they may be used to develop an
empirical distribution of storage capacity.

edc values input as parameters or calculated by Pareto Distribution are adjusted in the model as
follows. First a calibratable scaling factor (edc_factor) is applied.

edc = edc_factor* edc (4.8)

This factor is not applied (i.e. edc_factor=1) if edc are calculated in the model, since the Pareto
distribution function includes parameters that control both shape and mean depth of the moisture
distribution. Note that edc_factor corresponds to the scaling factor in the TOPMODEL moisture
distribution function that accounts for the decrease in hydrologic conductivity with depth
(Sivapalan et al 1997).

The edc distribution corresponds to a datum watershed state when discharge from the perched
aquifer (i.e. return flow or lateral flow) is zero (Sivapalan et al 1997). The datum condition is
further adjusted by adding mean datum perched aquifer depth (perchst_datum) to all edc

edc=edc + perchst_datum (4.9

67



In the absence of perched aquifer data it is suggested that perchst_datum be set to the mean Root
Zone Depth of the wettest wetness class, so the perched aquifer empties to the bottom of the root
zone of the wettest class (Figure 4.13). Perchst_datum is adjustable because the average depth
of the perched aquifer has important implications for the responsiveness of the aquifer to nitrate
fluxes — a larger perched aquifer is slower to respond to nitrate fluxes.

Perched aquifer

A perched aquifer is added to the SWAT model. The perched aquifer is defined by HRU, and
localized (vertical) fluxes — inputs from infiltration in excess of soil field capacity, losses from
plant water use when the perched aquifer intersects the rootzone, and tile drainage — are
calculated for each HRU at each time step.

perchst(j) = perchsti(j) + rchrg_pa(j) — gtile(j) —et_perch(j) — latq(j) (4.10)

where perchst(j) (mm H,0) is the amount of water stored in the perched aquifer for the jth HRU,
perchsti is the amount of water stored in the perched aquifer at the beginning of the time step
(calc. in varinit.f) rchrg_pa (mm H,0) is recharge to the perched aquifer (added to perchst in
percmain.f), gtile (mm H,O) is tile flow (taken from perchst in percmain.f), et_perch (mm H,0)
is plant water use taken from the perched aquifer (taken from perchst in swu.f), and latg (mm
H,O0) is lateral flow (taken from perchst in gwmod.f)).

At the end of the time-step subbasin-average perched aquifer storage (sub_perchst(sb) ) is
calculated as the weighted average of perched aquifer content of individual HRUs (perchst(j).

sub_perchst = SUM over j HRUs (perchst(j) * hru_dafr(j)) (4.11)
where hru_dafr(j) is the fraction of the watershed area in the jth HRU.

At the beginning of the next time-step the previous subbasin-average perched aquifer storage is
assigned to the perched aquifer storage of all HRUs, which effectively redistributes (implicitly
routes) water in the perched aquifer from aquifer recharge zones characterized by high rchrg_pa,
low et_perch, and low lat_q to aquifer discharge zones (low rchrg_pa, high et_perch, high lat_q).

perchsti(j) = sub_perchst 4.12)

Available Soil Water Storage Capacity and Lateral Flow

Available storage capacity is represented by a series of paired buckets (Figure 4.14a,b),
following the variable bucket model (VBM) approach to TOPMODEL of Sivapalan et al 1997.
Each pair of buckets constitutes the maximum soil water storage capacity apportioned between
drainable and non-drainable storage for an HRU. This distinction of two functionally-distinct soil
moisture storage components follows parallel model approaches to water transport in porous
material (Brutsaert 2005, pp. 283). Non-drainable maximum storage capacity is the field capacity
of the soil profile (sol_sumfc(j)). The available non-drainable storage capacity (unsat_deficit(j))
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is the difference between the maximum storage capacity and the non-drainable soil water content
of the soil profile (sol_sw(j)) for the " HRU:

unsat_deficit(j) = max( 0, sol_sumfc(j) - sol_sw(j) ) (4.13)

The available drainable storage capacity (eff_sat_deficit(j) ) for the j" HRU is the adjusted
drainable maximum capacity (edc(j) ) reduced by the subbasin-average water content of the
perched aquifer (sub_perchst(sb) ) that occupies the drainable storage:

eff_sat_deficit(j) = edc(j) — sub_perchst(j) (4.14)

This SD formulation of available storage capacity, like in TOPMODEL, effectuates implicit
lateral redistribution of the perched aquifer among HRUs to maintain the pre-defined relative
distribution of storage capacities while the water table as a whole moves up and down over time
with average perched aquifer water content.

The total available storage capacity (sol_availst) is the sum of these two:
sol_availst = unsat_deficit + Max(0,eff_sat_deficit ) (4.15)

When the water table rises so high that the perched aquifer depth exceeds the capacity of the
drainable bucket (Eqgn. 4.15), the resultant negative saturation deficit (eff_sat_deficit) is
translated into return flow or lateral flow (latq):

latg = lat_ttime * Max(0,-eff_sat_deficit) (4.16)

where lat_ttime as in original SWAT is the exponential of lateral flow travel time (days). Latq is
subsequently removed from the perched aquifer (Eqn. 4.10), but the negative deficit and lateral
flow may persist as the implicit redistribution of perched aquifer water (Eqn. 4.12) continues
until the perched aquifer drains sufficiently to re-establish a positive deficit. During this period
the soil is saturated so both saturation excess runoff and return flow may co-occur in the HRU.

Infiltration Excess Runoff

For any given precipitation or snowmelt event infiltration is first calculated by Green-Ampt
method. Several modifications were made to the Green-Ampt algorithm in SWAT to
accommaodate the co-occurrence of the two runoff-generating mechanisms (infiltration vs.
saturation excess). The SWAT Green-Ampt algorithm includes adjusts the hydraulic
conductivity of the top soil layer as a function of the USDA Curve Number. The Curve Number
hydraulic conductivity adjustment was calibrated so that the Green-Ampt model would give
compatible results to the Curve Number runoff equation. This adjustment was eliminated in the
SDH model. Curve number runoff is total surface runoff including both infiltration and
saturation excess runoff in unknown proportions, so the Green-Ampt algorithm adjusted by
Curve number would simulate total runoff. The intention of the SDH model is to use Green-
Ampt strictly for infiltration-excess runoff only, as saturation-excess runoff is explicitly
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simulated separately. The curve number adjustment was replaced with an empirical hydraulic
conductivity adjustment factor (hcfactor) and a frozen soil factor (fsfactor)

adj_hc = max(0.,sol_k * hcfactor) 4.17)
If(sol_tmp(2,j) <0.) adj_hc = adj_hc * fsfactor (4.18)

where adj_hc is adjusted hydraulic conductivity, sol_k is unadjusted hydraulic conductivity, and
sol_tmp(2,)) is soil temperature of soil layer 2.

The static depressional storage term in SWAT (SSTMAXD) was activated in the Green-Ampt

equations so that infiltration-excess water put in depressional storage is held and can infiltrate in
subsequent time steps. In addition, the Green-Ampt algorithm was modified to include the case
where ponding occurs during a time step as in WEP and other implementations of Green-Ampt.

Saturation Excess Runoff
Surface runoff in the SD model is simulated, as in SWAT-WB (ref), by a local water balance in
place of the standard curve number approach in SWAT. Saturation-excess runoff is generated
when the net daily water input to the ground surface from rain and snowmelt minus canopy
interception (precipday(j) ), minus infiltration-excess runoff (surfg_inf), exceeds the available
soil moisture storage capacity (sol_availst(j) ) of the soil for the j" HRU:

Surfq_sat(j) = max( O,precipday(j) — surfg_inf(j) - sol_availst(j) ) (4.19)

Infiltration (inflpcp(j)) is the remainder that doesn’t run off:

Inflpcp(j) = precipday(j) — surfq_sat(j) (4.20)
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Figure 4.14a. Variable parallel bucket model depicting hydrologic storages and fluxes at 3
locations. At each location infiltrating water is first applied to the non-drainable (small pores)
bucket. Infiltration in excess of soil profile field capacity recharges the perched aquifer
represented by the drainable(large pores) bucket. When both parallel buckets are filled the
location is saturated, excess rain and snowmelt becomes saturation excess runoff, and return flow
(lateral flow) from the perched aquifer occurs. ET occurs from the non-drainable bucket but may
also occur from the drainable bucket when the water table is high enough to intersect the
rootzone. The drainable buckets are laterally-connected, increasing together by the aggregate
recharge from all locations and decrease by aggregate losses to return flow. Three locations
depicted correspond to figure 4.12 with water table at depth a: high water table, wetter soils at
field capacity, location 1 saturated.
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Figure 4.14b. Three locations depicted correspond to figure 4.13 with water table at depth b:

summer, lower water table, soils below field capacity, water table near surface at location 1 and
near bottom of rootzone at location 2.

Datum Water Table

Soil Percolation

The soil percolation and lateral flow routines in SWAT are modified for the SD model. For each
soil layer in SWAT starting with the top layer, water input from above is added to the water
already stored in the soil layer, and excess water above field capacity percolates to the next layer
at a rate limited either by hydraulic conductivity of the layer or by an impervious layer imposed
within or below the soil profile at a prescribed depth. These restrictions on percolation rate
permit soil layers to build up soil water in excess of field capacity, and lateral flow is generated
from this excess water. We eliminate the percolation rate restrictions that allow soil water build-
up above field capacity and the related lateral flow extractions. The resultant percolation
algorithm simulates only changes in non-drainable soil water storage, and the key variable in
SWAT for the amount of water stored in a soil layer (sol_st(lyr)) has field capacity as its
maximum and is effectively redefined as the amount of non-drainable stored water (except for
nitrate and other nutrient algorithms as described later). Build up of soil water in excess of field
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capacity is accounted for by the perched aquifer, which also acts as the source of lateral flow.
This is not to say that local percolation rates do not influence perched water table development,
but rather that the effect of an impeding layer on perched water table development for an HRU is
accounted for in the assignment of soil water storage capacity (edc) rather than in the percolation
routine.

In the revised percolation scheme all water in excess of field capacity moves successively
downward so that percolation from the bottom soil layer (sepbtm) represents the total amount of
soil water in the profile that exceeds field capacity. sepbtm is then primarily transferred to the
perched aquifer (rchrg_pa), but a fraction (1-rchrg_paf) of the excess drainable soil water is
allowed to leak thru the implied confining layer that creates the perched aquifer and recharge the
groundwater aquifer (rchrg to shallst) that supplies long-term baseflow. rchrg_paf is a basin-wide
parameter input in basins.bsn file.

rechg_pa = sepbtm *rchrg_paf (4.21)
rechg = (1. — gw_delaye) * (sepbtm *(1 — rchrg_paf))
+ gw_delaye *rchrg(t-1) (4.22)

Note that recharge to the groundwater aquifer (rchrg) has a vadose zone delay as in original
SWAT, while transfer of excess drainable water to the perched aquifer is immediate.

Depth to Water Table

Vertical depth to the perched water table in relation to the rootzone and to tile drain depth is used
to determine the availability of perched aquifer water for plant use and tile drainage. Depth to
water table (wt_depth) is calculated by converting the saturation deficit to a depth of soil from
the surface, by dividing by the effective porosity (effpor) of the soil:

wt_depth = eff_sat_deficit / effpor (4.23)
effpor = (sol_ul - sol_fc) * effporfactor (4.24)

where sol_ul is the amount of water held in the soil at saturation, sol_fc is the amount of water
held in the soil at field capacity, and effporfactor is the fraction of effective porosity that can
hold water under saturated conditions. Since effpor varies for different soil layers, the water table
depth calculation is repeated iteratively from the top soil layer down until the entire effective
saturation deficit is translated to a depth of soil from the surface to the water table.

Tile Drainage

Tile drainage is calculated, as in original SWAT, by estimating the amount of drainable water
above the tile drain (sw_excess_drain), based on wt_depth in relation to tile drain depth (ddrain).
Drainable water above the tile drain is calculated starting with the top soil layer and working
downward by adding up sw_excess_drain from all layers above ddrain and within or below
wt_depth:
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Sw_excess_drain = sw_excess_drain +
max( 0.,min(solzbot(lyr),ddrain)-max(solztop(lyr),wt_depth) )/ effpor  (4.25)

where solzbot is the depth from surface to bottom of soil layer and solztop is depth to top of soil
layer. Tile drainage (qgtile) is then calculated by transferring sw_excess_drain to the tile drain
based on the time-to-drain-soil-to-field-capacity (tdrain) parameter, as in original SWAT:

gtile = sw_excess_drain * (1. - Exp(-24. / tdrain)) (4.26)

Plant Water Use

SWAT estimates plant water use by distributing potential plant evaporation through the root
zone and calculating actual plant water use based on soil water availability. This scheme is
preserved, except drainable water in the perched aquifer is made available to plants when the
perched water table intersects the rootzone. Plant water use is calculated by layer. If the layer is
above the perched water table, plants use only non-drainable soil water, and the SWAT equations
(including uptake adjustment when stored non-drainable water in layer is low) hold unaltered. If
the layer is completely below the perched water table and saturated, potential plant evaporation
is extracted from the perched aquifer. If the perched water table is within a soil layer, the layer is
temporarily split at wt_depth: potential plant evaporation in the unsaturated sub-layer above
wt_depth is treated as a layer above the water table, and the saturated sub-layer below wt_depth
is treated as a layer below the water table. The SWAT variable revapday, defined originally as
the amount of water moving from the shallow aquifer into the soil profile or being taken up by
plant roots in the shallow aquifer, is redefined as the amount of water taken up by plant roots in
the perched aquifer and set equal to the calculated drainable plant water use.

Nitrate

Two important interrelated effects of a perched water table for nitrate (NO3) and other nutrients
are a) the local effect of saturated conditions on soil biogeochemistry, and b) the spatial
averaging effect of the laterally mixed perched aquifer. We approach the interplay of these two
processes by alternately mixing the perched aquifer with non-drainable soil water NO3 at the
local HRU scale, and then separating the aquifer from the soil water NO3 to perform spatially
averaging of the perched aquifer NO3 at the sub-basin scale.

Perched aquifer NO3 content is tracked by HRU (perchstn) and by soil layer (perchstn_lyr).
Local fluxes (including biogeochemical transformations, leaching, transfers between non-
drainable and drainable soil water, and losses to lateral flow and tile flow) are calculated for each
HRU. At the end of the time step the sub-basin average perched aquifer NO3 content
(sub_perchstn) is calculated by summing up HRUSs, and the sub-basin average perched aquifer
concentration (sub_perchstn_conc) is calculated for use in the next time step:

sub_perchstn = SUM over j HRUs perchstn(j) * hru_dafr(j) (4.27)

sub_perchstn_conc = sub_perchstn / sub_perchst (4.28)
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At the start of each time step, the NO3 content associated with the drainage water content of each
soil layer (perchstn_lyr) is derive by applying the sub-basin average perched aquifer NO3
concentration to the drainable water content of the soil layer.

perchstn_lyr(lyr) = sub_perchstn_conc * sol_satst(lyr) (4.29)

where sol_satst is the drainable water content of the soil layer, calculated from the fraction of
effective porosity for the soil layer that is filled with water (sol_satf) based on the location of the
perched water table.

sol_satst(lyr) = sol_satf(lyr) * effpor(lyr) (4.30)

sol_satf(lyr) =
max(0.,min(1.,( solzbot(lyr) - wtdepth(lyr)) / ( solzbot(lyr - solztop(lyr))) (4.31)

SWAT performs biogeochemical soil transformations in a series of algorithms starting with the
grow subroutine (called in Plantmod.f) through the nlch subroutine in which NO3 leaching
occurs. These algorithms account for the effects of saturated conditions (soil water content
exceeding field capacity) within a soil layer. The parallel bucket approach maintains drainable
and non-drainable soil water as two distinct storages. To make proper use of the soil N
transformation algorithms in SWAT the parallel storages of both water and NO3 are combined
(in Plantmod.f) for the series of subroutines between grow and nlch.

sol_st(lyr) = sol_st(lyr) + sol_satst(lyr) (4.32)
sol_no3(lyr) = sol_no3(lyr) + perchstn_lyr(lyr) (4.33)
where sol_no3 is the NO3 content of the soil layer.

After the biogeochemical soil transformations are performed, NO3 leaching occurs (in nich.f)
unmodified for soil layers above the perched water table. If the perched water table is above or
within the soil layer, further leaching stops. Leached NO3 from the layer above is added to the
saturated or partially saturated layer. Soil water is then partitioned back into non-drainable
(sol_st) and drainable (sol_satst) components by layer, and NOj is partitioned back into non-
drainable (sol_no3) and drainable (perchstn_lyr) components by layer. This repartitioning
effectuates the transfer of NO3 between the local non-drainable soil water in the HRU and the
perched aquifer.

sol_st(lyr) = sol_st(lyr) - sol_satst(lyr) (4.34)
sol_no3(lyr) =
sol_no3(lyr) * sol_st(lyr) / (sol_st(lyr) + sol_satst(lyr)) (4.35)

perchstn_lyr(lyr) =
sol_no3(lyr) * sol_satst(lyr) / (sol_st(lyr) + sol_satst(lyr)) (4.36)
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The total NO3 content of drainable water in the HRU is calculated as the sum of NO3 in
saturated or partially saturated layers (perchstn_lyr) within the soil profile and the NO3 content
of drainable water below the soil profile (perchstn_below), calculated by applying sub-basin
average perched aquifer NO3 concentration to the portion of the perched aquifer below the soil
in the HRU.

perchstn(j) = sum over layers:perchstn_lyr + perchstn_below (4.37)

perchstn_below =
(perchsti(j) — sum over layers:sol_satst)* sub_perchstn_conc(sb) (4.38)

NOj3 leaches from the bottom layer of the soil (percn) by the unmodified SWAT leaching
algorithm if the perched water table is below the soil profile. Leaching NO3 recharges aquifer
storages, partitioned between the perched (rchrg_pan) and shallow aquifers (rchrg_n) similarly to
the partitioning of H,O aquifer recharge (Eq. 4.21,4.22):

rechg_pan = percn * rchrg_paf (4.39)
rechg_n = ((1. — gw_delaye) * (percn *(1 — rchrg_paf))

+ gw_delaye *rchrg_n(t-1) (4.40)
perchstn = perchstn + rchrg_pan (4.41)
shallst_n = shallst_n + rchrg_n (4.42)

The shallow aquifer contribution of NO3 to the stream (no3gw) is calculated by unmodified
SWAT. The perched aquifer contributes NO3 to the stream by tile flow (tileno3) and lateral flow
(latno3), with both calculated similarly as no3gw is calculated for NO3 in groundwater: NO3
concentration in the perched aquifer (perchstn_conc) is applied to the respective flows, and the
losses are subtracted from the perched aquifer storage:

perchstn_conc = perchstn / perchst (4.43)
latno3 = perchstn_conc * latq (4.44)
tileno3 = perchstn_conc * gtile (4.45)
perchstn = perchstn - latno3 — tileno3 (4.46)

Finally, the half-life of NO3 (hlife_ngw) as applied to the shallow aquifer is also applied to the
perched aquifer:

perchstn = perchstn * Exp ( -.693 / hlife_ngw ) (4.47)

Note Eqgs. 4.27 — 4.47 are solved for each HRU. Subsequently at the end of the time step perched
aquifer NO3 is summed up over all HRUs (Eq. 4.27,4.28).
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Model Input parameters

The Basins.bsn parameter input file is modified, with 13 additional basin-wide parameters added
(Table 4.3). The USGS Curve Number parameter CN2 which controls surface runoff generation
in original SWAT is not used. The partitioning of water inputs to the ground into surface runoff,
lateral flow, and baseflow are primarily controlled by a) Green-Ampt infiltration-excess runoff
parameters hcfactor, fsfactor, and sstmaxd and b) 3 saturation-excess runoff parameters -
rchrg_paf and either the soil water storage distribution shape parameters pareto_b and
pareto_cmax (if pareto_flg=1) or edc(weti) and edc_factor (if pareto_flg=0). rchrg_paf
partitions soil percolation to the perched and shallow aquifers. If rchrg_paf is 1 (default), all soil
percolation in excess of field capacity is transferred to the perched aquifer, and lateral flow alone
constitutes the baseflow of a traditional 2-way baseflow separation (runoff and baseflow). Use
of rchrg_paf <1 allows a 3-way baseflow separation (runoff, lateral flow, baseflow). The shape
of the soil water storage distribution along with the areal definition of wetness classes (weti)
determines the areal extent of the saturated area and thus the amount of saturation-excess surface
runoff vs. return flow from the perched aquifer. The saturation-excess runoff parameters may be
calibrated against streamflow source partitioning data, soil moisture data, and/or results of
baseflow separation techniques applied to streamflow data.

Partitioning of water inputs also controls the depth to water table and thus the amount of perched
aquifer water available for plant use evapotranspiration. effporfactor adjusts the effective
porosity (available drainable pore space) in the water table depth calculation (Egs. 4.17,4.18).
effporfactor can be used as a calibration parameter that controls the translation of available soil
moisture storage capacity to water table depth. Wigmosta and Lettenmeier (1999) suggest that
the assumption of an equilibrium water table in TOPMODEL and here may result in too shallow
simulated water table depths particularly at the lower (wetter) parts of a hillslope where the
perched aquifer may intersect the root zone. effporfactor may be adjusted to compensate for this
and can be calibrated if soil moisture data is available. GW_REVAP and REVAPMIN, which
control the amount of water taken up by plant roots in the shallow aquifer in original SWAT, are
not used because plant water use is controlled by the perched aquifer in the new model.

Additional new parameters perchst_datum and perchstn_init (the depth of the perched aquifer
when discharge from the perched aquifer is zero and the initial nitrate concentration in the
perched aquifer respectively) control the volume and nitrate content of the perched aquifer and
thus the responsiveness of the aquifer to nitrate fluxes. ppt_factor adjusts for bias in measured
precipitation inputs. Iveno is a flag for producing alternative output format.

Tables 4.3, 4.4, and 4.5 summarize additional parameters and variables that were added to
original SWAT2012 model and the subroutines where changes were made.

77



Table 4.3. Parameters added to SWAT

NAME UNITS DEFINITION USED IN...

Parameters: HRU

hcfactor(mhru) none Adjustment factor for hydraulic readbsn.f, readhru.f
conductivity in Green Ampt equation surg_greenampt.f

weti(mrhu) none Wetness index class (1-10) assigned to readsol.f, hydro_init.f
each HRU. Read from .sol, embedded in
soil series name

Parameters: Basin

edc(weti) mm H20  Effective Depth Coefficient: Soil water readbsn.f, hydroinit.f
deficit when perched aquifer is empty and
soil is at field capacity. Defined at
wetness class level. Input or calculated by
pareto distribution.

edc_factor none Calibration factor adjusts all edc values readbsn.f, satdef.f,

wtdepth.f

Fsfactor none Frozen Soil adjustment factor for readbsn.f,
hydraulic conductivity in Green Ampt surg_greenampt.f

pareto_b none b parameter in pareto distribution of edc readbsn.f, hydroinit.f

pareto_cmax m H20 Cmax parameter in pareto distribution of  readbsn.f, hydroinit.f
edc. Max storage capacity of basin

pareto_flg none Flag; if flag=0, input edc(j); if flag=1, readbsn.f, hydroinit.f
calculate edc(j) by pareto distribution

perchst_datum mm H20  Mean depth of perched aquifer for datum  readbsn.f, hydroinit.f
condition — i.e. when most wet weti(1)
has zero saturation deficit

perchstn_init mg N/kg Initial nitrate concentration of perched readbsn.f, hydroinit.f
aquifer

effporfactor none Fraction of effective porosity that can readbsn.f, readsol.f,
hold water under saturated conditions. wtdepth.f, percmain.f
Adjusts effective porosity.

Iveno none Flag; if flag=1, use alternate format and readfile.f,header.f,
output variables in output files headout.f, hruday.f,
(.bsn,.sub,hru,.rch); .std output also to subday.f, rchday.f,
output.bsn bsnday.f, writed.f

ppt_factor none Multiplicative factor adjusts measured readbsn.f, pmeas.f
precipitation inputs

rechg_paf none Fraction of root zone percolation that readbsn.f, percmain.f,
recharges the perched aquifer gwmod.f, gw_no3.f

Sstmaxd mm H20  Static depressional storage used in Green-  readbsn.f,

Ampt algorithm

surg_greenampt.f
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Table 4.4: Variables added to SWAT

NAME UNITS DEFINITION USED IN...
Variables: HRU
CanmxlI mm H20  Maximum canopy storage at current canopyint.f

day’s leaf area (previously local variable
changed to global variable)

edc(mhru) mm H20  edc(weti) parameter values assigned to
each HRU.

Deprstor mm H20  Depressional storage in Green-Ampt
infiltration excess runoff calculations

eff_sat_deficit(mhru) mm H20  amount of water that would have to be

added to soil (when at field capacity)
before a saturation excess runoff response

begins
et_perch(mhru) mm H20  Plant water use taken from perched
aquifer
maxwtdep(mhru) mm Maximum (datum) perched water table
depth
perchst(mhru) mm H20  Depth of water in perched aquifer
perchsti(mhru) mm H20  Depth of water in perched aquifer at
beginning of time step
perchstn(mhru) kg N/ha Amount of nitrate in perched aquifer
qday_inf(mhru) mm H20 Infiltration-excess surface runoff loading
/day to main channel on day in hru
qday_sat(mhru) mm H20  Saturation-excess surface runoff loading
/day to main channel on day in hru
qday_urb(mhru) mm H20  Urban surface runoff loading to main
/day channel on day in hru
rchrg_pa(mhru) mm H20  Amount of water recharging perched
aquifer
rchrg_pan(mhru) kg N/ha Amount of nitrate percolating from soil
profile
sol_availst(mhru) mm H20  Available soil moisture storage capacity.
surfq_inf(mhru) mm H20  Infiltration-excess surface runoff
/day generated on day in hru
surfq_sat(mhru) mm H20  Saturation-excess surface runoff
/day generated on day in hru
surfq_urb(mhru) mm H20  Urban surface runoff generated on day in
/day hru
unsat_deficit(mhru) mm H20  amount of water that can be added to the
available non-drainable pore space in the
soil
wt_depth(mhru) mm depth to water table vertically downward

from soil surface

readbsn.f, hydroinit.f,
satdef.f, wtdepth.f,
surq_greenampt.f

satdef.f, wtdepth.f,

swu.f, gwmod.f

readsol.f, wtdepth.f, swu.f

Varinit.f, percmain.f,
swu.f, gwmod.f,
gw_no3.f, virtual.f
varinit.f, satdef.f, nlch.f,
gw_no3.f

nlch.f, gw_no3.f, virtual.f

surfst_h2o0.f
surfst_h2o.f
surfst_h2o.f
percmain.f, gwmod.f
gw_no3.f

satdef.f,
surq_waterbalance.f,
surface.f, surfst_h20.f,
surg_greenampt.f,
surq_waterbalance.f,
virtual.f

surface.f, surfst_h20.f,
surg_greenampt.f,
surq_waterbalance.f,
virtual .f

surface.f, surfst_h20.f,
surq_greenampt.f,
surq_waterbalance.f,
virtual .f

satdef.f

wtdepth,f, percmain.f,
swu.f
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Table 4.4 (cont’d). Variables added to SWAT

NAME UNITS DEFINITION USED IN...
Variables: HRU/Soil Layer
sol_satf(mlyr,mhru) none fraction of drainable pore space in the soil ~ wtdepth.f
layer that is saturated
sol_satst(mlyr,mhru) mm H20  amount of drainable pore space in the soil  plantmod.f, wtdepth.f,
layer that is saturated nich.f
sol_st i mm H20  water in soil layer at start of timestep varinit.f
wuse_drn mm H20  Water uptake by plants taken from swu.f
perched aquifer, by soil layer
wuse_nondrn mm H20  Water uptake by plants taken from non- swu.f
drainable soil water, by soil layer
Variables: Subbasin
sub_perchst(msub) mm H20  sub-basin average perched aquifer storage virtual .f
sub_perchst2(msub) mm H20  Sub_perchst(sb), used to reset perchst for  varinit.f, virtual.f
all hru's to the subbasin average at start of
next time step
sub_perchstn(msub) kg N/ha sub-basin average perched aquifer nitrate  virtual.f
sub_perchstn_conc(msub) kgN/mm  sub-basin average perched aquifer nitrate  virtual.f, plantmod.f,
concentration nich.f
sub_qd_inf(msub) mm H20 Infiltration-excess surface runoff that virtual.f
/day reaches main channel
sub_qd_sat(msub) mm H20  Saturation-excess surface runoff that virtual.f
/day reaches main channel
sub_qd_urb(msub) mm H20  Urban surface runoff that reaches main virtual.f
/day channel
sub_surfq_inf(msub) mm H20  Infiltration-excess surface runoff virtual.f
/day generated on day in subbasin
sub_surfq_sat(msub) mm H20  Saturation-excess surface runoff virtual.f
/day generated on day in subbasin
sib_surfg_urb(msub) mm H20  Urban surface runoff generated on day in  virtual.f
/day subbasin
sub_swe(msub) mm H20  Snowpack snow water equivalent in virtual.f
subbasin
Variables: Basin
Latgentrbf None Contributing area fraction for lateral flow  Percmain.f
Surqcentrbf None Contributing area fraction for saturation-  Surq_waterbalance.f

excess runoff
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Table 4.5: Modified or New Subroutines in Sourcecode. Typecodes: A=algorithm, B=Bug fix,

D=define variable, | = input, O = output, (N) = New subroutine. Output (O) subroutines are
optional.
SUBROUTINE DESCRIPTION TYPECODE
allocate_parms allocate new arrays D
Bsnday write daily standard output to output.bsn file if IVENO==1 o]
Canopyint canmx| changed from local to a global variable for output O
Crackflow Only calculate hrly crackflow for ievent(3) A
Etact fix bug in orig for esmax when canopyint is active B
NO3 aquifer loading from recharge is partitioned to perched vs. shallow
W no3 aquifers; calc. NOj in lateral flow and tile flow from perched aquifer is A

gw_ calculate; update perched aquifer nitrate storage; NO3 losses from
perched aquifer calc. like shallow aquifer nloss

Gwmod fraction ((1-rchrg_paf) of sepbtm goes to shallow aquifer; Update A
perched aquifer; revapday redefined as et from perched aquifer (et_perch)

Header revised header cols for output.hru and .sub for revised hruday and subday 0
output vars

Headout revised format output.hru and .sub; tab-delimited, add exceltime o]

Hruday Alternative .hru file output if IVENO==1 o]

- Calculate edc values by Pareto distribution for wetness classes; assign

Hydroinit A
edc values to hrus

Modparm declare new variables D

Nlch revise NOj3 leaching when perched aquifer within rootzone A

ovr_sed fix bug: only calc hrly overland flow for ievent=3 B

. revise percolation loop; calc rchrg_pa and add to perchst; Calc. latq from

Percmain oo . A
the perched aquifer; revise calc for tileq

Percmicro lateral flow turned off here; sepday=sw_excess for all non-septic hrus A
Combine sol_st + sol_satst, sol_no3 + perchstn_lyr) in soil layers that are

plantmod intersected by perched aquifer, so that nutrient routines between nup.f A
and nlch.f take perched aquifer into account

Pmeas apply PPT_FACTOR A

Rchday Alternative .rch file output if IVENO==1 O
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Table 4.5 (cont’d). Modified or New Subroutines in Sourcecode. Typecodes: A=algorithm,
B=Bug fix, D=define variable, | = input, O = output, (N) = New subroutine. Output (O)
subroutines are optional.

SUBROUTINE DESCRIPTION TYPECODE
input new vars: PPT_FACTOR,RCHRG_PAF,EDC_FACTOR,
EFFPORFACTOR,PARETO_B,PARETO_CMAX,PARETO_FLG,

Readbsn FSFACTOR,ETI,PERCHST_DATUM, PERCHSTN_INIT. Input as I
basinwide varS: ALPHA_BF,DELAY,
LAT_TTIME,CANMX,HCFACTOR
readfile open output.bsn file; read iveno from file.cio |
ALPHA BF,DELAY read in from basins.bsn; if basinwide var=0,
Readgw |
readgw.f
readhru LAT_TTIME,CANMX input from .bsn; if basinwide var=0, readhru.f. |
HCFACTOR input from .bsn; if hru var>0, readhrn.f
readmgt ddrain_hru, tdrain_hru,gdrain_hru |
routres Only call reshr when ievent(3) A
Satdef (NEW) Calc. saturation deficit; call wtdepth A(N)
sim_initday initialize new vars D
Snom fix bug in orig code - allow snowmelt when tavband<sftmp B
std2 Write hru info to hrutable.txt fro postprocessing 0
Subday Alternative .sub file output if IVENO==1 O
substor latg and latno3 not calc here now A
sumv Calculate additional watershed summation variables ]
call satdef.f before calling volg.f; combine saturation-excess and
Surface S A
infiltration-excess runoff
surfst_h20 Calculate net surface runoff components: _inf, sat, urb A
surg_greenampt Calculate surfg_inf, surfq_urb; revise effective conductivity A
surq_waterbalance (NEW) calc. surfq_sat: runoff as precipday in excess of saturation deficit A(N)
Swu revise wuse calc; et from soil vs from perched aquifer A
Varinit initialize new vars; assign sub_perchst(t-1) to all perchst(t) D
Calc. sub_perchst(sb): sub-basin average perched aquifer storage; Calc.
. sub_perchst2(sb) = sub_perchst(sb), used to reset perchst for all hru's to
Virtual X i : ) A
the subbasin average at beginning of next time step; Do same for
sub_perchstn: sub-basin average perched aquifer NO3
Volq call surg_greenampt and surq_waterbalance A
Writed call bsnday if iveno==1 O
wtdepth (NEW) calc. wtdepth, maxwtdep, and sol_satst A(N)
zeroini initialize new variables D
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4.5 CEQUAL-W2 Reservoir Turbidity Model Development Projects

During the reporting period, DEP contracted with Upstate Freshwater Institute to perform a
number of studies, develop improvements, and expand the capabilities to the CEQUAL-W2
models that are used by the Operations Support Tool (OST). UFI has developed a water quality
component for the CEQUAL-W2 model to simulate turbidity transport in the NYC reservoir
system. Many of these projects were undertaken as part of Operations Support Tool (OST)
development. These projects are briefly discussed in this section.

Development of Rondout W2 Turbidity Model

UFI was contracted to develop an application of the CEQUAL-W2 model for Rondout Reservoir
to allow DEP to better simulate turbidity in the Delaware System. Under normal condition the
Delaware System reservoirs are not impacted by turbidity issues. However when extremely
large storm events occur in the Delaware watersheds, elevated turbidity may occur. This was the
case for Rondout Reservoir during Tropical Storm Irene and more recently for Neversink
Reservoir during an event in September 2012. As the Rondout Reservoir turbidity is especially
important when Catskill water is turbid, a better understanding and predictive capability for the
Rondout is a useful addition to DEP’s modeling capabilities. DEP contracted with UFI to
perform this work and the summary below is based on the final project report (UFI, 2013a;
Gelda et al, 2013)

Pepacton T.
Rondout Cr.

Cannonsville T.

Rondout

» routine sites |
% profiling buoy, primary site Intake

Figure 4.15. Map showing setup of Rondout Reservoir CEQUAL-W2 model showing reservoir
segmentation and major inflow and outlet locations
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The Rondout Reservoir CEQUAL-W2 model segmentation is illustrated in Figure 4.15. Inputs
to the model include stream inputs of flow, water temperature and turbidity from the two major
stream inputs, Rondout Creek and Chestnut Creek, and the three influent aqueducts from
Neversink, Pepacton (East Delaware Tunnel) and Cannonsville (West Delaware Tunnel). In
addition the model requires input meteorologic data including air temperature, dew point
temperature, wind speed, wind direction and solar radiation.

Meteorologic data were obtained from the DEP meteorologic stations available on or near
Merriman Dam. In addition, as part of model testing, data collected on an automated sampling
buoy in the reservoir were used. For longer term periods, relationships between these
measurements taken near the lake surface were compared to both DEP meteorologic stations
located near or on Merriman Dam and to the regional weather service site at Binghamton airport.
Correction factors were developed based on these comparisons so either the DEP meteorologic
station or the Binghamton station data could be corrected to best match the conditions at the
reservoir.

For application within the OST, methods for developing long term historical inputs and shorter
term inputs based on streamflow forecasts were necessary. For stream temperature, monthly
empirical regression relationships based on air temperature and flow were developed. For input
stream turbidity, an empirical relationship between Rondout Creek flow and turbidity was
developed using automated monitoring data available from 17 storm events from 2010-2012.
(Figure 4.16a)) A similar turbidity-flow relationship was used for the Chestnut Creek input with
parameters calibrated based on DEP’s long term fixed frequency monitoring conduct at that site
(Figure 4.16(b)).
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Figure 4.16. Regression relationships for turbidity versus flow for (a) Rondout Creek and (b)
Chestnut Creek inputs to Rondout Reservoir CEQUAL-W2 model (UFI 2013a).
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In addition to stream inputs, temperature and turbidity inputs from the Cannonsville, Pepacton
and Neversink aqueduct inputs to the reservoir were estimated for the period prior to 1987 when
measurements of aqueduct temperature and turbidity were readily available. To better
understand the variability of these values, monthly distributions of the temperature and turbidity
from each aqueduct input were developed. Based on these distributions, the median value is
used at the default aqueduct input was recommended for periods prior to 1987.

Particle-size distribution (PSD) along with the particle composition information, as obtained
from SAX/IPA analysis, was used to compute light scattering coefficient as a function of particle
size. Turbidity causing particles are broken into three classes based on the relationship of light
scattering to particle size. Results of the particle size analyses conducted on the water samples
from the intake locations in Cannonsville, Neversink, and Pepacton reservoirs, and at the
Rondout Creek input are shown in Table 4.6. The three fractions in Rondout Creek were 20%,
65%, and 15% for the size class I, 11, and I11, respectively. These fractions are very similar to
those obtained for Esopus Creek for flow less than 40 m®s™".

For the Rondout Reservoir, particle coagulation can play an important role. This process was
added to the turbidity model, allowing a fraction of the smallest two particle size classes to be
transferred to the largest size class. This conversion is controlled by a calibrated rate constant
for each size class. In addition the rate constant is reduced as turbidity decreases, which is
consistent with the effects of reduced collision frequencies for lower particle concentrations.

To account for the configuration of the Rondout Reservoir outlet, the model code was modified
to separately calculate the turbidity from each level of the outlet and from the spillway. The
results of these outputs are then combined so that the aqueduct turbidity and the turbidity
released downstream (release plus spill) are calculated so these values can be consistently
compared with sampled data.

Table 4.6. Contributions (%) to the total turbidity from the three size classes of particles for
various sources of water. (UFI, 2013a)

Cannonsville Neversink Pepacton
Size Class (West Delaware (Neversink (East Delaware Rondout
(Size) Tunnel) Tunnel) Tunnel) Creek
Class I (1 ym) 15% 65% 45% 20%
Class Il (3 pm) 50% 35% 45% 65%
Class 111 (10 um) 35% 0% 10% 15%
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Fall 2012 Event Application

A large storm event on September 18-19, 2012 caused a plume of higher than normal turbidity in
Rondout Reservoir. The turbidity in the reservoir did not significantly impact the withdrawal
water quality. However, spatial variations in reservoir turbidity were great enough to provide an
opportunity to test the CEQUAL-W?2 turbidity model using short term hindcasting simulations. .
Two hindcasting model runs were performed:

Simulation Aug 7 (prior to event) through Oct 11, 2012
Simulation Sept. 25 (after event) through Oct 11, 2012

These two simulations allow for (1) testing of the prediction of reservoir turbidity due to the
storm event and (2) testing the model’s performance for the timing of the post-event turbidity
reduction within the reservoir.

The model drivers included Rondout Creek flow, Chestnut Creek flow, Cannonsville, Neversink,
and Pepacton Tunnels inflows, aqueduct withdrawal, reservoir and release and spill, water
surface elevation, intake level (i.e., withdrawal elevation); and temperature and turbidity data
from keypoints water quality monitoring sites, stream survey sites, field survey sites, and
limnological survey sites. Meteorological data were obtained from the DEP’s onsite
meteorological station.

For the longer Aug. 7 — Oct 11 simulation period, the model showed excellent results for the
outlet temperature (Figure 4.17). Similarly good results were also obtained when looking at
reservoir temperature profile data (not shown here). For outlet turbidity, however, the model
overestimated the intensity of the turbidity plume (Figure 4.17). This over-estimation was
mainly due to uncertainty in the turbidity input to the reservoir, especially for the Chestnut Creek
inflow and, to a lesser extent, the Rondout Creek input.

The shorter simulation period (Sep. 25 — Oct 11), the model was initialized with gridded survey
data (YSI turbidity probe) collected by UFI shortly after the storm event impacted the reservoir.
The gridded survey included measuring turbidity profiles at 15 longitudinal locations of the
reservoir. The gridded survey allowed for a good measure of both the longitudinal and vertical
variability of turbidity throughout the reservoir. When the model simulations of withdrawal
turbidity are compared with observations with the model successfully simulated the small rise in
turbidity experienced at the Rondout withdrawal in addition to effectively predicting the
observed trend and the general magnitude of withdrawal temperature and turbidity for the
duration of the simulation (Figure 4.18).
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Figure 4.17. Results of withdrawal temperature and turbidity for the hindcasting CEQUAL-W2
Rondout Reservoir model for Aug 7- Oct. 11, 2012. Blue dots show observed values; red lines
show model prediction. (Gelda et al, 2013)
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Figure 4.18. Results of withdrawal temperature and turbidity for the hindcasting CEQUAL-W2
Rondout Reservoir model for Sept. 25- Oct. 11, 2012. Blue dots show observed values; red lines
show model prediction. (Gelda et al, 2013)
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Upgrade W2 Models to Version 3.7

During the reporting period, the latest upgraded version 3.7 of the CEQUAL-W2 model for the
Catskill System reservoirs was implemented within the OST. The implementation has
dramatically reduced the run time for these models and should shorten the time it takes for
modeling analyses that support operational decisions based on water quality. DEP contracted
with UFI to perform this work and the summary below is based on the final project reports (UFI,
2013b; Hazen and Sawyer, 2012)

One of the major changes between the original and upgraded models is that the segmentation for
Ashokan East and Kensico models was changed (Figures 4.19 and 4.20). The new model setups
have a reduced number of segments, thus allowing for less calculations and faster runtime. Tests
show that, the new segmentation does not greatly affect the results of the model output for
turbidity (Figures 4.21 and 4.22).

(a) . (b)

Figure 4.19. (a) Original Ashokan East Basin model grid and (b) modified Ashokan East Basin
model grid. (Hazen and Sawyer, 2012)
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Figure 4.20. (a) Original Kensico Reservoir model grid and (b) modified Kensico Reservoir
model grid. (Hazen and Sawyer, 2012)
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Figure 4.21. Time-series plot of (a) diversion temperature and (b) diversion turbidity from
Ashokan Reservoir for the observed record from 1995-2008. Blue dots show observations, black
line shows results with original grid (39 segments); red line shows results with modified grid (18
segments). (Hazen and Sawyer, 2012)
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Figure 4.22. Time-series plot of Kensico Reservoir DEL18 effluent (a) temperature and (b)
turbidity from Kensico Reservoir for the observed record from 1987-2008. Blue dots show
observations, red line shows results with original grid (46 segments); black line shows results
with modified grid (24 segments). (Hazen and Sawyer, 2012)

The upgraded models also include a new algorithm to account for the density effects of
extremely high turbidity (UFI, 2013b). As an example, during extreme events of December
2010 and August 2011, at peak flows the turbidity in Esopus Creek were estimated to greatly
exceed 2000 NTU, which are levels considered high enough to affect water density. Soon after
these storms, inverted temperature profiles were observed in the reservoir (Figure 4.23). In the
December 4, 2010 profile, warmer water was found near the bottom and in the August 30, 2011
profile colder water was found at mid-depths with warmer waters above and below. Both of
these examples lead to unstable conditions if only temperature is used to calculate density. The
density correction is applied based on the turbidity, with higher turbidity adding more to the
density (UFI 2013b). Figure 4.24 shows the effects of TSS concentration on density with the
equivalent densities for the December 2010 and August 2011 events shown.
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Figure 4.23. Examples of “inverted” temperature profiles observed in West Basin of Ashokan
Reservoir: (a) December 4, 2010 and (b) August 30, 2011. (UFI 2013b)
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Figure 4.24. Effect of solids (turbidity) on density with corresponding values for the peak
Esopus Creek inflow turbidity during Hurricane Irene (August 2011) and the December 2010
event. (UFI 2013b)
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Ashokan Outlet Correction

In the East Basin of Ashokan Reservoir, inflow from the West Basin enters the same W2 model
segment from which the withdrawal from the East Basin occurs. There is evidence from
observations of the reservoir and from model applications that the inflow to the East Basin, may
not always mix completely throughout this model segment before exiting the reservoir through
the withdrawal structure, as assumed by the 2D model. This pattern of inflow to the East Basin
has been described as “short-circuiting”. (UFI, 2013c)

An approach was developed by UFI to correct for the short circuiting in the W2 model
application as part of the OST. The method involves applying a more detailed 3D model near
the gate house for selected events. Then the 3D model and W2 model results are compared to
obtain an empirical post-processing correction for the W2 model. This approach accepts the 3D
simulations as most accurate, based on its more complete representation of transport in both the
lateral and longitudinal dimensions. The 3D model simulations provide a basis to adjust the 2D
simulations to accommodate the effects of lateral short circuiting.

UFI had previously developed and applied a three-dimensional (3D) model, the Environmental
Fluid Dynamics (EFDC) model, to the East Basin of Ashokan Reservoir as part of the CAT-211
project. The 3D model uses a much more detailed segmentation of the reservoir basin, allowing
spatial variations in water motion, temperature, and turbidity in all 3 coordinate directions, and
over shore length scales, to be simulated.

In the above discussion of short-circuiting, it was assumed that a portion of the inflow to the East
Basin, via either the weir or gate, may be transported “directly” to the intake structure (Q,sc in
Figure 4.25). In this schematic the withdrawal turbidity (Tn,) is the weighted value of the short
circuited and the East Basin contributions to the outlet:

Qw Tnw = Qisc TNin + (Qw - Qisc) Tns (4.48)

Where Qy is the withdrawal flow rate, Tnyy is the turbidity of water moving across dividing weir
from the West Basin to the East Basin and Tnj is the turbidity in segment three as predicted by
the W2 model, and Q,sc is the unknown short circuited flow. For ten events, the withdrawal
turbidity (Tn,,) was predicted with the 3D model. Using the 3D model result for Tn,, and the W2
model results for the value of Tnz and Tny in Eq. 4.48, a value of Qsc was calculated for each
event. These values of Qsc were then used in a regression analysis to understand which
environmental and operational variables were most predictive of Qsc . These independent
variables included: (1) East Basin withdrawal flow Qy; (2) inflow from the West Basin to the
East Basin (sum of weir and gate flow); north-south component of wind speed; (4) top-to-bottom
temperature difference in East Basin water column; (5) temperature difference between East
Basin inflow and East Basin surface waters; and (6) water surface elevation in the East Basin
above the top of the diversion wall.
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The only independent variable with any reasonable correlation with Q,sc was found to be the
withdrawal flow Q. As a result, the following regression equation was used for forecast
predictions of short circuited flow:

Qisc =0.773 Qw —0.283 (4.49)

This is the correction that has now been implemented within the OST to better predict Ashokan
withdrawal turbidity.
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Figure 4.25. Schematic of short circuiting flow directly from Ashokan West Basin input (via
dividing weir) to gate house withdrawal from Ashokan East Basin. (UFI, 2013c)
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4.6 Modeling Long-Term Trends in Ice Seasons of New York City Drinking Water
Reservoirs

Introduction

The presence of a seasonal freshwater-ice cover controls most interactions between the
atmosphere and the underlying aquatic systems. Reductions in lake-ice cover under future
climate will produce changes in temperature and light levels, water circulation patterns and
aquatic UV radiation exposure, all of which are important to biological productivity and
diversity. Of particular concern are variations and changes in light field and nutrient availability
under ice and in the periods of deep mixing proceeding and following ice cover development and
loss. In general, the life cycles of most aquatic organisms are affected by the timing and duration
of ice cover, and future changes in these will result in a complex response affecting many aspects
of the aquatic ecosystem. It is also interesting to determine the relationship between the timing
of ice loss, the onset of thermal stratification, and how this timing will influence the thermal
structure in the summer. Long-term simulations of ice conditions/duration are needed to
understand the mechanics through which ice cover mediates the effects of climate on lake
thermal structure and mixing, and how changing ice cover may ultimately influence
phytoplankton succession and trophic status of a lake.

A second water quality issue affected by reservoir ice cover is the winter time turbidity inputs
occurring during extreme winter events. Accurate simulation of the onset, loss, and duration of
ice cover, in the water supply reservoirs is important since it can modify the transport of
turbidity. Ice in these reservoirs affects distribution of water temperature (and density), which in
turn can result in the movement of turbidity as plume under the ice, thereby influencing the rate
of transport and distribution of turbidity in the reservoir. The presence of ice also influences
settling velocity of turbidity-causing particles, and water column stability (Samal et al. 2013).

The simulation of the vertical distribution of temperature and other water quality parameters in
lakes and reservoirs has been recognized as an important tool for conservation, restoration and
management of natural resources. Many one or two-dimensional models have been developed to
fill this role with varying degree of success in different tropical and temperate lakes and
reservoirs (Orlob 1983, Patterson and Hamblin 1988). In temperate climates the formation and
ablation of a winter ice cover and its interaction with underwater dynamics must be incorporated
into the simulation problem. Several one dimensional (1-D) model approaches which simulate
the unsteady heat transfer through a two-component (ice and snow) cover have been developed
and applied for the study of ice phenology (Wang et al. 2010, Jeffries et al. 2005, Fang et al.
1996, Semmler et al. 2012, Walsh et al. 1998, Brown and Duguay, 2012). The predictive
capability of these models that integrate water temperature, snow cover, and solution of the heat
balance equations across the ice column is dependent on the accurate estimation of lake snow
cover, which can be challenging due to the lack of measurements needed to provide data for
model calibration and verification and the high spatial variability of lake snow cover data.

In the present study, a simple ice model (Ashton, 1986, 2011) that predicts the onset, loss and
duration of ice cover is developed and applied to New York City drinking water reservoirs. The
model is driven by daily or hourly air temperature and wind speed as these are the most
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important factors influencing ice breakup and formation (Pierson et al. 2011). Using more than
19 years of observed ice-on and off data for Ashokan and Rondout Reservoirs, the one
dimensional ice model driven by air temperature and wind is applied to estimate the ice-on and
off dates along with ice thickness. Even though this simple model does not make detailed
calculations of the ice cover energy budget, ice-on and off dates for these two reservoirs are well
reproduced

The long-term observed ice phenology of these reservoirs can provide a powerful, integrative
description of wintertime and springtime climatic conditions for the region. Work is ongoing to
include simple snow cover estimates derived from precipitation and temperature data and expand
simulations to a wider set of lakes, which will allow more in-depth model inter-comparison.

Materials and Methods
Study area

The present investigation is carried out using data from Ashokan Reservoir and Rondout
Reservoir (Figure 4.26)

Simple Ice Model (SIM) description: Ice modelling algorithms

The ice algorithm used in the Simple Ice Model developed by Klaus D. Johnk, CSIRO,
Australia, is the sub model of the LAKEoneD lake stratification model (Johnk et al. 2001 and
Samal et al. 2009). This is based on the solution of the 1-D heat conduction equation under
steady state conditions in the ice (Ashton, 1980, 1983, 2011). In this simple model, a snow layer
on the ice is not included and the modeled ice cover is not influenced by the underlying water
temperature. Therefore, the model does not take into account the under-ice melting and freezing
due to changes in water temperature. Despite these simplifications, the model is a good
approximation for shallow lakes, where water temperature is closely related to air temperature.
Deeper lakes need more time to cool down and will show a bias which can be corrected by
comparing the lag between water and air temperatures, as long as there are some measurements
available. In practice this is handled by changing the number of frost days (days below a
threshold temperature) necessary to freeze the lake in the model parameter set (Yao et al 2014).
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Figure 4.26. Ice cover investigations in New York City Drinking Water Reservoirs

The model is driven by daily or hourly time series of air temperature and wind speed (as a
modifier for ice break-up). No explicit snow or precipitation data is needed. The output of the
model gives the timing of ice formation & ice loss and ice thickness. In the model, the
meteorological parameter, temperature of frost days which contributes to freezing, is usually set
to -1°C, the wind speed threshold (1 m/s) at which an ice layer of certain ice thickness (0.02 m)
will break up again can be used for calibration. The ice growth and melting is varied by the
internal ice parameters, such as density of ice, latent heat, freezing and melting coefficients and
the thermal conductivity. The latter is included here as a parameter to reflect a possible
parameterization of a snow cover by varying the conductivity between that for ice and snow. The
calibration parameters of frost days and the heat transfer coefficients for freezing and melting are
used in this simulation study. In SIM, the ice albedo is considered to be 0.5

Parameters used in the ice model:

Meteorology:

13 Temperature of frost day - TempFrostDay -1--3°C
14 Number of frost days - MinFrostDay 2-4d

15 Wind speed threshold for - WindBreakUp 1mls

16 Ice thickness to break up - WindMinlce 0.02m
Ice parameter:

21 Density of ice [kg/m°] - Rholce 916.0

25 Latent heat of fusion [J/kg] -L 334000
26 Heat transfer freezing [W/(m2 K )] - Qf 10-20
27 melting [W/(m2 K)]-Qm 10-20
28 Thermal conductivity [W /(m K)] - Tcond 2.24*

Highlighted: calibration parameters
* can be lowered to include effects of snow cover
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Results and Discussion

In the present investigation, the dates of ice on and ice off are visually observed by the wildlife
research group and the police aviation group in the New York City Department of Environmental
Protection. Observations are not specifically made for the purposes of ice observation, but
coincide with other routine monitoring activities. The frequency of sampling is approximately
weekly to twice monthly.

The simulated time of ice formation and ice break-up (as shown in Figures 4.27 and 4.28) is
often close to the observed dates of ice on and ice off, although ice break-up is predicted with a
greater degree of certainty Most predictions are within two weeks of the corresponding
observations, which is acceptable given that the observational sampling frequency is not high.
Furthermore, the model does not show a bias in under or over predicting the formation and
break-up dates.

Measurement of ice thickness in these two reservoirs is not made and thus not available for
comparison with model prediction. The ice thickness predicted by this model has however been
tested and compared by Yao et al (2014) for Harp lake in Canada, who found that this simple
model often performed better than more complex models, probably because it captured the major
factors — air temperature and wind speed, and reflected their controls on ice phenology in an
effective way (Yao et al 2014).

Conclusions

Even though this simple model does not make detailed calculations of the ice cover energy
budget, it performed reasonably well when simulations were compared to observations of timing
of onset, loss, and duration of ice cover, for multiple winter seasons for Ashokan and Rondout
Reservoirs. Interannual variations in ice cover duration are evident for both of the reservoirs. Ice
formation begins in early January and the thickness of ice ranges from < 0.1 m to ~ 0.4 m in both
reservoirs. Based on the model results, maximum ice thickness simulated in Ashokan Reservoir
(~ 0.2-0.3 m) was significantly more than in Rondout Reservoir (~0.1 m — 0.2 m). The simple
model tested here shows promise in allowing lake ice phenology to be simulated using readily
available input data.
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Figure 4.27. Meteorological forcing driving the ice model (top panel) and model simulating ice
on and ice off and the difference in days between observed ice data and model for Ashokan
Reservoir
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Figure 4.28. Meteorological forcing driving the ice model (top panel) and model simulating ice
on and ice off and the difference in days between observed ice data and model for Rondout
Reservoir
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4.7 Uncertainty Assessment in Water Quality Modeling
Introduction

Water quality models are important tools for predicting the transport and fate of contaminants in
receiving waters such as reservoirs and lakes and can be very helpful in water resource

management. Despite the physical basis of these models, model parameters often cannot be
reliably estimated a priori and require calibration to fit measured data, which may bring
uncertainty into the models. In addition, error in model inputs (such as the inflow and loadings
predicted using watershed models or estimated using measured data) may be significant. The
error may result in high uncertainty in model predictions. In general, there are three principal
sources contributing to modeling uncertainty: imperfection in model structure, uncertainty in
model parameters, and error associated with input data and the measurement data for model
calibration (Omlin et al., 2001; Lindenschmidt et al., 2007; Rueda, et al. 2007; Elsawwaf et al.,
2010; Janse et al. 2010; Rigosi and Rueda, 2012). Uncertainty analysis in water quality modeling
can provide information for model improvement and quantify the level of reliability of model

results.

The objective of this study was to assess the uncertainty that arises from parameter uncertainty
and error in model inputs (forcing data) in the modeling of Pepacton Reservoir using a one-

dimensional hydrothermal and water quality model (V3.5B) developed by UFI (2001).

Table 4.7. Sensitive model parameters and their ranges and calibrated values

No Name Definition Range Calibrated
value

1 aC2CHL Ratio of carbon (C) to chlorophyll (Chl) (ugC/ugChl) 40-100 51.3

2 aC2p Ratio of carbon to phosphorus (P) (ugC/ugP) 80-150 80.8

3 Betaw Surface adsorption fraction 0.3-0.7 0.34

4 Emisi Ice emissivity 0.9-0.99 0.98

5 Eta Wind mixing 1-15 1.01

6 Fardl Fraction algal respiration as dissolved labile 0.5-1 0.74

7 Htcwi Ice transfer 0.01-0.1 0.054

8 Kc Chlorophyll multiplier (L/ugChl/m) 0-0.05 0.031

9 kldoc Oxidation of labile dissolved organic carbon (DOC) (1/d) 0.01-0.015 0.012

10  kldop Decay of labile dissolved organic phosphorus (DOP) (1/d)  0.01-0.1 0.099

11 phir Respiration multiplier 0.01-0.15 0.11

12 PPvel Settling organic particulate phosphorus (m/d) 0.264-1.496 1.48

13 Rz Exponent 0.2-0.6 0.38

14 Sod Sediment oxygen demand (g/m?/d) 0.32-0.48 0.38

15 trncon Evaporation multiplier 0.001-0.005 0.0047

16 Turb Atmospheric turbidity 2-3 2.96
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Table 4.8. Inputs and their variation ranges

No  Inputs Variation ranges
1 Air temperature -1.5-1.5°C
2 Dewpoint temperature -1.5-1.5°C
3 Wind speed -5-5%
4 Solar radiation -5-5%
5 Dissolved phosphorus -15-15%
6 Dissolved nitrogen -15-15%
7 Dissolved organic carbon -15-15%
8 TSS load -15-15%
9 Inflow -10-10%
10 Stream temperature -1.5-1.5°C
Methodology

In this study, a general and flexible method based on generalized likelihood uncertainty
estimation (GLUE) was used. Sixteen sensitive model parameters were taken as uncertain
parameters and the model inputs including meteorological data, hydrological and loading data
which were provided as time series (daily data) in the model were taken as uncertain inputs (see
Tables 4.7 and 4.8). The Latin hypercube sampling (LHS) technique, described by McKay et al.
(1979) and used widely in other studies such as Rueda, et al. (2007) and Rigosi and Rueda
(2012), was adopted to generate 13500 sets of parameter values and input data.

Results and Discussion
Posterior likelihood of parameters and inputs

The shape of the distributions of parameter values indicates the degree of uncertainty of the
parameter estimates. Sharp and narrow distributions are associated with well identifiable
parameters, while flat uniform distributions indicate higher parameter uncertainty. The
probability distributions of parameters are classified into five categories according to their
shapes. The probability distributions of five parameters including kldop (decay of labile
dissolved organic phosphorus), phir (respiration multiplier), trncon (evaporation multiplier),
htcwi (ice transfer), and aC2CHL (ratio of carbon to chlorophyll) were plotted in Figure 4.29 as
examples to provide visual impressions of the distributions. The main results of distributions of
parameters are as follows: (1) Four parameters including kldoc (oxidation of labile dissolved
organic carbon), kldop (decay of labile dissolved organic phosphorus), PPvel (settling organic
particulate phosphorus), and rz (exponent) follow negatively skewed triangular distributions
(Figure 4.29(a)). The values of these parameters tend to cluster toward their upper bounds. The
results imply that if the upper bounds of the parameters are raised, better results (the simulations
match the measurement data better) may be obtained by model calibration. On the other hand, it
is important to make sure the upper bounds of these parameters are appropriate in model
calibration because low simulation error can be achieved if these parameters are assigned higher
values. If the upper bounds are wrong, incorrect results may be obtained. (2) Three parameters
including eta (wind mixing), fardl (fraction algal respiration as dissolved labile), and phir
(respiration multiplier) follow positively skewed triangular distributions (Figure 4.29(b)). The
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results mean that if the lower bounds of the parameters are lowered, better results may be
obtained by model calibration. Appropriate lower bounds for these parameters are the basis for
good calibration results. (3) Two parameters including betaw (surface adsorption fraction) and
trncon (evaporation multiplier) follow skewed normal distributions (Figure (c)). These
parameters tend to have middle values of their ranges and they are well defined. (4) Six
parameters including aC2P (ratio of carbon to phosphorus), emisi (ice emissivity), htcwi (ice
transfer), kc (chlorophyll multiplier), sod (sediment oxygen demand), and turb (atmospheric
turbidity) follow uniform distributions (Figure 4.29(d)). Their values distribute evenly within
their ranges. These parameters are of high uncertainty. (5) One parameter, aC2CHL (ratio of
carbon to chlorophyll), follows a righted-angled trapezoid distribution (Figure 4.29(e)). The
results mean that if the lower bounds of the parameters are lowered, better results may be
obtained by model calibration. It is very important to check the lower bound of this parameter in
model calibration.
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Figure 4.29. Example histograms of posterior probability distributions of parameters including
kldop (decay of labile dissolved organic phosphorus), phir (respiration multiplier), trncon
(evaporation multiplier), htcwi (ice transfer), and aC2CHL (ratio of carbon to chlorophyll): (a)
negatively skewed triangular distribution, (b) positively skewed triangular distribution, (c)
normal distribution, (d) uniform distribution, and (e) right-angled trapezoid distribution.
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Understanding the distribution of inputs can help improve the model. The probability distribution
for each set of input time series data was plotted and it is found that most inputs follow non-
Gaussian distributions. The probability distributions of five of them were plotted in Figure 4.30.
In these bar charts in Figure 4.30, abscissas show the discrete variations of daily air temperatures
(zero value represents the daily air temperatures were not varied), while ordinates (y-axes) show
the (normalized) posterior probability. The main results are as follows: (1) Three series of inputs
(air temperature, dew-point temperature, and inflow) follow negatively skewed triangular
distributions (Figure 4.30(a)), implying that their current input data may have been under-
estimated and increasing these inputs may lead to better modeling results. (2) Two series of
inputs (wind speed and dissolved phosphorus) follow positively skewed triangular distributions
(Figure 4.30(b)), implying that their current input data may have been over-estimated. (3) One
time series data (stream temperature) follows a skewed normal distribution (Figure 4.30(c)).
They are well-estimated. (4) Two time series data (solar radiation and dissolved nitrogen) follow
uniform distributions (Figure 4.30(d)). Their uncertainties are high. (5) Two time series data
including dissolved organic carbon and total suspended solid (TSS) loads follow righted-angled
trapezoid distribution (Figure 4.30(e)). They may have been over-estimated.

Prediction intervals

The uncertainty of model results can be stated by giving a range (or a band) of values. Wider
bands mean higher uncertainty in the estimation of the modeling output and thus lower
confidence in the model results; vice versa, smaller bands containing the observations are
indicators of reliable modeling results (Freni and Mannina, 2012). Figure 4.31 presents the daily
simulated and measured temperatures of the epilimnion and the hypolimnion, along with 90%
prediction intervals. As shown by the narrow prediction intervals, the simulation uncertainty is
low. Low uncertainty can also be observed for DO concentrations of the epilimnion in Figure
4.32(a). Unfortunately, the simulation uncertainty is high for DO concentrations of the
hypolimnion, and the TP and CHLA of the epilimnion and the hypolimnion, especially at low
and high concentrations as shown in Figures 4.32(b), 4.33 and 4.34. The results are consistent
with the results of other studies such as Rigosi and Rueda (2012).

The number of observations included in the uncertainty intervals is one of the main issues in
evaluating GLUE results, since it is important that the GLUE bounds are able to account for all
or most of the output variability (Blasone et al. 2008). As shown in Figures 4.31-4.34, most
measurements are included in the prediction intervals for the TEMP, CHLA and TP of the
epilimnion, and the TP of the hypolimnion (89.5, 74.1, 89.5 and 80.4%, respectively). However,
the percentages of the measurements included in the prediction intervals are low for the DO of
the epilimnion, and the TEMP, DO and CHLA of the hypolimnion (47.1, 48.4, 56.0, 50.0%,
respectively). The results show that the uncertainty in model structure, or the error in
measurement data is significant, or the parameter ranges are too narrow.
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Figure 4.31. Daily simulated and measured temperatures, along with 90% prediction intervals
(90%P1) of (a) the epilimnion and (b) the hypolimnion.
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Figure 4.32. Simulated and measured dissolved oxygen, along with 90% prediction intervals
(90% PI) of (a) the epilimnion and (b) the hypolimnion.
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Figure 4.33. Daily simulated and measured total phosphorus, along with 90% prediction
intervals (90%P1) of (a) the epilimnion and (b) the hypolimnion.
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Figure 4.34. Daily simulated and measured chlorophyll a, along with 90% prediction intervals
(90%P1) of (a) the epilimnion and (b) the hypolimnion.
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Summary and Conclusions

In this work, a general and flexible method based on generalized likelihood uncertainty
estimation (GLUE) is applied to the estimation of the uncertainty in reservoir water quality
modeling that arises from parameter uncertainty and errors in model inputs. A one-dimensional
hydrothermal and water quality model of Pepacton Reservoir was used to demonstrate the
method. Main conclusions are as follows:

= The GLUE method proves to be a valid tool to obtain well-defined posterior distributions
of parameters and inputs. The application results show that almost all parameters and
inputs have wide posterior distributions, indicating the parameters and inputs are of high
uncertainty. The posterior probability distributions of parameters and inputs can be
classified into five categories according to the shapes of their distributions. The
classification can be helpful for model calibration.

= The GLUE method helps us to understand the simulation uncertainty (i.e., prediction
intervals) for multiple variables. As shown by the narrow prediction intervals, the
simulation uncertainty is low for simulated temperatures. Low uncertainty can also be
observed for dissolved oxygen concentrations of the epilimnion. Unfortunately, the
simulation uncertainty of total phosphorus and chlorophyll a of the epilimnion and
hypolimnion, and the dissolved oxygen of the hypolimnion is high, especially at peak
concentrations.

= The application results show that most measurements are included in the prediction
intervals for the temperature, chlorophyll a and total phosphorus of the epilimnion, and
the total phosphorus of the hypolimnion. However, the percentages of the measurements
included in the prediction intervals are low for the dissolved oxygen of the epilimnion,
and the temperatures, dissolved oxygen and chlorophyll a of the hypolimnion. The model
needs to be improved by, for example, reducing the uncertainty in model structure.
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5. Data Analysis to Support Modeling

5.1. Turbidity and Suspended Sediment Monitoring in the Upper Esopus Creek
Watershed

Introduction

Suspended sediment concentration (SSC) and turbidity are primary water quality concerns in
New York City’s (NYC) water supply system (FAD, 2007). Turbidity can make water appear
cloudy or muddy; it is caused by the presence of suspended and dissolved matter, such as clay,
silt, fine organic matter, plankton and other microscopic organisms, organic acids, and dyes
(ASTM International, 2003). Turbidity measurements are a quantification of the optical
properties of a liquid that causes light rays to be scattered and absorbed rather than transmitted
through a water sample (ASTM International, 2003). The U.S. Geological Survey quantifies
turbidity levels as nephelometric turbidity units (NTUs) for instruments that use white light (a
broadband light source) or as formazin nephelometric units (FNUSs) for instruments that use a
monochrome light source (Anderson, 2005). The Environmental Protection Agency limits
turbidity to 5 NTUs in unfiltered water entering a water supply system such as that of NYC.
Turbidity was identified as a source of water-quality impairment in the management plan for the
NYC watershed because it is aesthetically unpleasing, reduces the effectiveness of drinking
water disinfection, and may indicate the presence of bacteria and viruses. During large storms
high turbidity levels can also limit the use of portions of the drinking water supply system.

The Catskill portion of the Catskill/Delaware water supply system is the primary source of
turbidity in the NYC Water Supply System (CCE, 2007). Through watershed geomorphic
assessments and watershed modeling, the NYC-DEP, in cooperation with the New York State
Museum and the State University of New York at New Paltz, have identified streambank and
streambed erosion of fine sediments from glacial lake deposits as the primary source of
suspended sediment and turbidity in the Catskill water supply watershed (CCE, 2007). As a
result, reduction of stream sediment and turbidity has been the focus of stream stabilization
projects within the watershed. The NYC-DEP and the U.S. Geological Survey (USGS)
developed a monitoring strategy to elucidate the spatial and temporal variability of suspended
sediment and turbidity in the upper Esopus Creek watershed. These monitoring data will also be
used to support the water-quality modeling efforts that require more detailed spatial and temporal
turbidity and suspended sediment data. This report summarizes the results of SSC and turbidity
monitoring within the upper Esopus Creek watershed (Figure 5.1), the main tributary to the
Ashokan Reservoir, for the period October 1, 2009 through September 30, 2012. Turbidity and
SSC were measured at 6 monitoring stations within the upper Esopus Creek watershed as part
this project. Stations were chosen to coincide with existing USGS stream gaging stations to take
advantage of existing infrastructure and streamflow data. This work was conducted for DEP by
the U.S. Geological Survey (USGS) and here we present a concise summary of the provisional
project report. The final USGS open file report will provide more extensive information on the
project (McHale and Siemion, In Press)

111



The specific objectives of the project were to:

1. Examine temporal and spatial patterns in turbidity and suspended sediment in the
upper Esopus Creek watershed.

2. Quantify SSC and turbidity at each of 6 monitoring stations in the upper Esopus
Creek and estimate suspended sediment loads at each station.

3. Evaluate the relations between SSC and turbidity and construct sediment and
turbidity rating curves at the six USGS stream gaging stations within the upper
Esopus Creek watershed.
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Figure 5.1. The Upper Esopus Creek watershed showing the locations of 14 monitoring
stations. Monitoring stations included in the current study (DEP) are shown as triangles;
monitoring stations used in a previous NYSDEC/CCE study (CCE) are shown as circles.

112



Field Methods

All field data collection was conducted according to standard USGS protocols (Wilde and others,
1999). Stream suspended sediment and turbidity grab samples were collected monthly
throughout the study from a well-mixed area of the stream (identified through flow
measurements) at each sampling station. Storm samples were collected with automated samplers
triggered to sample in response to changes in stream stage. Grab samples, automated samples,
and turbidity measurements from in-situ probes were all collected in as close proximity as was
possible at each station to minimize differences caused by sampling location. The goal was to
capture samples throughout the range of flow conditions and during every season at each site
throughout the study period. Field quality assurance and quality control were assessed through
approximately quarterly collection of triplicate samples and equal width - depth integrated
samples. Turbidity was monitored at a 15-minute interval using in-situ turbidity probes at 10 of
the stations. Two types of turbidimeters were used (1) the Forest Technology Systems DTS-12
probe and (2) the HACH Environmental Surface Scatter 7 Turbidimeter (SS7). The DTS-12
probe is a true in-situ probe that is deployed in-stream, it uses a sidescatter optical nephelometer
with an infrared laser light source and a specified range of 0 to 1,600 nephelometric units (NTU)
and a resolution of 0.01 NTU. The DTS-12 is specified to be accurate to within +2 percent in the
range of 0-399 NTU and 4 percent in the range 400 to 1,600 NTU. The SS7 is a flow-through
system mounted on the wall of a gage house and water is pumped into it from the stream.
EccentricPumps SLP Minil0 peristaltic pumps delivered water to the SS7 at a rate of 2 L/min.
The SS7 uses a photocell positioned at a 90 degree angle to the broad spectrum light source with
a specified range of 0 to 9999 NTU and a resolution of 0.01 NTU below 100 NTU and 0.1 NTU
above 100 NTU. The SS7 is specified with an accuracy of £5 percent from 0 to 1999 NTU and
+10 percent from 2000 to 9999 NTU. Both types of probes were calibrated and checked monthly
using Formazin standard solutions. Measurements from the DTS-12 probes are reported as
Formazin Nephelometric Units (FNU). Measurements from the SS7 are reported as
Nephelometric Turbidity Units (NTU). The calibration was checked and probes were cleaned
every month for both types of in-situ turbidimeters. Cleaning and fouling data corrections were
applied to the turbidity data according to standard methods (Wagner, 2006).

Laboratory Methods

All water-quality samples were transported to the USGS Soils and Low lonic Strength Water
Quiality Laboratory in Troy, N.Y. where turbidity was determined using a Hach Model 2100AN
turbidimeter. Suspended sediment concentration was analyzed at the USGS Sediment Laboratory
in Louisville, Kentucky using the ASTM [D3977-97(2002)] standard test methods for
determining sediment concentration in water samples (Guy, 1969).

Results and Discussion

Suspended Sediment and Turbidity Loading from Tributaries

One of the objectives of this study was to quantify SSC and turbidity levels, and suspended
sediment loads at each of 6 gaging stations in the upper Esopus Creek for a period of three years.
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Although flow conditions were quite different between water years 2010 and 2011, the
contributions of suspended sediment from the various tributaries relative to the total remained
remarkably similar (Figure 5.2). Stony Clove Creek contributed by far the largest amount of the
total annual suspended sediment load at the Cold Brook station: 37 percent of in water year
2010, 30 percent in 2011 and 57 percent in 2012. Indeed, Stony Clove Creek accounted for a
higher percentage of the load calculated for Coldbrook outlet during 2010 and 2011than all of
the other tributaries combined. The large increase in the percent of load accounted for by Stony
Clove Creek during the 2012 water year was probably caused by the channel disturbance
associated with stream bank stabilization work that followed Hurricane Irene. There were several
times throughout 2012 when high concentrations of turbidity were measured by the in-situ
probes that were not accompanied by increases in stream discharge. The Woodland Valley
tributary also accounted for a substantial percentage of the load at Coldbrook, 7 percent in 2010,
14 percent in 2011, and 9 percent in 2012. Comparing suspended sediment loads from
watersheds of different size can be misleading because the largest watersheds typically produce
the largest sediment loads. Figure 5.2 shows loads as tons per hectare, in other words the loads
have been divided by watershed area (in hectares) to normalize for watershed area. Viewed in
this way, Stony Clove Creek produces more sediment per hectare than any other tributary and
indeed more than the entire upper Esopus Creek watershed. The contribution from Woodland
Valley is also consistently high although not nearly as high as Stony Clove. The per hectare load
from the different tributaries varies substantially from year to year: the Stony Clove Creek
watershed appears to be a chronic source of suspended sediment and turbidity to the Esopus
Creek; it produces the largest amounts of suspended sediment regardless of the hydrologic
conditions whereas the rest of the tributaries do not rank in consistent order in terms of largest to
smallest contributors of suspended sediment from year to year.

Relation between SSC and turbidity, and streamflow-SSC/turbidity rating curves

Data from the six stations monitored as part of the present study were used for developing
relations between SSC and turbidity, and rating curves that relate streamflow to SSC and
turbidity because these were the stations with the best quality discharge data (Table 5.1). Three
types of data were used to examine the relations between SSC and turbidity; suspended sediment
concentrations and turbidity values from discrete sampling (grab samples and samples collected
with automatic samplers) that were both analyzed in the laboratory and turbidity values from in-
situ turbidity probes. The relations between discharge, SSC, and turbidity were also investigated
for each station. The relation between discharge and SSC was strongest at the Coldbrook station
at the outlet of the upper Esopus Creek watershed and weakest at Hollow Tree Brook (Table
5.1). This pattern was consistent with results from regression analyses of discharge and
laboratory turbidity (Table 5.1). The two stations with the lowest SSC and turbidity levels, Little
Beaver Kill and Hollow Tree Brook had the weakest relations to discharge. The two watersheds
did not produce high SSC and turbidity and therefore the concentrations did not increase as
strongly with increasing discharge compared to the other stations. In general the stations with the
highest concentrations had the strongest relations between discharge and suspended sediment or
turbidity; however this was not true for Stony Clove Creek which had the highest volume
weighted mean concentrations of any of the watersheds in the study. This inconsistency may be
caused by several stream bank failures along the length of the stream that can produce high
concentrations through the range in flow conditions in the watershed. Therefore, although SSC
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and turbidity are consistently high at the station, those concentrations are not strongly related to
discharge (Table 5.1). Regression results between discharge, SSC, and laboratory turbidity at
Birch Creek and Woodland Creek were similar to those calculated for Stony Clove Creek with r
values ranging from 0.57 to 0.75 (Table 5.1).

2

Relations between SSC and turbidity are of particular interest because of the potential to use
turbidity and SSC as a surrogate for one another. First, relations between SSC and turbidity from
samples analyzed in the laboratory were examined (Table 5.1). The relations were stronger than
those calculated for discharge and SSC at all of the stations except Coldbrook. Nonetheless,
Coldbrook still had the strongest relation between SSC and turbidity of any of the stations.
Regression results showed a strong relation between laboratory turbidity and SSC at all of the
stations with r? values ranging from 0.72 at Stony Clove Creek to 0.82 at Cold Brook. Hollow
Tree Brook, the station with the lowest SSC and turbidity values, was an exception. The relation
between SSC and turbidity was also strong when data from all of the stations were considered
together with SSC and laboratory turbidity data log-transformed (Figure 5.3).

Information generated from this study will be useful for modeling of suspended sediment
concentrations in the Esopus Creek.
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Figure 5.2. Suspended sediment loads per unit area (ha) for water years (a) 2010, (b) 2011, and
(c) 2012 at 14 sites throughout the upper Esopus Creek watershed. In water year 2012 only six
sites were sampled: Birch Creek, Woodland Valley, Hollow Tree Brook, Stony Clove Creek, and
Esopus at Coldbrook. Note the change in scale between years. See Figure 5.1 for station
locations. Note that in 2010 and 2011 monitoring included sites that were part of another
collaborative project described in Figure 5.1.
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laboratory with a Hach 2100AN instrument for data collected from water years 2010-2012 at the
six long-term USGS stream gaging stations in the upper Esopus Creek watershed. See Figure 5.1
for station locations.
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Table 5.1. Results of regression analyses between discharge (Q) and suspended sediment
concentration (SSC), laboratory turbidity (LabTurb), and in-situ turbidity (Turb15) at six stations
in the upper Esopus Creek watershed. See Figure 5.1 for locations.

Station: Esopus Creek at Cold Brook (Hach Surface Scatter 7)

Independent  Dependent r? p n Equation
Q SSC 0.91 <0.001 102 SSC=0.09%xQ —379
Q LabTurb 0.83 <0.001 105  LabTurb = 0.06 X Q — 67.2
Q Turb15 0.61 <0.001 39,360 Turb15=0.05xQ —3.21
LabTurb SSC 0.82 <0.001 92 SSC = 1.36 X LabTurb + 116.9
Turb15 LabTurb 0.96 <0.001 30 LabTurb = 1.14 X Turb15 — 7.8
Turb15 SSC 0.86 <0.001 31 SSC = 2.02 X Turb15 — 26.3
Station: Little Beaver Kill at Beechford (DTS-12)
Independent  Dependent r? p n Equation
Q SSC 0.56 <0.001 103 SSC=042xQ —-8.0
Q LabTurb 0.45 <0.001 98 LabTurb = 0.15 x Q + 0.37
Q Turbl15 0.37 <0.001 52,685 Turb1l5=0.08xQ —0.91
LabTurb SSC 0.77 <0.001 92 SSC = 2.54 x LabTurb + 6.2
Turb15 LabTurb 0.40 <0.001 56 LabTurb = 0.38 X Turb15 + 19.3
Turb15 SSC 0.32 <0.001 59 SSC = 0.97 X Turb15 + 46.2
Station: Stony Clove Creek at Chichester — DTS-12
Independent  Dependent r? P n Equation
Q SSC 0.64 <0.001 118  SSC =0.53xQ + 228.6
Q LabTurb 0.60 <0.001 103 LabTurb =0.37 x Q + 182.8
Q Turb15 0.29 <0.001 24,955 Turb15=0.16 xQ +85.6
LabTurb SSC 0.72 <0.001 100  SSC = 1.4 x LabTurb + 45.1
Turb15 LabTurb 0.79 <0.001 32 LabTurb = 1.5 X Turb15 — 15.4
Turb15 SSC 0.66 <0.001 39 SSC = 2.2 X Turb15 —120.7
Station: Stony Clove Creek at Chichester — Hach Surface Scatter 7
Q Turb15 0.25 <0.001 32,544 Turb15 =0.27 X Q + 69.6
Turb15 LabTurb 0.74 <0.001 33 LabTurb = 1.93 X Turb15 — 42.2
Turb15 SSC 0.52 <0.001 39 SSC = 3.2 X Turb15 — 98.6
Station: Hollow Tree Brook— DTS-12
Independent  Dependent r2 P n Equation
Q SSC 0.50 <0.001 60 SSC=23x%xQ—29.6
Q LabTurb 0.61 <0.001 53 LabTurb = 0.31 x Q — 3.2
Q Turb15 0.02 <0.001 23,986 Turbl5=037xQ+3.0
LabTurb SSC 0.58 <0.001 51 SSC = 6.4 X LabTurb + 0.72
Turb15 LabTurb 0.96 <0.001 16 LabTurb = 0.64 X Turb15 + 0.84
Turb15 SSC 0.63 <0.001 16 SSC = 2.8 X Turb15 + 15.6

Q =discharge, in cubic feet per second; SSC = suspended sediment concentration, in milligrams per liter;
LabTurb = laboratory turbidity (Hach 2100AN); Turb15 = in-situ turbidity from either DTS-12 or Hach
Surface Scatter 7 in-situ probes. Turbidity units are Nephelometric Turbidity Units for laboratory turbidity
and Hach Surface Scatter 7 and Formazin Nephelometric Units for DTS-12.
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Table 5.1 (cont’d). Results of regression analyses between discharge (Q) and suspended
sediment concentration (SSC), laboratory turbidity (LabTurb), and in-situ turbidity (Turb15) at
six stations in the upper Esopus Creek watershed. See Figure 5.1 for locations.

Station: Woodland Creek at Phonecia— DTS-12

Independent  Dependent r? P n Equation
Q SSC 0.68 <0.001 86 SSC=038xQ+278
Q LabTurb 0.57 <0.001 81 LabTurb = 0.31 X Q + 35.8
Q Turb15 0.30 <0.001 22,345 Turb1l5=0.26x%xQ + 2.8
LabTurb SSC 0.79 <0.001 79 SSC = 2.4 X LabTurb — 100.6
Turb15 LabTurb 0.98 <0.001 17 LabTurb = 0.90 X Turb15 + 1.92
Turb15 SSC 0.65 <0.001 17 SSC = 1.2 X Turb15 4+ 15.9

Station: Birch Creek - DT-12 and Hach Surface Scatter 7 data were combined for Turb15 values
for regressions with LabTurb and SSC due to low sample numbers

Independent  Dependent r? P n Equation
Q SSC 0.75 <0.001 104  SSC=274%xQ-91.0
Q LabTurb 0.65 <0.001 91 LabTurb = 0.95 x Q — 12.2
LabTurb SSC 0.79 <0.001 85 SSC = 2.3 X LabTurb + 9.6
Turb15 LabTurb 0.99 <0.001 11 LabTurb = 0.68 X Turb15 + 0.40
Turb15 SSC 0.99 <0.001 12 SSC = 1.0 X Turb15 — 44
DTS-12 only
Q Turb15 0.62 <0.001 11,223 Turbl5=1.65xQ —5.2
Hach Surface Scatter 7 only
Q Turb15 0.29 <0.001 6,920 Turb1l5=040xQ—24

Q =discharge, in cubic feet per second; SSC = suspended sediment concentration, in milligrams per liter;
LabTurb = laboratory turbidity (Hach 2100AN); Turb15 = in-situ turbidity from either DTS-12 or Hach
Surface Scatter 7 in-situ probes. Turbidity units are Nephelometric Turbidity Units for laboratory turbidity
and Hach Surface Scatter 7 and Formazin Nephelometric Units for DTS-12.
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5.2. Behavior of Dissolved and Total Phosphorus in Relation to Stream Discharge: The
Form of Hysteresis During Storm Events

Introduction

Nutrient pollution in surface and groundwater is of major concern in the many streams of the US
and worldwide. Routine measurement of nutrient concentrations is important in determining the
nutrient status of a river. However, monitoring alone does not provide enough information on the
sources of these nutrients. Many studies have used export coefficients to estimate total diffuse
pollutants at the watershed scale (Endreny & Wood 2007; Hanrahan et al. 2001; Johnes 1996;
May et al. 2001). Since these studies are specific to certain areas, the export coefficients reported
are not applicable universally. Water quality modeling is also often used to identify source areas
of nutrient and sediments (Easton et al. 2008; Easton et al. 2009; Reckhow et al. 1980;
Schneiderman et al. 2002; Sharpley et al. 2002; Sharpley et al. 2006; Vadas et al. 2008). Another
approach that is widely used in sediment studies is the analysis of hysteresis behavior of
pollutants during storm and non-storm events (Andrea et al. 2006; Bowes et al. 2005; Evans &
Davies 1998; House & Warwick 1998; Minella et al. 2011; Siwek et al. 2012; Stutter et al.
2008). Hysteresis describes a constituent concentration curve that is offset from its
corresponding hydrograph, nutrient sediment delivery, and source areas. Variations of
concentrations of pollutants in streams during events often result in a hysteresis effect, with
difference concentrations during the rising and falling limbs of the hydrograph (Bowes et al.
2005). The shape and length of the particular hydrograph limbs vary for events, land use and
watersheds. Based on single event analysis, Williams (1989) identified five possible forms of
concentration and discharge (hereafter denoted as c-q) curves (Table 5.2).

This study illustrates and analyzes c—q hysteresis of TDP and TP in West Branch Delaware River
(WBDR) located in Beerston, NY from 1999-2003 (5 year period, 90 events). TDP and TP
typically increased in concentration at high discharges due to the mobilization of reactive
nutrients stored in agricultural, forest and riparian top soils during rains (Fiebig et al. 1990;
McGlynn & McDonnell 2003; Sickman et al. 2003). However, discharge explains only a small
fraction of the temporal variability in nutrient concentrations in this river (Bernal et al. 2002). In
addition, bio-geochemical catchment scale models have so far been unable to capture
satisfactorily this variability in nutrient response Bernal et al. 2004).

The first objective of this study was to examine whether the variability of the hysteresis forms of
TDP and TP, could be clustered following a general scheme. The second objective was to
explore the influence on main features of TDP and TP hysteresis, in the WBDR, of storm
hydrology and antecedent hydrological conditions. General features of TDP-g and TP-q
hysteresis were described using two simple descriptors that summarized their changes in
concentration, trends, rotational patterns and hysteresis areas. The latter , i.e., hysteresis patterns
indicate the hydrological mixing of water flow components during storm events (Evans &
Davies 1998; Hooper 2003) and investigates influence of phosphorus hysteresis during storm
events and relationship to antecedent hydrologic conditions to understand nutrient flushing and
dilution processes.
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Table 5.2. Classes and criteria of c-g relations (Adapted from Williams, 1989)

Class Relations

c/q criteria

Reference

I Single-valued line

A. Straight Line

B. Curve, slope of which
increases with increasing values

of g

C. Curve slope of which
decreases with increasing values

of q
I Clockwise loop

Il Counterclockwise loop
v Single line plus a loop

\Y Figure eight

(c/g), = (c/a)¢

A. Slopes of two subsections of the overall

relation are equal

B. Slopes of two subsections of the overall
relation are unequal - steeper for larger values of

q

C. Slopes of two subsections of the overall
relation are unequal — flatter for larger values of q

(c/q), < (c/q)+ for all values of q

(c/q)>(c/q)+ for all values of g

(c/q),= (c/q); for one range of q values
(c/q),>< (c/q); for other range of q values

(c/q), > (c/g)s for one range of g values
(c/g), < (c/g)s for other range of q values

Wood (1977)

Paustian and Beschta
(1979)

Axelsson (1967)

Arnborg et al (1967)

(c/q), = (c/g) on hydrographs’s rising limb; (c/q)s = (c/q) on hydrograph’s falling limb, paired to a particular (c/q).

Methods

Data Analysis

The described biogeochemical parameters include:

(a) A parameter describing the relative changes in concentration during the storm event (dC%),

using the following formula:

dC= (Cp-Cb)Cmax*100

where Cb is the concentration at base flow, Cp is the concentration during peak flow, Cmax is
the highest observed concentration during the storm event. dC can range from -100 to +100.
Negative dC indicates the effect of concentration dilution during storm events, whereas the
positive dC indicates the positive trend for c-q hysteresis and also the effect of solute flushing.

(b) A parameter that integrates information about the area and rotational pattern of the c-q
hysteresis loop (dR%) using the formula:

dR = R*Ac*100

where R describes the rotational pattern of the loop. Three possible values for this loop are +1 for
clockwise rotation, -1 for anticlockwise rotation, and 0 for loops with unclear rotation. Ac
describes the area of the c-g loop. This area is estimated using the trapezoidal method after
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standardizing the c-q values to a unity scale. The variability of the concentration and discharge
hysteresis descriptors for different pollutants were explored in the unity plane of dR vs. dC. In
the plane, four regions can be identified (Figure 5.4).

100

2o
NN

AC %

o

-100

\R %
Figure 5.4. Schematic representation of the unity plane /R vs. /C. In this plane, four regions
can be identified. In region A (/.C>0, /\R>0), are located the c—q hysteresis with clockwise
rotational pattern and with a general positive trend (i.e. solute flushing during the discharge
rising limb). Region B (/.C<0, /R>0) describes c—q hysteresis with a clockwise rotational
pattern but with a general negative trend (i.e. solute dilution during the recession discharge
limb). Region C (/.C<0, /\R<0) describes the c—q hysteresis with a counterclockwise rotational
pattern and with a general negative trend (i.e. solute dilution during the discharge rising limb).
Region D (/.C>0, /\R<0) describes c—q hysteresis with a counterclockwise rotational pattern
but with a general positive trend (i.e. solute flushing during the recession discharge limb).
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Hydrological parameters characterize the hydrograph formation for particular storm events.
These parameters include:

(a) The magnitude of the storm event relative to the baseflow
dQt = (Qr-Qs)/Qs (5.3)
where Qp is the peak streamflow during the storm event (m*s™),and Qg is the baseflow (m*s™) ;
(b) The slope of the initial phase of the hydrograph recession limb denoted by k.;
(c) The maximum discharge during the previous storm event denoted by dQ1 (m®s™);
(d) The time since the last storm denoted by t (days);
(e) The total amount of precipitation during the storm event, P (mm);
() The precipitation amount during the last storm event, P +.;.(mm); and

(9) The ratio between the length of the rising limb and the falling limb of the storm hydrograph
denoted by Q,:Qs.. The Q,:Qs values greater than 1 indicate a slower increase in runoff during
the storm event and also a steeper decrease in the falling limb of the storm hydrograph.

Statistical Analysis

The pollutant concentrations versus discharge relationships of all events were plotted in a semi-
logarithmic plot in which discharge had been log-transformed (Newbold et al. 1997). Regression
fitting was considered significant at p <0.05.

Results and Discussions

The response of storm episodes differ widely for total dissolved phosphorus and total
phosphorus. On our study sites, phosphorus concentrations typically increased during events
suggesting that these patterns are driven by similar hydrochemical mechanisms (Bowes et al.
2005; Stutter et al. 2008; Verstraeten & Poesen 2002). Overall, the temporal patterns of the
phosphorus concentrations were similar in the study site, however hysteresis behavior was not
consistent resulting in random patterns... The flood event sometime may consist of multiple
peaks creating situation of a non-unique concentration for a given stream discharge resulting in
many relationships with no distinct shape, i.e., infinite loop. In the classic mixing model with
two input components (baseflow and stormflow), a c-g hysteresis of a conservative tracer with a
small hysteresis area or/and unclear rotational pattern indicate the near co-occurrence of the
hydrological input components generating the storm water in the stream. The TDP increased for
most of the storm events and therefore data points of TDP-q hysteresis were located exclusively
in the region of A and B of the unity plane of dR vs. dC (Figure 5.4). The rotational pattern of
TDP-q hysteresis ranged from clockwise (dR >0) pattern to counter-clockwise (dR<0) , with
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many located on the zero plane (dR=0) where no distinct patterns could be discerned (Figure
5.5a). On the other hand, the rotational pattern of TP-q exhibited clockwise (dR >0) pattern, with
many located on the zero plane where no distinct patterns could be discerned. Very few storm
events showed counter-clockwise hysteresis pattern for TP (Figure 5.5b). The dispersion of TDP-
g was markedly larger than that of TP-q hysteresis although there is no evidence of TDP dilution
(i.e., dC <0) and hence no significant regression fitting could be obtained.

The differences in storm event intensity can have substantial effect on the nutrient flushing.
However, even with a large number of storm events studied, there was no clear response patterns
to storm magnitude for both TDP and TP (Figure 5.6a,b). Out study indicates that there is a
remarkable variability in TDP and TP-q hysteresis forms and rotational patterns, both among the
storm events and between the nutrients. The humid climate of the study region is characterized
by a marked within and between year variability, with a summer dry period which has strong
effect on both the hydrology and biogeochemistry streams. Uncertainty associated with TDP and
TP-q hysteresis and rotational patterns in our study prevented us from reaching to a general
hydrological and biogeochemical explanation for temporal dynamics in the study site during
storms events. This contrasts with the typically consistent clockwise for other nutrients such as
DOC and NO3-q hysteresis observed in Alpine catchments in response to snowmelt (Carey
2003; Hornberger et al. 1994), or in steep and wet small catchments (McGlynn & McDonnell
2003). The randomness of rotational patterns of and hysteresis form may be better understood
through further analysis of seasonal behavior of TDP and TP-q behaviors.

Conclusions

A complete understanding of the variability in solute concentrations during storm events is
dependent on stream watershed biogeochemical interactions and of pollutants origin in stream
waters. Relationship between discharge and solute concentration during storm events often
exhibit cyclic trajectories. This study illustrated and analyzed c-q hysteresis at WBDR from
1999-2003 (5 yr period, 90 events). TDP typically increased in concentration at high discharges
due to the mobilization of reactive solutes stored in agricultural top soil during rains. The
characteristics of storm hydrograph, particularly the relative duration of the rising limb, and the
magnitude of antecedent storm events may be useful parameters in describing changes in
concentration of TDP and TP in the WBDR site. Discharges alone did not adequately explain
the temporal variability in solute concentration.
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Figure 5.5. Representation of the c—q hysteresis characteristics of (a) TDP and (b) TP in the unity
plane /"R vs. /\C.
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Figure 5.6. Relationships between storm discharge increase (/.Qt) and the relative nutrients

concentration changes (/.C) observed in the study sites for the nutrients (a) TDP and (b) TP
concentrations.
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5.3. Precipitation and Snowfall Trends in NYC Watersheds and Northeastern US
Introduction

The Northeastern United States (US), located between 38°N and 48°N and 82°W and 66°W, has
recently experienced noticeable winter warming that has led to numerous changes in the region’s
ecosystems, hydrology, and economy. Changes in regional hydrology include earlier peak spring
river flow (Hodgkins et al. 2003), earlier river (Hodgkins & Dudley 2006) and lake ice-out
(Hodgkins et al. 2002), and decreases in river ice thickness (Huntington et al. 2003). Recent
warming of surface air temperatures across New England has been well documented (Trombulak
& Wolfson 2004). Warmer spring temperatures are linked to significant reductions in mid-
latitude northern hemisphere snow cover extent (SCE) from 1966 to 2005 during the months of
March and April, as identified from satellite-based data (Lemke et al. 2007). Analysis of snow to
total precipitation (S/P) ratios in northern New England over the period 1949-2000 indicates that
most of the 0.30 to 0.23 decrease in S/P ratio has occurred since 1975 (Huntington et al. 2004).
Snow cover duration in the NE-US was found to be strongly correlated with temperature during
that time period. Changes in snow cover can be an important indicator of climate change at the
regional scale because of its strong influence on the surface radiation balance and its resulting
impact on surface air temperatures (Lemke et al. 2007).

Detailed analysis of winter climate trends is essential to understanding the cause of recent winter
warming, and to evaluate the potential impacts on the northeastern United States. In this study,
we analyze winter climate trends in snowfall, temperature, and snow cover data over the period
1965-2005. Because snowfall and the number of snow-covered days (SCD) in March often
exceed December snowfall and snow-covered days in this region, winter trends include the
months of December, January, February and March.

Data and Methods
Data Source

For this study, the northeastern United States includes Connecticut, Maine, Massachusetts, New
Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont (Figure 5.7). In
order to accommodate for maximum station density, daily snowfall, snow depth, and mean
temperature data are compiled from the United States Historical Climate Network (USHCN) for
the period of 1940 to 2010. The USHCN dataset consists of high-quality daily data set compiled
by the National Climatic Data Center (NCDC), and is available for download at the Carbon
Dioxide Information and Analysis Center (http:// cdiac.ornl.gov/ftp/ndp070/) (Easterling 2002;
Williams et al. 2006). We used precipitation, temperature (minimum, maximum temperature and
average temperature), snowfall, snow depth data from 65 USHCN stations in Northeastern
United States (Figure 5.7) where continuous daily records were available to calculate annual or
winter-spring (here defined as November through March) composite records (Easterling 2002;
Karl et al. 1999; Williams et al. 2006). We also conducted winter spring center of volume
analysis for streamflow data from 50 USGS stream gages across the Northeastern United States
(Figure 5.7).
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Figure 5.7. USGS gages and USHCN sites within Northeastern United States

Data Analysis

For each station, seasonal (November of one year through March of the following year) and
monthly time series are computed for the following climate variables: (1) total snow water
equivalent (SWE), (2) winter-spring precipitation total, (3) ratio of SWE to precipitation for the
period of winter-spring, (4) minimum temperature, (5) maximum temperature, (6) mean
temperature, and (7) winter-spring center of volume (WSCV) for 50 USGS stream gage data.
The WSCV is defined as the Julian date (sequential day of year) on which 50% of the total
runoff volume that occurs over the period January 1% through May 31% has passed the stream
gage. This variable has been shown to be sensitive to late winter/early spring air temperature
(Dudley and Hodgkins, 2002, Hodgkins et al., 2003).

Trend Analysis and Sen’s Slope

In the study, we used trend analysis by using non-parametric Mann-Kendall test and Sen’s slope
estimator. Sen's method proceeds by calculating the slope as a change in measurement per
change in time. This is a statistical method which is being used for studying the spatial variation
and temporal trends of hydro-climatic data series. The significance of trends is evaluated by
computing p-values for Pearson’s correlation of the time series, for which the assumption of
normality was satisfied by inspecting residuals. Station trends with p < 0.10 for all 70-year trends
were considered statistically significant.
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Results and Discussions
Time Series Analysis

Out of 55 USHCN sites, 49 sites in the Northeastern United States showed a decrease in the
SWE to precipitation (PCP) ratio. However, this decrease in SWE:PCP was significant for only
21 sites. We analyzed S/P ratio for trends in individual months to determine which months had
the strongest trends. For the 55 sites, March and January had significant decreasing trends in
SWE to PCP ratio. The trend was pronounced for March compared to January. When averaged
across the Northeastern US, the SWE:PCP ratio showed a significant decrease from 1940 to
2010 (Figure 5.8a). Similar observations were made for the SWE estimate (Figure 5.8b). This
suggests that the annual and winter trends are driven in large part by changes in SWE: PCP
during the winter season when temperatures are more frequently near freezing. Most of the
coastal or near-coastal sites showed no significant trends in winter-spring SWE to PCP ratio.
Comparisons with other recent studies showing hydrologic responses to climate variability
indicated some consistent geographic patterns in responses within New England. Northern New
England had the most consistent trends in annual S/P ratio and also had the most consistently
significant trends in earlier (by 1 to 2 weeks during the 20t century) high spring flows (Hodgkins
et al. 2003). These northern regions that had the largest trends towards decreasing S/P ratio and
earlier high spring flows have substantially greater snow accumulation, thus warming would
have a greater impact on snowmelt- (and rain on snow-) driven runoff than in more southerly
regions (Pradhanang et al. 2013).

Decreasing S/P ratio could be explained by snowfall decreases that were proportionately larger
than decreases in rainfall, by constant snowfall and increasing rainfall, or increases in both, but
larger increases in rainfall than snowfall. We tested for temporal trends in total annual and total
winter precipitation, and we tested for trends in total snow water equivalent to determine which
could best explain the observed trends in S/P ratio. Analysis of precipitation data for the
Northeast shows that, over the period of 1940-2010, the mean annual precipitation was 103.6
mm, calculated by taking an area weighted mean of the climate divisions represented in the
region. The regional average annual precipitation for the 55 stations across the Northeast has an
overall increasing trend of 105 mm from 1940 — 2010 (Figure 5.10). Figure 5.10 shows the trend
of annual precipitation across the Northeastern US. The trend for the average precipitation
during winter-spring period for the Northeast is also positive.

Total annual SWE and winter SWE for the period 1940 through 2010 showed a significant
increase during November and decrease in March, but exhibited weak but insignificant
decreasing trends during December, January and February. Significant trends towards decreasing
snowfall is the dominant factor in explaining the significant decrease in SWE to PCP ratio. In
this northern region, the weak trend towards increasing precipitation also contributes to the
observed trends in decreasing SWE to PCP ratio. Winter temperatures have increased
substantially in the northeastern United States, with the most warming occurring in the months of
January and February for minimum, average, and maximum temperatures. Our study showed an
increasing trend of winter-spring average temperature trends for the Northeastern United states
(Figure 5.11). It has been suggested that climate warming may result in increased precipitation,
temperature and increased snowfall in many northern temperate latitude areas (McCarthy et al.
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2001). Out study showed similar results for increase in temperature and increase in snowfall for

certain areas up i

Conclusions

n the northern region.

Winter temperatures have increased substantially in the northeastern United States, with the most
warming occurring in the months of January and February for minimum, average, and maximum
temperatures. Statistically significant decreasing trends in monthly snowfall were identified in
January and March records, although all other months showed slight decrease in trends. These
documented changes in wintertime climate have and will continue to have an impact on the
region’s natural ecosystems and hydrology.
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Figure 5.11. Winter-Spring average temperature trends for USHCN sites within Northeastern
United States
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6. Model Data Acquisition and Organization

6.1. GIS Data Development for Modeling
Water Quality Monitoring Sites

Additional locations were added throughout the reporting period to the ArcSDE point feature
class of DEP water quality monitoring sites. The dataset is comprised of stream, reservoir,
keypoint, waste water treatment plant, and other DEP water quality monitoring sites included in
the Laboratory Information Management System (LIMS).

Stream Power

Rasters of flow direction and flow accumulation were created for each WOH reservoir basin
from the newly-acquired 1-meter DEM in order to expand work on using ArcGIS ModelBuilder
to derive values of stream power as a function of stream gradient and stream discharge, for
tributaries throughout the watershed. This work may more accurately identify stream reaches of
potentially increased erosion that merit field investigation.

Miscellaneous

Additional data development efforts and mapping support were provided throughout the
reporting period to various members of the DEP Water Quality Modeling Section, the Division
of Watershed Water Quality Science and Research, and the Water Quality Directorate. A
majority of this support was related to preparation of DEP reports, peer-reviewed publications,
conference posters, and conference presentations. Such events included the annual Watershed
Science Technical Conference, the Eastern Snow Conference, and the annual meeting of the
American Geophysical Union, among others.

6.2. Ongoing Modeling/GIS Projects
Bathymetric Survey of NYC Water Supply Reservoirs

An Intergovernmental Agreement with USGS to provide bathymetric surveys of the six West of
Hudson reservoirs, last surveyed in the mid- to late-1990s, was approved in August 2013.
Survey work was completed for Ashokan West and approximately one-half of Rondout during
the fall fieldwork season. Work on the remaining reservoirs will be undertaken in 2014 and
early 2015. Final products are to include a TIN surface model of reservoir bottom, 2-foot
elevation (depth) contours, and an updated elevation-area-capacity table for each reservoir.
Undertaking the work as an Investigative Study, USGS will prepare a final report, available
online, in which a map sheet for each water body describes the survey methodology, includes at
least a portion of the updated capacity tables, and graphically presents reservoir bottom surface
and contour data.
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Watershed Atlas

Work continued towards completion of a New York City Watershed Atlas with incorporation of
the newly-acquired 2009 Land Cover / Land Use data and updated basin/sub-basin boundaries
delineated from the new 1-meter DEM.

6.3. Time Series Data Development

An inventory of the necessary raw time series data for watershed and reservoir model input and
calibration is presented in Tables 6.1 and 6.2, respectively. The time series data includes
meteorology, streamflow, water quality, and point source loads for watershed models. For
reservoir models the data includes meteorology, streamflow, stream, reservoir and key point
water quality and reservoir operations. Data sets are updated as new data become available. Lag
times between the current date and the dataset end dates are the result of QA/QC processes at the
data source and/or procurement timelines driving the acquisition of any purchased data.

For this reporting period, the Northeast Regional Climate Center (NRCC) Meteorology,
NYCDEP Stream and Limnology Water Quality, and NYCDEP Key Point through calendar year
have either become available via online sources and/or have been added to the inventory.

The NYSDEC Water Quality data has provided the Modeling Group with a robust dataset from
baseline and storm event sampling of the West Branch of the Delaware River at Beerston from
1992 to the 2010. NYCDEP has taken over the collection and analysis of samples from this site
and, as such, the data from this site are now included in the NYCDEP Water Quality dataset.
Historically the NYSDEC has collected the samples and calculated the nutrient loads. That role
has transitioned over to the NYCDEP which is currently calculating the nutrient loads from WY
2010 to WY2013.

The NRCC Meteorological Data is now also available via the NRCC’s Applied Climate
Information System (ACIS). ACIS is a data access system developed by the NRCC to assist in
the dissemination of data. In addition to access to updated data from the NRCC cooperative
stations the ACIS will provide access to gridded meteorological data sets.
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Table 6.1. Inventory of data used for watershed modeling.

Data Type Data Source Data Description Dates* Modeling Needs
Meteorology Northeast Daily Precipitation ~ Pre 1960-2012 Model Input
Regional and Max/Min
Climate Center Temperature
Wastewater DEP Monthly WWTP 1990-2009 Model Input
Treatment Plants Nutrient Loads
Streamflow USGS Daily and Period of record  Hydrology Module
Instantaneous available online  Calibration / Nutrient and
Streamflow via USGS Sediment Loads
Water Quality DEP Routine and Storm  Period of record  Nutrient and Sediment
Stream Monitoring  avail. via LIMS Loads for Water Quality
Calibration
NYSDEC** Stream Monitoring  1992-2010 w/ Nutrient and Sediment

at West Branch
Delaware River

recent years
avail. via LIMS

Loads for Water Quality
Calibration

*Dates represent total span for all data sets combined. Individual station records vary.
**Now part of the DEP Water Quality dataset.

Table 6.2. Inventory of data used for reservoir modeling.

Dates* Modeling Needs

Data Type Data Source  Data Description

Meteorology DEP Air Temp., Relative 1994-June, 2010  Model Input
Humidity, Solar Radiation.,
PAR, Wind Speed, Wind
Direction, and Precipitation
Key Point and DEP Tunnel Water Quality, Flow  Period of record  Model Input
Reservoir Operations and Temp.; Reservoir avail. via LIMS
Storage, Spill, Withdrawal,
and Elevation
Streamflow USGS Daily and Instantaneous Period of record  Model Input
Streamflow available online
via USGS
Stream Hydrology DEP Stream Water Quality, Flow  Period of record  Model Input
and Temperature avail. via LIMS
Limnology DEP Reservoir Water Quality, and  Period of record  Model Input

Temperature Profiles avail. via LIMS

*Dates represent total span for all data sets combined. Individual station records vary.
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7. Modeling Program Collaboration
7.1. Participation in Ongoing External Research Projects

In the last year, the Water Quality Modeling Section has participated in several projects related
to the Section’s ongoing work on testing and improving models simulating watershed hydrology
and water quality, reservoir water quality and reservoir system operations. A number of projects
also supported Water Quality Modeling Section evaluation of climate change as outlined in
DEP’s Climate Change Integrated Monitoring Project (CCIMP).

Water Research Foundation Project 4262 - Vulnerability Assessment and Risk Management
Tools for Climate Change: Assessing Potential Impacts and Identifying Adaptation Options
Collaborators: Hazen and Sawyer, National Center for Atmospheric Research, Hydrologics,
Stockholm Institute, Rand Corporation.

The main focus of the CCIMP is to identify potential climate change impacts on the water supply
using the structured quantitative framework of water quality models. Project 4262 complements
the CCIMP by going one step further. Once climate change impacts have been identified this
project seeks to develop risk management approaches that will help managers prioritize risks and
decide on a course of action. This project focused on climate change impacts related to turbidity
and water availability, and made use of climate and streamflow scenarios developed as part of
the CCIMP. Through an iterative modeling process, using the DEP OASIS and CE Qual W2
models, water supply vulnerability was examined in relationship to uncertainties; in future
climate, stream turbidity relationships, and water supply demand. The project confirmed that
under present conditions dynamic system operations remain an effective turbidity control
measure. The project also showed that system vulnerability is sensitive to changes in future
water supply demand and the erosional processes controlling the turbidity inputs to the reservoirs
(as captured in present models by turbidity vs. flow relationships). This project ended in April
2013. A more detailed description of our contribution is given in Section 3.5 of this report.

Water Research Foundation Project 4306 — Analysis of Reservoir operations under Climate
Change
Collaborators: Hazen and Sawyer, National Center for Atmospheric Research, Hydrologics.

WREF project 4306 evaluated the possibilities of adapting and modifying reservoir operation
policy to mitigate the impacts of climate change on water supply quantity and quality. This
project tested methodologies needed to systematically evaluate and update operational policies in
response to a changing climate, by working with 6 water utilities as test cases. For NYC the
project is closely related to WRF project 4262, and the same Water Quality Modeling Section
future climate and stream flow scenarios used in project 4262 were also used here. The main
difference between these projects is that 4306 focused more on the possibility of improving
outcomes through better reservoir operation rules that make use of inflow forecasts (dynamic
rules) whereas 4262 focused on identifying uncertainty in the modeling assumptions that would
lead to unacceptable levels of system vulnerability. This project reached similar conclusions as
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4262 regarding the resiliency of the NYC water supply to a range of hydrologic conditions and
confirmed that uncertainty in water demand and stream turbidity response affected levels of
resilience. Incorporation of inflow forecasts into dynamic reservoir operating rules (as is being
done by the OST) was shown to improve water supply operation. This project ended in April
2013. A more detailed description of our contribution is given in Section 3.6 of this report.

Water Utility Climate Alliance (WUCA) Piloting Utility Modeling Applications (PUMA)

WUCA is a group of ten of the nation’s largest water utilities, whose mission is to improve
research on the effects of climate change on drinking water supplies, and to help water suppliers
to develop strategies to cope with the potential impact of climate change
(http://www.wucaonline.org). The purpose of the PUMA project is: 1) to identify climate
modeling tools and techniques that are appropriate for analysis of climate change impacts on
water supplies; 2) develop guidelines for the use of climate data and model simulation data
including methodologies for describing uncertainty; 3) to suggest how these data can be used to
support water planning and decision making; 4) to build and enhance collaboration between
water utilities and NOAA Regional Integrated Sciences and Assessment (RISA) centers; and 5)
to identify future research investments that would serve the water utility community. The Water
Quality Modeling Section has participated in the WUCA/PUMA project by attending the project
kickoff meeting in December 2010, and by participating in regular phone conferences and
planning meetings since then. The NYC water supply and the work undertaken as part of the
CCIMP will be highlighted as a case study in a white paper that will be a product of the PUMA
project. The NYC water supply provides a unique case study since climate change impacts
expected for the Northeastern United States are more water quality related as opposed to the
water quantity concerns that are more prevalent in the Western United States. Furthermore,
financial support for the CCIMP (as part of FAD funding) is unusually generous allowing DEP
to have one of the most extensive climate change research programs of any of the WUCA
utilities. DEP is the only utility using post-doctoral support scientists to carry out much of its
climate change research in house, whereas other utilities have instead to rely more extensively on
contracts with outside consultants to evaluate climate change impacts. Information for the case
study is being collected through a series of interviews and surveys developed by Status
Consulting for WUCA. DEP was one of the first utilities to participate in the survey and during
2013 we were re-surveyed to follow our progress in the CCIMP.

NASA Earth Science Division, Applied Sciences Program. Application of evapotranspiration
and soil moisture remote sensing products to enhance hydrological modeling for decision
support in the New York City water supply.

Collaborator: CUNY CREST

This project is being led by the City University of New York (CUNY) Remote Sensing of the
Earth Science and Technology (CREST) Center. The DEP Water Quality Modeling Section
supported a research proposal developed by CUNY CREST that has been funded by NASA. The
purpose of the project is to evaluate shortwave, thermal, and microwave remote sensing products
that could provide DEP with independent and spatially variable estimates of soil moisture and
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evapotranspiration. These remote sensing products will be used to test, calibrate and verify
watershed hydrology models in the WOH region under present climate conditions.

Presently watershed model calibration and testing must be based on comparison with measured
discharge and nutrient loads at the outlets of large watersheds in the WOH region, since these are
the only data available for calibration purposes. While models can successfully simulate
watershed scale outputs, there are multiple models processes that influence these outputs. The
accuracy of model representations of such processes as evapotranspiration or soil water storage
cannot at present be independently verified. Consequently even though watershed outputs are
simulated with good accuracy, the simulated watershed processes can be in error since differing
contributions from differing processes result in similar outputs. Correctly representing soil
moisture and evapotranspiration in our watersheds models will be critical for simulating future
changes in watershed hydrology, especially during summer periods when low flows and drought
conditions could occur.

The project has been underway for approximately eighteen months. The DEP Water Quality
Modeling Section has supplied a version of the GWLF-VSA watershed hydrology and water
quality model used by DEP to CUNY CREST, and provided support in setting up and running
the model. Initial comparisons between model output and the remote sensing products are
encouraging. During 2013 the water quality modeling group has worked with CUNY CREST to
develop improvements to the GWLF model and the model calibration that will allow it to better
simulate the patterns of evapotranspiration that are measured using satellite remote sensing. A
publication regarding this work is in preparation. During 2014 we intend to submit a second
proposal that will provide support for an evaluation of the possibilities of using time series of
satellite derived data as direct inputs to our watershed hydrology models.

NASA SMAP Early Adopter Project
Collaborator: CUNY CREST

The Soil Moisture Active Passive (SMAP) satellite is being developed by NASA and is
scheduled for launch during November of 2014. The SMAP satellite mission focuses on
measurements valuable to water resources using a combination of passive and active microwave
sensors. Products include estimates of soil moisture and soil freezing which will be made at
greater accuracy and at higher spatial and temporal resolution than with the current generation
earth observing satellites. SMAP soil moisture data will therefore be of use to DEP for the
reasons described in the CUNY CREST project immediately above, but will be of greater
accuracy and improved resolution. Changes in the timing and extent of soil freezing is an
expected effect of climate change in the WOH water supply watersheds, and changes in soil
freezing have documented effects on watershed hydrology and biogeochemistry. Monitoring soil
freezing will therefore be of importance for monitoring the impacts of climate change, and for
providing data to develop and test simulation models that include processes affecting soil
freezing. During 2012, CUNY CREST and DEP were chosen to be early adaptors of SMAP data
products. During 2013, CUNY CREST, has evaluated the synthetic sensor products, and has
become familiar with the expected satellite file format and grid resolution prior to the satellite
launch. As early adopters, we expect to begin testing the SMAP data products in late 2014 or
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early 2015. This work is clearly complementary to the project above and ensures that DEP will
be able to rapidly make use of the SMAP data products as soon as they become available.
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7.2. Modeling Program Contract Management

During 2013 the Water Quality Modeling Section managed three external contracts that support
our work. These contracts provide data that are used for testing, calibrating and verifying
models, and provide support for the development and testing of models used by the modeling
section. In the case of the contract with the research foundation of the City University of New
York (CUNY-RF), support for model and data development is provided by post-doctoral
scientists who work with the Water Quality Modeling section on a day to day basis. These
contacts are described below.

Contractor: Upstate Freshwater Institute.
Contract Title: Short-term Variations in Temperature and Turbidity at Shandaken Tunnel
Intake: Internal Wave Activity in Schoharie Reservoir

During the summer of 2013 periodic variations in the turbidity and temperature of water
discharged to the Esopus Creek from Schoharie reservoir were recorded. These variations were
occurring on approximately a diurnal time scale and could be as large as 50-100 NTU. Neither
variations in reservoir operations nor the timing of storm events could provide a good
explanation for the observed short-term variations in turbidity. Given the short term and highly
periodic nature of the variations in turbidity, DEP hypothesized that they could be related to
internal seiche movement in the reservoir, which was apparently resulting in turbidity rich water
being withdrawn from the reservoir to the Shandaken tunnel. The purpose of this project was to
further evaluate the validity of this hypothesis through data analysis and the use DEPS reservoir
turbidity transport model for Schoharie reservoir. The report was completed in early 2014, and
confirmed that the internal seiche was responsible for the observed fluctuations in water
temperature. Spectral analysis of the fluctuations in water temperature identified periods of
fluctuation related to the periodicity of north-south winds. Model simulation accurately
reproduced the variations in water temperature, as a result of internal seiche movement. The
model was unable to simulate the periodic variations in turbidity;, presumably due to the fact the
sediment resuspension related to seiche induced turbulence is not included in the model.

Contractor: United States Geological Survey.
Contract Title: Turbidity and Suspended Sediment Monitoring in the Upper Esopus Creek
Watershed, Ulster County, NY

This contract involved involves retrofitting the five existing USGS flow gauges in the Esopus
Creek watershed to automatically monitor turbidity at high (15 min) frequency. These five
stations provide a high frequency record of flow and turbidity that will allow the water quality
modeling group to evaluate temporal and spatial variations in turbidity sources and transport
within the Esopus creek watershed; develop improved turbidity vs. discharge rating
relationships; and collect high quality data that can be used to develop and test watershed
sediment erosion and transport models. This project ended in 2013.
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Three years of data were collected at all sites monitored by this project and have been analyzed,
The data have been used for model testing at the sub-basin scale in the Esopus creek watershed,
and to evaluate the spatial and temporal variability in the turbidity vs. discharge, Total
Suspended Solids concentration (TSS) vs discharge and the turbidity vs. TSS relationships. The
final project report uses these data to evaluate the spatial variability of turbidity loading to the
Ashokan reservoir. As in previous studies this study confirms that the Stony Clove sub-basin is
consistently the greatest source of turbidity to the Ashokan reservoir. The turbidity loads from
the remaining sub-basins, varied in importance from year to year as a consequence of differences
in the sub-basin hydrologic conditions.

Contractor: Research Foundation City University of New York.
Contract Title: Scientific Modeling Support

This contract provides CUNY with the funding needed to hire seven post-doctoral research
associates (post-docs) who are jointly advised by CUNY faculty, external faculty advisors, and
DEP scientists. The post docs are stationed in Kingston, New York working with the Water
Quality Modeling Section on a day-to-day basis. The positions are for an initial two year period,
with the possibility of an additional two year extension. This project was originally scheduled to
end in 2013, but has been extended in time to ensure that all of the hired post docs have a chance
to use their full four year term of employment. The contract is now scheduled to end in August
of 2014,

The contract post-doc positions are for
e Climate Data Analysis
Reservoir system modeling
Reservoir turbidity modeling
Reservoir eutrophication modeling
Watershed nutrient modeling
Watershed sediment erosion and transport modeling
Forest ecosystem modeling

This contract has been very successful leading to improved model applications, new and
improved data sets including future climate scenarios used by the CCIMP and the development
and test of new applications. To date 17 peer reviewed publications related to water quality
modeling group work and the CCIMP have been authored by the CUNY post-docs. The sections
of this report describing model applications, model development and data analysis benefited
from the work of our post-doctoral scientists. Furthermore, many of the conference
presentations made in the last year (Section 8.2) were the result of work by the post-doctoral
scientists. One post-doctoral scientist has moved to full time employment with DEP.
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7.3. Support of Applications for External Research Funding

All of the collaborative projects described above result from the Water Quality Modeling Section
collaborating with universities and research institutes to prepare and submit grant applications to
different research funding organizations. During 2013 the Water Quality Modeling Section has
supported one additional grant application.

Use of NASA satellite data to improve model simulations of snow extent and snow water

equivalent in the NYC Water Supply System

Principle Investigators: Allan Frei, CUNY Hunter College, and Dorothy K. Hall, NASA /
Goddard Space Flight Center (GSFC)

Funding Agency: NASA

Snow makes up about 15% of the annual precipitation entering the New York City West of
Hudson (WOH) water supply region. Although not a major proportion of the annual
precipitation, snow plays and important role in defining reservoir operating policies, and changes
in snow accumulation, melt and winter stream flow is one of the major expected effects of
climate change on the WOH watersheds.

The main objective of this study will be to develop a methodology to utilize a variety of remotely
sensing products, in combination with in situ observations and modeling results, to provide the
most accurate possible estimate of snow cover in the WOH New York City watershed region.
The project will focus on two primary snow cover parameters that are key to the management of
the water supply. First, the spatial distribution of snow cover across the basin and second, the
Snow Water Equivalent (SWE, the mass of water in the snowpack) of the watershed If
successful, the data obtained will be used to better refine estimates of watershed snow
accumulation and to test and improve modeling algorithms that simulate snow accumulation and
melt.
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8. Modeling Program Scientific Papers and Presentations
8.1. Published Work

Below is a listing of journal articles in which Water Quality Modeling Section members have
been authors during the previous year. Copies of the articles are included in Appendix A of this
report.

Anandhi, A., M. S. Zion, P. H. Gowda, D. C. Pierson, D. Lounsbury, and A. Frei. 2013. Past and
future changes in frost day indices in Catskill Mountain region of New York. Hydrological
Processes 27(21):3094-3104.

Gelda, R. K., S. W. Effler, A. R. Prestigiacomo, F. Peng, A. J. P. Effler, B. A. Wagner, M.
Perkins, D. M. O'Donnell, S. M. O'Donnell, and D. C. Pierson. 2013. Characterizations and
modeling of turbidity in a water supply reservoir following an extreme runoff event. Inland
Waters 3:377-390

Matonse, A., and A. Frei. 2013. A seasonal shift in the frequency of extreme hydrological events
in southern New York State. Journal of Climate 26: 9577-9593.

Mukundan, R., D. C. Pierson, E. M. Schneiderman, D. M. O'Donnell, S. M. Pradhanang, M. S.
Zion, and A. H. Matonse. 2013. Factors affecting storm event turbidity in a New York City water
supply stream. Catena 107:80-88.

Mukundan, R., N. R. Samal, D. C. Pierson, M. S. Zion, and E. M. Schneiderman. 2013.
Turbidity in a New York City Water Supply Stream: Sensitivity to Projected Changes in Winter
Streamflow. Hydrologic Processes 27:3014-3023.

Mukundan, R., S. Pradhanang, E. Schneiderman, D.C. Pierson, A. Anandhi, M. Zion, A.
Matonse, D. Lounsbury, and T. Steenhuis. 2013. Suspended Sediment Source Areas and Future
Climate Impact on Soil Erosion and Sediment Yield in a New York City Water Supply
Watershed, USA. Geomorphology 183:110-119.

Pierson, D. C., N. Samal, E. Owens, E. M. Schneiderman, and M. S. Zion. 2013. Changes in the
Timing of Snowmelt, and the Seasonality of Nutrient Loading: Can Models Simulate the Impacts
on Freshwater Trophic Status? Hydrologic Processes 27:3083-3093.

Pradhanang, S. M., R. Mukundan, E. M. Schneiderman, M. Zion, A. Anandhi, D. C. Pierson, A.
Frei, Z. M. Easton, D. Fuka, and T. S. Steenhuis. 2013. Streamflow responses to climate change:
Analysis of hydrologic indicators in a New York City Water Supply watershed. Journal of
American Water Resource Association 49: 1308-1326

Pradhanang, S. M., E. M. Schneiderman, A. Frei, M. S. Zion, T. S. Steenhuis, and D. C. Pierson.
2013. Rain-On-Snow Events in New York. Hydrologic Processes 27:3035-3049.
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Samal, N. R., R. Mukundan, D. C. Pierson, R. K. Gelda, E. M. Schneiderman, M. S. Zion, and
A. H. Matonse. 2013. Turbidity in a New York City Water Supply Reservoir: Sensitivity to
Anticipated Future Changes in Winter Turbidity Loading. Hydrologic Processes 27:3061-3074.

Schneiderman, E. M., A. H. Matonse, D. G. Lounsbury, S. M. Pradhanang, R. Mukundan, M. S.
Zion, and D. C. Pierson. 2013. Comparison of Spatially-Distributed Snowpack Models for New
York City Watersheds. Hydrologic Processes 27:3050-3060.

Tilahun, S., R. Mukundan, B. Demisse, T. Engda, C. Guzman, B. Tarakegn, Z. Easton, A.
Collick, A. Zegeye, and E. Schneiderman. 2013. A Saturation Excess Erosion Model.
Transactions of the American Society of Agricultural and Biological Engineers (ASABE)
56:681-695.

142



8.2. Conference Presentations

During this reporting period members of the Water Quality Modeling Section have made
presentations regarding our modeling activities at a number of scientific meetings. Below the
presentations and associated abstracts are listed for each of the meetings.

American Geophysical Union Fall Meeting. December 2012. San Francisco, CA.

Samal, N. R., D. C. Pierson, E. Schneiderman, Y. Huang, E. M. Owens, and M. S. Zion. (2012).
Sensitivity analysis on reservoir water temperature under future climate change
scenarios using a hydrologic and hydrothermal model.

Abstract:
Future simulations of reservoir water temperature based on three Global Circulation
Models (CGCM3, ECHAM & GISS), and each of three emission scenarios (A1B, A2 and
B1) for the 2081-2100 future period were developed using a lumped watershed model
(Generalized Watershed Loading Functions-Variable Source model or GWLF-VSA)
coupled to an one dimensional reservoir hydrothermal model. Global Circulation Model
(GCM) simulated values of mean daily air temperature, wind speed, and solar radiation
were used to produce change factors that were applied to a 39 year record of local
meteorological data to produce future climate scenarios. Water temperature in two deep,
drinking water reservoirs of the New York City Water Supply System (NYCWSS) was
simulated considering the meteorological and watershed effects under present day climate
data (baseline conditions) and future simulations (change factor adjusted baseline
conditions). Stratification characteristics and hydrodynamic indices over this long period
of simulation under future scenarios were examined. Model sensitivity analysis
identified the dominant physical processes affecting the reservoir water temperature.
These results can provide guidance for others simulating the effects of climate change on
lake and reservoir hydrodynamics.

Pradhanang, S. M., E. Schneiderman, D. Pierson, and M. Zion. (2012). Climate Change Impacts
on Stream Temperature in Catskill Mountain watersheds.

Abstract:
Stream water temperature is an important physical attribute that has a direct impact on the
organisms living in the water. A simple stream temperature model based on air
temperature is developed and calibrated to a data-set from the streams of the Catskill
Mountain region. Stream temperature — air temperature regression models can be used to
characterize stream temperature in current conditions and to make estimates of the
sensitivity of stream temperature to future increases in air temperature predicted by
global climate models. Future climate scenarios are produced from General Circulation
Models (GCMs) for the region under different emission scenarios. These are applied to
the model as input data based on air temperature output from the GCM. The purpose of
this study is to quantify potential climate change impacts on stream water temperature for
the New York City water supply watersheds, and to assess possible impacts to aquatic
ecosystems. Because water temperature is a critical component of in-stream nutrient
processing, fish habitat, and plant productivity, changes in water temperature may affect
aquatic ecosystem health.
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American Geophysical Union Fall Meeting. December 2012. San Francisco, CA (cont’d)

Huang, Y. 2012. Multi-objective calibration of a reservoir model: aggregation and non-
dominated sorting approaches.

Abstract:
Numerical reservoir models can be helpful tools for water resource management. These
models are generally calibrated against historical measurement data made in reservoirs.
In this study, two methods are proposed for the multi-objective calibration of such
models: aggregation and non-dominated sorting methods. Both methods use a hybrid
genetic algorithm as an optimization engine and are different in fitness assignment. In the
aggregation method, a weighted sum of scaled simulation errors is designed as an overall
objective function to measure the fitness of solutions (i.e. parameter values). The
contribution of this study to the aggregation method is the correlation analysis and its
implication to the choice of weight factors. In the non-dominated sorting method, a novel
method based on non-dominated sorting and the method of minimal distance is used to
calculate the dummy fitness of solutions. The proposed methods are illustrated using a
water quality model that was set up to simulate the water quality of Pepacton Reservoir,
which is located to the north of New York City and is used for water supply of city. The
study also compares the aggregation and the non-dominated sorting methods. The
purpose of this comparison is not to evaluate the pros and cons between the two methods
but to determine whether the parameter values, objective function values (simulation
errors) and simulated results obtained are significantly different with each other. The
final results (objective function values) from the two methods are good compromise
between all objective functions, and none of these results are the worst for any objective
function. The calibrated model provides an overall good performance and the simulated
results with the calibrated parameter values match the observed data better than the un-
calibrated parameters, which supports and justifies the use of multi-objective calibration.
The results achieved in this study can be very useful for the calibration of water quality
models of rivers and lakes. They can also be helpful for the calibration of other models,
such as hydrological models.
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American Geophysical Union Fall Meeting. December 2012. San Francisco, CA (cont’d)

Wang, L., R. Mukundan, M. Zion, and D. Pierson. 2012. Beyond Rating Curves: Time Series
Models for in-Stream Turbidity Prediction.

Abstract:
The New York City Department of Environmental Protection (DEP) manages and
operates New York City’s water supply, which is comprised of 19 reservoirs and supplies
over 1 billion gallons of water per day to more than 9 million customers. DEP’s “West of
Hudson” reservoirs located in the Catskill Mountains are unfiltered per a filtration
avoidance determination granted by the EPA. While water quality is usually pristine, high
volume storm events occasionally cause the reservoirs to become highly turbid. A logical
strategy for turbidity control is to temporarily remove the turbid reservoirs from service.
While effective in limiting delivery of turbid water and reducing the need for in-reservoir
alum flocculation, this strategy runs the risk of negatively impacting water supply
reliability. Thus, it is advantageous for DEP to understand how long a particular turbidity
event will affect their system. In order to understand the duration, intensity and total load
of a turbidity event, predictions of future in-stream turbidity values are important.
Traditionally, turbidity predictions have been carried out by applying streamflow
observations/forecasts to a flow-turbidity rating curve. However, predictions from rating
curves are often inaccurate due to inter and intra event variability in flow-turbidity
relations. Fortunately, predictions can be improved by applying an autoregressive moving
average (ARMA) time series model on top of a traditional rating curve.

Since 2003, DEP and the Upstate Freshwater Institute have compiled a relatively
consistent set of 15-minute turbidity observations at various locations on Esopus Creek
above Ashokan Reservoir. Using daily averages of this data and streamflow observations
at nearby USGS gauges, flow-turbidity rating curves were developed via linear
regression. Time series analysis revealed that the regression residuals may be represented
using an ARMA(1,2) process. Based on this information, flow-turbidity regressions with
ARMA(1,2) errors were fit to the observations. Preliminary model validation exercises at
a 30-day forecast horizon show that the ARMA error models generally improve the
predictive skill of the linear regression rating curves. Skill seems to vary based on the
ambient hydrologic conditions at the issue of the forecast. For example, ARMA error
model forecasts issued before a high flow/turbidity event do not show significant
improvements over the rating curve approach. However, ARMA error model forecasts
issued during the “falling limb” of the hydrograph are significantly more accurate than
rating curves for both single day and accumulated event predictions.

In order to assist in reservoir operations decisions associated with turbidity events and
general water supply reliability, DEP has initiated design of an Operations Support Tool
(OST). OST integrates a reservoir operations model with 2D hydrodynamic water quality
models and a database compiling near-real-time data sources and hydrologic forecasts.
Currently, OST uses conventional flow-turbidity rating curves and hydrologic forecasts
for predictive turbidity inputs. Given the improvements in predictive skill over traditional
rating curves, the ARMA error models are currently being evaluated as an addition to
DEP’s Operations Support Tool.
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70® Eastern Snow Conference. June 2013. Huntsville, ON

Samal, N. R., D. C. Pierson, H. Yao, K. D. Jéhnk, M. S. Zion, and L. Bruce. 2013. Preliminary
simulations of ice formation and ice loss on some selected Lakes and Reservoirs in
Northeastern North America.: Comparison of a simple and complex model.

Abstract:
Long-term records of observed ice data from lakes and reservoirs are related to the
variability of local climate and also provide robust indications of climate change. In the
present investigation, ice phenology (timing of ice formation, loss and ice duration) is
simulated for some selected lakes and reservoirs in Northeastern North America using a
simple empirical model driven by daily measurements of air temperature and wind speed,
and a complex deterministic water quality model which requires more detailed daily
meteorological forcing and hydrological inputs. The more complex model includes
simulation of lake snow cover and its effect on lake ice phenology. The results of both
models are compared to historical measurement of the onset and loss of lake ice and we
find that ice-on and off days are well reproduced by both models, even though the simple
model does not make detailed calculations of the ice cover energy budget or the effects of
snow on ice growth. Further, the relationship between the timing of ice off, and its
relationship to the onset of thermal stratification and summer thermal structure is
investigated. These initial comparisons are the first steps in a larger project to simulate
the lake ice phenology in a large number of lakes spanning geographically extensive area
under the umbrella of the Global Lake Ecological Observatory Network (GLEON).

Pradhanang, S. M., A. Frei, M. S. Zion, E. M. Schneiderman, and D. C. Pierson. 2013.
Precipitation and Snowfall Trends in the Northeastern United States.

Abstract:
Snowpack water storage and melt is an important component of annual runoff, recharge,
and an important source to water supplies. The accumulation and melt of snow greatly
affects water management in the northern United States. The water resources of the
northeastern United States depend on snowpack water storage, but are also affected by
interannual variations in the magnitude of snow accumulation and the partitioning of
winter precipitation between snow and rain. Many studies have reported an ongoing shift
towards earlier runoff in recent decades, which has been attributed to more precipitation
falling as rain instead of snow and earlier snowmelt. In this study, we analyze the trends
of precipitation and snowfall in the Northeastern United States using United States
Historical Climate Network data product. The main goal of this study is to document a
trend toward smaller ratios of winter-total snowfall water equivalent to winter-total
precipitation.
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mm Eastern Snow Conference. June 2013. Huntsville, ON (cont’d)

Yao, H., N. Samal, J. Rusak, D. Pierson, and A. James. 2013. Impacts of climate and ice
variability on water quality of lakes in Ontario and New York, using simulation
models.

Abstract:
Lakes and reservoirs respond to climatic and environmental forcing via changes to the
hydrodynamic and biogeochemical processes that regulate their water quality and
ecology. The interactions among climate, land use, water quality and ecology are both the
subject of research and the basis of management. Enhanced simulation and prediction of
these interactions are desirable. In our study, we applied a one-dimensional water quality
model (General Lake Model — Framework for Aquatic Biogeochemical Models, or GLM-
FABM) in two natural head-water lakes in central Ontario and a reservoir in New York
City, in order to simulate, at a daily time-scale, the status of physical, chemical and
biological variables over more than a century (1978-2100), and analyzed the impacts of
climate and ice variability on water quality.

The three different water bodies compared were Harp Lake representing a dimictic
stratified system; Heney Lake representing a polymictic mixed system; and Cannonsville
Reservoir as a mesotrophic artificial system. These lakes span a variety of important
gradients and allow us to compare various biogeochemical responses of lakes to
environmental stressors. Hydro-meteorological and chemical inputs for the years 1978-
2012 are from observed datasets, and inputs for 2013-2100 are provided by a regional
climate model. These inputs will also be used to run SWAT catchment model for future
scenarios. Changes in water temperature and ice cover are simulated by the GLM-FABM
model, and changes in dissolved oxygen, nitrogen, phosphorus, chlorophyll and other
indices are predicted. Interactions among these indices and the differences in response
between lakes and reservoirs will be analyzed and discussed.
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8™ Annual NOAA-CREST Symposium, June 2013, New York, NY

Pradhanang, S. M., R. Mukundan, E. M. Schneiderman, M. S. Zion2, A. Anandhi, D. C. Pierson,
A. Frei, Z. M. Easton, D. Fuka, and T. S. Steenhuis. 2013. How do hydrologic indicators
respond to climate change?

Abstract:
Recent works have indicated that climate change in the northeastern United States is
already being observed in the form of shorter winters, higher annual average air
temperature, and more frequent extreme heat and precipitation events. These changes
could have profound effects on aquatic ecosystems, and the implications of such changes
are less understood. The objective of this study is to examine how future changes in
precipitation and temperature translate into changes in streamflow using a physically
based semi-distributed model, and subsequently how changes in streamflow could
potentially impact stream ecology. Streamflow parameters were examined in a New York
City water supply watershed for changes from model simulated baseline conditions to
future climate scenarios (2081-2100) for ecologically relevant factors of streamflow
using the Indicators of Hydrologic Alterations tool. Results indicate that earlier snowmelt
and reduced snowpack advance the timing and increase the magnitude of discharge in the
winter and early spring (Nov-Mar) and greatly decrease monthly streamflow later in the
spring in April. Both the rise and fall rates of the hydrograph will increase resulting in
increased flashiness and flow reversals primarily due to increased pulses during winter
seasons. These shifts in timing of peak flows, changes in seasonal flow regimes, and
changes in the magnitudes of low flow can all influence aquatic organisms and have the
potential to impact stream ecology.
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Watershed Science and Technical Conference. September 2013. West Point, NY.

Matonse, A., A. Frei, D. Lounsbury, and D. C. Pierson. 2013. Hydrological Impact of
Hurricane Irene and Tropical Storm Lee in Historical Context: Is the Frequency and
Magnitude of Extreme Hydrological Events Changing in Southern New York State?

Abstract:
Hurricane Irene and Tropical Storm Lee caused unprecedented flooding and significant
material damage across the Catskill Mountains and Hudson River Valley in southern
NYS. We analyze (i) these events in historical context; and (ii) trends in frequency and
magnitude of extreme events across the region. Despite a spatially heterogeneous impact,
each event was among the most extreme on record, and the frequency of extreme
hydrologic events has been increasing during the last two decades.

Samal, N. R., D. C. Pierson, K. D. Jéhnk, and M. S. Zion. 2013. Ice Cover in New York City
Drinking Water Reservoirs: Modeling Simulations and Observations.

Abstract:
The timing of ice formation and loss in lakes and reservoirs will modulate the impact of
regional weather conditions on lake thermal structure and mixing, since heat and
momentum transfer into the water column are greatly reduced by the presence of ice
cover. Changes in the duration and timing of ice cover are well documented effects of
climate change that are expected to continue into the future. In the present study, a simple
model that predicts the onset, loss and duration of ice cover is applied to New York City
drinking water reservoirs, as well as nearby lakes with long ice cover records. The model
is driven by daily or hourly air temperature and wind speed as these are the most
important factors influencing ice breakup and formation.

The simple model was tested by comparing simulated ice cover to 8 years of observed
ice-on and off data for Ashokan and Rondout reservoirs. Further, these 8 years of
observed data are compared to 163 years Otsego lake ice phenology. The long-term
observed ice phenology of Otsego Lake, when translated to hindcast the Ashokan
reservoir’s ice conditions, can provide a powerful, integrative description of long-term
wintertime and springtime climatic conditions for the region. Long-term simulations of
ice conditions/duration are essential to understand the mechanics through which ice cover
mediates the effects of climate on lake thermal structure and mixing, and how changing
ice cover may ultimately influence phytoplankton succession and trophic status of lakes
and reservoirs.
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Watershed Science and Technical Conference. September 2013. West Point, NY (cont’d).

Randolph, A. L., L. E. Band, C. L. Tague, and E. M. Schneiderman. 2013. An enhanced hydro-
ecological model (RHESSYys) to explore climate change interactions between
precipitation patterns, topography and forests in a New York City water supply
watershed.

Abstract:
Current theory suggests that climate change may manifest itself in the form of changes in
the temporal sequencing of storm events and changes in the characteristics of storm
events (e.g., storm depth, inter-storm period, rainfall intensity, etc.). As a consequence,
the partitioning of rainfall between interception, throughfall, runoff, infiltration,
evaporative loss and stream discharge will change. Collectively, these changes in the
surface water budget can be expected to have differential impacts on forested watersheds
because of differential sensitivity to water stress across tree species and due to
interactions between landscape, vegetation and climate.

The hydro-ecological model RHESSys operates at regional or local scales and can
explicitly model the spatio-temporal variability in precipitation (i.e., storm sequence)
associated with particular weather patterns, thus capturing the full range of natural
variability associated with storms and storm sequence. Vegetation modeling in the
presently described enhanced version of RHESSys also considers forest structure and
composition and models the processes that define interactions between landscape,
vegetation and climate. Additionally, topographic effects (e.g., shadowing) and topology
(e.g., the effect of landscape structure on redistribution of water) are modeled at a scale
fine enough to capture (potential) species-specific impacts of climate change on
watershed dynamics.

This presentation provides an overview of the above described enhancements to
RHESSys. The enhancements are designed to expand the model’s ability to downscale
and investigate the potential effects of global climate change scenarios on individual
catchments and hillslopes. In particular, this version of RHESSys emphasizes modeling
changes in forest structure, composition and spatial distribution and changes in surface
water budget. We present initial results of RHESSys simulations of the Biscuit Brook
watershed, which is part of drainage to the Neversink reservoir.
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Watershed Science and Technical Conference. September 2013. West Point, NY (cont’d).

Zion, M. S. D. C. Pierson, E. M. Schneiderman, and A. Matonse. 2013. An Evaluation of Water
Quality Modeling used to Inform Operational Decisions for the NYC Water Supply.

Abstract:
Turbidity is a primary factor that potentially limits use of Catskill System portion of the
New York City Water Supply. During the elevated turbidity events daily decisions are
carefully taken to optimize system operations for turbidity control, while ensuring
adequate water storage levels within the entire water system. To support these decisions,
a combination of watershed, reservoir water quality and water system simulation models
are used to evaluate alternative operational scenarios within a probabilistic framework.
These simulation models form the basis for the Operational Support Tool (OST) currently
under development by DEP.

The OST model predictions are based on future forecasts of meteorology, streamflows,
and operations to better understand the implications of a given operating strategy on
future water quality. Uncertainty in future forecasts is estimated using a range of
possible futures scenarios that are judged to be representative of present conditions, but
based on past history. A retrospective analysis of water quality data collected during the
model forecast period measures the response that actually occurred during the model
forecast period, and gives an indication of the accuracy of the model results. This
presentation compares the model forecasts to the data collected during the forecast period
to better understand and evaluate the use of the modeling system in minimizing the
impacts of turbidity within the water supply system.
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American Water Resources Association (AWRA) Annual Conference. November 2013.
Portland, OR.

Zion, M. S., D. C. Pierson, N. R. Samal, R. Mukundan, D. G. Smith, E. M. Schneiderman, and
A. H. Matonse. 2013. An Evaluation of Potential Effects of Climate Change on water
quality in the New York City Water Supply.

Abstract:
New York City Department of Environmental Protection (DEP) is using an integrated
modeling system to simulate the effects of potential future climate change on the quantity
and quality of the New York City (NYC) Water Supply. One concern is turbidity within
certain reservoirs of the system. Large streamflow events usually occurring from late-
summer through spring can cause naturally occurring fine clay particles to enter the
reservoir. The events can be caused by snowmelt, rain-on-snow, large extra-tropical rain
events, or tropical cyclones. Understanding the potential impacts of climate change on
these loading events and on the fate and transport of the turbidity-causing clay particles in
the reservoir is critical to ensuring high quality water of the water system in the future.

Quantitative assessment of the effect of climate change on water resources and water
supply systems has followed two basic methods. The first approach, sometimes referred
to as “top-down”, utilizes future scenarios of meteorological data associated with climate
projections as input to hydrologic, water quality, and water system models to simulate the
potential impact of future climate on water resource systems. The other approach,
sometimes described as “bottom-up”, investigates the sensitivity of a water system,
generally through the use of models, to changes in climate. This sensitivity analysis can
be used to identify the most important climate factors that may present a risk to system
performance. Then these risks are placed into the context of potential climate change for
the local area of concern.

Current quantitative predictions of climate change can be more useful for understanding
the implications for some types of events, while for other event types, predictions are less
certain. For example, a outcome predicted for the New York City water supply is a
future shift in the timing of spring snow melt to earlier in the season. This is largely
driven by increases in air temperature. Since temperature changes are reasonably
predicted in climate model projections, this process may be well defined using the top-
down approach. Alternatively, climate models generally do not have the ability to
adequately simulate extreme events, and therefore changes in extreme event occurrence
and the subsequent impact of this on reservoir turbidity may be more difficult to quantify
directly. Insuch a case, it may be more useful to use the bottom-up approach to
understand the amount of change in extreme weather that would pose a risk to reservoir
water quality.

Watershed and reservoir water quality model simulations are presented that demonstrate

how each approach, top-down and bottom-up, can be employed to further understand the
impacts of potential future climate change on the water supply.
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American Water Resources Association (AWRA) Annual Conference. November 2013.
Portland, OR. (cont’d)

Huang, Y., D. Pierson, and E. Schneiderman 2013. Modeling the effect of climate change on
reservoir water quality using the projections of multiple general circulation models and
Bayesian Model Averaging.

Abstract:
A number of general circulation models (GCMs) have been developed to predict future
climate change, and these data are widely used to predict the effect of climate change on
hydrology and water quality. However, the reliability of future predictions is uncertain.
The objective of this study is to investigate the effects of climate change on the nutrient
and trophic status of Cannonsville Reservoir (one part of the New York City water supply
system) using the projections of multiple GCMs and Bayesian Model Averaging. Future
climate scenarios are simulated using a watershed model coupled to a reservoir model.
These models are driven by meteorological scenarios created from historical measured
meteorological data and the outputs of the GCMs contributing to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change (IPCC AR4), under a range of
emission scenarios (20C3M, Al1B, A2, and B1 scenarios). Output for the 20C3M scenario
from the watershed and reservoir models are used to calculated the probabilistic
likelihood using the generalized likelihood uncertainty estimation (GLUE), while output
for the other scenarios are then processed using Bayesian Model Averaging which is a
statistical procedure that infers a consensus prediction by weighing individual predictions
based on the probabilistic likelihood measures obtained by GLUE, with the better
performing predictions receiving higher weights than the worse performing ones. The
results of the BMA scheme have the advantage of generating more reliable predictions
than using original GCM data. The findings will be beneficial to the management of the
water resources of NYC water supply.

153



GLEON Annual Meeting. November 2013. Bia Blanco, Argentina

Samal, N. R., K. D. Johnk, D. C. Pierson, M. Leppéranta, H. Yao, B. R. Hargreaves, T. Kratz, S.
Sharma, A. Laas, D. Hamilton, R. Adrian, J. Rusak, D. Oezkundakci, C. Williamson, D.
Vachon, B. Denfeld, G. Kirillin, K. Czajkowski, and L. Camarero.. 2013. Modeling long-
term trends in ice seasons of seven geographically distributed freshwater lakes.

Abstract:
Changes in the duration and timing of ice cover are well documented effects of climate
change that are expected to continue into the future. Long-term simulations of lake ice
timing and duration are essential to understand the mechanisms through which ice cover
mediates the effects of climate on lake thermal structure and mixing, and how changing
ice cover may ultimately influence phytoplankton succession and trophic status of a lake.
In the present study, a simple model that predicts the onset, loss and duration of ice cover
and its thickness has been applied to seven freshwater lakes and reservoirs around the
globe. The model is driven by readily available daily or hourly measurements of air
temperature and wind speed, as these are the most important factors influencing
formation and breakup. The effects of snowfall and solar radiation on ice thickness and
breakup are not implemented in the simple ice model but can be parameterized. Even
though the model does not make detailed calculations of the ice cover energy budget it
reproduces long-term trends and allows for historical analysis of ice cover for a >60 years
simulation of the ice cover on Otsego lake. The timing and duration of ice cover are also
well reproduced in several of the other study sites Work is ongoing to include simple
snow cover estimates derived from precipitation and temperature data and expand
simulations to a wider set of lakes which will allow more in-depth model inter-
comparison.
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Mukundan, R., E. Schneiderman, and D. Pierson 2013. Simulating Spatial Sediment Loading
in the Esopus Creek Watershed, New York.

Abstract:
The objective of this study is to develop viable scenarios of sediment load reduction for
improvement in stream turbidity levels in the 493 km? upper Esopus Creek watershed
which is part of the New York City water supply. The SWAT model was parameterized
to simulate the relative contribution of suspended sediment from sub-basins to the total
suspended sediment loads at the watershed outlet comparable to values from measured
data. To achieve this, measured sediment load from each tributary to the Esopus Creek
was used to derive channel erosion coefficients for each sub-basin; stream channel
erosion being the dominant source of stream sediment in this watershed. Calibrated
model performed satisfactorily based on monthly statistics for streamflow (R? and NSE =
0.85) and sediment concentration (R* = 0.72 and NSE = 0.62). Simulations showed that
majority (85%) of the stream sediment originated from stream channels and were
consistent with previous estimates. Using a calibrated sediment model as baseline,
various sediment load reduction scenarios will be simulated by adjusting the channel
erosion parameters for different tributaries to the upper Esopus Creek. The sediment load
reduction scenarios are expected to provide guidance on possible alternatives for
reducing stream turbidity levels and improvement in water quality.
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Pradhanang, S. M., N. R. Samal, D. C. Pierson, E. M. Schneiderman, and M. S. Zion. 2013.
Behavior of dissolved and total phosphorus concentration and stream discharge: The
form of hysteresis during storm events.

Abstract:
The forms, rotational patterns and trends of hysteretic loops of dissolved and total
phosphorus were investigated in the watershed of a New York City drinking water
reservoir. We evaluated two biogeochemical parameters summarizing the changes in
solute concentrations and the overall dynamics of each hysteretic loop and seven
hydrological parameters that characterize the hydrograph formation of particular storm
events. The objectives of this study are: (1) to examine whether the characteristics of
solute hysteretic loops monitored during the summer, winter and spring seasons followed
a consistent and recurring pattern, (2) to identify hydrological parameters which could
potentially influence features of dissolved and total phosphorus hysteresis. Relationships
between hysteresis features and hydrological parameters at the watershed outlet were
explored using multivariate redundancy analysis (RDA).

Samal, N. R., D. C. Pierson, P. A. Staehr, S. M. Pradhanang, and D. G. Smith. 2013. Evaluation
of Storm Event Inputs on Levels of Gross Primary Production and Respiration in a
Drinking Water Reservoir

Abstract:
Episodic inputs of dissolved and particulate material during storm events can have
important effects on lake and reservoir ecosystem function and also impact reservoir
drinking water quality. We evaluate the impacts of storm events using vertical profiles of
temperature, dissolved oxygen, turbidity, conductivity and chlorophyll automatically
collected at 6 hour intervals in Ashokan Reservoir, which is a part of the New York City
drinking water supply. Storm driven inputs to the reservoir periodically result in large
input of suspended sediments that result in reservoir turbidity levels exceeding 25 NTU,
and substantial reductions in the euphotic depth (Z.,). Dissolved materials associated
with these same storms would be expected to stimulate bacterial production. This study
involves the use of a conceptual model to calculate depth specific estimates of gross
primary production (GPP) and ecosystem respiration (R) using three years of data that
included 777 events that increased reservoir turbidity levels to over 25 NTU. Using data
from before, during and after storm events, we examine how the balance between GPP
and R is influenced by storm related increases in turbidity and dissolved organic matter,
which would in turn influence light attenuation and bacterial production.
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Huang, Y. 2013. Multi-model predictions of local climate change with uncertainty assessment
using generalized likelihood uncertainty estimation and Bayesian model averaging.

Abstract:
A number of general circulation models (GCMs) have been developed to project future
global climate change and their outputs are widely used to represent local climate
conditions to predict the effect of climate change on hydrology and water quality.
Unfortunately, projected results for future climate change are different and it is not
known which set of GCM data is better than the others. The objective of this work is to
present a Bayesian approach consisting of generalized likelihood uncertainty estimation
(GLUE) and Bayesian model averaging (BMA) for the estimation of local climate change
with uncertainty assessment. This method is applied to Cannonsville Reservoir
watershed. GCM data contributing to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change (IPCC AR4), under a range of emission
scenarios (20C3M, A1B, A2, and B1) are used. The GCM data for the 20C3M scenario
are used to calculated the posterior probability using GLUE, while outputs for future
scenarios (AlB, A2, and B1) are then processed using BMA which is a statistical
procedure that infers a consensus prediction by weighing individual predictions based on
the posterior probabilities obtained by GLUE, with the better performing predictions
receiving higher weights than the worse performing ones. The method has the advantage
of generating more reliable predictions than original GCM data. The results also indicate
clearly the high reliability of the GCM data for daily average, maximum and minimum
temperatures, but the reliability for daily precipitation and wind speed is low. The
application supports the method presented.
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Mukundan, R. and R. V. Dreason 2013. Predicting Trihalomethanes (THMSs) in the New York
City Water Supply.

Abstract:
Chlorine, a commonly used disinfectant in most water supply systems, can combine with
organic carbon to form disinfectant byproducts, including carcinogenic trihalomethanes.
We used water quality data from 24 monitoring sites within the New York City water
supply distribution system, measured between January 2009 and April 2012, to develop
an empirical model for predicting total trihalomethane (TTHM) levels. Terms in the
model included the following water quality parameters: total organic carbon, pH, water
age (reaction time), and water temperature. Reasonable estimates of TTHM levels were
achieved with overall R? of about 0.75, and predicted values on average were within
6 ng-L ™" of measured values. A sensitivity analysis indicated that total organic carbon and
water age are the most important factors for TTHM formation, followed by water
temperature; pH was the least important factor within the boundary conditions of
observed water quality. Although never out of compliance in 2011, the TTHM levels in
the water supply increased after tropical storms Irene and Lee, with 45% of the samples
exceeding the 80 pg-L™* maximum contaminant level in October and November. This
increase was explained by changes in water quality parameters, particularly by the
increase in total organic carbon concentration during this period. This study demonstrates
the use of an empirical model to understand TTHM formative factors and their relative
importance in a drinking water supply. This has implications for simulating management
scenarios and real-time estimation of TTHMs in water supply systems under changing
environmental conditions.
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Abstract:

Changes in frost indices in the New York's Catskill Mountains region, the location of water supply reservoirs for New York City,
have potentially important implications. Frost day is defined as a day with Ty, <0 °C. The objective of this study was to
investigate past and predicted changes in minimum temperature (T,,;,) and six frost indices in the Catskill Mountains covering
six reservoir watersheds. Studied frost indices included (1) number of frost days, (2) number of months with frost, (3) last spring
freeze date (LSF), (4) first fall freeze date (FFF), (5) growing season length (GSL), and (6) frost season length. Past changes in
the frost indices were studied using observed daily T,y;, for each watershed for the periods 1960-2008. Future changes in frost
indices for the periods (2045-2065 and 2080-2100) were studied for emission scenarios (A1B, A2, and B1) downscaled
from global climate models (GCMs). Results indicated a general increase in average T,,;, and GSL and a decrease in number of
frost days, months with frost, frost season length, earlier LSF, and later FFF from the historical to the future periods, and the
magnitude of change varied among the watersheds and GCMs. For the period 1960-2000, in all watersheds (except
Cannonsville), LSF occurred earlier by 2.6—4.3 days/decade, FFF occurred later by 2.7-3.2 day/decade, and GSL was longer
by 2.4-4 day/decade. Among the scenarios and GCMs, LSF occurred earlier by 4—11 and 4.5-15 days/decade for the periods
2045-2065 and 2081-2100, respectively; FFF occurred later by 1-10 and 4-13 days/decade for the periods 2045-2065 and
2081-2100, respectively; and GSL was longer by 10-25 and 13-40 days/decade for the periods 2045-2065 and 2081-2100,
respectively. The increase in GSL is expected to affect hydrologic, ecosystem, and biogeochemical processes with increased net
primary productivity and a resulting increase in total annual evapotranspiration. Copyright © 2013 John Wiley & Sons, Ltd.
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INTRODUCTION Commonly used frost indices include the timing of the
last frost day in spring and first frost day in fall of each year,
number of consecutive frost days, duration of frost-free
days, and length of growing season. Many of these indices
are calculated using daily minimum air temperature (T ;,).

Changes in frost indices have important implications in
New York's Catskill Mountains region, the location of water
supply reservoirs for New York City. More than 90% of the
region is covered with forests. Snow is an important
component of the region's hydrological systems, ecosys-
tems, infrastructure, travel safety, winter tourism and
recreation (Burakowski et al., 2008). Studies have shown
that an increase in temperature in the region has led to a
decrease in snowpack accumulation and duration (Burns
et al., 2007; Matonse et al., 2011; Pradhanang et al., 2011,
Zion et al., 2011). These changes will most likely force
changes in the hydrology of the region by decreasing the

Snow and ice are essential components of the global
hydrological and energy cycles, and they are closely
associated with the frost occurrence (Jylhd et al., 2008).
Numerous indices have been used to describe frost's impact
on natural and managed ecosystems (Schwartz and Reiter,
2000; Feng and Hu, 2004; Ben-David et al., 2010; Zhou
and Ren, 2011; Terando et al., 2012). Indices make it easier
to communicate information about climate anomalies to
diverse audiences and allow scientists to assess climate
anomalies quantitatively in terms of intensity, duration,
frequency, and spatial extent, thereby providing important
information useful for planning, designing, and man-
agement of applications (Tsakiris and Vangelis, 2005).

*Correspondence to: Aavudai Anandhi, Department of Agronomy, Kansas

State University, Manhattan, KS 66506, USA
E-mail: anandhi @ksu.edu

Copyright © 2013 John Wiley & Sons, Ltd.

proportion of precipitation falling as snow, shifting the
timing of snowmelt and causing snowmelt-supplemented
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streamflow events to occur earlier in the spring or in late
winter, which as a result will decrease the magnitude of
traditionally high streamflows in April (Zion et al., 2011).
More run-off during winter, in turn, can cause reservoir
storage levels, water releases, and spills to increase during
the winter and earlier reservoir refill in the spring (Matonse
et al., 2011). Changes in last frost day in spring, first frost
day in fall, and growing season length (GSL), in turn will
change the annual evapotranspiration, streamflow patterns,
and the frequency of drought (Huntington et al., 2009). This
will have profound direct and indirect effects on forest
productivity, nuisance species (including pests, pathogens,
and invasive species), wildlife, and forest nutrient cycling
(Huntington, 2006; Campbell et al., 2009; Mohan et al.,
2009). Hence, investigating current and future climate
change on a regional scale is essential to understand
potential impacts on humans and the natural environment
(Hayhoe et al., 2007). The main objective of this study is to
investigate the past and future changes in the frost indices in
the Catskill Mountains region of New York State (NY).

STUDY REGION AND DATA

The study region is in the Catskill Mountains, part of the
eastern plateau climate region of NY (Figure 1). The study
area encompasses an area of about 4100km? and consists

of six reservoir watersheds: Cannonsville, Ashokan,
Nerversink, Schoharie, Rondout, and Pepacton. The region
contributes about 90% of New York City's water supply and
has an elevation range of 125-1275 m . These mountainous
watersheds are mostly forested with some agricultural land-
use (corn, hay, and pasture lands) within the Cannonsville
watershed and, to a lesser extent, also within the Schoharie
and Pepacton basins. Except for a slight decline in agricultural
activity in Cannonsville, there has been little change in land
development over the past decade (Schneiderman et al., 2013).

The climate is classified as humid (Keim, 2010) with cool
summers (with average minimum, maximum, and mean
temperatures of 12,22, and 18 °C, respectively), colder winters
(with average minimum, maximum, and mean temperatures of
0, 10, and 5 °C, respectively), abundant snowfall, and year-
round precipitation (Anandhi et al. (2011); Figure 2).
Typically, total precipitation is about 1000-1200 mm per
year, with snowfall accounting for approximately 20% of total
precipitation (Anandhi et al., 2011), and snowmelt historically
contributes between 24% and 30% of total annual run-off in
this region (Schneiderman et al., 2013). The monthly mean
snow water equivalent in the six watersheds for December to
March are 5.0, 8.1, 9.3, and 2.7mm/day, respectively
(Anandhi et al., 2011). For Cannonsville, the snowfall is
~50 mm/month during winter and contributes about 60% of
the total winter precipitation during the 1958-1988 period
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Figure 1. A map of the six reservoir watersheds in the Catskill Mountain region that provides approximately 90% of New York City's drinking water
needs. The common grid cell to which all global climate model data were interpolated to is shown in the insert
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Figure 2. (a) Boxplots of mean monthly T, for the six West of Hudson (WOH) watersheds. Each box is based on 49 years (1960-2008) of data times

six watersheds. For this and all subsequent boxplots, the bounds of the box represent the 25th percentile (Q1 quartile) and 75th percentile (Q3 quartile),

and the lower whiskers extend from 25th percentile to the minimum value, whereas the upper whisker extends from 75th percentile to the maximum

value. The red line is the mean monthly T,,;, for all the six watersheds and all years. (b) Linear trend lines of annual T,;, calculated as the mean of all

daily (January—December) minimum temperatures for each of the six WOH watersheds. (c—f) Linear trend line (black line) and time series plot (blue line)
of mean annual T, for each of the six WOH watersheds; the numbers in the top of the subplots (b—f) represent the slope in °C/decade

(Frei et al., 2002). Evapotranspiration occurs at a much slower
rate during the winter and March and April (periods of spring
snowmelt) and occurs the greatest in the summer months with
low streamflows (Zion et al., 2011).

Observed minimum T,,;, were obtained from the Northeast
Regional Climate Center for four stations: Cooperstown,
Liberty, Slide Mountain, and Walton (Figure 1), and data for
the period 1960-2008 was used in the study. The elevations
of these four stations are 366, 472, 808 and 451 m above
mean sea level, respectively. Slide Mountain is at a higher
elevation when compared with the rest of the stations. Global
climate models (GCM) simulations at daily timescale were
obtained from the World Climate Research Programme's
Coupled Model Intercomparison Project Phase 3 multimodel
dataset. The simulations used in the study were for baseline
scenario (20C3M), future scenarios (A1B, A2, and B1), and
two 21st-century periods (2045-2065 and 2080-2100). A list
of the GCM simulations (name and realization number) used
in the study is provided in Table I. The data from all the
GCMs for the region surrounding the study region were
extracted and interpolated to a common 2.5° grid by using
bilinear interpolation technique.

METHODS

Estimation of daily temperature for a watershed

Frost indices were calculated for the study region
(Fig. 1) by using observed and future scenarios of climate

Copyright © 2013 John Wiley & Sons, Ltd.

Table I. Global climate models, country of origin, and realization
numbers for minimum temperatures used in the study

S.N GCM 1D * Acronym Ty, Country
1 BCCR-BCM2.0 bce 1 Norway

2 CGCM3.1(T47) cc4d 1,2,3,4,5 Canada

3 CGCM3.1(T63) ccb 1 Canada

4 CNRM-CM3 cnr 1 France

5 CSIRO-MKk3.0 cs3 1,2,3 Australia

6 CSIRO-MK3.5 csS 1,2,3 Australia

7  ECHAMS5/MPI-OM mpi 1,4 Germany

8 ECHO-G miu 1,2,3 Germany, Korea
9 FGOALS-g1.0 iap 1,3 China

10 GFDL-CM2.0 gf0 1 USA

11 GFDL-CM2.1 fuil 2 USA

12 GISS-AOM gal 1 USA

13 GISS-ER gir 1 USA

14 INGV-SXG ing 1 —

15 IPSL-CM4 ips 1,2 France

16 MIROC3.2(hires) mih 1 Japan

17  MIROC3.2(medres) mim 1,2,3 Japan

18 MRI-CGCM2.3.2 mri 1,2,3,4,5 Japan

— Total no. scenarios — 38 —

*As provided by Lawrence Livermore National Laboratory's Program for
Coupled Model Diagnosis and Intercomparison (PCMDI): http://www-
pemdi.llnl.gov/ipce/model_documentation/ipcc_model_documentation.php.

inputs. The spatial averaging method includes applying
an environmental lapse rate (6 °C/km) to correct for
elevation differences between the station and the mean
elevation of each reservoir watershed and using inverse

Hydrol. Process. (2013)
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distance squared weighting averaging of the four stations
(NYCDEP, 2004). A single time series for daily T,,;, for
each watershed is obtained after processing the observed
Thin data from the four observing stations.

Delta change factor methodology

The scenarios of future T,,;, were created using delta
change factor methodology. More details of this method
can be found in Anandhi et al. (2011). In this method, the
empirical cumulative distribution function of the simu-
lated baseline (GCMb) and future (GCMj) climates were
estimated. The cumulative distribution function was
divided into 25 equal parts (bins), with each bin having
four percentile (=100/25). Then, the mean monthly values
of GCMb and GCMf climates were estimated for each bin
using Equations (1) and (2).

Nb

GCMb, = Y GCMb;,,/Nb )
=1
Nf

GCMJ, = 3, GCMY,,/Nf )
=1

The daily data in a month from all years of a scenario
were pooled so Nb and Nfrepresent the total number of days
associated with a given month during the baseline and
future time periods for the nth change factor (n = 1-25). The
Nb and Nf values varied depending on the month and
number of years in the scenario period. Additive change
factors associated with each frequency bin (CF,qq,,) Were
calculated by taking an arithmetic difference between the
mean bin value of a GCM variable derived from a current
climate simulation and derived for the corresponding bin
from a future climate scenario taken at the same GCM grid
location (Equation 3). Using the time series of observed
local values (LOD), pooled monthly data were evaluated to
similarly define the range in values associated with each of
the 25 bins of the variable frequency distribution. Based on
the variable range defining bin (n) during month (m), the
appropriate additive change factor was applied to obtain
future scaled climate scenarios (LSf,qa,,; ) of the variable
for each day (j) of the scenario (Equation 4).

CFudn = GCMf, — GCMb, 3)

LSfadd,n’/' = LObn,j + CFadd,n “4)

Thus, for each month, 25 CFs are calculated for T,;,
for combinations of GCM, future scenarios (A1B, A2,

and B1), and two periods (2045-2065 and 2081-2100)
(Table I).

Copyright © 2013 John Wiley & Sons, Ltd.

FROST INDICES

A number of definitions of a frost day are available in the
literature. In numerous studies, a frost day is defined as a
day with a T,;, less than a base temperature (T}). Some
of the chosen values for T}, are presented in Table IIa. In
this study, as with most other studies, a frost day was
defined as a day with T,,;;, <0 °C (T, =0 °C). The frost
indices used in the study are listed in Table IIb and
include the number of frost days (nFDs), number of frost
months (nFMs), last spring freeze (LSF), first fall freeze
(FFF), GSL, and frost season length (FSL). Trend was
estimated using the linear regression method.

RESULTS AND DISCUSSION

Minimum air temperature

Monthly mean daily T,,;, for the six watersheds for the
period 1960-2008 is plotted in boxplots in Figure 2a.
January had the lowest daily T, values, whereas July
recorded the highest value followed closely by August. The
range of T ,;, in the boxplots were due to the differences in
six watersheds and interannual variations. The range was
greatest (10—12 °C) during the winter (December, January,
and February), early spring (March), and mid-fall (October),
and the difference during the rest of the months was 5-6 °C
(Figure 2a). The linear trend lines of the mean annual T,
for the six watersheds are plotted in Figures 2b—f. In
general, all six watersheds show an increase in T;,.
Among the watersheds, Cannonsville had the least
increase in T,,;, (0.1 °C/decade), and Ashokan had the
largest increase (0.6 °C/decade). The differing rates of
change in the T,,;, could be due to differences in average
elevation and land-use (Table III) between the watersheds.

The oscillations of atmospheric mass between high and
midlatitudes are dominant patterns that characterize the
northern hemisphere climate variability and are commonly
referred to hemispherically as the Arctic Oscillation (AO)
and regionally as the North Atlantic Oscillation (NAO)
(Gong et al., 2002). These oscillations are most prevalent in
the winter season and occur over a wide range of timescales,
from intraseasonal to interdecadal. The AO exists year-
round but is strongest and most variable in winter, and
contains expressions in surface air temperatures (Allen and

Table Ila. Frost day definitions and sources

Frost definition Reference

Toin <0 °C Christidis et al., 2007

Toin < —4.4, 2.2, and 5.6 °C Robeson 2002

Toin <2.2 °C Schwartz and Reiter, 2000;
Goodin et al. 1995, 2004

Thin <2 °C Potithep and Yasuoka 2011

Hydrol. Process. (2013)
DOLI: 10.1002/hyp



PAST AND FUTURE CHANGES IN FROST DAY INDICES IN CATSKILL MOUNTAINS NY

Table IIb. Definition of the frost indices used in the study

Frost index

Frost index definition

Number of frost days (nFDs)
Number of frost months (nFMs)
Last spring freeze (LSF)

ending on 30 June.
First fall freeze (FFF)

The number of days with frost
The number of months with frost
The last frost (freeze) day is the last day when T,,;, < 0 °C in the period starting on 1 March and

The first frost (freeze) day is first day when T,,;, <0 °C in the period starting on 1 September

and ending on 30 November .

Growing season length (GSL)
Frost season length (FSL)

The number of days between the LSF and the FFF
The number of days between the FFF and the LSF

Table III. General details of the watersheds adapted from Anandhi ez al. (2011)

Name of reservoir Elevation range,

Land-use® (%)

Watershed area®

SN watershed (mean) m (km?) Forest Agriculture
1 Ashokan 125-1275 (539) 661 98 1
2 Cannonsville 315-1234 (572) 1177 80 19
3 Neversink 435-1276 (841) 238 98 2
4 Pepacton 353-1181 (633) 961 90 9
5 Rondout 248-1175 (523) 247 96 4
6 Schoharie 315-1234 (632) 817 91 8

# Includes the reservoir area.
® From Mehaffey et al. (2005) (Table I).

Zender, 2010). The positive trend in the winter AO index is
associated to warmer winter temperatures in the region in the
second half of the 20th century (Overland et al., 2008). At
mid to high northern latitudes, the AO statistically explains
31% of the winter temperature and about 40% of the winter
temperature trends (Schaefer et al., 2005).

The NAO has been shown to exert a strong influence on
climate in eastern North America via latitudinal shifts in
the wintertime North Atlantic storm track and associated
variations in temperature, precipitation, and cyclonic activity
(Gong et al., 2002). For the winter period, the NAO index
increased significantly for the period 1948-2001 and has
shown to modulate high-frequency (daily) winter climatic
variation in high latitude continental regions (Huntington
et al., 2004) and influence winter temperatures and
precipitation. The positive NAO trends are similar to the
AO trends in February and March but different in other
months particularly in May and June when NAO trends are
negative but AO trends are negligible (Zhou et al., 2001).

Studies have shown that in mountainous terrain such as the
study region, the lapse rate vary temporally (e.g. monthly,
diurnal, and seasonal cycles) and spatially (e.g. aspect of
slope, windward vs lee side, location relative to valley, and
synoptic types) (Blandford et al., 2008; Minder et al., 2010).
However, there is sparsity of long term, high-resolution
surface temperature measurements combined with the

Copyright © 2013 John Wiley & Sons, Ltd.

influences of local factors like cold air pooling and
inversions, makes such quantification challenging. Daily
Timin lapse rates are more variable and tend to be steepest in
spring with monthly lapse rate in Idaho during October to
April, varied between 0.5 and 3.6 °C/km (Blandford et al.,
2008). In another study in Cascade mountain during October
to April, the annual mean and seasonal lapse rates in Ty,
were 4.2 °C/km and 4.5-6.0 °C/km, respectively, whereas in
the leeward and windward side, the lapse rates were 3.5t0 5.5
°C/km and 2-6.5 °C/km, respectively (Minder et al., 2010).
This study assumed a constant environmental lapse rate in
estimating the average watershed T,;,, and so our results are
subjective to varying lapse rates.

Boxplots of downscaled future T,;, for 18 GCMs
(Table 1), two periods (2045-2065 and 2080-2100), and
three special report on emissions scenarios (SRES) (A1B,
A2, and B1) are shown in Figure 3 (a, b). In general, all
GCMs show an increase in T,,,;, except for a few scenarios in
June and July for the 2045-2065 period. The magnitude of
increase in T,,, varies with month, GCM, scenario, and
time, with a larger increase and range during the period
2080-2100 than in 2045-2065. The increase in T,,;, was
2-3 °C (median values) and 4-6 °C (median values) during
the periods 2045-2065 and 2080-2100, respectively.
During the 2045-2065 period, winter (December, January,
and February) and early spring (March—April) have a greater

Hydrol. Process. (2013)
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Figure 3. Boxplot of monthly mean downscaled future T, for the six 6 West of Hudson watersheds for 18 global climate models and three emission

scenarios (A1B, A2, and B1) for two periods: (a) 2045-2065 and (b) 2080-2100. The daily Ty, values used to create each box are from multiple

scenarios derived from the global climate models in Table I times six watersheds. The black dots in this figure and the red line in the previous figure (2a)
represent the monthly mean observed values for the six West of Hudson watersheds

range among GCMs of up to 6 °C. The range of increase
among the scenarios also is wider for the period 2080-2100
compared with the period 2045-2065.

Increases in T, during the winter and early spring may
influence the timing of snowfall, the number of days of snow
cover, frequency of alternating freezing and thawing events,
depth, and accumulation and properties of snowpack
(Huntington et al., 2009).

NUMBER OF FROST DAYS

The nFDs in a month for the six watersheds for 1960-2008
are plotted in boxplots in Figure 4a. In general, frost occurs
in the Catskill Mountains during nine months, September
through May; however, a few instances of frost occurred as
late as June and as early as August. The variability in nFDs
during spring and fall is high compared with the winter
months and in general, greatest during the spring of the
1960-2008 historical period. January had the highest nFDs,
followed by December, whereas September had the fewest
nFDs (median values) during the normal nine-month frost
period. The linear trend lines of nFDs in a year for the six
watersheds are plotted in Figures 4b-h. In general, all six
watersheds show a decrease in nFDs because of a gradual
increase in Tp,;,. Among the watersheds, Cannonsville
showed the lowest decrease in nFDs (—0.3 days/decade),
and Ashokan had the highest decrease (—6.6 days/decade).
During 1960-2008, on an average, the nFDs in a year for all
watersheds in Catskill declined from 177 to 163 days.
Boxplots of nFDs in each month during two future time
periods (2045-2065 and 2080-2100) and three SRES
scenarios (A1B, A2, and B1) are shown in Figure 5 (a, b).
In general, all GCMs showed a decrease in nFDs. The

Copyright © 2013 John Wiley & Sons, Ltd.

magnitude of the decrease varies with month, GCM,
scenario, and time. The differences between A1B and A2
scenarios were less than B1 scenarios during the 2045-2065
period, but during the 2080-2100 period, A2 had the highest
decrease followed by A1B and B1 scenarios. The decrease
during the period 2080-2100 is generally more than that
during the 2045-2065 period, with a median decrease of
5-10 and 8-12 days during the 2045-2065 and 2080-2100
periods, respectively. Winter (December, January, and
February) had a lesser decrease in nFDs compared with
fall and spring. The range of the decrease is generally wider
for 2080-2100 scenarios than for 2045-2065 scenarios.

In mountain valley locations where diurnal temperature
ranges can be quite high and the daily average and daily
maximum temperatures could conceivably rise in associ-
ation with greater frequencies of high pressure, while
daily minimum temperatures could drop in association
with ideal conditions for radiational cooling. Such a
scenario could in fact increase the frost indices but result
in much lower snowfall and a shorter duration of snow
cover. Also, frost (e.g., ice crystals on the vegetation and/
or ground surfaces) may still occur even when the 2 m air
temperature remains above freezing. So our results are
subjective to varying definitions of frost day.

LAST SPRING FROST AND FIRST FALL FROST

Time series and trend lines for LSF and FFF for the six study
watersheds are plotted in Figure 6. During 1960-2008, LSF
occurred in May in most years (34-39 years out of 49 years)
for all six watersheds. LSF occurred in April in about
14-15 years for Ashokan and Rondout watersheds but in
June for the remaining four watersheds (7—15 years ). All
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Figure 4. (a) Boxplots of number of frost days (nFDs) in a month for six West of Hudson (WOH) watersheds averaged for 1960-2008. Each box is

based on 49 years (1960-2008) of data times six (watersheds) values of nFDs in a year. The red line is the mean nFDs for all six watersheds. (b) Linear

trend lines of nFDs for the six WOH watersheds. (c—f) Linear trend line (black line) and time series plot (blue line) of annual nFDs for each of the six
WOH watersheds. The numbers in the top of the subplots (b—h) represent the slope in days/decade
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Figure 5. Boxplot of number of frost days in downscaled future T, for six West of Hudson watersheds for three emission scenarios (A1B, A2, and B1)
for two periods: (a) 2045-2065 and (b) 2080-2100. Each box is based on the daily data from multiple scenarios derived from the global climate models
listed in Table I times six (watersheds). The black dots in this figure and the red line in figure (2a) represent the monthly observed values for the six West
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Figure 6. Linear trend line (black line) and time series plot (blue line) for last spring freeze (a—f) and first fall freeze (g—1) for each of the six West of
Hudson watersheds. The numbers in the top of the subplots (a—1) represent the slope in days/decade

watersheds except Cannonsville showed a decrease in LSF
(—2.6 to —4.3 days/decade; Figure 6a—f), indicating that
in general, LSF occurred earlier in the spring season.
Cannonsville watershed showed a slight increase of 0.1 day/
decade). The earlier occurrence in spring in eastern USA is
statistically explained by the increasing trends in the winter
AO since the 1960s (Schaefer et al., 2005).

FFF occurred in either October or November in 48 of
49 years for most watersheds. All watersheds experienced
an increase in FFF (2.7-3.2 days/decade; Figure 6g-1),
indicating that FFF generally occurred later in the fall. The
nFMs decreased (figure not shown), with the LSF occurring
earlier in the season, and FFF occurring later in the season.

Boxplots of LSF and FFF in future from 18 GCMs for two
periods (2045-2065 and 2080-2100) and three SRES
scenarios (A1B, A2, and B1) are shown in Figure 7 (a, b).
All GCMs showed an earlier LSF and later FFF, which is

Copyright © 2013 John Wiley & Sons, Ltd.

consistent with historical trends in LSF and FFF. The range of
LSF and FFF among the GCMs is higher in 2080-2100 than
in 2045-2065 for A1B and A2 emission scenarios. In most
GCMs simulations (about 75%), LSF occurred earlier in the
spring and FFF occurred later in fall during the 2080-2100.
compared to the 2045-2065 period. Among the scenarios and
GCMs, LSF occurred earlier by 4-11 and 4.5-15days /
decade for the periods 2045-2065 and 2081-2100, respec-
tively; FFF occurred later by 1-10 and 4—13 days /decade for
the periods 2045-2065 and 2081-2100, respectively.

GROWING SEASON LENGTH AND FROST SEASON
LENGTH

Time series and trend lines for GSL (Figure 8) and FSL
for the six study watersheds are plotted. During the period
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1960-2008, on an average, the GSL varied from
123-152 days in a year extending from May to late October.
All watersheds showed an increase in GSL of about 2.7—
7.5 days/decade. With a general increase in GSL, there was a
decrease in FSL. On average, the FSL varied from
213-242 days in a year extending from November to May.
Among the study watersheds, Cannonsville had the highest
FSL (242 days) and least GSL (123 days), whereas Ashokan
had the least FSL (213 days) and highest GSL (152 days).

Ashokan

Cannonsville

Coherent associations between NAO and temperature
indices such as nFDs and GSL were observed during
1951-2002 in northeastern USA (Brown et al., 2010), and
Cooperstown included in this study was one among the 40
stations used.

Boxplots of GSL and FSL from 18 GCMs for two future
periods (2045-2065 and 2080-2100) and three SRES
scenarios (A1B, A2, and B1) are shown in Figure 7 (c, d).
In general, all GCMs showed a decrease in FSL and an
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Figure 8. Linear trend line (black line) and time series plot (blue line) for frost season length (a—f) for each of the six West of Hudson watersheds. The
numbers in the top of the subplots (a—f) represent the slope in days/decade
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increase in GSL and were consistent with historical trends.
The range in the FSL values obtained among the GCMs was
higher in 2080-2100 than in 2045-2065 for A1B and A2
emission scenarios. For most GCMs (about 75 percentile),
GSL is longer and FSL is shorter for period 2080-2100 than
for 2045-2065. Among the scenarios and GCMs, GSL was
longer by 10-25 day /decade and 13—40 days /decade for the
periods 2045-2065 and 2081-2100, respectively, and FSL
was shorter by the same rate for the two periods.

Increase in GSL will generally lead to an increase in
annual evapotranspiration, and changes in LSF and FFF
affect phenological events in the region such as bud break
in spring and senescence and dormancy in the fall. The
decrease in soil moisture during the growing season in
substantial parts of eastern USA is likely attributed to
increase in evapotranspiration and GSL rather than
decreases in rainfall because the historical data do not
suggest a decrease in summer rainfall during 1950-2000
period (Huntington et al., 2009).

Some of the possible reasons for the variability in the
frost indices are discussed. Among the four stations used in
the study, Slide Mountain has a higher increase in T,,,;, and
is at a higher elevation when compared with the rest. While
estimating T,,;, for each watershed (using inverse distance
squared weighting averaging), Cannonsville is least
influenced by Slide Mountain. Also, little change in land
development over the past decade is observed in the
watershed (Schneiderman et al., 2013). Further, Ashokan
watershed has a higher precipitation than Cannonsville
watershed because of the south-east to north-west precip-
itation gradient across the region and the high elevation of
the Slide Mountain station (Frei et al., 2002). The total
evapotranspiration in Cannonsville and Askokan are
comparable, but the percentage of total precipitation lost
as total evapotranspiration is higher for Cannonsville (60%)
when compared with Ashokan (30-45%) because the
precipitation gradient (Frei et al., 2002). However the
changes in GSL could change the total evapotranspiration
and the period of low streamflow in the region.

Our results add local precision to the earlier findings that
encompassed larger areas (Schwartz and Reiter, 2000;
Adger et al., 2003; Kiktev et al., 2003; Feng and
Hu, 2004; Christidis et al., 2007; Hayhoe et al., 2007,
Trenberth et al., 2007; Hayhoe et al., 2008). Earlier LSF,
later FFF, and longer GSL could affect the hydrologic,
ecosystem, and biogeochemical processes both positively
and negatively (Huntington, 2006; Campbell et al., 2009;
Mohan et al., 2009).

CONCLUSION

Overall, our results indicated a general increase in average
annual T,,;, and GSL, a decrease in the number of frost-free
days (nFFDs) and FSL, earlier occurrence of LSF, and later

Copyright © 2013 John Wiley & Sons, Ltd.

occurrence of FFF. These trends were detected in the
historical record (1960-2008) and were also seen in
comparisons between baseline and future climate scenarios.
For the period 1960-2000, in all watersheds (except
Cannonsvelle), LSF occurred earlier by 2.6-4.3 days/
decade, FFF occurred later by 2.7-3.2 days/decade, and
GSL was longer by 2.6-7.5 days/decade. The variability in
the trends in the frost indices among the watersheds could be
due to the variability among the stations, watershed
elevation differences, south-east to north-west precipitation
gradient across the region, and land development over the
past decade in certain regions. The trends in the frost indices
are also subjective to varying periods for which the analysis
is carried out.

The direction of change in frost indices estimated from
the GCM simulations in the region were the same in almost
all the scenarios and time periods, however, the magnitude
of change varied among the GCMs. A2 scenario during the
period 2081-2100 showed a greater change compared to
the other emission scenarios. Among the scenarios and
GCMs, LSF occurred earlier by 4—11 days /decade and 4.
5-15days /decade for the periods 2045-2065 and 2081—
2100, respectively; FFF occurred later by 1-10days /
decade, and 4—13 days /decade for the periods 2045-2065
and 2081-2100, respectively; GSL was longer by
10-25 day /decade and 13—40 days /decade for the periods
2045-2065 and 2081-2100, respectively. Our results add
local precision to the earlier findings that encompassed
larger areas (Schwartz and Reiter, 2000; Adger et al., 2003;
Kiktev et al., 2003; Feng and Hu, 2004; Christidis et al.,
2007; Hayhoe et al., 2007; Trenberth et al., 2007; Hayhoe
et al., 2008). Some of the implications of these changes in
the Catskill Mountains region are discussed.

However, one should be aware that this study assumes a
constant environmental lapse rate in estimating the frost
indices, and the errors associated with this assumption is
unquantified but may be quite important. Also, these results
are subjective to the different definitions of frost indices. In
future, it would be interesting to correlate the changes in
frost indices with the changes in snow statistics and number
of days with snow. Also, in future, it would be interesting to
study the impact of the changes in GSL on evapotranspi-
ration and the period of low streamflow. Further in-depth
study is necessary to understand the direct and indirect
effects of these changes on forest productivity, nuisance
species (pests, pathogens, and invasive species), wildlife,
and forest nutrient cycling.
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Abstract

The findings from an integrated program of short- and long-term monitoring, individual particle analyses (IPA), and
mechanistic modeling to characterize and simulate the turbidity (T,) effects of an extreme runoff event (2011) on a
water supply reservoir were documented. A robotic profiling platform and rapid profiling instrumentation resolved
turbidity and temperature (T) patterns in time and space in the reservoir. Metalimnetic enrichment in T, following the
event was reported and attributed to the entry of turbid stream water as density currents, or plunging inflows. The di-
minishment of high T, levels following the event was well represented by a first-order loss rate of about 0.023 d™!. The
highest T, levels were avoided in water withdrawn for the water supply following the event by selection of vertical
intake alternatives, although T, values in the withdrawal remained distinctly above typical baseline conditions for
nearly 2 months. Based on IPA, the T,-causing particles were mostly clay minerals in the 1-20 um size range. The
operation of sorting processes determining settling losses from the minerogenic particle population, according to their
size and shape, following the runoff event was resolved. The set-up and testing of a mechanistic T, model, composed of
2 submodels, a 2-dimensional hydrothermal/transport submodel, and a T, kinetics submodel, is described. The
hydrothermal/transport submodel was tested separately and performed well in simulating the dynamics of the
reservoir’s stratification regime and the entry of the dense streams as plunging inflows during the extreme runoff event.
The overall T, model needed to represent the loss processes of both settling and coagulation to perform well in
simulating the in-reservoir and withdrawal T, patterns following the runoff event.

Key words: aggregation, clay minerals, coagulation, density currents, models, particle size, plunging inflows, settling,

turbidity

Introduction

Terrigenous inputs of inorganic, or minerogenic, particles
can have important ecological and water quality effects
for receiving lakes and reservoirs by (1) influencing the
transport and cycling of nutrients (Hupfer et al. 1995)
and contaminants (Chapra 1997), (2) affecting metabolic
activity (Phlips et al. 1995) and the composition of
biological communities (Newcombe 2003), (3) increasing
net sedimentation rates (Gelda et al. 2012), and (4)
increasing light scattering, with coupled deterioration in

related optical metrics of quality (Swift et al. 2006, Effler
et al. 2008). Increases in turbidity (T,), a surrogate metric
of the light scattering coefficient (b; Kirk 2011), in water
supply lakes and reservoirs are particularly problematic
in the United States because of regulatory requirements
to maintain low T, levels in water supplied to users. The
persistence of minerogenic particles in water columns has
been linked to their sizes (Gelda et al. 2009, 2012). Dis-
proportionately large loads of these particles are delivered
by streams to many lentic systems during runoff events
(Longabucco and Rafferty 1998, O’Donnell and Effler
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2006) because of increases in particle concentrations in
tributaries, driven by the energy associated with elevated
flows. This problem will be exacerbated in regions with
more frequent and intense runoff events associated with
ongoing climate changes (Thodsen et al. 2008, Li et al.
2011).

The short time scales of runoff events offer challenges
to monitoring programs intended to quantify cause—effect
relationships with respect to resolution of patterns of
drivers and lake (or reservoir) responses, which cannot
be met with common fixed-frequency, limited spatial
resolution efforts. Contemporary robotic (O’Donnell and
Effler 2006) and rapid profiling technologies are better
suited to provide robust representations of the patterns
imparted by these events. Moreover, patterns imparted to
lentic systems may be vertically and longitudinally
complex (Effler et al. 2006, O’Donnell and Effler 2006).
Tributaries are often seasonally cooler, and thereby more
dense, than the surface waters of receiving lakes and
reservoirs in north temperate climates, resulting in a
tendency to plunge upon entry (Martin and McCutcheon
1999). Sediment enrichment during runoff events further
augments these density differences due to the effect
of high suspended solids concentrations (Martin and
McCutcheon 1999). A plunging inflow (or density current)
generally moves over the bottom in upstream shallow
areas of the basin as an underflow, entraining ambient
water (Alavian et al. 1992, Rueda and MaclIntyre 2010).
Upon encountering a depth of equal density, the neutrally
buoyant inflow separates from the bottom and intrudes
into the water column as an interflow (Martin and
McCutcheon 1999). These features of fate and transport
are important in water supply lakes and reservoirs related
to the position and depth(s) of water supply intakes (Gelda
et al. 2009).

Optimal mathematical models of T, are those that
couple the patterns of the driver, terrigenous loads of
particles, with those imparted to the receiving lentic
system(s) associated with runoff events. Following
successful testing, such quantitative frameworks can serve
as invaluable management tools to potentially guide
short-term management responses to events (Chung et al.
2009, Gelda et al. 2009, Liu and Chen 2013) as well as
support the development of long-term strategies (Gelda
and Effler 2008). Mechanistic models also serve as
valuable research tools (Chapra 1997), which in the case
of T, can be used to investigate influences such as
hydrodynamic processes and particle characteristics,
including the effects of particle size distribution (PSD;
Peng and Effler 2007, Peng et al. 2009).

This paper documents the findings of an integrated
program of monitoring, particle characterization, and
mechanistic modeling to describe and quantify the

turbidity effects of an extreme runoff event (Hurricane
Irene, 28 Aug 2011) on a water supply reservoir. Patterns
of temperature (T) and T, are resolved at the necessary
fine time and space scales based on monitoring with
robotic and rapid profiling technologies. The light
scattering (T,-causing) and settling attributes of particles
are characterized with an individual particle analysis (IPA)
technique that supports parameterization of the model.
The development, testing, and application of a mechanistic
T, model, supported by the detailed monitoring and IPA
characterizations, are described.

Methods

System description and Hurricane Irene

Rondout Reservoir (Fig. 1) is one of New York City’s
(NYC) 19 water supply reservoirs, located (41°4921.36"N,
74°28'15.6"W) ~130 km northwest of the city. This
narrow (10.5 km long, 1.3 km wide) dimictic reservoir
has a volume of 200x10° m?, a surface area of 8.3 km?,
and a maximum depth of 52 m. This is a downstream
reservoir in the overall system that receives withdrawals
from 3 upstream reservoirs (Cannonsville, Pepacton, and
Neversink). The NYC Department of Environmental
Protection (NYCDEP) monitors inflows from the
upstream reservoirs, outflows from Rondout Reservoir,
and its surface elevation daily. Together the upstream
reservoir inputs represent more than 80% of the total
inflow, on average. The long-term average completely
mixed flushing rate is 5 times per year. Four water supply

Pepacton T.
Rondout Cr.

Cannonsville T.

Rondout

e

. . scale (km)
1 gridding sites
% profiling buoy, primary site

Fig. 1. Rondout Reservoir, robotic profiling platform location,
upstream reservoir inflows, 2 natural tributaries, water supply intake
position (multiple intake depths, as an inset), model segments, and
position in New York (as inset).
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intakes for the reservoir allow withdrawal from various
depth intervals (Fig. 1). Water withdrawn from Rondout
Reservoir enters an aqueduct for conveyance to a further
downstream reservoir where it mixes with water from
other parts of the system before disinfection and supply to
NYC (no filtration treatment). NYCDEP has conducted
a fixed frequency water quality monitoring program
(weekly or biweekly) of the reservoir since the late 1980s
that has included T profiles and T, measurements at
selected (n = 3 to 4) depths.

The largest natural inputs to the reservoir are Rondout
Creek and Chestnut Creek, which on average contribute
9 and 4% of the total inflow, respectively. Flow (Q) is
monitored continuously in both streams by the United
States Geologic Survey (USGS site No. 0136500 and
01365500, respectively). The beds and banks of these
streams, like most of those in this region (Peng et al.
2009), are positioned in clay mineral-rich glacial deposits.
These deposits are subject to mobilization during elevated
Q and are the primary source of high T, levels in the
streams during runoff events. NYCDEP also conducts
water quality monitoring of these tributaries at variable
frequencies and reports measurements of T, and T on
water withdrawn from the reservoir 5 days per week.

Hurricane Irene was a large Atlantic hurricane that was
downgraded to a tropical storm just prior to reaching
the NYC area on 28 August 2011. Record rainfalls were
observed as it moved inland and approached NYC
reservoirs, including approximately 20 cm near Rondout
Reservoir. The associated runoff event had a recurrence
interval of 30 y for Rondout Creek (log Pearson Type III
analysis).

Monitoring: robotic and rapid profiling

In 2009, a robotic solar-powered profiling platform
(Yellow Springs Instruments [YSI] 6951) was deployed in
~42 m of water along the main axis of the reservoir,
approximately 2.2 km from the dam (Fig. 1), to measure
T, (YSI 6136; resolution of 0.3 NTU) and T (YSI 6560;
resolution of 0.01 °C). The profiles were conducted at
a 1 m depth resolution 4 times a day, separated by ~6 h.
The robotic units were maintained weekly, including
replacement of probes with newly calibrated ones. The
same sensors were deployed in Rondout Creek at the
USGS site, with measurements made at 15 min intervals.
Additionally, vertical profiles of T, (or a surrogate) and
T were collected at multiple sites (n > 9) along the main
axis of the reservoir on 8 dates over the 31 August to 9
November 2011 interval to resolve longitudinal patterns.
The instrumentation was either (1) a YSI unit (No. 6600),

outfitted with the same probes as the profiling platform,
with measurements made at 1 m depth intervals (first of
8 surveys), or (2) a SeaBird profiling package, with T and
beam attenuation coefficient (at wavelength of 660 nm;
¢(660), WetLabs C star) sensors configured in a steel cage,
with measurements made at a depth resolution of 0.25 m.
The ¢(660) measurement, like T,, is also a surrogate of b
(Babin et al. 2003), and thereby T, (Effler et al. 20006).
A strong linear relationship prevailed between T, and
¢(660) (T, = 1.84 x ¢(660); R* = 0.98; n = 154), which
supported reliable specification of T, patterns from the
¢(660) measurements.

Particle characterizations related to turbidity and
settling

The IPA technique used to characterize the light scattering
(i.e., T,-causing) and settling attributes of the particle
populations of number concentration, PSD, and elemental
composition, was scanning electron microscopy interfaced
with automated image and X-ray analysis (SAX). The
sample handling, preparation, and analytical protocols
have been described in detail previously (Peng and Effler
2007). Approximately 2000 particles of sizes >0.4 um
were characterized for each of the 57 samples; 41 of these
were collected from the water column of the reservoir at
the primary (robotic buoy) site (Fig. 1), and 4 were
collected in Rondout Creek close to its mouth following
Hurricane Irene. Reservoir samples were collected at 0, 5,
10, 15, 20, 25, 30, and ~40 m on 31 August and 22
September. Subsequent samples (n = 5) from the primary
reservoir site were collected at a depth of 20 m, proximate
to the maximum T, impact.

SAX results were used to make direct estimates of the
scattering coefficient associated with minerogenic
particles (b,,) through Mie theory calculations (Peng and
Effler 2007). Turbidity, T,, is a surrogate metric of b, in
this system because of the dominance of minerogenic
particles (Peng et al. 2009). The SAX characterizations
served to support parameterization of the T, model by
guiding partitioning of T, levels according to different
size classes, a major factor influencing the rate of
diminishment of the effects following runoff events
(Gelda et al. 2009, 2012). The projected area of all
particles and the minerogenic subset per unit volume, PAV
and PAV,, respectively, were calculated for each sample
as the summation of the projected areas (per unit volume)
determined from the SAX analyses. These are funda-
mental metrics of the optical impacts of these particles
because they are linearly related to the associated levels of
scattering (i.e., T,; Peng and Effler 2007).
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Numerical model

Hydrothermal/transport submodel

The overall water quality model is composed of 2
submodels, a hydrothermal/transport submodel, and a T,
submodel. The adopted hydrothermal/transport submodel
corresponded to that embedded in CE-QUAL-W2
(designated here as W2/T). This is a dynamic, laterally
averaged, 2-dimensional model (Cole and Wells 2002)
well suited for the morphometry of this reservoir (e.g.,
long, narrow, lack of dendritic features), with the desired
attributes of simulation capabilities for (1) seasonal and
shorter-term features of the stratification regime (Gelda
and Effler 2007b), (2) behavior of density currents (Chung
and Gu 1998), and (3) supporting resolution of longitudi-
nal features of water quality (Gelda and Effler 2007a,
Gelda et al. 2009). The model is based on the finite-differ-
ence solution of equations for laterally averaged fluid
motion and mass transport. The basic equations of the
model that describe horizontal momentum, hydrostatic
pressure, free water surface elevation, continuity, density
dependencies, and constituent transport have been
presented previously (Chung and Gu 1998, Cole and
Wells 2002). The heat budget of the model represents the
effects of evaporative heat loss, short- and long-wave
radiation, convection, conduction, and back radiation
(Cole and Wells 2002). The equation of state (calculates
density) of the model accommodated the effects of T, the
concentration of suspended particulate material (SPM),
and salinity (Martin and McCutcheon 1999); salinity was
not a factor here. SPM was estimated from T, according to
an empirical expression developed for local reservoirs
(unpublished data, NYCDEP).

Table 1. Model coefficients for Rondout Reservoirs submodels.

The guidelines of Cole and Wells (2002) were
followed in establishing the computational grid, utilizing
the bathymetry of the reservoir. The adopted segmentation
represented the reservoir by 38 longitudinal segments
(Fig. 1), with 1 m thick vertical layers. Features of the
outflows were also represented, including the water supply
withdrawals (n = 4), dam outlet, and spillway length (Cole
and Wells 2002). The model is operated to maintain
a hydrologic budget, as described by Owens et al. (1998).
The withdrawal algorithm (Cole and Wells 2002)
describes the decreasing contributions from water column
depths with increasing distances from the intake depths
(e.g., “cone effect”). Inputs necessary to drive this
submodel include inflows, outflows, inflow T and SPM,
the light attenuation coefficient for downwelling
irradiance (K, specifies light penetration), and meteoro-
logical conditions (air temperature, wind speed and
direction, dewpoint temperature, and cloud cover, or solar
radiation; hourly time step). This submodel has 5 coeffi-
cients (Table 1) that may be adjusted in the calibration
process, although these are generally observed to not vary
greatly among systems (Gelda et al. 2009). The values
of the coefficients for longitudinal eddy viscosity, longitu-
dinal eddy diffusivity, the Chezy coefficient, and the
wind sheltering coefficient influence simulated features
of transport and the distribution of heat. Fraction of
solar radiation absorbed at the water surface (Table 1)
influences the heat budget of the model. The time step of
calculations is automatically adjusted between 1 s and 1 h
by the model to maintain numerical stability (Cole and
Wells 2002).

The hydrothermal/transport submodel was calibrated
for the 1 January 2010-31 December 2011 interval, for

Coefficient Value

(a) Hydrothermal/transport submodel
Longitudinal eddy viscosity Im?s™!
Longitudinal eddy diffusivity® 10 m?s™!
Chezy coefficient 70 m®s s
Wind sheltering coefficient 0.7
Fraction of incident solar radiation absorbed at the water surface 0.45

(b) Turbidity model(s)
Input T, fractions (classes 1, 2, 3) 0.2,0.65,0.15
Sizes (classes 1, 2, 3) 1,3.1, 15 um
Particle density 2.7gcm™
Coagulation rates (class 1, 2)* 0.001, 0.0035 m™' day™!
Half-saturation constant* 1 NTU

fecalibrated; others set to model default values

*for coagulation/aggregation version of submodel only
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which the most temporally detailed reservoir monitoring
(robotic buoy) was conducted. This submodel was
validated for the 1987-2009 period, during which T
profiles were collected less frequently. Stream flows
(USGS) were specified at a time step of 15 min. Inflows
from upstream reservoirs and outflows from Rondout
Reservoir were specified as daily averages, based on the
daily measurements. The value of K4 (0.4-0.95 m™') was
based on irradiance profiles collected in 2005 and 2006
and 2 profiles during this study, calculated according to
standard protocols (Kirk 2011). Meteorological inputs
were specified from on-site measurements for the 1995-
2011 interval, and by regional observations (Binghamton
Airport, 132 km away) for other years.

Turbidity submodel(s)

These submodels adopt T, as the state variable, conducting
mass—balance-type calculations on this metric of light
scattering. This approach has previously received
extensive support in the literature, which has included
review of theoretical and practical advantages over the use
of SPM as an alternative and demonstrations of success
(Gelda and Effler 2007a, Gelda et al. 2009, 2012). Two
interactive ubiquitous processes are primarily responsible
for the loss of T,-causing particles from a water column
over time: settling (Davies-Colley et al. 2003) and
aggregation (or coagulation; Weilenmann et al. 1989).
Two alternative T, submodels were tested here, one that
considers settling only, and the other that includes
explicitly both settling and coagulation.

Gelda et al. (2009, 2012) successfully validated a T,
submodel for reservoirs where clay minerals dominated
by explicitly representing only the settling process,
describing it as a parsimonious (only as complex as
necessary to address the issue; Chapra 1997, Martin and
McCutcheon 1999) approach. Accordingly, the settling
loss of T, is described by

5 = dc.

1
G oz’

(M

where S; = settling sink term for the i* size class of T,
(NTUs™"), v; = settling velocity of i size class of T,
(m's™"), ¢; = T, due to i" size class of particles (NTU),
and z = vertical coordinate (m). In the finite difference
representation, particles (turbidity) settling from one layer
serve as a source to the layer below. The settling velocity
of the ™ size class of turbidity (ci; i.e., the associated
particles), v;, is computed for spherical particles according
to Stokes Law,

UL o
18u

where g = gravitational constant (m-s?); p, and p =
densities of particles and water (kg'm™), respectively;
d; = mean diameter of particles responsible for T, in the
i size class (m); and 4 = water viscosity (kg-m™'-s™).
Both, p and u are temperature dependent (Martin and
McCutcheon 1999). The total T, associated with N size
classes of particles is computed according to:

7,=Y"c, 3)

consistent with the additivity of the components of
inherent optical properties and their surrogates (Kirk
2011). Three size classes were found to represent the
observed patterns well in this system (Table 1), as adopted
for other nearby reservoirs (Gelda et al. 2009, 2012).
Three inputs to this T, submodel were specified (Table 1)
as part of calibration: (1) the sizes of 3 particle size classes
(1, 2, and 3), (2) the fractional contributions of these size
classes to T, levels in external loads, and (3) the density of
the particles (p,). These specifications were guided by the
SAX characterizations (subsequently) that served to
constrain the extent of tuning in the calibration process.

The likelihood that effects of particle coagulation were
embedded within the above representation of settling has
been acknowledged (Gelda et al. 2009) because the
platelet morphometry of clay minerals is known to impede
settling relative to spheres (Davies-Colley et al. 2003).
Hofmann and Filella (1999) reported that sedimentation
alone was insufficient to simulate the clay mineral-based
decrease in T, observed in deep portions of the
hypolimnion of Lake Lugano (Switzerland, Italy) and
concluded that coagulation needed to be represented. They
adopted a modeling approach (e.g., O’Melia et al. 1985)
that was relatively complex, requiring specification of a
number of inputs/coefficients including particle collision
frequencies and the efficiency of coagulation associated
with the collisions for multiple particle sizes. Such models
generally require substantial input adjustments (“tuning”)
for calibration.

We have instead adopted the following, more parsimo-
nious, approach to accommodate the effects of coagulation
in the second T, submodel, acknowledging an element of
empiricism. The same 3 size classes (1, 2, and 3) are
considered, and all 3 are subject to continuing settling. The
smallest 2 classes (1 and 2) are also subject to coagulation
losses through conversion to the largest size class (i.e.,
source to class 3) that settles the fastest, as described by,

dc

fori=classes 1 and2: S, =-v, a—’—kf.c. and (4
Z

c,i i’

d
S, =, §+ 3 ke, (5)

z

for class 3:
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where k', = coagulation rate constant for i size class
where i = 1 and 2 (s™'). The coagulation rate constant (k)
is adjusted according to the depth and T, as described by:

Ci
kv,i o ( ci + K ) kc’iHﬂ (6)

where K = Michaelis-Menten constant (NTU); and H =
depth from the surface (m). This last relationship is a form
widely used in water quality modeling that here acts to limit
the coagulation sink at low T, levels, a feature consistent
with the effects of reduced collision frequencies for lower
particle concentrations (O’Melia 1985). The aggregation/
coagulation version of the T, submodel requires 3 additional
model inputs, coagulation rates for the 2 smallest size
classes, and a half-saturation constant value for T, (Table 1),
which were determined through calibration.

Results and discussion

Runoff event drivers

A typical inflow pattern from the upstream reservoirs was
manifested during the 15-27 August 2011 period, before
the runoff event, with progressive increases to about
40 m*-s™! (as a daily average) and subsequent decreases
(Fig. 2a) controlled by reservoir operations to maintain
nearly full conditions. The dramatic large and abrupt
increases in Rondout Creek and Chestnut Creek Qs from
Hurricane Irene represented a strong contrast (Fig. 2a).
Peak daily average flows of ~102 and 31 m*s' and
instantaneous peaks of ~ 232 and 74 m*s™! were observed
for these 2 streams, respectively. These flows are the
highest on record for both streams (since 1987).

The daily average T of Rondout Creek remained in a
narrow range of 13.9 to 16.1 °C from 20 August to
5 September. Substantial diurnal variations (e.g., ~3 °C)
in the T of the stream prevailed for most days (Fig. 2b),
a widely observed phenomenon associated with cyclic
variations in heat inputs (e.g., incident radiation, air T)
within a day (Sinokrot and Stefan 1993). This variation
was modulated on the day of the runoff event. The stream
T was distinctly lower (i.e., the stream water was more
dense) than the surface waters of the reservoir over the
entire 10 d interval, including during the runoff event
(Fig. 2b). The stream was also cooler than the 5 m depth
of the reservoir, although the difference was diminished
relative to the surface waters. These differences establish
the propensity of the stream to plunge below the near
surface waters of the reservoir over this interval, including
during the event. This is a generally recurring feature for
the summer to fall interval in the stream—reservoir systems
of this area (O’Donnell and Effler 2006, Gelda et al. 2009,
O’Donnell et al. 2011). Chestnut Creek T conditions were

assumed to track those of Rondout Creek for the model
analysis.

Temporal coverage of T, measurements for Rondout
Creek was incomplete for the event (Fig. 2¢; disabled from
the elevated flow). The abrupt rise of T, that attended the
rising limb of the event hydrograph was captured by the
monitoring, but T, measurements were not available past
the time of the peak flow. The observed T, maximum of
~1000 NTU was at the upper operating bound of the
sensor. T, values for the falling limb of the hydrograph
were estimated from Q based on the T,—Q
relationship observed for a 2005 runoff event (Fig. 2c,
see inset), the second longest return interval event (14 y) of
the record (peak instantancous flow of 178 m’s™).
T, dynamics for Chestnut Creek were specified based on a
T,—Q relationship developed from long-term monitoring
(Fig. 2d, see inset). The extremely high Qs of the Hurricane
Irene event required some extension of the T,—Q relation-
ships beyond the bounds of supporting measurements.
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Fig. 2. Inflow conditions to Rondout Reservoir from mid-Aug
to early Sep 2011, bracketing the runoff event associated with
Hurricane Irene: (a) inflows from upstream reservoirs, Rondout
Creek, and Chestnut Creek; (b) temperatures of Rondout Creek
(hourly) and the upper waters of Rondout Reservoir (1 and 5 m,
two lines) from the robotic profiling platform; (c¢) T, in Rondout
Creek, measurements combined with estimates, supporting T,—Q
relationship as an inset; and (d) T, in Chestnut Creek estimated from
a T,—Q relationship (inset).
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Spatial and temporal variations in turbidity

Values of T, were <2 NTU throughout the water column at
the robotic monitoring site before the runoff event
(Fig. 3a). Within ~10 h of the peak stream Q, the leading
edge of a subsurface turbid plume had reached the
downstream position of the buoy deployment in the
reservoir, with a T, maximum of ~15 NTU at a depth of
18 m (Fig. 3a). Approximately 28 h after the peak stream
Q, the maximum turbidity impact was observed at that
site, with a T, ~135 NTU at a depth of 11 m; values
>100 NTU extended from about 9 to 16 m at that time
(Fig. 3b). The impact was clearly localized within
stratified (metalimnetic) layers. This vertical T, signature
is compelling evidence for the entry of the streams as
turbid plunging inflows, or density currents. This vertical
structure could not be well resolved by the long-term
monitoring protocols conducted widely for other systems
because of the limited number of depths (n = 3 or 4)
sampled. Note that while the vast majority of the
enrichment in T, was manifested in subsurface stratified
depths, some modest increases to ~5 NTU occurred in the
upper waters, consistent with the effects of mixing
processes. The substantial thickness of the turbid plume
(Fig. 3b) likely reflects not only the effects of mixing but
also short-term variations in the density (e.g., T and SPM)
differences between the streams and the reservoir during
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Fig. 3. Turbidity (T.) and temperature (T) profiles in Rondout
Reservoir from the robotic profiling platform: (a) 2 T, profiles on
28 Aug at 06:00 h and 19:40 h, and the T profile at 19:40 h; and (b)
single T, and T profiles on 29 Aug at 12:01 h. The T, profiles depict
conditions before, soon after, and the peak impact from the turbid
density currents from the Hurricane Irene runoff event.

the event. The density current phenomenon occurs widely
in lakes and reservoirs (Rueda and Maclntyre 2010,
O’Donnell et al. 2011).

Depth—length contours of T, are presented for 3 d
based on observations with rapid profiling instrumentation
collected from sites along the main axis of the reservoir
(Fig. 4a—c). Corresponding detailed profiles of T and T,
are presented for the robotic site for reference. The highest
T, values were observed on the first of the longitudinal
survey days. Variations in the longitudinal direction were
manifested for all of these cases, although T, enrichment
extended along the entire reservoir at subsurface metalim-
netic depths. The highest T, levels were positioned
upstream of the robotic monitoring site and the intakes
for the water supply on 31 August (Fig. 4a) and 9
September (Fig. 4b). On 22 September the highest T,
levels extended to the dam (Fig. 4c). These observations
depict a progressive decrease in T, in the enriched layers
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Fig. 4. Depth—length contours of T, and coincident paired T, and T
profiles at the robotic profiling platform site in Rondout Reservoir
for 3 different days following the Hurricane Irene runoff event:
(a) 31 Aug, (b) 9 Sep, and (c) 22 Sep.
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and a broadening of the affected metalimnetic depths
(Fig. 4a—c), features consistent with the progression of
particle loss (settling/coagulation) and mixing processes,
respectively (Martin and McCutcheon 1999).

The progression of the decrease in T, for the first 45 d
following the event in the most impacted depths (8—18 m),
based on robotic monitoring, was well represented by a
log-linear relationship (Fig. 5) with a slope consistent with
a first-order loss rate (0.024 d'). This can be considered
a lumped, or aggregate, rate that includes the effects of
multiple processes (e.g., mixing and particle settling).
This rate is within the broad range reported for similarly
determined values following multiple runoff events at
nearby (60 km) Schoharie Reservoir that receives large
quantities of minerogenic sediment during runoff events
(Prestigiacomo et al. 2008). Levels of T, remained
relatively uniform after ~45 d (between 3 and 8§ NTU),
although above pre-event conditions (Fig. 5).

The time series of the withdrawal T,, extending from
approximately 1 month before to 2 months following the
runoff event, depicts substantial impacts (Fig. 6a), despite
withdrawal from intakes to avoid the most enriched layers.
The pre-event levels (0.5-1.5 NTU) are the dominant case
for this reservoir. Rarely have levels >2 NTU been observed
(unpublished data, NYCDEP). The exceedance of 5 NTU
for about 1 month after the event was an unprecedented
occurrence for this reservoir. Note that withdrawal T, values
can deviate from those of the water column depths that
correspond to the dimensions of the intakes (Fig. 1) because
of the cone effect for the withdrawal (Gelda and Effler
2007c¢). The uppermost intake was being used at the time of
the event, which would provide substantial avoidance
benefit (Fig. 3b) for static stratification conditions; however,
the effects of a seiche, reflected in short-term dynamics in T
profiles (Fig. 6¢), induced by the hurricane-driven wind
even of 28 August, probably caused the abrupt increase in
withdrawal T, to nearly 15 NTU at the time of measurement
on 29 August (Fig. 6a). The period of seiche (Wetzel 2001)
for the stratification conditions that prevailed was estimated
to be 19 h. This high T, prompted a shift of the withdrawal
to the bottom intake for avoidance, a change that was
clearly manifested in the abrupt decrease in the withdrawal
T (Fig. 6b). Values of T, in the withdrawal over the
following week were in the 6 to 9 NTU range. A change to
the top intake on 9 September, depicted by the abrupt
increase in the withdrawal T (Fig. 6b), resulted in the
second abrupt increase in T, to ~20 NTU (Fig. 6a) and the
subsequent return to use of the deeper intake. This
short-term increase in T, was likely a transitory effect from
mid-depth inputs because it exceeded levels that could have
been brought into the intake from the upper layers of the
reservoir (no seiche at that time). On 16 September there
was a return to the use of the upper intake (Fig. 6a), without

noteworthy change in the withdrawal T, consistent with the
similar levels that prevailed in the upper and deep layers of
the water column at that time (e.g., Fig. 4c). The return to T,
levels that approached the baseline (~2 NTU) in the
withdrawn water took ~50 d following Hurricane Irene.
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Fig. 5. Time series of volume-weighted T, in Rondout Reservoir for
the 8-18 m depth interval over the Aug—Nov period of 2011,
resolved with the robotic monitoring platform, depicting the abrupt
increase from the Hurricane Irene runoff event and subsequent
attenuation. Simulations of the pattern with the 2 T, submodels
included.
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robotic profiling platform location depicting the effects of a seiche.
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Turbidity-causing particles

The contributions of the various chemical classes to the
overall particle populations of Rondout Creek and the
reservoir are presented in the context of contributions to
PAV (Table 2), which is linearly coupled to b, and thereby
T, (Peng and Effler 2007). Minerogenic particles, particu-
larly clay minerals (Fig. 7a), dominated (i.e., b = b,). On
average, clay minerals represented 78 and 80% of PAV
and PAV,, in the reservoir, respectively, and 75 and 78% in
Rondout Creek (Table 2). The second most important
minerogenic particle type was quartz. Similar composi-
tions were observed for this stream and the reservoir.
Moreover, similar characteristics have been reported for
other systems in the region (Peng et al. 2009). Based on
this composition breakdown, the T,-causing particles in
Rondout Reservoir primarily had terrigenous origins. Note
that over the monitored interval, despite the wide range
of T,, only small variations in the composition of the
responsible particles were observed. The dominance of
minerogenic particles was further supported by the strong
dependence of T, on PAV,, and the small value of the
y-intercept of the best-fit relationship (Fig. 7b). Variations
in PAV,, explained 95% (p < 0.001) of the differences in
T, according to linear least-squares regression.

Two PSDs are presented from the sampling of 31
August, from depths of 10 and 20 m at primary robotic
profiling buoy site (Fig. 7c). All the PSDs demonstrated a
general shape found to recur for natural minerogenic
particle populations in inland waters (Peng and Effler
2007, Peng et al. 2009). Peaks in number concentrations
were observed between ~0.2 and 0.6 um (Fig. 7c). Distinct
differences in the trajectories of the 2 PSDs are evident,
with relatively greater contributions by the smaller
particles at the 10 m depth where T, and PAV, were
higher. Corresponding size dependencies of b, (i.e., Ty;
Peng et al. 2009) from Mie theory calculations based on
the SAX results are presented for the same 2 samples in a
cumulative format (Fig. 7d). The different trajectories are

Table 2. Summary of particle compositions according to contribu-
tions to PAV for Rondout Reservoir and Rondout Creek, average
and standard deviation.

Particle Rondout Reservoir  Rondout Creek
Type avg. £st. dev. (%)  avg. £ st. dev. (%)
clay 782+5.5 75.0+3.7
quartz 10.3+£3.5 129+4.6
Si-rich 35+1.5 2.1+£03
Fe/Mn-rich 23+19 1.2+0.5
misc. 23+09 25409
organics 1.0+0.8 0.6+0.2
diatom 24+3.0 57+29

consistent with the differences in the PSDs, with larger
particles contributing more to T, at the deeper depth. The
size associated with the 50™ percentile of these calcula-
tions (dso; Fig. 7d) is a valuable metric of the size
dependency of b,, (and T,; Peng et al. 2009). The higher
dsy of the 20 m sample (6.06 um) reflects greater contribu-
tions by larger particles. Such high ds, values have been
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Fig. 7. SAX results and related calculations for Rondout Reservoir
following the Hurricane Irene runoff event: (a) micrographs of clay
mineral and quartz (bright) particles; (b) strong linear dependence of
T, on PAV,, with linear least-squares regression fit; (c¢) PSDs for
samples from 2 reservoir depths at the robotic profiling platform site
on 31 Aug, where F(d) is the number concentration in a size interval
divided by the magnitude of the interval; and (d) associated
calculated (according to Mie theory) contributions to light scattering
(i.e., T,) from different size classes, in a cumulative format. The cor-
responding median particle diameters (dso) are shown.
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associated with runoff events elsewhere (Peng and Effler
2012). Nearly 20% of b, (i.e., T,) was associated with
particles with d > 10 pm at the 20 m depth (Fig. 7d). The
other sample, from 10 m, had a size dependency (ds, =
3.12 pm) more commonly reported in SAX characteriza-
tions, with much smaller contributions by particles outside
of the 1-10 pm range (Peng and Effler 2007, Peng et al.
2009).

Profiles of T (Fig. 8a) and selected features of the SAX
results for 2 d following the event, one 3 d after, the other
25 d after (Fig. 8b—8d), provide valuable insights into the
behavior of the minerogenic particle population delivered
to the reservoir. This representation depicts the entry of
minerogenic particles primarily into stratified depths from
the event and the subsequent diminishment over the 22 d
interval (Fig. 8b), generally consistent with the T, patterns
(Fig. 4). The peak PAV,, decreased ~6-fold and shifted
downward ~10 m by the second date, acknowledging
these are coarse vertical representations given the 5 m
depth interval for SAX samples. Both of these features are
qualitatively consistent with the progression of the effects
of settling/coagulation losses over the interim.

The quartz (% of PAV,,; Fig. 8c) and ds (Fig. 8d)
profiles depict patterns qualitatively consistent with the
effects of the operation of morphometry-based sorting in
the settling process. Quartz percentages were the highest
at a depth below the PAV,, peak and deeper on 31 August.
These percentages remained lower in the upper waters
22 d later but with a maximum at mid-depths (Fig. 8c)
within stratified layers (Fig. 8a). Despite the similarity in
the light-scattering characteristics of clay and quartz for
this system (e.g., similar initial PSDs and refractive
indices; Peng and Effler 2007), quartz is expected to settle
faster because these particles have shapes that more
closely approach sphericity compared to the platelet
morphometry of clay particles. Thicknesses one-sixth
of the length-width dimensions are not unusual for clay
particles (Bates 1971). The platelet effect has been

T(°C)
0 8 16 0 10

described as contributing to the persistence of these
particles in water columns and has been represented by a
“shape factor” multiplier (<1) in certain settling velocity
relationships (Davies-Colley et al. 2003; but not included
in equation 2). Size sorting effects were also manifested
in the changes in the ds profiles for the same days
(Fig. 8d). Distinctly higher ds, values were observed on 31
August below the PAV, (and T,) peak, presumably
as a manifestation of the preferential settling of larger
particles of the population from the overlying layers.
Moreover, substantial systematic decreases in ds, occurred
throughout the water column over the subsequent 22 d,
depicting a shift to populations with greater contributions
from the smaller sizes, consistent with the preferential
settling of the larger particles.

Model performance and selected applications

Hydrothermal submodel

Performance of this submodel is depicted through selected
graphical representations (Fig. 9) and the root mean square
error (RMSE) statistic. The calibrated 2-dimensional
hydrothermal/transport model (see Table 1) performed
well in tracking the seasonal stratification dynamics of the
reservoir in 2010 and 2011, as represented in the patterns
of volume-weighted epilimnetic and hypolimnetic Ts
(Fig. 9a). The timing of turnovers and T differences
between the layers were well simulated, including the
warmer hypolimnetic conditions of 2010, although
hypolimnetic Ts were somewhat underpredicted in late
summer of that year. The RMSE for the 2 calibration years
was 0.93 °C. More vertically detailed performance is
represented in comparisons of predicted and observed T
profiles for months bracketing the runoff event at the
robotic monitoring site (Fig. 9b). The vertical details were
generally well simulated. The largest deviations were
observed in mid-September as somewhat underpredicted
upper metalimnetic Ts.

PAV_(m™") Quartz (%) dgo (M)

10 0 4 8

0 1 1 'a

10 4 31/8M11

Ly 256
- 246 €
C
- 236 .9
©
>
- 226 ©
LLl
- 216

Fig. 8. Profiles of T and selected SAX results for 31 Aug and 22 Sep, at robotic profiling platform site: (a) T, (b) PAVu, (c¢) % contribution of

quartz to PAV,,, and (d) dso.
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Validation of the submodel (coefficients from
calibration unchanged) is demonstrated for 2 recent years
(of the 23 y) for a deep water site, again in the format of
seasonal volume-weighted epilimnetic and hypolimnetic
Ts (Fig. 9¢). Performance for these 2 recent years, as well
as for the other 21 y of validation testing, was good.
The RMSE for the entire validation period was 1.16 °C.
This level of performance compares favorably to other
published modeling studies where this metric was reported
for multiple years (Gelda et al. 1998, 2009, 2012, Owens
1998, Gelda and Effler 2007a). Moreover, the duration of
successful continuous simulations of thermal stratification
exceeds the previous maximum of 22 y (Gelda et al.
2012). Finally, the model also performed reasonably well
in simulating the temporal pattern of the withdrawal T
over the August-October interval of 2011 that bracketed
the event, including the abrupt changes in late August
through mid-September associated with shifts in the
intakes (depths) used (Fig. 6b). Imperfect representation
of the cone effect (Gelda and Effler 2007b, 2007¢c) and
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Fig. 9. Performance of the hydrothermal/transport submodel: (a)
calibration, comparison of observed and predicted Ts, as volume-
weighted epilimnetic and hypolimnetic values, seasonally, in 2010
and 2011; (b) calibration, as detailed vertical profiles for monthly
dates bounding the Hurricane Irene runoff event of 2011; and (c)
validation (for 2 of the 23 y of testing of the calibrated model),
comparison of observed and predicted Ts as volume-weighted
epilimnetic and hypolimnetic values, seasonally, in 2008 and 2009.

input from more than one intake may have contributed to
the deviations from observations (Fig. 6b).

Overall T,, model(s)

Multiple attributes of the overall T, model(s) are
considered here. The primary longitudinal and vertical
features of the T, plume initially formed from the runoff
event, as documented for 31 August (Fig. 10a), was
reasonably well simulated by both versions of the T,
model (Fig. 10b; coagulation version shown) in the
context of previously published modeling efforts (Gelda
and Effler 2007a, Gelda et al. 2009), although vertical
gradients were underpredicted. A statistical basis of
performance is the normalized RMSE (RMSEN), obtained
by dividing the RMSE by the observed peak at each
profile site (Gelda and Effler 2007a, Gelda et al. 2009).
The average RMSEN for the profile sites of 31 August
of 21% compares favorably to the performance reported
for T, modeling at other reservoirs (Gelda and Effler
2007a, Gelda et al. 2009). This primarily reflects good
performance of the hydrothermal/transport submodel
(e.g., features of transport initially dominate compared to
kinetics), not only with respect to the entry of the tributary
density currents, but also for transport along the
reservoir’s primary axis. Moreover, the total T, content of
the reservoir on this date, based on the detailed reservoir-
wide profiling, was well matched (within 2%) by the
model predictions. This also supports the estimates of T,
loading for the event from the 2 tributaries that were based
on the combination of monitoring and T,—Q relationships.
The loads for the event were within 13% of the estimated
reservoir-wide increase in T, assessed from the 31 August
observations, adjusted for losses over the intervening
48 h since the event (according to the rate depicted in
Fig. 5).

The predicted diminishment of the elevated T, levels
in the most enriched (metalimnetic) reservoir layers
(8-18 m) tracked the observations well over the 45 d
following the event with both of the T, submodels
(Fig. 5), although T, predictions were higher for the
version without coagulation. The predicted values of the
apparent loss rate for the 45 d following the event were
within 10% of that based on observations. The somewhat
higher T, levels that persisted into November, relative
to the common pre-event baseline (T, ~ 1 NTU), were also
well simulated by the coagulation version, but
overpredicted by the version without coagulation (Fig. 5).

Vertical performance was assessed by comparing the
simulations to detailed profiles (n = 6) of T, collected by
the robotic monitoring platform (Fig. 10c). The initial
vertical pattern was well simulated (30 Aug) by both
T, models, with modest overprediction indicated for the
near-surface waters. Differences in predictions of the 2
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models became greater thereafter, with generally higher
and progressively deeper peaks for the T, model without
coagulation (Fig. 10c). The metalimnetic peaks for both
models were somewhat broader than the observations,
suggesting vertical mixing may have been somewhat
overpredicted. The coagulation version of the model
tracked the magnitude and vertical position of the
observed peak better starting a week after the event, and
was clearly superior in simulating T, in the deeper
near-bottom layers extending later in September and
through October (Fig. 10c). These features led us to select
the model that includes coagulation as the best of the
2 T, submodels considered here. This comparative
performance of T, models with and without coagulation
is similar to that reported by Hofmann and Filella (1999)
for Lake Lugano, where inclusion of the effects of
coagulation was necessary to simulate the decrease in
clay-based T, in that lake’s hypolimnion. Inclusion of the
effects of coagulation for the Rondout Reservoir model
resulted in far better predictions of T, in the withdrawal
during the 18 d interval when the bottom intake was used
(Fig. 6a; 30 Aug—16 Sep).

The comprehensive monitoring that supported T,
modeling for this extreme event was not conducted for
carlier smaller events for this system; however, the
withdrawal T, record offers an opportunity for further
model validation, albeit in a less comprehensive manner.
Simulations were conducted for the 2004-2005 interval
that included several small events and the major one in
April 2005. The T, model (with coagulation) performed
well in simulating the temporal signature of the
withdrawal T, imparted by both the smaller events and the
major April 2005 event (Fig. 10d).

Model applications and utility

Selected applications of the tested model are presented
here to illustrate the importance of representing both
operational conditions (Fig. 11a and b) and the PSD of the
minerogenic particles delivered to the reservoir during
the runoff event (Fig. 11c). The scenario predictions are
compared to those of the calibrated model as vertical
profiles for 1 September at the robotic platform site. The
operational scenario corresponds to use of the deep intake
since 1 January 2011 instead of the upper intake that
actually prevailed. A major difference in the reservoir’s
stratification (and thereby the attendant mixing; Martin
and McCutcheon 1999) regime is predicted for the
deep intake scenario, which would have resulted in a
substantially warmer water column overall and a deeper
hypolimnion (Fig. 11a). Clearly, this operational feature,
the intake (i.e., depth of withdrawal) used, has a major
effect on the stratification regime consistent with the
high flushing rate of the reservoir. Moreover, such an
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Fig. 10. Performance of the T, submodel(s): (a) observed depth—
length contours of T, for 31 Aug; (b) simulation of the depth—length
contours of T, (coagulation version) for 31 Aug (compare to
Fig. 4a); (c) comparisons of predicted (both with and without
coagulation submodels) and observed T, profiles for 6 dates
following the Hurricane Irene runoff event (30 Aug, 1 Sep, 6 Sep,
14 Sep, 28 Sep, and 12 Oct); and (d) comparisons of predictions
for withdrawal T, to observations for an earlier runoff event (with
coagulation version).
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operational mode would have resulted in a different
vertical pattern of T, following the event (Fig. 11b), with
somewhat lower levels distributed deeper and over a
wider depth interval. The scenarios for PSD illustrate the
importance of adopting a representative PSD, in this
depiction, soon after the event. Placing all the T, in the
smallest size class causes overprediction on that date,
while specifying the largest size class results in gross
underprediction for the impact depth and a near bottom
peak that was not observed (Fig. 11c¢). Features of the PSD
specifications have importance in simulating the time
course of the diminishment of impact over the subsequent
interval (Fig. 10), not shown here. These example applica-
tions illustrate the utility of the model for investigating the
effects of operations, limnological processes, and particle
behavior.

The modeling effort has served as an effective
integrator of both long-term and event-based monitoring
of inputs and the reservoir, detailed characterization of
T,-causing particles, and basic features of transport and
the thermal stratification regime. The model has both
management and research utility and is recommended for
management guidance (e.g., expectations for duration and
preferred intake choices) in response to future events for
this reservoir and for incorporation into the larger
modeling tool under development to support operations of
the overall multi-reservoir system (Gannet Fleming &
Hazen and Sawyer 2007). This larger modeling framework
features the integration of robotic monitoring and
modeling to provide near real-time simulations to support
operations decisions for the system (Effler et al. 2013).
Selected applications of the tested model have illustrated
the added value of the tool to provide insights on the
influence of various drivers on T, patterns such as
reservoir operations, and the importance of supporting
information, particularly PSDs. This model is distin-
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Fig. 11. Applications of the tested model, with scenario simulations
compared to those of calibrated model, as vertical profiles for 1 Sep
at robotic profiling platform site: (a) T, scenario is use of bottom
intake; (b) T,, scenario is use of bottom intake; and (c) T,, scenarios
are T, in size classes 1 (smallest) or 3 (largest).

guished from previous T, modeling contributions by the
parsimonious expansion of the kinetic framework of the
T, submodel to explicitly represent the effects of particle
coagulation, which is critical to simulating deep layer T,
patterns and T, dynamics in the withdrawal. Wider appli-
cations of this more robust T, model are recommended
where similar issues prevail. The integrated program of
contemporary monitoring protocols, individual particle
characterization, and modeling (hydrothermal/transport
and T, submodels) is highly transferable to other systems
where inorganic particles cause turbidity problems.
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ABSTRACT

The recent sequence of extreme hydrological events across the eastern United States (e.g., Hurricane Irene
in August 2011, Tropical Storm Lee in September 2011, and Hurricane Sandy in October 2012), which led to
unprecedented flooding including in various parts in the study region, the Catskill Mountains, and Hudson
River Valley in southern New York State, have raised the question of whether the frequency of extreme
events across the region is changing. In this study variations in the frequency of extreme precipitation and
streamflow events available from historical records are analyzed. This study finds that there has been
amarked increase in the frequency of warm season (June—October) extreme hydrologic events during the last
two decades, with an accelerated rate of increase since the mid-1990s. The most recent decade has the highest
frequency of extreme warm season events in the last 100 years across the study region. No such trend is
observed between November and May; in fact the frequency of 4-day extreme precipitation events during the
cold period has declined during the last two decades.

9577

1. Introduction

In August and September of 2011, Hurricane Irene
and Tropical Storm Lee dropped large amounts of rain
across various parts of the eastern US, including our
study region that includes the Catskill Mountains and
Hudson River Valley of southern New York State. Prior
to fall 2011, the most recent flooding event approaching
such magnitudes in this region occurred in April 2005,
when the Delaware River basin was hit by heavy rain
that led to a total of 20 New York Counties being de-
clared federal disaster areas. This event forced more
than 1000 residents to evacuate their homes and ap-
proximately $35 million (U.S. dollars) in recovering cost
mostly from flood damage (Suro and Firda 2006). Peak
water surface elevations exceeding the 100- to 500-yr
flood mark were registered in some areas across the
region. More recently, in late October 2012, our region
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was affected by Hurricane Sandy, although the worst
impacts of that storm in the northeast occurred as a re-
sult of storm surge along the coasts of New Jersey and
New York State.

In light of the public perception within our study re-
gion of a recent increase in the frequency of extreme
precipitation and hydrological events, we examine the
hypothesis that there has been a change in the frequency
of extreme events in this region. We employ a suite of
parametric and nonparametric statistics to precipitation
and stream gauge records, some of which extend back
over a century.

Historically, the occurrence of extreme weather and
climate events such as these storms has been associated
with losses of human life, waterborne disease outbreaks,
water quality issues, and high cost for damage recovery
(Curriero et al. 2001; Easterling et al. 2000; Karl and
Easterling 1999; Kunkel et al. 1994; Weniger et al. 1983;
Towler et al. 2010). Despite their common association
with physical processes, the severity of flood impacts are
also a function of human development, land use pat-
terns, exposure, and vulnerability (Allen et al. 2012;
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Kunkel 2003b; Changnon and Demissie 1996). Pielke
and Downton (2000) indicate that differences in flood
damage at a regional scale appear more correlated with
differences in precipitation while differences in flood
damage at a local scale are more related to other factors.
Apart from direct catastrophic damage, tropical storms,
floods, and droughts can affect human welfare indirectly
through low yields/failed crops, waterborne disease out-
breaks resulting in humanitarian crises with a higher
number of lives lost. Such threats are likely to occur dis-
proportionately in developing countries given the limited
resources for mitigation and adaptation (Arnell et al.
2001; Curriero et al. 2001; Manabe et al. 2004; Huntington
2006). Recently, the Intergovernmental Panel on Climate
Change (IPCC) has emphasized the importance of new
approaches to address the management of risks associ-
ated with extreme events as these may be directly af-
fected by climate change (Allen et al. 2012).

A number of studies have shed light on trends in ex-
treme events across the globe (for example, Knutson
and Manabe 1998; Dai et al. 1997; Kunkel 2003a). Re-
sults from instrumental records and climate model sim-
ulations suggest that human-induced climate change is
responsible for more intense precipitation over many
extratropical regions, including the United States (Min
et al. 2011; Groisman et al. 2005). At regional scales the
results are highly variable with zonally averaged pre-
cipitation showing an increase by 7%-12% between 30°
and 85°N, while an increase by 2% between 0° and 55°S
and a decrease in other regions (Folland et al. 2001;
Zhang et al. 2007). Analyses of multiday extreme pre-
cipitation events (Kunkel et al. 1999) and 1-day duration
with a 20-yr return period (Zhang et al. 2001) found no
statistically significant long-term trend for Canada. How-
ever, other studies found statistically significant trends in-
cluding, in the average annual precipitation (Zhang et al.
2000), precipitation events exceeding a 2-month return
period (Stone et al. 2000) for most areas in Canada, and
precipitation of 5-yr return period associated with
tropical cyclones (Kunkel et al. 2010). Across the United
States, a number of studies have identified trends in
extreme events during the last few decades (e.g.: Kunkel
et al. 1999; Karl et al. 1995; Karl and Knight 1998;
Novotny and Stefan 2007; Burns et al. 2007), though
their analysis periods all end prior to 2005. Novotny and
Stefan (2007) analyzed 36 stream gauge records dis-
tributed across five major river basins in Minnesota and
found that peak flows due to rainfall and the number of
days with high extreme flows in summer are increasing
after 1980 but found no trend in snowmelt related run-
off. In most studies the observed changes in precipitation
are occurring in conjunction with increasing air temper-
ature; for example Burns et al. (2007) studied the Catskill
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Mountain region in New York and found a 0.6°C in-
crease in mean annual temperature associated with
136 mm increase in yearly cumulative precipitation in
the past 50-yr period.

Two recent studies of precipitation and drought over
the Catskill Mountains region demonstrate that the
period since the 1970s has been particularly wet when
viewed in the context of station observations since the
early twentieth century (Seager et al. 2012), as well as in
the context of longer-term hydrological variations based
on tree ring reconstructions (Pederson et al. 2012).
These studies show that both the drought of the 1960s
and the subsequent wet period (which continues until
today) were caused by internal atmospheric variability
(Seager et al. 2012) and that periods of more extensive
drought have occurred in earlier centuries (Pederson
et al. 2012). Assuming that tree ring growth index and
streamflow are both integrators of the available mois-
ture and energy Devineni et al. (2013) applied a hierar-
chical Bayesian regression (HBR) model to tree-ring
chronologies from different species to reconstruct the
average concurrent summer streamflow in five basins
across the upper Delaware River basin (which is part of
our study region). Focusing on the summer months of
June, July, and August they studied the frequency and
recurrence of 1960s-like severe droughts at each basin
in past centuries. They used the HBR model to generate
a thousand realizations of a 247-yr simulation. From
a count of the number of events exceeding the duration
and severity of the 1960s at each gauge they estimated
the median return period of the 1960s drought in the
region to be around 80 years. A Mann-Kendall test on
the time series revealed lack of evidence of a trend in the
occurrence of the 1960s-like droughts. Thus, based on
climatology and hydrology data reconstruction, the im-
plication is that water resources in this region are vul-
nerable to significant drought events beyond what has
been experienced during the last 100 years. In any case,
the relationship between drought and flood events and
climate change and how they directly affect society
and sustainable development remains uncertain. Re-
ducing uncertainty will require (among other things)
more data on extreme events covering longer periods
of record to become available; as well as a better un-
derstanding of the physical processes and evidence link-
ing extreme events to climate change (Allen et al. 2012).

2. Study area and data description
a. Study area

The study area encompasses the mid—Hudson Valley
and Catskill Mountain regions in southern New York
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F1G. 1. The study area with the drainage areas for the stream gauges, the location of the
rain, and stream gauges used in this study, state boundaries, and a few local geographic

features.

State. Fig. 1 shows a map of the study area with the
drainage areas for the stream gauges, and the loca-
tion of the rain gauges and stream gauges used in this
study.

The Catskill Mountain region is part of the Allegheny
Plateau consisting mainly of sedimentary bedrock (Burns
et al. 2007) and contains rugged topography through
which numerous tributaries drain naturally into the
Hudson and Delaware Rivers. The study area, located
between 80 and 250 km north of New York City, extends
through Delaware, Greene, Orange, Ulster, Schoharie,
and Sullivan counties of New York State. The climate of
the region is humid continental with mean daily winter
temperatures ranging between —5° and 0°C and mean

daily summer temperatures ranging between 15° and
20°C. The temperature of the Catskill Mountain region
is strongly impacted by elevation that rises to approxi-
mately 1200 m from the Hudson River. Regional hydrol-
ogy is influenced by snow and snowmelt during winter and
early spring particularly at higher elevations (Frei et al.
2002; Matonse et al. 2012). Average annual precipitation
from the stations included in this study ranges from 1005
to 1580 mm. Average daily streamflow for the selected

gauges ranges from 1.6 to 31 m’s ™.

b. Data description

Historical long-term precipitation records from rain
gauge stations across our region were obtained from
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TABLE 1. List of precipitation stations used in this study, including the average total annual rainfall, and average totals for August and

September.
Station ID Record period Average total Average total Average total september
number Station name County available annual rainfall (cm)  august rainfall (cm) rainfall (cm)
300254 Arkville Delaware 1948-2011 102.41 9.44 9.97
302036 Delhi Delaware 19262011 108.53 10.15 9.79
302060 Deposit Delaware 1962-2011 111.64 10.38 10.30
302582 Ellenville Ulster 1948-2011 113.73 10.15 10.39
304731 Liberty Sullivan 1950-2011 128.92 12.13 11.66
305310 Middletown Orange 19512011 109.46 10.37 10.46
305426 Mohonk Lake  Ulster 1896-2011 122.41 11.20 11.16
306774 Port Jervis Orange 1893-2011 111.99 10.34 10.10
307274 Rosendale Ulster 1956-2011 113.43 10.37 10.07
307799 Slide Mtn Ulster 1948-2011 158.70 13.51 13.82
308932 Walton 2 Delaware 19562011 112.62 10.39 9.60
309292 West Point Orange 18902011 119.00 10.76 10.92

Northeast Regional Climate Center (NRCC) at Cornell
University, Ithaca, New York. Daily total precipitation
for the entire period of record at each station is used to
evaluate historical variations in extreme values. A total
of 12 rain gauge stations with historical precipitation
records met our criteria for inclusion in this study (Table 1):
stations must have at least 30 yr of continuous data with
no extended gaps, and must be currently active. Three
stations have >100 yr of data. All trace precipitation was
set to zero as these have no effect on the maximum
precipitation time series.

Historical daily average and annual peak streamflow
records are obtained from the U.S. Geological Survey
(USGS) surface water website (http://waterdata.usgs.
gov/nwis/sw) for all stream gauge stations used in this
study. Ten USGS gauges are selected in the Greater
Catskill and mid-Hudson Valley watersheds for use in
this analysis (Table 2). The selection is based on the
following two criteria: 1) the gauge is presently active

and has 30 or more years of annual maximum stream-
flow records; and 2) the streamflow at the site is natural
or is minimally impacted by regulation. No processing
was performed to replace missing values.

3. Methods

A suite of parametric and nonparametric statistics
is applied to precipitation and streamflow records to
evaluate extreme events. All analyses are performed for
annual, warm season, and cold season separately. An-
nual analyses include data from all months of a calendar
year. Warm season analyses include data from 1 June
through 31 October, and cold season analyses include
data from 1 November through 31 May 31st. These
seasonal definitions effectively separate events associ-
ated with snow (i.e., melt and rain-on-snow events) from
those associated only with heavy rain. For much of the
nonparametric analysis, our definition of “‘extreme

TABLE 2. List of USGS gauges used in this study, including the drainage area, gauge elevation, basin slope, and average annual streamflow.

Average annual

USGS ID Record period Drainage area Gauge Basin average streamflow
Number Gauge name County available (sq. km) elevation (m)  slope (%) (m3 s_l)
1350000 Schoharie Creek at Prattsville Greene 1936-2011 613.8 344.9 21.1 13.6
1362200 Esopus Creek at Allaben Ulster 1964-2011 165.0 304.2 32.0 44
1362500 Esopus Creek at Coldbrook  Ulster 1936-2011 497.3 189.4 31.5 215
1371500 Wallkill River at Gardiner Ulster 1936-2011 1800.0 56.6 4.6 314
1421900 West Branch Delaware River Delaware 1937-2011 347.1 411.9 17.4 7.0

Upstream from Delhi
1423000 West Branch Delaware River Delaware 1937-2011 859.9 362.8 18.4 17.3
at Walton
1413500 East Branch Delaware River Delaware 1937-2011 4222 397.0 23.5 9.0
at Margaretville
1414500 Mill Brook Near Dunraven Delaware 1958-2011 65.3 395.8 25.8 1.6
1415000 Tremper Kill Near Andes Delaware  1951-2011 86.0 391.9 21.6 1.7
1435000 Neversink River Near Sullivan 1939-2011 172.5 464.0 23.3 5.6

Claryville
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event” includes all events with magnitudes greater than
or equal to the 95th percentile of the empirical distri-
bution of all events at a given station. This definition is
applied to each station individually; then, for some parts
of the analysis, results from all stations are averaged.
Parametric statistics include hydrologic frequency
analysis (HFA) using annual-maximum series (AMS)
(El Adlouni and Ouarda 2010). In addition, HFA is also
employed using seasonal-maximum time series from
warm season and cold season separately. HFA provides
the magnitude of events as a function of average return
period (also known as recurrence interval). For this
study we estimated return periods from 2 to 100 yr.

a. Annual streamflow HFA

For annual streamflow HFA, at each gauge location
annual peak discharges are fitted to a log-Pearson type
I1I distribution (LP3) (Stedinger et al. 1993; Interagency
Advisory Committee on Water Data 1982—Bulletin
17B). This distribution is chosen because it has been
recommended by the Interagency Advisory Committee
on Water Data (1982) as a uniform technique for de-
veloping flood flow frequency analysis in the United
States. Peak streamflows are used in this study for de-
veloping annual streamflow frequency analysis while
daily average streamflows are applied to compare an-
nual and seasonal flood flow estimates. Our application
of the LP3 model followed the description in Stedinger
et al. (1993) with the return period T calculated using

Eq. (1):
1

T:ﬁ 1)

where p is the cumulative probability of the pth quantile,
and x,, which represents the streamflow event that will
be exceeded on average once every T years [also called
the 100(1-p) percent exceedance event]. To implement
the LP3 distribution the AMS series are transformed to
a logarithmic space resulting in a three parameter log-
normal distribution. Assuming the log-transformed se-
ries follow a normal distribution the pth quantile can be
estimated from Eq. (2):

x, =108(Q7) = i+ 0K, (7). 2)

where Q7 is the discharge associated with return period
T, p is the mean of the log-transformed annual maxi-
mum peak streamflow, o is the standard deviation, and
K,(vy) is the frequency factor. The frequency factor
represents the pth quantile of a standard Pearson type-3
distribution with skew coefficient y, mean zero, and
variance 1. For the selected quantile the corresponding
streamflow estimate is calculated as
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FIG. 2. Probability-plot correlation coefficient (7) for the warm
season maximum streamflows assuming a LP3 and Gumbel prob-
ability distributions. The number in the x axis are Schoharie Creek
at Prattsville (1), Esopus Creek at Allaben (2), Esopus Creek at
Coldbrook (3), Wallkill River at Gardiner (4), East Branch Dela-
ware River at Margaretville (5), Mill Brook near Dunraven (6),
Tremper Kill near Andes (7), West Branch Delaware River up-
stream from Delhi (8), West Branch Delaware River at Walton (9),
and Neversink River near Claryville (10).

0, = exp(x,). (3)

b. Warm season streamflow HFA

To determine the most appropriate probability dis-
tribution to be used for the warm season maximum
flows, a probability-plot correlation-coefficient (PPCC)
(Vogel and Kroll 1989) is calculated by fitting the log-
Pearson type III (LP3) and the extreme value type I
or Gumbel distributions. The Gumbel distribution is
among the extreme value (EV) distributions described
by Gumbel (Gumbel 1958; Stedinger et al. 1993). The
Gumbel distribution, which is further discussed in sec-
tion 3c, is used to describe a large number (n) of annual
maximum streamflow values assuming these are inde-
pendent and identically distributed random variables.
This distribution is unbounded above and is charac-
terized by an “‘exponential-like” upper tail.

The PPCC test statistic that provides a measure of the
linearity probability plot is 7. The metric 7 is defined as
the product moment correlation coefficient between the
ordered observations and the order statistic means for
each distribution function assumed.

At all sites the PPCC statistic for the LP3 distribution
is higher than for the Gumbel distribution (Fig. 2) in-
dicating that the LP3 is a better fit to warm season
streamflow time series. Based on these results we adopt
the LP3 distribution assumption for warm season max-
imum streamflow.

c. Annual and warm season precipitation HFA

For precipitation frequency analysis of 24-h rainfall
AMS are assumed to follow a Gumbel distribution
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(Stedinger et al. 1993). The Gumbel distribution has
been most often used with precipitation AMS and was
applied for developing a rainfall frequency atlas in the
United states including for our region of study (Hershfield
1961; El Adlouni and Ouarda 2010; Frederick et al. 1977;
Smith 1993).

The Gumbel Distribution represents a good approx-
imation for annual maxima 24-h rainfall. Its pdf has the
following form:

dF
iy = )
=lexp{—x_§—exp(—x_§>} —o<x <o,
o o o
4)
and the cdf

Fy(x)=P(X =x) =exp [—exp(—x%g)] .0

The cdf can be inverted to obtain x, = ¢ — aIn[—In(p)]
as

Fy(x,)=p. ©)

To solve for the rainfall values associated with a return
period defined by p we estimated parameters « and ¢
using the sample estimators of first and second moments
according to the following relationship:

=Y 077975 )
ar

and

£=X—-0572a (8)

where X and s are the sample mean and standard
deviation.

The same Gumbel distribution that is used for annual
maximum precipitation is also applied to warm and cold
season analyses.

d. Nonparametric data analysis and event definition

Prior to applying nonparametric statistics, we use
daily total precipitation data to calculate 4-day, 30- and
30-day antecedent, and 60-day events. Here, 4-day events
represent individual storms. We chose the 4-day-averaging
period because precipitation from many storms occurs
over a period between one and two days for smaller
storms to three or four days for larger storms (e.g., both
Hurricane Irene and Tropical Storm Lee resulted in
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precipitation over 4 days at most stations used in this
study). An event is defined as any series of consecutive
days (including only one day) with precipitation. Thus,
4-day events include all events in which precipitation
occurred on one, two, three, or four consecutive days.
All events included in this analysis are nonoverlapping.
The procedure used to calculate multiday precipitation
totals is described below using the 4-day averaging pe-
riod as an example, but other averaging periods are
calculated in an equivalent fashion. Also, time series for
individual seasons are calculated in an equivalent fash-
ion by including only days during the season in question.

The procedure used to calculate 4-day events is as
follows:

First, calculate the total precipitation over all 4-day
intervals, including overlapping intervals, which is
equivalent to the 4-day running sum of the daily
precipitation time series.

Second, identify all 4-day events in the resultant time
series by eliminating all zero running sum values.
Thus, an “‘event” is any group of four consecutive
days with nonzero total precipitation. By this def-
inition, events that last less than four days are still
included as part of a 4-day event, and are not ex-
cluded from the analysis.

Third, we exclude overlapping events so that the final
dataset is made up of discrete individual events.
Two overlapping events might include, for example,
a 4-day event ending on 20 January (which is the
total precipitation for 17-20 January) and a 4-day
event ending on 21 January (which is the total
precipitation for 18-21 January). For all such over-
lapping events, only the one with the largest pre-
cipitation amount is retained for analysis; others are
set to zero, and are therefore no longer considered
in the analysis. This procedure results in a time series
for each station, and for each period of analysis.
Extreme events are defined from these time series
as any event greater than or equal to the 95th
percentile of the empirical distribution of all 4 day
values, which is calculated for each station, and each
season, individually. While this explanation uses
4-day events as an example, we perform the iden-
tical procedure for 30- and 60-day events.

4. Results and discussion

a. Historical climatology of extreme precipitation and
streamflow

Climatologies of extreme precipitation and stream-
flow events for each month are presented using boxplots
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greater than the 95th percentile). The 95th percentile was calculated for each station and month, separately; boxplots
represent data from all stations. The horizontal line in each boxplot is the median while the solid dot is the mean.

of daily total precipitation (Fig. 3a) and daily mean
streamflow (Fig. 3b). In these and all subsequent box-
plots, the lower and higher ends of the boxes represent
the 25th (Q1) and 75th (Q3) quartiles, respectively; the
whiskers represent the lowest and highest data values
within the lower [Q1 — 1.5(Q3 — Q1)] and upper [Q3 +
1.5(Q3 — Q1)] limits. The horizontal lines in the box-
plots represent the median, and the dots the mean. Each
panel shows the distribution of daily events, including
values from all stations that match or exceed the 95th
percentile value for each month (i.e., the 95th percen-
tile values for each station are calculated individually).
The seasonal cycle of extreme precipitation events is
unimodal, with the largest events tending to occur be-
tween August and October (Fig. 3a), including but not
limited to the direct influence of tropical storms and
hurricanes in this region.

In contrast, streamflow events exhibit a bimodal
distribution, in particular for the largest events (out-
liers) with peak values occurring between March and
April as well as between August and October (Fig. 3b).
Spring time extreme streamflow events result largely
from snowmelt and rain-on-snow events, while late

2-Year S-Year 10-Year

‘%? B é $
o o]
g 1 B ° &
LA - - IS . =-
S B-Year SO-Year 100-Year
B »
- o
sl o é ° B ~
o
L4
2w &S @ @

s

Arrual Cold Warm  Arrud Cold Warm Arrua Cold  Warm
Season

summer/fall extreme streamflow events are associated
with rain. Over basins in which snow accumulation is
significant compared to the amount of water in ex-
treme rainfall events, the largest flood events tend to
be snow related during spring. These include colder
basins, which are generally smaller in size and at higher
elevations. The selection of basins in this study includes
examples of these colder basins, which have large
streamflow events during the cold season (November
through May) as well as basins in which the peak flood
events occur during the warm season (June through
October).

The magnitudes of streamflow events resulting from
precipitation during either season are also influenced by
antecedent conditions. During spring antecedent con-
ditions include the mass of water stored in the snowpack
as well as the thermal states of the snowpack and un-
derlying surface (Leathers et al. 1998; Todhunter 2001).
During late summer/fall, the most important antecedent
condition affecting the magnitude of extreme stream-
flow events is the amount of moisture in the near-surface
soil layers, which determines the amount of saturation
excess runoff.
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FIG. 4. Magnitude of events as a function of season and return period for (a) precipitation and (b) streamflow.
Boxplots represent variations in frequency statistics from 12 rain gauges and 10 stream gauges used in this study. The
horizontal line in each boxplot represents the median and the dark dot represents the mean.
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TABLE 3. Average annual peak flow for the long-term historical and five 30-yr periods for each of the six gauge stations included to study
changes in flood frequency estimates over time.

Average annual peak flow (m>s ™)

Time Period Prattsville Gardiner Coldbrook Margaretville Mill Brook Tremper Kill Median
Long-term historical 160.5 101.6 152.6 15.8 13.9 12.8 58.7
1940-70 130.4 94.9 127.7 15.7 13.1 11.9 553
1950-80 159.8 101.6 156.7 15.8 12.8 11.9 58.7
1960-90 145.9 91.9 136.8 15.8 11.3 10.9 53.9
1970-2000 165.3 98.5 155.7 15.9 12.9 12.0 572
19802011 190.7 106.0 180.7 16.0 15.5 13.7 61.0

We also compare the magnitudes of events associated
with various recurrence intervals during the cold and
warm seasons (Fig. 4). For all precipitation return pe-
riods between 2 and 100yr, warm season events are
larger than cold season events (Fig. 4a). For example,
the 100-yr precipitation event during the warm season
varies at different stations between approximately 14
and 20cmday ', while in the cold season the 100-yr
event is smaller, varying between approximately 8 and
13 cmday ! at the same group of stations. In contrast,
for streamflow the relative magnitude between the
seasons is a function of return period: the magnitude of
frequent (i.e., small) streamflow events is smaller dur-
ing the warm season; but the magnitudes of streamflow
events at larger return periods are comparable in the
two seasons (Fig. 4b). For example, the magnitude of
the 2-yr cold season flood flow varies between 40 and
250m’s ™! at different stations, while the largest warm
season 2-yr return period event for any station is only
~100m*s ', This reflects the fact that, when examining
relatively frequent events, warm season flow is domi-
nated by base flow, while cold season flow is strongly
influenced by snowmelt and is therefore of a greater
magnitude.
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b. Has the frequency of extreme events changed
during the period of record?

In this section we examine variations in the frequency
of extreme events during the periods of record for sta-
tions in this region. Two approaches are applied for this
analysis: one based on parametric frequency analysis of
streamflow and a second based on nonparametric sta-
tistics of precipitation and streamflow.

1) PARAMETRIC STATISTICS

Using time series of annual peak flows from gauges
with the longest records, we compare flood flow fre-
quencies from five overlapping 30-yr periods [1940-70
(hereafter called the 1950s); 1950-80 (1960s); 1960-90
(1970s); 1970-2000 (1980s); and 1980-2011 (1990s)]. Av-
erage annual peak flows from these periods exhibit an
increasing pattern over time (Table 3). Our objective is
to detect temporal changes in flow magnitudes associ-
ated with different return periods using these over-
lapping periods that begin 10 yr apart from each other.

In our study region, 30-yr flood frequency estimates
vary over time, as demonstrated by Fig. 5a. In general,
streamflow events were large during the 1950s and
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FIG. 5. Flood flow magnitude as a function of return period and analysis data time period. (a) Average of stream
gauges flood flow analyses and (b) relative difference flood flow in percentage [(30-yr based flood flow — long-term-
based flood flow)(long-term-based flood flow) " X 100]. These results are based on flood frequency estimates from
the following six streamflow gauges: Schoharie Creek at Prattsville, Esopus Creek at Coldbrook, Wallkill River at
Gardiner, Millbrook near Dunraven, Tremper Kill near Andes, and Neversink River near Claryville.
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FI1G. 6. Example of nonparametric analysis for the Ellenville precipitation record. Magnitudes of every 4-day
precipitation event on record during (a) cold and (b) warm seasons; the 95th percentile value (horizontal line); and
the top-five historical events (blue circles). The number of extreme (i.e., >=95th percentile) events per year in the
(c) cold and (d) warm seasons; 11-yr-centered mean line (bold); year(s) of maximum smoothed value (blue circles).

1960s; smallest during the 1970s and 1980s; and have
increased to their highest magnitudes on record in re-
cent decades (Fig. 5a). Boxplots showing the range of
values for all stations indicate that flood magnitude is
a function of both the period used for the analysis and
gauge location across the region (Fig. 5b). These varia-
tions can be attributed to differences in weather patterns
and other watershed hydrological characteristics in-
cluding the size of the gauge contributing area. The
1970s-based estimates have the smallest relative flood
magnitudes by an average 5%-25% where the differ-
ence increases proportional to the return period. The
period 1980-2011 has the largest flood estimates for all
return periods by approximately 10%. In any case, it is
difficult to identify trends at time scales less than 30 yr
using this sort of analysis. Hence, we turn to the non-
parametric analysis in the next section.

2) NONPARAMETRIC STATISTICS

For each precipitation and streamflow gauge station
we calculate the magnitude of the 95th percentile events
of different durations (4-, 30-, and 60-day total precip-
itation or daily mean streamflow) using all events from
the period of record and then make a yearly count of
how many events exceed the 95th percentile threshold
value. (Note that the number of 95th percentile events is
a function of the total number of events, which depends
on whether one is considering precipitation or stream-
flow, the extent of available record, and on the duration
of the event being analyzed. The important aspect of the
results presented in this section are the changes over
time.)

Starting with 4-day events, an example of such an
analysis for one precipitation station (Ellenville in Orange
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FIG. 7. Eleven-year smoothed centered running means of number of 4-day precipitation events per year equaling or exceeding the 95th
percentile value for the entire record at 12 precipitation stations. Results from (a) annual, (b) cold season, and (c) warm season analyses
are shown. The y axes are not shown. In each panel left vertical dashed line shows 1985; right vertical dashed line shows 2006. Blue circles
on time series indicate year(s) of maximum value. (top to bottom) The 12 stations include the following: West Point, Mohonk, Port Jervis,
Arkville, Delhi, Deposit, Ellenville, Liberty, Middletown, Rosendale, Slide, and Walton.

County) is shown in Fig. 6. Figs. 6a and 6b show scat-
terplots of 4-day precipitation for each season (with one
diamond for each event); the 95th percentile value is
indicated by the horizontal line. Warm season extreme
(95th percentile) events are greater than cold season
extreme events at this station (and, in fact, at all sta-
tions), which is consistent with the unimodal pattern of
monthly precipitation (Fig. 3b). The time series of the
number of extreme events per year in each seasonal
period are shown in Figs. 6¢ and 6d. Superimposed on
the annual time series is the smoothed (11-yr centered
mean) time series, which we use to represent decadal-
scale fluctuations in the frequency of extreme events.
The maximum smoothed value (or values, if two or more
years had the same maximum value) is indicated with
a circle. For this station, one can see that while there
are significant interannual variations, it appears that
the frequency of extreme events during the cold season
peaked near 1980, while the frequency of extreme events
during the warm season has increased and reached

historical highest values on record during the most
recent decade.

To provide an overview of the variation of the fre-
quency of extreme events at all stations, 11-yr running
mean time series (such as shown for the Ellenville sta-
tion in Figs. 6c,d) from all precipitation stations are
shown in Fig. 7 for annual values (Fig. 7a), cold season
(Fig. 7b), and warm season (Fig. 7c). Also indicated on
each panel are maximum smoothed value(s) (blue cir-
cles), and the years 1985 (left vertical dashed line) and
2006 (the most recent year for which 11-yr-centered
running means can be calculated; right vertical dashed
line).

Annual time series (Fig. 7a) indicate an increase in
the frequency of extreme precipitation events in recent
years. The maximum smoothed value on record at all
stations occurs during the post-1985 period. At 9 of 12
stations the maximum value is 2006, which means that
the most recent period has the most frequent extreme
events. Nine stations display an increasing trend since
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FIG. 8. As in Fig. 7, but for streamflow. (top to bottom) The 9 gauge stations include the following: 01350000, 1362200, 1362500, 01371500,
01413500, 01414500, 01415000, 01423000, and 01435000.

1985; seven stations show an accelerated rate of increase
since the mid1990s.

The same analysis is performed using data from only
the cold (Fig. 7b) and warm (Fig. 7c) seasons indepen-
dently. Since 1985, a consistent seasonal shift appears
in these records. The frequency of cold season extreme
precipitation events at most stations either decreased
or displayed no visual trend. At all stations except one
(Delhi), the highest smoothed cold season value occurs
prior to 1985. In contrast, the frequency of warm season
extreme precipitation events has increased in all stations
except Arkville during this post-1985 period; at many
stations the frequency of extreme events has continued
to increase, or has increased at an accelerated rate, since
the mid-1990s. All stations experienced the maximum
warm season value after 1985. In fact, 10 of 12 stations
experienced the highest value in 2006 (the most recent
11-yr period). Thus, the frequency of extreme warm
season precipitation events in this region has increased
during the last 1-2 decades to levels unprecedented in
the historical record.

During the pre-1985 period, no obvious or consistent
long-term trend is observed, although a number of

possible cold season decadal-scale variations may be
gleaned from these records. For example there is evi-
dence of decadal-scale periods of more frequent cold
season extreme events centered around 1950 and around
1980, although not all stations are in agreement. It
should be noted that the 1950s results are limited by the
reduced number of stations with data covering that pe-
riod (see period of record in Tables 1 and 2). A period of
less frequent extreme events appear to have occurred in
the 1960s, the time of the most extreme drought of the
twentieth century in this region. During the warm sea-
son, no consistent or obvious regional-scale variations
prior to 1985 are revealed by this analysis.

Recent increases in the frequency of extreme stream-
flow values (Fig. 8) are even more pronounced than for
precipitation. Smoothed annual values (Fig. 8a) peak in
2006 at some stations and in the 1970s at others; at one
station, annual values peaked in the 1940s. Cold season
results (Fig. 8b) differ markedly from warm season re-
sults (Fig. 8c). Most cold season smoothed values peak
during the 1970s; at only one station do cold season
values increase and peak during the post-1985 period.
However, at all stations, warm season values increase
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FIG. 9. Regional mean number of 95th percentile 4-day precipitation values per year. For each year, the number of
95th percentile values per year, averaged over all stations available, is shown (solid line with diamonds) along with
the 11-yr running mean (bold line) and a (blue) circle indicating the year with the highest smoothed value. (a) Values
from all months, (b) cold season values only, (c) warm season values only, and (d) the number of stations per year are

shown.

during the post-1985 period and increase most consis-
tently since 1995; at all stations warm season highest
values occur in 2006 (which is the center value of the
most recent 11-yr period).

During the pre-1985 period, a consistent regional-
scale warm season signal appears at these stations: the
1960s had less frequent extreme streamflow events, and
the 1970s had more frequent extreme events. These are
consistent with the precipitation results described above.

To provide a single time series that represents
regional-scale variations in the frequency of extreme
events, results from individual stations are combined for
precipitation (Fig. 9) and streamflow (Fig. 10). These are
produced by calculating the mean, for each year, of the
number of extreme events at all available stations. The
dry 1960s are apparent during both seasons (Figs. 9b,c).
However, the wet 2000s are only apparent during the
warm season (Fig. 9c). A consistent increase in extreme

precipitation frequency since the 1980s is apparent during
the warm season (and in the annual mean records) but
not during the cold season (Fig. 9b). The mean number of
warm season extreme precipitation events per year has
increased from approximately 0.6 during the early 1980s
to approximately 1.8 during the most recent decade. Also
shown is the time series of number of stations per year
included in the regional mean (Fig. 9d).

The regional mean frequency of extreme streamflow
events was relatively high during the 1970s and low
during the 1960s in both the cold and warm seasons
(Figs. 10c,d). During the warm season only (Fig. 10c) the
occurrence of extreme streamflow has increased con-
siderably since the mid-1990s, and has reached historical
highest values in the most recent decade. The regional
mean frequency of extreme events during the warm
period has increased from approximately six per year in
the mid-1990s to approximately sixteen per year during
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FIG. 10. As in Fig. 9, but for daily streamflow.

the most recent decade. This pattern is not unique to our
region: for example, Novotny and Stefan (2007) studied
streamflow in Minnesota and found similar results of
increasing trend in summer peak rainfall events as well
as in the number of days with higher flows starting from
the 1980s while observing no trend in snowmelt related
(cold season) streamflow events.

We applied the same nonparametric analysis to 30-
and 60-day precipitation and streamflow events, with
results similar to those discussed above. Cold season
extreme event frequencies peak in the 1970s and 1980s
(Figs. 11a,c and 12a,c), and warm season frequencies
peak in the most recent decade (Figs. 11b,d and 12b,d).
Stone et al. (2000) found a similar increasing trend in
precipitation events exceeding a 2-month return period
for most areas in Canada.

5. Summary and conclusions

Anecdotal evidence of a recent increased frequency of
extreme hydrologic events in the Catskill Mountains and

Hudson River Valley of southern New York State are
evaluated by applying parametric and nonparametric
statistics to precipitation and streamflow time series.
The periods of record for these stations varies between
approximately 50 and 120 yr. Thus, for some stations we
are able to analyze the changing frequencies of extreme
events since the late nineteenth century.

In our region, the seasonal cycle of extreme (i.e.,
=095th percentile) precipitation events is unimodal,
peaking between August and October. In contrast, ex-
treme streamflow events exhibit a bimodal distribution,
peaking in March and April as well as between August
and October. Spring time extreme streamflow events
result largely from snowmelt and rain-on-snow events,
while late summer/fall extreme streamflow events are
associated with liquid precipitation only.

Parametric results of regional mean peak streamflow
frequency estimates from five overlapping 30-yr periods
reveal an increasing pattern in flood flows from the 1970s
to 1990s for all return periods, in particular for flow
magnitudes of 25 yr or greater return period. Flood flow
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magnitude is a function of station location as well as the
particular 30-yr period included for analysis. Temporal
variations in flood flow magnitude also depend on the
return period of interest. The Interagency Advisory
Committee on Water Data (1982) recommends a mini-
mum of 25-yr record to perform flood frequency esti-
mates corresponding to a 100-yr or larger return period
(Pilgrim and Cordery 1993) but with an assumption of
invariance in climate. The assumption of stationarity
in hydrological processes has become a major topic of
discussion in recent years (Galloway 2011; Hirsh 2011;
Vogel et al. 2011; Milly et al. 2008). Our 30-yr-based
results appear to support those who advocate for a new,
nonstationarity based approach to modeling fundamental
hydrological processes including flood flow frequency
analysis. Among all 30-yr periods in this analysis 1950
80 provides estimates most similar to long-term flood
flow estimates; 1960-90 and 1980-2011 reveal to be the
driest and wettest periods, respectively.

Nonparametric analysis demonstrates that in our re-
gion extreme warm season hydrological events have
been more frequent during the last decade than at any
time on record. The frequency of 4-day precipitation and
daily streamflow extreme warm period events during the
first decade of the twenty-first century has risen by 150%—
200% in the last two decades, to levels 40%-70% higher
than at any earlier time on record. Based on 30- and 60-day
results, the wettest years on record are the 2000s during the
warm season and the 1980s during the cold season.

The causes of the increasing frequency of extreme
hydrological events are uncertain and outside the scope
of this paper. However, various studies have linked such
changes globally to changes in atmospheric composi-
tion, including water vapor (Min et al. 2011; Kunkel
et al. 2013a) and regionally to extratropical and tropical
cyclones, mesoscale convective systems, and North Amer-
ican Monsoon (Kunkel et al. 2013a, 2012, 2010). It re-
mains unclear whether this recent increase in extreme
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events is part of a trend that will continue, or just a short-
term fluctuation. However, these results are consistent
with an increase in the frequency of extreme climatic
events in the northeastern United States as indicated
by National Oceanic and Atmospheric Administration
(NOAA)’s climate extremes index (http://www.ncdc.
noaa.gov/extremes/cei/graph/ne/4/09-11, accessed 15 April
2013) and twenty-first-century predictions based on cli-
mate model results (Kunkel et al. 2013b).
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Stream turbidity levels tend to increase during high stream discharge events, and it is important to quantify
the suspended sediment flux during these events that could potentially lead to water quality problems.
Here, a case study for estimating suspended sediment loads (as a product of turbidity and stream discharge)
in streams that are part of the New York City (NYC) water supply in the Catskill region of New York State is
presented. Over the 8 year study period 80% of the suspended sediment load was transported during less
than 4% of the time, indicating the importance of estimating storm event suspended sediment loads. The ob-

I;flmgffys jective of this study was to understand the underlying factors controlling the uncertainty in the discharge vs
Automated monitoring turbidity relationship at the outlet of the watershed draining into the NYC Ashokan Reservoir. High fre-
Hysteresis quency (15-min) automated monitoring of stream turbidity was combined with stream discharge measure-
Rating curve ments of a similar frequency to provide an estimate of the true suspended sediment load that could be used

New York City water supply for model testing and verification at two time scales; daily and events. Multivariate statistical analyses in-
dicate that average daily stream turbidity during storm events can be influenced by the spatial variability
in runoff, antecedent conditions, and season. A predictive relationship of event mean stream turbidity
based on stream discharge alone led to a strong predictive relationship (r>=0.81), but also a 10% underes-
timation of the cumulative measured event mean suspended sediment load. Inclusion of information on the
time between events improved the regression equation (r>=0.89), and reduced the cumulative difference
between estimated and measured event mean suspended sediment loads to 7% underestimation.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Sediment loads can exert an important control on drinking water sup-
ply and other designated water uses (Walling, 2009). High river sediment
loads and the resulting sedimentation of water resources is a major water
quality issue in the United States (USEPA, 2009). The economic impact of
sedimentation in the United States is estimated to be billions of dollars
annually (Larsen et al., 2010; Osterkamp, 2004; Pimentel et al.,, 1995).
The vast majority of the suspended sediments are transported during
high flow events (Wolman and Miller, 1960) and therefore it is important
to quantify the sediment flux during these events. Improved capability to
quantify sediment flux in large events may help in developing predictive
models that can support management of water resources.

Methods to calculate sediment loads make use of multiple instan-
taneous measurements of sediment concentration/turbidity and
stream discharge. Suspended sediment transport rating curves are
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E-mail address: Rajith.Mukundan@hunter.cuny.edu (R. Mukundan).
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widely used by hydrologists for predicting sediment concentrations
during unsampled periods (Asselman, 2000; Horowitz, 2003; Walling,
1977; Walling and Webb, 1988). Most of these methods involve devel-
oping a regression line relating suspended sediment concentration to
discharge followed by interpolation and extrapolation. The accuracy
of this empirical method depends largely on the availability of data
over all ranges of flow and sediment concentration (Horowitz et al.,
2001), and the underlying variability in the processes which regulate
erosion and sediment transport. The daily sediment load, S (T d™ 1)
of a stream can be estimated using a simple power function of dis-
charge, Q (m® s~ 1) (Nash, 1994):

S=aQ' (1)

where a and b are empirically determined constants. Nash (1994)
used the same function to establish a relationship between sediment
transport rate and discharge for 55 streams across the United States.
A fairly good fit was obtained for the observed data for all streams.
Improvement in sediment transport rate predictions can be made
by constructing separate rating curves for different seasons and by
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separating storm hydrographs into rising and falling limbs (Walling,
1974, 1977).

A shortcoming in the use of a sediment rating curve is caused by hys-
teresis, a phenomenon where the rate of sediment transport for a given
discharge during the rising limb of the hydrograph will be different
from that of the falling limb. In such cases the rates of sediment transport
between rising and falling limbs of the hydrograph frequently vary by as
much as several orders of magnitude. Several studies discuss hysteresis
and its causes (Asselman, 1999; Lenzi and Marchi, 2000; Walling and
Webb, 1988). Hysteresis can be observed as a loop in time series plots
of discharge vs suspended sediment over the course of a storm event.
A clockwise loop which is due to depletion of sediment sources is the
most common. Counter-clockwise loops can be observed when the sedi-
ment source inputs increase over the duration of the storm event. Factors
that can lead to this behavior include sediment sources that are located
far away from the monitoring station, or sources that may increase during
the storm event such as actively eroding channel banks and hill slopes.
Hysteresis does not invalidate the use of a power function sediment rat-
ing curve if the variation about this function is symmetrically distributed
at all discharges. However, if the predicted and observed sediment trans-
port rates systematically diverge above a threshold value of discharge,
then the rating curve cannot be used for extrapolation beyond that
value (Nash, 1994). The rating curve method in general tends to under
predict sediment concentrations during high flows and over predict dur-
ing low flows (Horowitz et al., 2001).

A direct method of estimating suspended sediment loads is to use
the weighted sum of all instantaneous loads. This method has advan-
tages over the rating curve approach in that it requires few assumptions
about the underlying physical processes and is not subject to bias due to
transformation of data (Cohn, 1995). However, this method requires
high frequency sampling of suspended sediment for accurate estima-
tion of loads which in turn will make monitoring programs more ex-
pensive. For automated measurement of instantaneous loads, use of
turbidity as a surrogate for suspended sediment may be a good alterna-
tive (Jastram et al,, 2010; O'Donnell and Effler, 2006; Pierson et al.,
2008; Stubblefield et al., 2007).

Differences between turbidity or suspended sediment loads estimat-
ed using discharge rating curves and loads based on actual measure-
ments may be caused by missing explanatory variables in addition to
discharge (Colby, 1956; Syvitski et al, 2000; Thomas, 1988), which
may also result in inter-event variability in the sediment rating relation-
ship (Asselman, 1999; Lenzi and Marchi, 2000; Seeger et al., 2004;
Zabaleta et al., 2007). Recent studies have considered additional predic-
tors of suspended sediment which include antecedent soil moisture con-
ditions and event variables such as maximum stream discharge and
precipitation (Seeger et al., 2004; Zabaleta et al., 2007). Hicks et al.
(1996) observed spatial variability in sediment yield due to variations
in rainfall and geology. The underlying assumption is that sediment
yield at the watershed outlet is controlled by factors related to sediment
supply rather than just transport capacity represented by stream dis-
charge at the outlet. Therefore, inclusion of predictors of sediment supply
in addition to measurements of stream discharge may improve the pre-
dictive models for event mean turbidity or suspended sediment loads.

A case study from the Catskill region of New York State is presented
in this paper, using data collected from the Esopus Creek watershed that
is part of the New York City (NYC) drinking water supply system. The
focus of this paper is on the estimation of stream water turbidity and es-
timates of suspended sediment loads (using product of turbidity and
stream discharge) entering the Ashokan Reservoir (Fig. 1). Turbidity
measures the light-scattering effects of suspended particulate material
(SPM) and is, therefore, related to suspended sediment concentrations
and loading rates. Turbidity, however, depends not only on the concen-
tration of the SPM, but also on the characteristics of the SPM (particle
size distribution and refractive index) and color of water. These charac-
teristics will change with turbidity source and stream discharge making
turbidity a useful proxy, but less than the perfect measurement of SPM.

Previous studies in this region support the concept of suspended sedi-
ment loading estimates using turbidity measurements (i.e., units of
NTU - m? s~ 1), with turbidity being the regulatory pollutant of concern
although the product of turbidity and stream discharge is not a strict
mass loading rate (Peng et al., 2009). Additional support for this ap-
proach is provided by the additive nature of turbidity i.e., the turbidity
of a mixture of two volumes can be computed by volume averaging
(Davies-Colley et al., 2003). Being an optical measurement, turbidity
can be measured in situ and at higher sampling frequency than is possi-
ble with manual sampling and laboratory analysis of SPM. Automated
high frequency monitoring of turbidity (Tn, NTU) can therefore be
used to provide high frequency estimates of suspended sediment
loads that are an important input to predictive models (Gelda and
Effler, 2007) used to guide reservoir operations and minimize the im-
pact of turbid inputs on the water delivered to New York City
consumers.

Multivariate statistical analyses are frequently applied to study envi-
ronmental problems (e.g., Boyacioglu and Boyacioglu, 2008; Zeng and
Rasmussen, 2005). However, the use of this type of analysis is less com-
mon for evaluating watershed suspended sediment dynamics and un-
derstanding the main controlling processes (e.g., Seeger et al., 2004;
Zabaleta et al., 2007).

We hypothesize that the event mean turbidity is determined by a
combination of factors such as: (1) spatial distribution of precipitation,
(2) geologic sources of sediment, (3) antecedent soil moisture condition
of the watershed, (4) stream power generated during the event, (5) flow
regime, and (6) season. The purpose of this study is to identify the fac-
tors that cause variability in discharge-turbidity relations using multi-
variate analyses which can be used to develop improved turbidity
predictions that include factors in addition to stream discharge. Incorpo-
ration of additional factors that may influence stream turbidity in a pre-
dictive model could potentially improve our understanding of stream
turbidity variability in space as well as in time. This knowledge is critical
in the development and evaluation of operational predictive models and
in the design of watershed management strategies (Giménez et al.,
2012). Information gained from this study is expected to provide insight
on developing operational predictive models of turbidity for NYC water
supply watersheds. A similar approach could be used in any watershed
or region with similar water quality problems.

2. Materials and methods
2.1. Description of study site

The Esopus Creek is a major source of water to the NYC water supply
Ashokan Reservoir (Fig. 1). The Esopus watershed drains an area of
493 km? and is dominated by forests which occupy more than 90% of
the watershed area. The elevation of the watershed ranges from about
194 m near the watershed outlet at Coldbrook to 1275 m at the headwa-
ters. During and following high levels of stream discharge increases in
reservoir turbidity can impact water quality and potentially affect a por-
tion of the drinking water supply (Effler et al.,, 1998; Gelda et al., 2009).
Widespread stream channel erosion of glacial clay deposits has been
identified as the primary cause of high levels of turbidity in many of the
tributaries draining the Catskill watersheds (Nagle et al., 2007). However,
these clay exposures are not uniformly distributed across the watershed.
Stream discharge-turbidity relations from the outlet of this watershed
show wide variability (Fig. 2). Similar turbidity-discharge relations also
occur in an adjacent stream Schoharie Creek that drains to the Schoharie
Reservoir and water from the Schoharie Reservoir can be diverted into
the Esopus Creek and Ashokan Reservoir (Fig. 1).

2.2. Turbidity monitoring

An automated Tn monitoring system was installed on the main
tributary entering the Ashokan Reservoir near the confluence of the
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Fig. 1. Location map of the Esopus Creek watershed showing tributary stream gauge stations and diversion tunnel from the Schoharie Reservoir.

creek and with the reservoir. Water was pumped into a riverside hut
where measurements of Tn, specific conductivity and water tempera-
ture were made using a YSI water quality sonde. Water samples were
also periodically collected and analyzed for Tn and TSS in the labora-
tory. The laboratory measured Tn data were then used to correct the
automated data to account for drift in the turbidity measurements.
A U. S. Geological Survey (USGS) gauging station at the watershed
outlet provided discharge data at a daily and a 15 minute interval.
Turbidity measurements were made at intervals between 15 min
and 1 h and flow-weighted to provide daily average values, compara-
ble in frequency to the most widely available daily USGS discharge
data, and are also the time step used by New York City Department
of Environmental Protection (NYCDEP) reservoir water quality
models. In this study turbidity measurements during storm events
are defined in two time scales; daily (mean daily turbidity for the
day that accounted for the greatest proportion of the load during an
event) and events (based on the entire hydrograph) whose start
times were determined graphically by rise in hydrograph above
baseflow and end time determined by the inflection point in the falling
limb of the hydrograph similar to the method used by Stuntebeck et al.

(2008). Mean daily turbidity (MDT) and event mean turbidity (EMT)
were calculated by summing the measurements of discharge and tur-
bidity that were collected at 15 minute frequency intervals (Egs. (2)
and (3)).

96
D INTU) x (Qy)]
MDT=2L (2)

n

> l@Q)]

i=1

where NTU; is the instantaneous turbidity (NTU), Q; is the instanta-
neous discharge (m® s~ !) and n is the number of 15 minute intervals
during an event.
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Fig. 2. Discharge-turbidity relations at Coldbrook outlet. OLS is ordinary least square.

Suspended sediment loads were calculated for 30 event days
(where MDT could be calculated) and 27 events (where EMT could
be calculated) between 11/19/2003 and 04/17/2011. Although many
events were characterized at both time scales, some events were
not captured over the entire hydrograph due to storm related damage
and fouling of turbidity sensors.

2.3. Analysis of turbidity events

A description of the suite of variables used as possible predictors of
mean daily turbidity (MDT) is presented in Table 1 and Fig. 3. In the ab-
sence of rain gauges, mean daily stream discharge at the tributaries
(Fig. 1) was used to represent the spatial variability of rainfall and the
contributions of water and sediment from different parts of the water-
shed, where differences in geologic sources of sediment, and the pro-
cesses regulating stream channel erosion could occur. For each event
day, the total stream discharge at the tributaries (m> d~') was divided
by the corresponding sub-basin area (m?) to get the water yield for the
day (m d~"). Relative water yield (dimensionless) for a tributary was
calculated by dividing the tributary water yield with the whole water-
shed water yield.

2.4. Principal component analysis (PCA)

Principal component analysis was used to determine the variability
in the potential explanatory variables that may influence outlet turbid-
ity. This method is widely used in multivariate statistical analysis of
water quality data (Boyacioglu and Boyacioglu, 2008; Zeng and
Rasmussen, 2005). Data for the variables listed in Table 1 and Fig. 3
were used in the analysis. Potential explanatory variables for MDT
were grouped into two classes; variables that influence spatial variabil-
ity in suspended sediment loads during individual events (Table 1 vari-
ables 1-7) and variables that may influence watershed-wide variability
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Fig. 3. lllustration of variables that may influence temporal variability in stream turbidity.
Abbreviations used are explained in Table 1; ADD is antecedent dry days; CB_PE is mean
daily flow during the previous event; CB_MIN is the flow at the onset of an event;
TURB_MIN is the turbidity at the onset of an event.

in suspended sediment loads between events (Table 1 variables 8-12
and Fig. 3). Separate PCA were performed on the correlation matrix of
the two classes of variables with the JMP 7.0 software (SAS Institute,
2007).

2.5. Cluster analysis

Cluster analysis was performed on the same dataset used for PCA
using the JMP 7.0 software (SAS Institute, 2007). Cluster analysis is
another data reduction technique used to group entities with similar
properties. The objective of cluster analysis is to identify complex mul-
tivariate relationships in the dataset under study and assist in the fur-
ther development of hypothesis about the phenomenon (Zeng and
Rasmussen, 2005). Several authors have used cluster analysis in studies
on ground water (Colby, 1993) and surface water quality (Boyacioglu
and Boyacioglu, 2008; Momen et al., 1999; Salmaso, 1996). Once the
events were grouped into clusters, the predictor values associated
with events falling within the different clusters were compared.

2.6. Development of regression equations

A step-wise regression approach was implemented on the poten-
tial predictor variables listed in Table 1 and Fig. 3 to determine the
optimum combination of variables capable of predicting mean daily
turbidity (MDT) during the 30 identified event days. Separate multi-
ple regression models were developed with the two classes of predic-
tors, and a seasonal term was included in the analysis (0 for May-
October and 1 for November-April). This multivariate approach has
been used to analyze variations in sediment yield (Restrepo et al.,

Table 1

Potential predictors of mean daily turbidity at the Esopus Creek watershed outlet.
No Predictor Indicator
1 Mean daily flow at USGS station (#01362500) near Coldbrook (CB) Energy/stream power
2 Mean daily flow at USGS station (#01362465) at Beaverkill (BK) above Lake Hill Precipitation, geologic sediment source, and sediment supply
3 Mean daily flow at USGS station (#01362497) near Little Beaverkill (LBK) Precipitation, geologic sediment source, and sediment supply
4 Mean daily flow at USGS station (#01362370) near Stony Clove (SC) Precipitation, geologic sediment source, and sediment supply
5 Mean daily flow at USGS station (#0136230002) near Woodland Creek (WC) Precipitation, geologic sediment source, and sediment supply
6 Mean daily flow at USGS station (#013621955) near Birch Creek (BC) Precipitation, geologic sediment source, and sediment supply
7 Mean daily flow at USGS station (#01362342) near Hollow tree brook (HB) Precipitation, geologic sediment source, and sediment supply
8 Antecedent dry days (ADD) Soil moisture condition/sediment supply
9 Mean daily flow at Coldbrook during the previous event (CB_PE) Soil moisture condition and sediment supply in the watershed
10 Mean daily flow at Coldbrook at the onset of an event (CB_MIN) Flow regime
11 Mean daily turbidity at Coldbrook at the onset of an event (TURB_MIN) Sediment supply
12 Time of year (SEASON) Seasonal effect on sediment supply
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2006; Tamene et al., 2006). A similar approach was used for
predicting the event mean turbidity (EMT) for the 27 events.

2.7. Stream discharge-Tn rating curve

Stream discharge versus turbidity relations were developed using
data from days when the flow diversion from the Schoharie Reservoir
was less than 20% of the total Esopus Creek daily discharge. In all
cases suspended sediment inputs to Esopus Creek from the Schoharie
watershed were a very small component (<1%) of the event loads.
Daily suspended sediment loads were estimated based on a relationship
between discharge and Tn derived from 415 paired observations of
mean daily discharge and mean daily turbidity (Eq. (4)). In the absence
of automated Tn monitoring, a common approach to account for intra-
and inter-storm variations in Tn (Crawford, 1991; Horowitz, 2003) ex-
presses mean daily turbidity (NTU) as a function of discharge (Q).

Log NTU = 1.17 Log Q-0.575 (rz = 0466) (4)

A rating curve in the form of an ordinary least square (OLS) re-
gression (Eq. (4) and Fig. 2) on log-transformed mean daily stream
discharge (Q, m3s~') and log-transformed mean daily turbidity
(NTU) was used. A bias correction factor () (Ferguson, 1986) esti-
mated based on the variance in the regression equation in the form
B=exp (2.65 02), was multiplied by the OLS estimated turbidity
value to reduce the expected under prediction in suspended sediment
loads due to retransformation bias.

3. Results and discussion
3.1. Hysteresis in discharge-turbidity relationship

Analysis of discharge-turbidity relations during each of the individ-
ual storm events shows a hysteretic behavior with the rising and falling
limbs of the hydrograph transporting suspended sediment at different
rates, and also showed that the pattern of hysteresis varied between
events (Fig. 4). The most common type of hysteresis, the clockwise hys-
teresis was observed during most events, and is illustrated by an event
in February, 2008 (Fig. 4a). Such phenomenon indicates that the rate of
suspended sediment transport in the falling limb is lower than the ris-
ing limb due to sediment source depletion (Seeger et al., 2004;
Steegen et al., 2000). An event in July 2004 (Fig. 4b) showed counter-
clockwise hysteresis, which showed that the rate of suspended sedi-
ment transport is higher during the falling limb of the hydrograph,
and that there is a time lag between the peaks of stream discharge
and turbidity as a result of sediment sources being located far away
from the watershed outlet, or new sediment sources becoming avail-
able as the event progressed (Seeger et al, 2004; Zabaleta et al,,
2007). Events from March 2007 and June 2007 (Fig. 4c and d) illustrated
more complex hysteresis due to the effects of sediment depletion,
which can decrease turbidity when multiple and frequent storm events
occur at relatively short time intervals (Doomen et al., 2008). The March
2007 storm event showed sediment depletion in the second storm
whereas the June 2007 event showed sediment depletion in the third
storm. During multiple storm events such as those illustrated by
Fig. 4c and d, baseflow becomes an increasingly greater component of
the later discharge peaks, and dilution by baseflow may influence the
suspended sediment transported by a stream (Baca, 2008). Fig. 4a-d
illustrates event to event variations of the relation between stream dis-
charge and turbidity suggesting the uncertainty in stream discharge-
turbidity relations that may arise due to the spatial location of sediment
sources and the available sediment supply in the watershed during an
event.

3.2. Principal component analysis

Principal component analysis using relative water yield (tributary
water yield (m d~') divided by water yield (m d~!) at the water-
shed outlet) as the independent variable indicates that patterns of re-
gional runoff showed variability during the period of study (Table 2).
Based on the principal component weights, three turbidity source re-
gions were identified. PC1 is related to the region that includes the
Beaverkill (BK) and the Little Beaverkill (LBK) sub-basins, PC2 is relat-
ed to the region centered on the Woodland Creek (WC) sub-basin,
and PC3 is related to the region near the Stony Clove (SC) sub-
basin. The three principal components were able to explain 80% of
the variability in relative amount of runoff. This spatial difference in
the relative amount of runoff indicates spatial differences in turbidity
sources and transport resulting from variation in stream discharge it-
self, and also since there are variations in glacial geology between
regions.

Principal component analysis using variables related to records of
stream discharge and turbidity measured at the watershed outlet was
also used to gain insights into the relative importance of factors
influencing the discharge turbidity relation (Table 3). The PC1 is related
to the moisture condition of the watershed based on the high principal
component weights for variables antecedent dry days (ADD) and mean
daily flow during the previous event (CB_PE) in Table 1. The PC2 is re-
lated to sediment supply based on the high principal component
weights for variable turbidity at the onset of an event (TURB_MIN)
and seasonal effect (SEASON). The PC3 is related to the flow regime
based on the high principal component weight for streamflow at the
onset of an event (CB_MIN). The first three principal components
were able to explain 82% of the variability in the data. Maximum vari-
ability was observed due to moisture condition followed by sediment
supply and flow regime.

3.3. Cluster analysis

The 30 storm event days were grouped into 4 clusters based on the
predictor variables in Table 4. Cluster 1 showed the lowest median turbid-
ity value and cluster 2 showed the highest median turbidity value. The
observed turbidity value for cluster 2 was expected since high stream dis-
charge should generate high turbidity. The observed median turbidity
value for cluster 1 is in contrast to the remaining clusters that showed
higher turbidity values for a much lower stream discharge. For cluster 3
the high turbidity levels may be due to the high median value for the var-
iable antecedent dry days (ADD) suggesting that the replenishment and
availability of turbidity sources were of importance, since an increase in
low stream discharge days between events can result in accumulation
of sediment in the stream channels as discussed in Doomen et al
(2008). For cluster 4 the relatively high turbidity levels may be due to
the high median value for the variable representing minimum turbidity
at the onset of an event (TURB_MIN), suggesting that the relative contri-
bution of turbidity sources at the onset of an event (background turbidi-
ty) impacts the turbidity during the event. These findings are consistent
with observations of high suspended sediment concentrations under
low runoff made in other studies (Giménez et al., 2012; Mateos and
Giraldez, 2005; Nadal-Romero et al.,, 2008). High stream turbidity at the
onset of a storm event is an indication of increased sediment mobilization
within the channel and therefore its availability for transport.

3.4. Step-wise multiple regression

Use of additional variables identified in the analyses above im-
proved the explanatory power of the stream discharge-based turbid-
ity model. The average daily stream discharge, Qp, (m> s~ ') alone as
a predictor could explain only 39% of the variance in mean daily tur-
bidity (MDT) prediction for the 30 event days (Eq. (5)). A multiple re-
gression model (Eq. (6)) that included the variable seasonal effect
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Table 2

Principal component weights, eigenvalues and variance explained using relative water
yields at the tributaries (water yield at the tributaries divided by the total water flow
into the Reservoir). See Fig. 1 and Table 1 for tributary location and gauging station
number. Bold values indicate strong linear correlation.

Tributary PC1 PC2 PC3
Beaverkill (BK) 0.90 —0.03 0.21
Little Beaverkill (LBK) 0.94 0.07 0.09
Stony Clove (SC) 0.22 0.09 0.91
Birch Creek (BC) —0.02 —0.79 0.14
Woodland Creek (WC) 0.07 0.84 0.19
Hollow tree brook (HTB) —0.63 —0.27 0.53
Eigenvalue 2.3 13 1.2
Variance explained (%) 38.0 22.0 20.0

(SEASON) and antecedent dry days (ADD) in addition to stream dis-
charge could explain 67% of the variance in mean daily turbidity pre-
diction.

Log(MDT) = 1.26 Log(Qp)-0.694 (rz = o.39,p<0.0001) (5)

Log(MDT) = 1.43 Log(Qp,)-0.272 SEASON
+0.0029 ADD-1.06 (r* = 0.67,P<0.0001 ) (6)

Log(MDT) = 1.33 Log(Qp,)-0.46 SCr—0.61 BCr
+0.045 (r* = 0.65,P<0.0001 ) (7)

A second regression model (Eq. (7)) that included relative water
yield from the tributaries (SCr and BCr representing Stony Clove
and Birch Creek) with respect to the watershed outlet could explain
65% of the variance in turbidity prediction. The two tributaries used
in the regression model showed marked differences in relative
water yield (tributary water yield divided by the water yield at the
watershed outlet) with Stony Clove (SC) sub-basin generating a rela-
tively high proportion of the total runoff compared to the Birch Creek
(BC) sub-basin (Fig. 5). Such differences suggest that variations in the
hydrologic pathways/response from the two sub-basins that can af-
fect the amount of generated sediment.

In comparison to turbidity predictions based on stream discharge
alone, multiple regression models were able to better capture the
variability in stream discharge-turbidity relations within a given
range of flow. This analysis illustrates the multiple factors that may
influence stream turbidity, which make predictions using a single
explanatory variable inaccurate. Our findings are in line with those
reported in the literature that concluded that sediment yield from a
watershed can be influenced by a number of factors in addition to
stream discharge such as season (Casali et al., 2010; Steegen et al.,
2000), antecedent soil conditions (Giménez et al., 2012; Seeger
et al., 2004) and rainfall characteristics (Nadal-Romero et al., 2008).

While the above analyses explains the importance of multiple fac-
tors that may influence daily stream turbidity, event to event variability
in total event suspended sediment load is important in the Esopus Creek

Table 3

Principal component weights, eigenvalues and variance explained using variables
influencing turbidity at the watershed outlet. See Table 1 for variable explanation.
Bold values indicate strong linear correlation.

Variable (Range) PC1 PC2 PC3
CB_MIN (8-57) 0.01 —0.02 0.96
TURB_MIN (3-65) —0.08 0.86 —0.04
CB_PE (36-492) 0.86 0.22 0.29
ADD (1-180) 0.81 —0.12 —045
SEASON (0 or 1) —0.19 —0.80 —0.05
Eigenvalue 1.44 1.43 1.22
Variance explained (%) 28.8 28.7 244

Table 4
Summary of cluster analysis using predictor variables of mean daily turbidity values
(n=30).

Variables (median values)

Description Turbidity FLOW ADD TURB_MIN
(NTU) (m?s™') (days) (NTU)

Cluster 1 (n=12) High flow low 119 152 13 8
turbidity

Cluster 2 (n=6)  High flow high 309 274 2 14
turbidity

Cluster 3 (n=6)  Low flow high 134 76 108 10
turbidity

Cluster 4 (n=6)  Low flow high 135 102 3 61
turbidity

watershed, as the magnitude of suspended sediment loading can im-
pact reservoir operations. We predicted the event mean turbidity
(EMT) for 27 events using multiple regressions and compared the re-
sults with the measured EMT (Fig. 6). A predictive relationship of EMT
based on event mean stream discharge (Qg, derived from 15-min
data) alone led to a strong predictive relationship (r>=0.81), but also
a 10% underestimation of the cumulative measured event mean
suspended sediment load calculated as the product of EMT and event
mean stream discharge. Using the same relationship, the deviation in
predicted event mean suspended sediment loads ranged from —71%
to 166% when compared to the measured loads (Table 5). Inclusion of
the variable antecedent dry days (ADD) improved the regression equa-
tion (r?=0.89), reducing the cumulative underestimation to 7%, and
also reducing the uncertainty in predicted event mean suspended sedi-
ment loads to —48% to 104%. Other variables that were significant at
the daily scale did not improve the regression model at the event scale.

Log(EMT) = 1.67 Log(Qg)-1.43 (r2 - 0.81,P<0.0001) (8)

Log(EMT) = 1.84 Log(Q;)
+0.0051 ADD-1.92 (r2 ~0.89, p<0.0001) 9)

3.5. Comparison of rating curve estimates with automated monitoring

The OLS regression (Eq. (4)) rating curve underestimated the total
measured suspended sediment loads by 30% for the study period. This
underestimation was not surprising and is consistent with other studies
(Asselman, 2000; Horowitz et al., 2001; Skarbgvik et al., 2012). Use of a
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Fig. 5. Boxplot showing relative water yields from tributaries (water yield from tribu-

taries divided by total water yield to the Reservoir) during event days (n=30). Range
of values includes 5th to 95th percentiles. See Fig. 1 and Table 1 for abbreviations used.
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Fig. 6. Predicted vs measured event mean turbidity (EMT) using Eq. (8) (top) and
Eq. (9) (bottom).

retransformation bias correction factor (3 =1.22) reduced the under
prediction to 16%. Most of the underprediction was due to the two
data points that had the highest turbidity values whose corresponding
stream discharge values were not the highest. Without those two points
the bias corrected rating curve was able to predict the actual total load

with high accuracy whereas the OLS regression rating curve
underestimated the measured load by 18%. A suspended sediment
load duration curve derived from rating curve (Eq. (4)) estimate of
daily turbidity showed that as much as 80% of the total suspended
sediment load during the 8 year study period was transported in a
short period of the total time (4%) when the stream discharge was
>100 m3 s~ !. Therefore, accurate turbidity estimation at high
stream discharges is critical as high levels of turbidity inputs lead
to water quality problems. Automated turbidity monitoring clearly
provides a better estimate of the turbidity inputs to the reservoir
under periods of high discharge. This is illustrated by the hysteresis
curves (Fig. 4) based on high frequency monitoring data that shows
wide variability in stream discharge-turbidity relation.

4. Conclusions

A multivariate analysis was used to identify the factors causing var-
iability in stream discharge-turbidity relation in the Esopus Creek wa-
tershed in New York State. Analyses using high frequency turbidity
monitoring data show that this relation can be influenced by watershed,
as well as event characteristics related to sediment supply and trans-
port. This was illustrated by multiple regression equations that showed
improved predictions when using variables in addition to only stream
discharge. In the study watershed these variables relate to spatial vari-
ability in runoff and thus sediment sources, antecedent conditions,
and season. These additional variables, to a certain extent, explain the
episodic nature of erosion and its variability in space and time which
makes prediction using a single explanatory variable inaccurate. The
study also highlights the importance of collecting high-frequency
spatially-distributed precipitation (we used tributary stream discharge
data in the absence of rain gauges), stream discharge, and water quality
data for quantifying pollutant loads and for distributed watershed
modeling for water quality. Results from this study may also be applica-
ble in other watersheds where stream turbidity problems exist.

Table 5
Predicted vs measured event mean suspended sediment loads for the 27 events and percent deviation from measured loads.

Event # Date Event mean Event mean Suspended Suspended Suspended Suspended Suspended

discharge turbidity sediment lo