Microsimulation Model Design in Lower Manhattan: A Street Management Approach

Transportation Research Board Session 278 January 12, 2009

Trent Lethco, Arup Varanesh Singh, Arup S. Brian Huey, Arup Peter Dunn, Arup Suchi Sanagavarapu, New York City DOT

Acknowledgements

- New York City Department of Transportation (NYCDOT)
 - Steven Weber Assistant Commissioner for Strategic Planning
 - Luis Sanchez Lower Manhattan Borough Commissioner
- New York City Economic Development Corporation (NYCEDC)
 - Michael Taylor Senior Project Manager
- Lower Manhattan Development Corporation (LMDC)
 - Philip Plotch Director of World Trade Center Redevelopment and Special Projects

This study was made possible by a grant from the Lower Manhattan Development Corporation, which is funded through Community Development Block Grants from the U.S. Department of Housing and Urban Development.

Outline

- **1.** Introduction
- 2. Challenges
- **3.** Model Development
- 4. Results
- **5.** Current Work

Introduction

- Lower Manhattan Street Management Project
 - Multi-year, transportation planning services contract with NYCDOT and NYCEDC
- Scope of work includes:
 - Traffic Simulation Model
 - Placard Parking Analysis
 - Bus Management Analysis
 - Other Traffic Analyses

Lower Manhattan at a Glance

- 1 sq mile dense urban neighborhood
- Fourth largest central business district in America
- Over 318,000 employees
- 145% increase in residential population since 2001
- Over 8 million annual visitors

Model Purpose

- Comprehensive, detailed traffic model
- Appropriate for technical and non-technical audience
- Manage street operations resulting from:
 - Construction closures
 - Network changes
 - Planning and security scenarios

Modeling Challenges

- Large, dense urban study area
- Pedestrian/vehicular interactions
- Curbside activity
- Bus activity on streets
- Taxis and livery vehicles
- Variation in traffic flow

1. Data Collection

- Surveys
 - Vehicle and pedestrian counts
 - Parking (on and off street)
 - Travel time
- Existing data sources
 - BPM
 - 2000 Census (JTW)
 - Brooklyn Bridge counts
- Network configuration
 - Aerial photography
 - Site visits/photos

2. Network Design – Link Categories

- Systematic and functional approach to categorization
- Guided by LM Street Management Framework
- Informed major/minor designation, speed, widths and cost factors

2. Network Design – Pedestrians

- Vehicle-pedestrian conflict
 - Based on HCM methodology
 - Calculates amount of time pedestrians are in intersection
 - "Dummy" phasing simulates vehicle-ped conflict by reducing green time.
- Not applied to prohibited crossings or all pedestrian phases
- Turning movements at uncontrolled crossings were designated as minor to mimic stopping

3. Demand Estimation

- Pattern matrix based on regional model demands
- 159 Zones, > 25,000 possible O/D pairs
- 8 O-D matrices separated by vehicle and trip type
- Hierarchical estimation process
 - 1. External cordons
 - 2. Off Street destinations
 - 3. On street parking
 - 4. Screenline traffic
 - 5. Turns
 - 6. Vehicle types

4. Calibration

- *Calibration* ensures that the model adequately reflects the observed traffic behavior, volume and travel times:
 - Physical network (stop lines, curbs, junctions)
 - Link costs
 - Assignment parameters
 - Visual calibration based on site visits
 - Allowance for prohibited movements

• *Validation* is an independent check of the calibrated model to assess its accuracy and confirm that the model is fit for purpose

5. Validation

- Performance criteria adopted from US and International guidelines
 - GEH applied to link and turn flows
 - R squared applied to link and turn flows
 - Percent Difference applied to screenline and travel time
- Four criteria:
 - Screenlines
 - Individual Link Flows
 - Turning Movements
 - Travel Times

$$GEH = \sqrt{\frac{2(M-C)^2}{M+C}}$$

where

M = modeled volume C = observed volume

5. Validation

Criteria	Targets	Comments				
Screenline Flows						
Percentage difference	5 - 10%	Outliers may be accepted depending on confidence of counts and other validation criteria.				
Individual link flows						
R2	0.85 – 0.95	Correlation between measured and modeled flows should tend toward 0.9.				
GEH<5	75% - 80% of counts	Small difference between modeled and observed links.				
GEH<10	95% of counts	No significant outliers, unless justification provided.				
Turn Flows						
R2	0.85 – 0.95	Correlation of all measured to modeled turn flows should tend toward 0.85.				
GEH<5	65% - 75% of counts	Small difference between modeled and observed for most turns				
GEH<10	90% of counts	A small number of significant outliers allowed that are shown not to significantly impact on the model's operation.				
Travel time						
Mean difference <15%	85% of routes	Difficult to achieve due to the small sample of observed travel time information along each route.				
Average modeled travel time within range of observed times	95% of routes	Difficult to achieve given small sample.				

Results

Criteria	Targets	Achieved AM	Achieved PM	Comments		
Screenline Flows						
Percent difference	5 – 10%	All <6%	All <7%	Acceptable		
Individual Link Flows						
R2	0.85 – 0.95	0.99	0.99	Acceptable		
GEH<5	75% - 80% of counts	74%	84%	Acceptable – AM slightly low		
GEH<10	95% of counts	96%	98%	Acceptable		
Turn Flows						
R2	0.85 – 0.95	0.95	0.98	Acceptable		
GEH<5	65% - 75% of counts	63%	70%	Acceptable – AM slightly low		
GEH<10	90% of counts	91%	94%	Acceptable		
Travel Time						
Mean difference <15%	85% of routes	50%	11%	Doesn't achieve targets		
Average modeled travel time within range of observed times	95% of routes	22%	6%	Doesn't achieve targets		

Lessons Learned

- Client collaboration is essential
- Data collection is important
- Few urban microsimulation standards and guidelines
- Travel times are variable requiring careful attention

Current Work

- Model expansion
- Agent-based pedestrian simulation
- Additional data collection
- Seamless linkage to regional model

Thank you

