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GLUE Generalized likelihood uncertainty estimation 

GWLF Generalized Watershed Loading Function model 

HEC-HMS  Hydrologic Engineering Center Hydrologic Modeling System 
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Executive Summary 

This report has been prepared in accordance with the provisions of the New York City 

Department of Environmental Protection (NYCDEP) Revised 2007 Filtration Avoidance 

Determination (FAD).  This determination requires NYCDEP to prepare an annual report that 

summarizes the progress made in water quality modeling and support activities during a 

particular calendar year.  This report covers 2016. 

NYCDEP's water quality modeling program is designed to develop, test, validate, and 

apply mathematical models related to City's drinking water supply.  These models are generally 

in the areas of climate science, watershed and terrestrial modeling, reservoir modeling, and water 

supply system operations modeling.  During the development, testing, and validation phases, the 

various models are commonly applied and operated individually.  Once individual models have 

proven to accurately represent components of the water supply system, the models are then 

applied in a multiple-tier or linked manner.   

The problem of episodic increases in turbidity in the water supply has been studied in a 

comprehensive manner in the past, and has led to validated predictive watershed and reservoir 

water quality models.  These models are the Operations Support Tool (OST) and the Roudout 

Reservoir Position Analysis (RondoutPA) model.  In 2016, these models were applied to provide 

guidance to DEP regarding the operation of the water supply system in response to events or 

episodes of elevated turbidity.  A discussion of model applications for several of the episodes 

that occurred in 2016 are presented and discussed. 

The Bureau of Water Supply's (BWS's) Climate Change Integrated Modeling Project 

(CCIMP) encompasses an effort to develop and apply a suite or multi-tiered group of models to 

study the impact of climate change on the water supply.  Phase I of CCIMP concluded in 2013 

with a number of "first-cut" or screening level modeling analyses.  In 2016, progress continued 

on Phase II of CCIMP, which involves the study of climate impacts using more sophisticated, 

realistic, and complex modeling approaches and tools.  A stochastic weather generator (SWG) 

has been developed for the City's West of Hudson (WOH) watersheds.  This weather model 

allows prediction of a long synthetic time series of weather (such as precipitation and air 

temperature) conditions, the statistics of which closely match observed conditions, but which 

also include infrequently occurring events (e.g. floods and droughts) that have not been captured 

in monitoring.  SWG's offer the promise of a more complete and realistic prediction of the 

changes that may occur in future decades to the local climate in the watersheds.  Section 3.2 of 

this report is effectively a reprint of a peer-reviewed paper published in the Journal of 

Hydrometeorology in March 2017 describing this effort.  In 2016, the first multi-tier application 

of the SWG was completed by using numerous weather time series generated by the SWG as 

input to the Generalized Watershed Loading Function (GWLF) model to predict streamflow.  An 

evaluation of the resulting predictions of streamflow, including a comparison of the statistics of 

predicted and observed flows, is presented. 



Executive Summary 

 

xix 

 

In addition to more realistic climate predictions, Phase II of CCIMP will also utilize more 

realistic and complex watershed models.  This report contains sections describing the testing and 

validation of two such watershed models.  The Soil and Water Assessment Tool (SWAT) has 

been applied and tested for the Town Brook watershed, located within the larger Cannonsville 

Reservoir watershed.  Section 4.1 is largely a reprint of a peer-reviewed paper that has been 

accepted by the journal Hydrologic Processes, describing the application of SWAT to Town 

Brook.  SWAT has been shown to be accurate in hindcasting of observed streamflow from the 

Town Brook watershed on daily, monthly, and seasonal time scales.  The particular version of 

SWAT used in this work was developed by DEP staff in order to allow mechanistic simulation of 

saturation-excess runoff, a runoff component that is not considered in the standard version of 

SWAT.  Sections 4.2 through 4.4 describe the application of the Regional Hydro-Ecologic 

Simulation System (RHESSys) to two watersheds (Biscuit Brook and Shelter Creek) in the 

watershed of Neversink Reservoir.  While considerable progress has been made in the testing of 

RHESSys for these watersheds, more work needs to be done in 2017 before this model can be 

applied.  

The water quality modeling group has begun to extend the application of the two-

dimensional model CE-QUAL-W2, including a turbidity sub-model, to Neversink, Cannonsville, 

and Pepacton Reservoirs.  An analysis of meteorological data for these reservoirs and associated 

watersheds that is presented here as a preliminary step to reservoir model application and testing.  

Preliminary testing of the CE-QUAL-W2 model was successfully completed in 2016, as 

described in Section 4.5.  As in past applications to Schoharie, Ashokan, Rondout, and Kensico 

Reservoirs, CE-QUAL-W2 was able to accurately capture the response of Neversink Reservoir 

to episodes of elevated turbidity loading from surface runoff.  Work that supported this turbidity 

model application for Neversink that was completed in 2016 include the development of 

empirical temperature and turbidity models for the Neversink River inflow to Neversink 

Reservoir.   These models allow prediction of inflow temperature and turbidity based on 

streamflow and air temperature. 

Work was also begun in 2016 to investigate a method to predict the uncertainty in 

predictions of turbidity for streams entering West of Hudson reservoirs.  For West of Hudson 

tributary streams, a turbidity rating curve, which relates turbidity to streamflow, has generally 

been used to quantify turbidity.  Application of this approach will predict a single value of 

turbidity for a given value of streamflow for a particular stream.  The current work involves the 

use of the quantile regression approach, so that a probability distribution for turbidity, rather than 

a single predicted value, can be generated for a particular streamflow.  That distribution can be 

used to generate inputs to a reservoir turbidity model to generate probabilistic predictions of 

reservoir and aqueduct turbidity. 

Other modeling work completed in 2016 include the testing and application of the 

watershed model GWLF to watersheds in the East of Hudson (EOH), or Croton, system of 

reservoirs.  Since water quality is of lesser concern in the EOH system due to the filtration plant 

that serves this system, application of water quality models to the EOH system has not occurred 

in recent years.  However, DEP's Operations Support Tool (OST), which considers water supply 
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from all sources (Catskill, Delaware, and Croton systems), requires stream inflows to EOH 

reservoirs for historical periods.  While historical inflows can be estimated from reservoir water 

budgets, the data required from such budget calculations is not available for all historic periods 

of interest.  As a result, it would be very useful to have model predictions for such periods.  

GWLF was applied to gaged EOH watersheds, with calibration of model inputs performed to 

product good agreement between predicted and measured streamflow.  The model was then 

applied to ungaged watersheds, using model coefficients determined from the application to 

gaged watersheds.  The result is a consistent set of model predictions for the entire EOH system. 

The Water Quality Modeling group continues to develop database and data analysis tools 

to support modeling work.  GIS data from a variety of sites and sources continues to be used.  

Field work for the West of Hudson bathymetry project is complete, and the resulting data will be 

implemented into DEP models.  In addition, a similar project to directly measure new 

bathymetry for all East of Hudson reservoir basins is scheduled to begin in 2017.  The water 

quality modeling group continues to invest in database to support modeling activities, including a 

database containing model input datasets, and a database containing time series of predictions 

from General Circulation Models (GCMs), which will be used together with weather time series 

resulting from stochastic weather generators to produce synthetic, realistic time series of future 

weather conditions in the West of Hudson watersheds. 

The water quality modeling group continues to be involved with outside groups including 

the Water Utility Climate Alliance (WUCA).  DEP staff attended the WUCA meeting in Boulder 

CO in May 2016, and participate in regular conference calls with staff from other WUCA 

members.  DEP staff also attended the annual meeting of the Global Lake Ecological 

Observatory Network (GLEON) in Austria in July 2016.   The interaction between post-doctoral 

researchers employed by the City University of New York (CUNY), university faculty advisors, 

and DEP staff, all supported by DEP funding, continues to be a major source of ideas, modeling 

software, modeling products, and reports and publications.  The current 4-year contract between 

the Research Foundation of CUNY and NYCDEP continues until August, 2018. 
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1. Introduction 

This status report describes work completed as a part of the New York City Department 

of Environmental Protection Multi-Tiered Water Quality Modeling program for the period 

January through December, 2016.  This report was prepared and submitted in accordance with 

Section 5.2 of the 2007 Revised Filtration Avoidance Determination (NYSDOH, 2014). 

A schematic overview of DEP’s Water Quality Modeling program is shown in Figure 

1.1.   The general categories of models used are climate (weather generators), watershed or 

terrestrial, reservoir, and water supply system operations models.  Issues that are considered are 

water quantity (including droughts), turbidity, disinfection by-products, and eutrophication and 

harmful algal blooms.  Application of these models may lead to changes in watershed regulations 

and reservoir management, adoption or modification of long-term plans for the water supply, 

guidance for short term system operations, and evaluation of the adequacy of current 

infrastructure. 

 

 

Figure 1.1. Schematic of the conditions considered, models, issues, and policies and actions that 

are a part of DEP’s Water Quality Modeling program. 
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DEP is developing, testing, and applying a suite of weather, watershed/terrestrial, 

reservoir, and water system operations models in our water quality modeling program.  In 2016, 

the development and testing of the first stochastic weather generator for use in the watersheds of 

the Catskill and Delaware system reservoirs was completed.  It is expected that application of 

stochastic weather generators, rather than change factor approaches used in earlier evaluations, 

will result in more realistic and robust predictions of future conditions, especially future extreme 

conditions, in the water supply.  An initial application of this weather generator was made by 

generating runoff predictions using the GWLF watershed model.  This application is opening the 

door to the use of “bottom-up” evaluations of the impact of climate change on the water supply 

system.   

The water quality modeling program continued the development and application of three 

watershed/terrestrial models in 2016.  These models are the Generalized Watershed Loading 

Function (GWLF), the Soil Water Assessment Tool (SWAT), and the Regional Hydro-Ecologic 

Simulation System (RHESSys).  GWLF is a relatively simple, lumped-parameter watershed 

model that is considered to be fully tested for the West of Hudson watersheds and is now used in 

applications for those watersheds.  During 2016, GWLF was used to generate runoff predictions 

using weather data predicted by a stochastic weather generator, as described above.  In 2016, 

GWLF was also applied and tested for East of Hudson watersheds to generate runoff predictions 

that are used in the Operations Support Tool.  The first step in the testing and validation of 

SWAT was completed in 2016, with the finalizing of runoff predictions for the Town Brook 

watershed located in the drainage area of Cannonsville Reservoir.  SWAT proved to be accurate 

in reproducing measured outflow hydrographs on both daily and monthly time scales from this 

watershed.  Testing of RHESSys for the Biscuit Brook and Shelter Creek watersheds which drain 

to Neversink Reservoir continued in 2016.  This work involved simulating both runoff and 

nitrate and organic carbon loading from these watersheds.   

In 2016, the water quality modeling section began work on the testing and validation of 

the CE-QUAL-W2 turbidity model, which has been previously tested for Schoharie, Ashokan, 

Rondout, and Kensico Reservoirs, to the remaining Delaware system reservoirs: Neversink, 

Cannonsville, and Pepacton.  Progress was made on applying this model to Neversink.  

Empirical models to predict the temperature and turbidity of inflows to Neversink were 

completed.  These models were then used to generate inputs for the testing and validation of the 

reservoir turbidity model.  This work is largely complete and will be finalized in 2017.  While 

the CE-QUAL-W2 turbidity model has been tested and validated for Rondout Reservoir, that 

model has not been added to the Operations Support Tool (OST).  To allow turbidity model runs 

to be made for Rondout using the position analysis approach as in OST, the Rondout Position 

Analysis (RondoutPA) software was developed and applied in 2016.  This is essentially an 

interim product that allows turbidity model forecasts to be made for Rondout that utilize multiple 

forecasts of meteorology and streamflow for days and weeks into the future at the time of 

forecast.  The position analysis approach allows multiple forecasts of future weather and 

streamflow conditions to be used. 
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This report describes the major activities of the water quality modeling group in 2016, 

including the following: 

 Use of the Operations Support Tool (OST) and the Rondout Position Analysis 

software (RondoutPA) to support and guide operations of Schoharie, Ashokan, 

Rondout, and Kensico Reservoirs during episodes of elevated turbidity 

 Testing, documenting, and initial application of a stochastic weather generator 

(SWG) for simulating long time series of synthetic but statistically-realistic 

weather data, for use in climate studies 

 Application of the Generalized Watershed Loading Function (GWLF) model in 

various studies including prediction of runoff from watersheds in the East of 

Hudson water supply system, and predicting runoff from weather time series 

produced by the SWG 

 Completed testing of the Soil Water Assessment Tool (SWAT) for predicting 

runoff in the Town Brook watershed draining to Cannonsville Reservoir 

 Ongoing testing of the Regional Hydro-Ecologic Simulation System (RHESSys) 

model for both hydrology and water quality, for two watersheds draining to 

Neversink Reservoir 

 Application and testing of DEP’s two-dimensional hydrothermal and turbidity 

model (CE-QUAL-W2) to Neversink Reservoir 

 Development of a procedure for introducing estimation of uncertainty in the 

turbidity-discharge relationships that are used to quantify turbidity from streams 

to reservoirs 

 Data acquisition, organization, and analysis in the support of modeling 

 Collaboration of staff in the water quality modeling group with outside 

organizations 

 Papers appearing in peer-reviewed publications and presentations made at 

professional meetings that describe the work of the water quality modeling group 
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2. Use of Models for Support of Operational Decisions 

Major runoff events in the Catskill and Delaware watersheds can impair water quality in 

receiving reservoirs. Model simulations to support operational decisions during these events are 

usually related to elevated turbidity levels that occurred in Cannonsville, Rondout, Schoharie, or 

Ashokan reservoirs. The models used in these evaluations in 2016 are the Operations Support 

Tool (OST), which has the capability to simulate turbidity in Schoharie, Ashokan, and Kensico 

Reservoirs.  In addition, the Rondout Position Analysis software (RondoutPA) was used for 

turbidity simulations of Rondout Reservoir.  The simulations usually follow a position analysis 

strategy that produces an ensemble of probable outcomes and allows managers to make 

operational decisions in a probabilistic manner. Simulations are intended to answer questions 

such as: what is the impact of turbid discharge from Cannonsville Reservoir on the withdrawal 

turbidity from Rondout Reservoir, how should the operations be modified so that the need for 

adding alum in the Catskill Aqueduct at Kensico Reservoir is reduced or eliminated, what is the 

optimum turbidity loading to Kensico Reservoir, how should the West Basin of Ashokan 

Reservoir be drawn down (release channel, dividing weir gates), etc. Selected modeling cases 

that occurred in 2016 are presented below:  

April 7, 2016: With the precipitation moving into the region on April 8, 2016 and the 

Ashokan West Basin void remaining below 500 MG, there was a question as to whether the 

dividing weir flow should be increased to 1 BGD to avoid spill, and could this be done without 

significant impact on the water quality of the East Basin.  Also, with Ashokan storage below the 

CSSO (conditional seasonal storage objective), it would be desirable to increase the flow at 

Shandaken Tunnel Portal (STP) from 300 MGD to 400 MGD. Any water quality concerns 

associated with this scenario were to be identified. 

State of water quality and issue: The peak flow for Esopus Creek was projected to be about 

3500 CFS. On April 7, 2016, both the basins of Ashokan Reservoir were nearly isothermal at 

about 5.8 °C.  The turbidity in the East Basin was 2.3 NTU and 5 NTU in the West Basin. 

Turbidity in the Schoharie Reservoir withdrawal (Shandaken Tunnel Portal) was 15 NTU. 

Withdrawal from the East Basin of Ashokan Reservoir was at a rate of 300 MGD. Increasing 

dividing weir gates could accelerate the transfer of turbid water from the West Basin to the East 

Basin. What is the relative contribution of STP discharge? 

Modeling: Operations alternatives with dividing weir flow at 1000 MGD, 1500 MGD, 2000 

MGD; and STP flow at 0, 400 MGD, and 450 MGD were evaluated. OST was setup for 

Schoharie, Ashokan, and Kensico reservoirs. Simulations were conducted for April 7, 2016 – 

June 16, 2016 interval using HEFS forecasts. Initial temperatures and turbidities in these 

reservoirs were approximated from profiles and key point measurements.  

Results: For all scenarios, STP turbidity at the outlet to Esopus Creek was projected to trend 

downward gradually from 15 NTU to 9 NTU over the simulation interval (Figure 2.1) although 

some traces predicted elevated levels exceeding 20 NTU. The probability of exceeding 10 NTU 
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in the Catskill Aqueduct was predicted to be less than 10% (Figure 2.2). The results also 

indicated that the benefit of keeping the STP off is very slight and delayed (see the median 

turbidity plot; Figure 2.2), consistent with the findings of an earlier study that the contribution of 

STP to the total turbidity loading to Ashokan Reservoir was generally lower during high runoff 

events (UFI, 2007). At 90th percentile, early benefit of dividing weir flow at 2000 MGD was 

predicted but it was short-lived. After 4/13/2016, runs with dividing weir flow as 1500 and 2000 

MGD predicted higher turbidity. 

 

Figure 2.1. Predicted ensemble of withdrawal turbidity in Shandaken Tunnel diversion from 

Schoharie Reservoir, for three different tunnel flows.  Colored lines show median tunnel 

turbidity for each flow: green – tunnel flow = 450 MGD, blue – tunnel flow=400 MGD, 

red – tunnel flow = 0. 
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Figure 2.2. Three statistics (10th, 90th percentiles, and median) of predicted withdrawal 

turbidity for Catskill Aqueduct diversion from Ashokan Reservoir, for each of 4 

different operations scenarios shown in the legend: STP is Shandaken Tunnel flow, 

DW is Ashokan Reservoir dividing weir flow. 

June 6, 2016: A turbid plume was observed to be entering into Schoharie Reservoir 

(Figure 2.3). Modeling was conducted to determine the expected impact on withdrawal turbidity. 

 

Figure 2.3. Schoharie Creek entering Schoharie Reservoir. 

 

Modeling: Simulations with OST were conducted for 30 days and through June 1, 2017. 

Specifications for these simulations were: no alum application, input forecasts – HEFS, 

Schoharie diversion at 140 MGD, Ashokan diversion at 500 MGD, Pepacton diversion at 300 

MGD during 6/6/2016–6/8/2016; Rondout diversion at 400 MGD for 6/6/2016, 200 MGD during 

6/7-6/8/2016, NYC demand as 1015 MGD, dividing weir gates closed, Croton maximum 

diversion set to 80 MGD, inflow turbidity based on simple regression method, and short-

circuiting of West Basin waters not allowed. 

Results: The turbid plume in Schoharie Creek was shown to have no impact on SRR2CM 

turbidity. The two high traces correspond to the two high inflow forecasts but both predict 

turbidity less than 4 NTU (Figure 2.4). 
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Figure 2.4. Predicted ensemble of Shandaken Tunnel turbidity, May 20 to July 7, 2016.  Red, 

blue, green lines show 10th, 50th (median), and 90th percentiles of predicted withdrawal 

turbidity, respectively.  Grey line: observations for two weeks prior to the start of 

model run. 

 

Other short-term OST runs to guide system operations included runs conducted on 

February 22, 2016 to evaluate impact of a storm in the watershed, on March 23, 2016 to guide 

operation of the dividing weir gates (increase void in the West Basin ahead of a storm or let it 

spill after the storm) at Ashokan Reservoir, and on December 28, 2016 also, to guide operation 

of the dividing weir gates (i.e., evaluate impact of different flow rates on withdrawal turbidity at 

EARCM). 

Several additional runs outside OST were conducted with RondoutPA (Rondout Position 

Analysis water quality model) during 2016 to guide operation of the Delaware Basin reservoirs. 

A brief summary of selected runs is provided below. 

July 11, 2016: Approximately 7 inches of rainfall occurred during July 8-9, 2016 in the 

East Mountain Brook region of Rondout watershed which triggered localized bank failures 

resulting in turbid discharge into Rondout Creek (Figure 2.5). Immediately following the storm, 

turbidity at the mouth of Rondout Creek increased in excess of 1250 NTU, and within two days 

of the storm, 20–30 NTU in the upstream portion of Rondout Reservoir (Figure 2.6). Model runs 

were conducted to answer questions such as the timing and magnitude of the peak turbidity at the 

Rondout Reservoir withdrawal (RDRR) and how long would it take before turbidity level returns 

to normal (pre-storm) levels. 
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Results: Predictions of withdrawal turbidity obtained from an initial model run, starting 

from July 11, 2016 for 30 days, are presented here in a probabilistic format (Figure 2.7). For the 

first seven days, turbidity was expected to be above 1 NTU (probability of exceedance 100%) 

but below 2 NTU (probability of exceedance 0%). By early August, it was projected to exceed 

3.5 NTU with 25% probability. These results provided information to managers to use in making 

decisions on whether to adjust operations to minimize the impact. New additional runs were 

conducted on July 20, 2016 and August 1, 2016, with updated hydrologic forecasts, changed 

operations of the upstream reservoirs as well as Rondout Reservoir, and updated in-reservoir 

initial conditions. Results of these runs provided further guidance on the optimum operation 

strategy for Rondout and its upstream reservoirs (Figure 2.8). Turbidity was projected to remain 

well within the tolerance limit for this reservoir for the entire duration of these runs and was later 

confirmed with the observations (Figure 2.8). 

 

(a) 

 

(b) 

 

Figure 2.5. (a) Rondout Creek upstream of Rondout Reservoir and location of East Mountain 

Brook, a tributary of Rondout Creek where stream bank erosion occurred, (b) turbid 

plume from East Mountain Brook entering Rondout Creek on July 9, 2016. 
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Figure 2.6. Observed depth-profiles of turbidity in Rondout Reservoir for July 11, and July 13, 

2016. 

 

 

 

 

Figure 2.7. Probability of exceeding selected turbidity levels at RDRR obtained from model 

run starting from 7/11/2016. 
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Figure 2.8. Ensemble predictions of withdrawal turbidity obtained from three different model 

runs starting from 7/11, 7/20, and 8/1, compared with observations.  

 

 

A graphical summary of other RondoutPA model runs is depicted in Figure 2.9 through 

Figure 2.11. 

 

 

Figure 2.9. Ensemble predictions of turbidity at Rondout Reservoir withdrawal for an 

operations scenario of increased turbidity loading from Cannonsville Reservoir with 

discharge rate up from 280 to 340 MGD and turbidity levels 4 NTU. No significant 

impact on turbidity at RDRR was predicted, which was confirmed later with the 

observations. 
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Figure 2.10. Ensemble predictions of turbidity at Rondout Reservoir withdrawal for an 

operations scenario of bringing Cannonsville Reservoir online  (360 MGD, 12 NTU) 

after the hydroelectric power plant operator Brookfield Renewable Energy completed 

its work. No significant impact on turbidity at RDRR was predicted, which was 

confirmed later with the observations. Several other scenarios were also evaluated. 

 

 

Figure 2.11. Ensemble predictions of turbidity at Rondout Reservoir withdrawal for a scenario 

of turbid discharge from Cannonsville Reservoir tunnel (turbidity plume from the rain 

on snow event on December 18, 2016; peak turbidities: West Branch Delaware River 

in-stream site CBS – 150 NTU, tunnel discharge site WDTO – 42 NTU). Scenarios 

with WDTO tunnel discharge as 360, 180, 0 MGD and turbidity as 45, 35, 25 NTU 

were evaluated. With these sustained high level of WDTO turbidity, the withdrawal 

turbidity at RDRR was projected to rise gradually. Accordingly, the reservoirs 

operations were adjusted to minimize the impact. 
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3. Modeling the Impacts of Climate Change 

3.1. Climate Change Integrated Modeling Project 

The Climate Change Integrated Modeling Project (CCIMP) encompasses the DEP Water 

Quality Modeling Section’s effort to evaluate the effects of future climate change on the quantity 

and quality of water in the NYC water supply.  The CCIMP is designed to address the following 

major issues: (1) overall quantity of water in the entire water supply; (2) turbidity in the Catskill 

System of reservoirs, including Kensico; (3) eutrophication in Delaware System reservoirs; and 

(4) disinfection byproducts in the West of Hudson reservoirs.  The first phase of CCIMP was 

completed in 2013, and work began on the second phase with the signing of a new 4-year 

research support contract between CUNY and NYCDEP.     

Work completed in 2016 was mainly in two areas.  A stochastic weather generator for 

precipitation occurrence and amount, and for minimum and maximum daily air temperature was 

completed.  The technical paper describing this work, which has been accepted by the peer-

reviewed Journal of Hydrometeorology, is presented in its entirety in section 3.2.  The first 

application of this stochastic weather generator in simulating streamflow in West of Hudson 

watersheds is presented in Section 3.3.   

3.2. Stochastic Weather Generators for Precipitation and Air 

Temperature 

3.2.1. Introduction 

The New York City Water Supply System (NYCWSS), one of the largest surface water 

supply systems in the world, provides on average 1.1 billion gallons (BG) of high quality 

drinking water each day to almost half the population of the State of New York—over 9 million 

people in New York City (NYC) and some upstate communities (NYCDEP2016). This system 

contains 19 interconnected reservoirs, three controlled lakes and connecting aqueducts with a 

total storage capacity of approximately 580 billion gallon (BG). The New York City Department 

of Environmental Protection (NYCDEP) is responsible for operation, maintenance, and 

protection of the NYCWSS. The part of the system located west of the Hudson River (WOH), 

located up to 125 miles northwest of NYC in the Catskill Mountains, can be further divided into 

two subsystems, the Delaware and the Catskill. The WOH Catskill/Delaware system supplies 

approximately 90% of total water demand and is an unfiltered water supply (NYCDEP2016). 

The Delaware subsystem is comprised four watersheds: Cannonsville (95.7 BG), Neversink 

(34.9 BG), Pepacton (140.2 BG), and Rondout (49.6 BG); while the Catskill subsystem contains 

two watersheds: Schoharie (17.6 BG) and Ashokan (122.9 BG) (NYCDEP2016). These 

watersheds, which are part of the eastern plateau climate region of New York, cover an area of 

approximately 4103 square kilometers with an elevation range of 125–1275 m (Matonse et al. 

2011). This region experiences a humid continental climate with cool summers, cold winters, 
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occasionally abundant snowfall, and year round precipitation averaging between 1000 and 1200 

mm per year (Anandhi et al., 2011a). Precipitation increases along west to east gradient, which is 

most prominent in winter, a pattern modulated by orographic effects (Thaler, 1996). Since the 

mid-twentieth century the contribution of snowfall to total annual precipitation is 20% to 30% 

(Frei et al. 2002; Pradhanang et al. 2011; Anandhi et al. 2011). 

Extreme hydrological events are, in general, responsible for a disproportionate transport 

of nutrients and sediment into the streams and reservoirs. Past studies suggest increasing trends 

in total precipitation and in the frequency and magnitude of extreme precipitation events in the 

WOH basins. Burns et al. (2007) found that regional mean precipitation for the Catskill 

Mountain region increased significantly by 136 mm between 1952 and 2005. Matonse and Frei 

(2013) found that extreme warm season precipitation and streamflow events have been more 

frequent between 2002 and 2012 than any time during the 20th century. DeGaetano and 

Castellano (2013) found that the annual frequency of extreme Catskills precipitation (number of 

events that produce ≥50.8 mm precipitation per year) has an increasing trend over the last 60 

years, with the time series dominated by year-to-year and decade-to-decade variability. They also 

analyzed climate model projections from the North American Regional Climate Change 

Assessment Program (NARCCAP) which suggests extreme precipitation will increase at a rate of 

2–3% per decade through 2069. Thiebeault and Seth (2014) found that for the northeastern US, 

CMIP5 models predict a significant increase in the frequency and magnitude of extreme 

precipitation, particularly in mountainous regions such as the Catskills. They also found that 

models predict a concurrent increase in total precipitation, which could contribute to wetter 

conditions antecedent to storms and possibly to increased extreme streamflow events.  The 

potential effects of these changes in precipitation include increased sediment erosion, increased 

nutrient loads, changes in the annual cycle of reservoir thermal structure, and other factors that 

may pose challenges for water management.  

As a part of the NYCDEP’s Climate Change Integrated Modeling Project (CCIMP), a 

series of studies (e.g. Anandhi et al., 2011a; Anandhi et al., 2011b; Pradhanang et al. 2011; 

Anandhi et al., 2013; Matonse et al., 2013; Pradhanang et al., 2013) have examined the potential 

impacts of climate change on the availability of high quality water in the WOH. These studies 

follow the “top-down” approach, using Change Factor Methodology (CFM) downscaled climate 

scenarios from Global Climate Models (GCMs), to incorporate climate change into vulnerability 

analyses using NYCDEP’s integrated suite of models including watershed hydrology, water 

quality, water system operations, and reservoir hydrothermal models (Anandhi et al., 2011a). As 

an alternative to the top-down approach, “bottom-up” or vulnerability-based methods to climate 

change vulnerability analyses have recently been applied to water resources (Wilby and Desai, 

2010; Brown et al., 2011; Prudhomme et al. 2010, 2015). Such approaches can explore the 

climate vulnerabilities of a system over a wider range of plausible climate change scenarios than 

the more traditional “top-down” approaches in which GCM projections completely define the 

parameter space of future scenarios (Wiley and Palmer, 2008; Steinschneider and Brown, 2013). 

The bottom-up approach can be implemented in a number of ways. For example, Steinschneider 

and Brown (2013) first determine system vulnerabilities and then assess different adaptation 

measures to find the most robust measures under future uncertainty. While the bottom-up 
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approach includes the results of GCM simulations, it also enables more flexible definitions of 

uncertainty. Stochastic weather generators (SWGs) are an integral component of the bottom-up 

approach. 

SWGs are statistical models that produce synthetic weather time series based on observed 

statistical properties at a particular location, and can include numerous weather variables, 

although this study is focused solely on precipitation. SWGs can be employed in bottom-up risk 

assessments to generate multiple scenarios of daily climate variations within which a water 

resource system model can be tested (Ray and Brown, 2015). A SWG coupled with a single or 

series of response models facilitates more complete identification of system vulnerabilities, and 

flexible, quantitative definitions of uncertainty, which can aid in the selection of robust adaption 

measures (Steinschneider and Brown, 2013). While the potential of SWGs for vulnerability 

assessments for the NYCWSS has not yet been explored in detail, a recent study (Rossi et al., 

2015) used a multivariate, multisite weather generator for introducing incremental changes in 

mean precipitation and temperature to simulate a range of climate change scenarios to study 

turbidity levels in Ashokan Reservoir. However, the skill of weather generators used to simulate 

the observed precipitation characteristic is not discussed in detail. There are a number of general 

categories of SWGs available in the literature with different levels of complexity, the skills of 

which in simulating observed precipitation characteristics are location specific (Chen and 

Brissette, 2015). It is therefore essential to examine the model structure and performance in the 

target watershed before applying the SWG in climate change assessment studies for NYCWSS. 

To address this need, the application of a suite of SWGs to each of the WOH watersheds 

is described.  The skill levels of SWG in reproducing the statistical characteristics of observed 

daily precipitation will provide a useful benchmark for further improvement in climate change 

impact studies. As the study area has experienced a recent increase in extreme precipitation 

events, and is forecast to experience increasing trends by climate models, this evaluation of 

SWGs includes a focus on the large precipitation events which result in water quality 

management challenges. In order to ensure robust conclusions, we apply several different 

approaches to evaluating the simulation of extreme precipitation events, including daily and 

seasonal extremes, extreme events indices, and recurrence intervals of extreme events.  

The remainder of this section is organized as follows. Section 3.2.2 provides a brief 

description of historical datasets used in the study. Section 3.2.3 provides an overview of several 

SWGs. The framework of calibrating of SWGs is described in Section 3.2.4. Sections 3.2.5 and 

3.2.6 present results, and Section 3.2.7 includes discussion and conclusions.  

3.2.2. Data 

Observed daily precipitation data were obtained from Northeast Regional Climate Center 

(NRCC) at Cornell University. A total of 18 rain gauge stations of National Climate Data Center 

(NCDC) stations are non-uniformly distributed across the WOH watersheds (Figure 3.1). As 

each station has a different record history, precipitation data for the common period of record 

(1950 to 2009) were used.  As the focus of the study is to analyze the average precipitation over 
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each watershed, the weighted mean of nearby stations was calculated to obtain a single time 

series for each watershed. The Thiessen polygon method (Thiessen, 1911) was used to estimate 

the weights based on the relative areas of each measurement station in the Thiessen polygon 

network.  

 

 

Figure 3.1. A map of the six reservoir watersheds of West of Hudson (WOH) and the 

precipitation gauge station scattered over the study region. 
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Table 3.1 describes the stations and their corresponding weights for each watershed. 

More details can be found in Anandhi et al. (2011). 

Table 3.1.  Description of the nearest stations and associated weights for estimating weighted 

mean precipitation for each of WOH watersheds. 

Watershed Stations  

Schoharie Windham 3E (0.4434), Prattsville (0.2992), Manorkill (0.1694), Stamford 

(0.0468), Phonecia (0.0389), Shokan Brown (0.0024). 

Ashokan Phonecia (0.4985), Shokan Brown (0.3401), Slide Mountain (0.1413), Windham 

3E (0.02) 

Cannonsville Walton (0.3526), Delhi 2SE (0.2948), Kortright 2 (0.1143), Stamford 

(0.1532),Arkville 2W(0.0068),Bainbridge 2E (0.0085),Deposit (0.0568), Fish 

Eddy (0.0013), Unadilla 2N (0.0118) 

Pepacton Arkville 2W(0.5564), Delhi 2SE (0.1876), Prattsville (0.1282), Stamford (0.0523), 

Phonecia (0.0397), Slide Mountain (0.0181), Walton (0.0175), Fish Eddy (0.0002) 

Neversink Slide Mountain (0.5013), Grahamsville (0.3640), Liberty 1 NE (0.1347),  

Rondout Grahamsville (0.5796), Merriman Dam (0.2118), Slide Mountain (0.2084),Shokan 

Brown (0.0002),  

Weights corresponding each station are in parentheses. All the weights add up to 1 for each watershed. 

 

3.2.3. Overview of Stochastic Weather Generators (SWGs)  

The use of SWGs to produce synthetic time series with statistical properties resembling 

those of an observed time series has wide applications in the modeling of weather and climate-

sensitive systems such as crop growth and development, hydrological processes, and ecological 

systems, where the observed climate records are inadequate in terms of length or completeness 

(Wilks and Wilby, 1999).  A plethora of early studies dedicated to the development and 

advancement of SWGs (Gabriel and Neumann, 1962; Todorovic and Woolhiser, 1975; Katz, 

1977; Richardson, 1981) have been summarized in several review articles (Wilks and Wilby, 

1999; Srikanthan et al., 2001; Alliot et al., 2015). SWGs can be broadly classified into four 

groups: two-part models (the first part is dedicated to precipitation while the second part deals 

with other meteorological variables such as temperature or solar radiation), resampling models, 

transition probability models, and auto regressive moving average (ARMA) models (Srikanthan 

et al., 2001), with the first two approaches being the most common. In this study, we discuss 

only precipitation generation in two-part models and resampling models. 

Precipitation, which is unique among meteorological variables in its mixed nature as both 

a discrete (occurrence) and continuous (amount) process, has always been a key variable of 
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interest in the construction of weather generators (Wilks and Wilby, 1999). In a two-part model, 

SWGs analyze precipitation as a chain-dependent model, first simulating precipitation 

occurrence (wet or dry day) and then precipitation amount. Occurrence is usually simulated 

using either a Markov Chain (MC) based model or a renewal process, sometime referred to as a 

spell-length model. Two-state (i.e., precipitation occurs or does not occur) MC models relate the 

state of precipitation on the current day to the states of precipitation on preceding days where the 

number of preceding days considered is the order of the MC (Boulanger et al., 2007).  Although 

the first-order MC model (precipitation occurrence depends only on the previous day) has been 

found satisfactory in most of the cases (Katz, 1977; Richardson, 1981, Wilks, 1992), the higher 

order was found to better simulate long wet and dry spells (Wilks, 1999; Chen and Brissette, 

2014). The alternating renewal process, rather than simulating occurrence for each day, fits a 

probability distribution to the sequence of alternating wet and dry spell lengths which are 

assumed to be independent (Buishad, 1978; Roldan and Woolhiser, 1982; Semenov and Barrow, 

2002). Various probability distributions have been evaluated for the best fit of wet and dry spell 

lengths such as logarithmic series, truncated negative binomial distribution, truncated geometric 

distribution and semi-empirical distribution (Wilks and Wilby, 1999). It is typically assumed that 

either the parameters of the distribution remain constant within seasons, or that they change 

continually as estimated by a Fourier series. Studies have viewed a drawback of alternating 

renewal process method to handle the seasonality in the rainfall occurrence process (Sirkanthan 

and McMahon, 2001). 

Given the occurrence of a wet day, the daily precipitation amount is then modeled, 

typically using a parametric distribution. The distributional pattern of daily precipitation is 

strongly skewed to the right (i.e., the tail of the distribution is on the right side) as very small 

daily precipitation events occur frequently, while heavy daily precipitation events are relatively 

rare (Wilks and Wilby, 1999; Chen and Brissette, 2014). Numerous studies have compared 

several probability distributions for simulating daily precipitation, including both single and 

compound distributions such as exponential (Todorovic and Woolhiser, 1975; Roldan and 

Woolhiser, 1982), Gamma (Ison et al., 1971; Richardson and Wright, 1984), Weibull (Stöckle et 

al., 1999), skewed normal (Nicks and Gander, 1994), Mixed Exponential distribution (Roldan 

and Woolhiser, 1982; Wilks, 1999b) and hybrid exponential and Pareto distributions ( Furrer and 

Katz (2008); Li et al., 2012; Chen and Brissette, 2014).  

Resampling, a data driven non-parametric method, provides an alternative to parametric 

techniques. The k-nearest-neighbor (k-NN) conditional bootstrap approach, the most popular 

resampling scheme for SWG, generates daily weather variables by resampling (with 

replacement) historical records associated with the wet-dry day series (Rajagopalan and Lall, 

1999). The “k - nearest neighbors” for each date are chosen by considering all historical dates 

within a specified time window. Subsequently, one of the k-nearest neighbors is chosen, with a 

higher probability given to closer neighbors (King et al., 2015). After the pioneering work by 

Young (1994) and Sharma and Lall (1997), a number of studies extended and improved the k-

NN approach (Rajagopalan and Lall; 1999; Buishand and Brandsma, 2001; Yates et al., 2003; 

Sharif and Burn, 2007; King et al., 2015). Some studies (Apipattanavis et al., 2007, 

Steinschneider and Brown, 2013) also combine the MC model and k-NN resampling to make a 
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semi-parametric method. Kernel density estimation (KDE) method is also a popular non-

parametric method for precipitation generation (Sharma and Lall 1999, Mehrotra and Sharma 

2007). The underlying concept of this method based on the counting the relative frequency of the 

data lying in a local neighborhood which depends on the extent of the kernel functions about the 

point of estimation (Sharma and Lall 1999). 

In addition to the above stated types of SWG, some other theoretical constructs have been 

applied to generate precipitation amount in some studies. For example, Boulanger et al. (2007) 

introduced a multi-layer perceptron-based neural network to generate synthetic time series of 

precipitation. Chen et al. (2015) proposed the use of a 2nd degree polynomial curve fitting 

approach to fit a Weibull experimental frequency distribution of observed daily precipitation 

constrained on the probable maximum precipitation (PMP). 

Following the aforementioned concepts, SWGs have been developed and widely used for 

precipitation generation over the last few decades. A listing of selected, widely-used SWGs is 

described in Table 3.2.   

Table 3.2.  Description of some popular SWGs with their precipitation occurrence and amount 

components and respected reference. 

Name Precipitation occurrence and amount component Reference  

WGEN  First-order MC for precipitation occurrence and Gamma 

distribution for precipitation amount 

Richardson, 1981; 

Richardson and Wright, 

1984 

SIMMETEO  Same as WGEN but use monthly data as input instead of 

daily 

Geng et al., 1988; Soltani 

and Hoogenboom, 2003; 

Elshamy et al., 2006 

CLIGEN  First-order MC for precipitation occurrence and skew-

normal distribution for precipitation amount 

Nicks and Gander (1994) 

GEM  First-order MC for precipitation occurrence and mixed 

exponential distribution for precipitation amount 

Hanson and Johnson, 1998 

CLIMGEN Second-order MC for precipitation occurrence and Weibull 

distribution for precipitation amount  

Stockle et al., 1999 

WGENK Modification of WGEN by introducing seasonality Kuchar, 2004 

WeaGETS Third-order MC for precipitation occurrence and mixed 

exponential distribution for precipitation amount 

Chen et al., 2012b 

LARSWG semi-empirical distribution to simulate precipitation 

occurrence and daily precipitation amounts 

Semenov and Barrow, 

2002 

KnnCAD Precipitation occurrence and amount generated by 

Resampling the historical data based on k-NN method. 

Prodanovic and 

Simonovic,2008; King et 

al., 2015 

 

3.2.4. Implementation of SWGs 

Chain-dependent models using different combinations of MC based models of orders first 

(MC1), second (MC2), and third (MC3) to generate precipitation occurrence are implemented; 
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along with several parametric probability distributions, a resampling method, and a curve fitting 

technique to generate precipitation amount. The overall methodology to implement SWG in this 

study is outlined using a flow chart shown in Figure 3.2. In this study only two-state (wet or dry 

day) MC models are applied. A threshold of 0.1 mm is employed to discriminate between wet 

and dry days at the basin-averaged scale. 

 

Figure 3.2. Flow chart showing the methodology of calibration of SWG. 

 

3.2.4.1. Generation of the precipitation occurrence 

In the first-order MC process, the probability of precipitation on a given day is based on 

the previous day’s condition whether it was wet or dry, which can be defined in terms of 

transition probabilities, P01 and P11:             

 
P01 = Prob (precipitation on day t | no precipitation on day t-1) (3.1) 

 
P11 = Prob (precipitation on day t | precipitation on day t-1) (3.2) 

where the term ‘Prob’ means probability and the symbol ‘|’ represents ‘conditional on’. 

Since precipitation either occurs or does not occur on a given day, the two complementary 

transition probabilities are P00 = 1 - P01 (dry day following a dry day) and P10 = 1 - P11 (dry day 

following a wet day). 

The first-order MC model can be generalized to higher-orders. Letting rt = 0 if day t is 

dry, and rt = 1 if day t is wet, Equations (3.1) and (3.2) can be extended to second (Equation 

(3.3)) and third (Equation (3.4)) order MC processes: 
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Pijk = Prob (rt = k | rt-1 = j | rt-2 = i) (3.3) 

 
Phijk = Prob (rt = k | rt-1 = j | rt-2 = i | rt-3 = h) (3.4) 

where i,j,k,h are values of 0 or 1 representative dry and wet day, respectively. Transition 

probabilities are estimated from the observed time series by using the maximum likelihood 

method for each biweekly period. The sequences of wet and dry days in the SWG are produced 

by applying a random number generator based on the uniform distribution from the interval [0, 

1] for each day. The occurrence of precipitation is estimated for each day, in sequence, based on 

the previous day(s) precipitation state, and a comparison of the random number to the 

corresponding transitional probability (Wilks and Wilby, 1999). 

3.2.4.2. Generation of the precipitation amount 

After computing rainfall occurrence, rainfall amounts on wet days are modeled using 

seven distribution models, including five parametric distributions, one resampling method (k-

NN), and one curve fitting method. Parametric distributions include three single distributions - 

Exponential (EXP), Gamma (GAM), and Skewed-Normal (SN) - and two compound 

distributions - Mixed Exponential distribution (MEXP) and a Hybrid Exponential and 

Generalized Pareto (EXPP) distribution. The parameters of the distributions are estimated using 

the maximum likelihood method for each biweekly time period except for the SN distribution 

where the method of moments is used. Following Rajagopalan and Lall (1999), we choose k = 

N in the k-NN resampling method  where N equals the sample size and 7 day time window 

use to find the “nearest neighbor” for each date considering all historical dates. The 2nd order 

polynomial-based curve fitting method (PN) to fit the Weibull experimental frequency of daily 

precipitation used here is similar to Chen et al. (2015), except in our case the maximum value is 

not constrained by the PMP.  A summary of each model and associated references are found in 

Table 3.3.  The length of all simulated daily precipitation series are ten times of the observed 

record length. The generation of such long synthetic series is required to avoid biased simulation 

of the true climate (Chen and Brissette, 2014). 
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Table 3.3.  Selected 7 models for generating daily precipitation amounts. 

Model Name Abbreviation Reference  

Parametric Exponential EXP Todorovic and Woolhiser 

(1975) 

Gamma GAM Ison et al. (1971), 

Richardson and Wright 

(1984) 

Skewed-normal SN Nicks and Gander (1994) 

Mixed exponential MEXP Woolhiser and Roldán 

(1982), Wilks (1999b) 

Hybrid exponential and 

generalized Pareto 

EXPP Li et al. (2012) 

Resampling k-nearest-neighbor  

conditional bootstrap 

k-NN Rajagopalan and Lall 

(1999) 

Curve-fitting 2nd  order polynomial 

without constraint by the 

probable maximum 

precipitation (PMP) 

PN Chen et al. (2015) 

 

3.2.5. Statistical Evaluation of SWGs 

In this section, we evaluate the skill of SWGs in terms of simulating the statistical 

characteristics of the full distribution of daily precipitation as well as monthly and annual scale 

for all six watersheds.  

3.2.5.1. Daily Precipitation Characteristics 

As SWGs simulate the daily precipitation occurrence first and then amount separately, 

we evaluate each component independently by estimating following statistical metrics for 

observed and simulated time series for each watershed. 

Precipitation Occurrence  

Markov chain-based models with different levels of complexity, viz. first (MC1), second 

(MC2) and third order (MC3), are compared with observations with respect to reproducing the 

frequency of wet days per month and the distributions of wet and dry spell lengths. We compare 

observed and simulated means and standard deviations of the number of wet days per month for 

each watershed (Figure 3.3). Wet (dry) spell lengths are defined as the number of consecutive days 

with precipitation more (less) than the threshold value. Hence, mean, standard deviation and 99th 

percentile (Q99) of wet and dry spells are evaluated. (Figure 3.4 and Figure 3.5). Based on these 

metrics, it is found that no significant improvement is achieved by increasing the order of the MC 

model; the performance of the three MC models is comparable. This result agrees with earlier 

work. For example, Wilks (1999) found the MC1 broadly appropriate for the central and eastern 

US. Schoof and Pryor (2008) also found the MC1 outperforms the MC2 and MC3 for the major 

part of the US including the north-eastern region. Therefore, under the principle of parsimony, 

only MC1 is used in subsequent sections of this analysis. 
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Figure 3.3.  Mean and standard deviation (SD) of the observed and generated wet days per 

month from MC1, MC2 and MC3 for a) Cannonsville, b) Pepacton, c) Neversink, d) 

Rondout, e) Ashokan and f) Schoharie. 

 
 

 

Figure 3. Mean and standard deviation (SD) of the observed and generated wet days per month from MC1, MC2 and MC3 

for a) Cannonsville, b) Pepacton, c) Neversink, d) Rondout, e) Ashokan and f) Schoharie. 

(a) (b) 

(c) (d) 

(e) (f) 



2016 Water Quality Modeling Annual Report 

 

24 

 

 

Figure 3.4.  Mean and standard deviation of the observed and generated wet spell lengths from 

MC1, MC2 and MC3 for a) Cannonsville, b) Pepacton, c) Neversink, d) Rondout, e) 

Ashokan and f) Schoharie. 

 
 

 

Figure 4. Mean and standard deviation of the observed and generated wet spell lengths from MC1, MC2 and MC3 for a) 

Cannonsville, b) Pepacton, c) Neversink, d) Rondout, e) Ashokan and f) Schoharie. 

(a) (b) 

(c) 
(d) 

(e) (f) 
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Figure 3.5.  Mean and standard deviation of the observed and generated dry spell lengths from 

MC1, MC2 and MC3 for a) Cannonsville, b) Pepacton, c) Neversink, d) Rondout, e) 

Ashokan and f) Schoharie. 

Precipitation Amount 

Precipitation amount is evaluated based on mean, median, standard deviation, interquantile 

range and skewness coefficient of daily precipitation amount (including wet days only) (Figure 

3.6). While all seven models adequately simulate mean daily precipitation for all watersheds, their 

skills vary in reproducing other statistics. For example, the EXP and GAM distributions 

consistently overestimate the median and underestimate the standard deviation, while EXPP and 

PN considerably overestimate both median and standard deviation for most watersheds.  

 

 

Figure 5. Mean and standard deviation of the observed and generated dry spell lengths from MC1, MC2 and MC3 for a) 

Cannonsville, b) Pepacton, c) Neversink, d) Rondout, e) Ashokan and f) Schoharie. 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 3.6.  Mean, median standard deviation (SD), interquantile range (IQR) and skewness 

coefficients (Skew) of observed and generated daily precipitations from seven models 

(EXP, GAM, SN, MEXP, EXPP, k-NN and PN) for a) Cannonsville, b) Pepacton, c) 

Neversink, d) Rondout, e) Ashokan and f) Schoharie. 

As expected the skewness coefficient of observed daily precipitation is greater than 3 for 

most watersheds, implying that the distribution of daily precipitation is extremely skewed to the 

right. Skewness is underestimated by EXP and GAM and overestimated by EXPP and PN 

(especially for the Schoharie watershed); while SN, MEXP and k-NN adequately simulate the 

skewness. To understand this issue in more detail, the cumulative density functions (cdf) of 

observed and simulated time series are estimated. The cumulative probabilities of the observed 

and simulated daily precipitation are estimated. The cumulative probabilities are plotted in 

probability scale such that the values at the tails of the distribution can be more easily visually 

 

 

Figure 6. Mean, median standard deviation (SD), interquantile range (IQR) and skewness coefficients (Skew) of observed 

and generated daily precipitations from seven models (EXP, GAM, SN, MEXP, EXPP, k-NN and PN) for 

a) Cannonsville, b) Pepacton, c) Neversink, d) Rondout, e) Ashokan and f) Schoharie. 

(a) (b) 

(c) (d) 

(e) 
(f) 
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analyzed. The models tend to perform well at smaller precipitation values. In contrast, for the large 

events the most models perform more poorly: EXP and GAM both underestimate, EXPP and PN 

generate unreasonably large values and overestimate skewness. This type of overestimation for 

these models is also reported by other studies for different locations (e.g. Wilks and Wilby, 1999; 

Chen and Brissette, 2014). However, the SN, MEXP and k-NN capture the most prominent 

statistical characteristics of the observed cdf for both lower and higher categories (Figure 3.7).  

To quantify relative model accuracies, mean absolute percentage error (MAPE, 

mean(abs(sim-obs)/obs)*100), which is the average of the absolute values of the percentage 

errors of each watersheds, is calculated for each metric (Table 3.4). On the basis of the 

magnitude of MAPE, Lewis (1982) developed different classes to judge the accuracy of the 

model, viz., ‘Highly Accurate’ (less than 10%), ‘Good Forecast’ (11% to 20%), ‘Reasonable 

Forecast’ (21% to 50%), ‘Inaccurate Forecast’ (51% or more). The model that produced lower 

MAPE provides a better representation of the rainfall characteristics. It is seen that except for 

mean and interquartile range, the MAPE values for EXP and GAM shows a ‘reasonable 

forecast’. With values less than 10% for all the statistics, SN, MEXP and k-NN fall in ‘highly 

accurate’ category. EXPP and PN also perform ‘highly accurate’ except for skewness coefficient 

which MAPE values indicate ‘inaccurate forecast’. With regard to skewness, only SN, MEXP, 

and k-NN fall in the ‘highly accurate’ category. 

Table 3.4.  Mean absolute percentage error (MAPE) of generated daily precipitations from seven 

models (EXP, GAM, SN, MEXP, EXPP, k-NN and PN) for all watersheds. 

 EXP GAM SN MEXP EXPP k-NN PN 

Mean 0.28 0.13 1.02 0.33 1.36 0.95 5.96 

Median  27.74 21.91 6.54 6.54 8.83 7.18 11.35 

Standard deviation  22.12 17.88 1.52 1.17 6.89 1.15 9.61 

Interquantile range 3.8 3.95 4.93 4.67 4.55 3.34 3.59 

Skewness coefficients 35.82 30.1 5.07 6.38 124.58 2.07 41.69 

Statistics for n = 60 years 
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Figure 3.7.  Cumulative probability distribution functions of observed and generated daily 

precipitations from seven models (EXP, GAM, SN, MEXP, EXPP, k-NN and PN) for 

(EXP, GAM, SN, MEXP, EXPP, k-NN and PN) for (a) Cannonsville and (b) Ashokan 

watersheds. 

  

 

Figure 7. Cumulative probability distribution functions of observed and generated daily precipitations from seven models 

(EXP, GAM, SN, MEXP, EXPP, k-NN and PN) for (EXP, GAM, SN, MEXP, EXPP, k-NN and PN) for 

(a) Cannosnville and (b) Ashokan watersheds. 

(a.1) (b.1) 

(a.2) 

(a.3) 

(b.2) 

(b.3) 
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Figure 3.8.  Monthly mean precipitation of observed and generated daily precipitations from 

seven models (EXP, GAM, SN, MEXP, EXPP, k-NN and PN) for a) Cannonsville, b) 

Pepacton, c) Neversink, d) Rondout, e) Ashokan and f) Schoharie. 

3.2.6. Monthly and Annual Precipitation Characteristics 

Most of the models simulate the intra-annual pattern of monthly mean precipitation fairly 

well (Figure 3.8).While almost all models underestimate the April mean precipitation and 

overestimate May values, to some extent, MAPE values suggest that all models provide ‘highly 

accurate’ simulations of monthly mean precipitation (MAPE less than 10%) (Table 3.5). All 

models accurately reproduce annual averaged precipitation with MAPE less than 2% (Table 3.5).

 

 

Figure 8.  Monthly mean precipitation of observed and generated daily precipitations from seven models (EXP, GAM, 

SN, MEXP, EXPP, k-NN and PN) for a) Cannonsville, b) Pepacton, c) Neversink, d) Rondout, e) Ashokan 

and f) Schoharie. 

(a) (b) 

(c) (d) 

(e) (f) 
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Table 3.5.  Mean absolute percentage error (MAPE) of generated precipitation for each month and annual from 

seven models (EXP, GAM, SN, MEXP, EXPP, k-NN and PN) for all watersheds. 

 EXP GAM SN MEXP EXPP k-NN PN 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Jan 2.52 28.36 2.81 26.08 2.11 19.03 2.08 17.76 4.34 16.85 2.25 5.26 3.01 14.14 

Feb 1.17 17.15 1.74 13.55 2.17 7.19 2.80 5.26 2.95 10.17 1.51 1.74 3.26 6.52 

Mar 3.11 7.38 1.74 7.30 1.21 7.24 2.31 8.02 3.23 12.55 1.17 11.92 4.46 18.03 

Apr 4.89 16.26 5.41 15.26 6.64 5.38 6.80 6.14 5.64 5.62 2.36 6.06 4.39 4.77 

May 4.27 18.88 5.60 16.27 4.73 9.79 5.36 11.13 5.43 9.58 5.64 4.62 6.45 7.47 

Jun 2.23 25.51 2.82 24.16 3.65 16.20 2.27 13.78 2.13 14.26 2.47 4.46 0.68 9.48 

Jul 1.60 11.62 1.04 11.38 2.99 6.37 0.85 4.39 0.67 6.57 0.90 11.33 1.84 5.46 

Aug 2.09 21.71 1.83 17.22 4.08 8.89 2.33 7.81 1.71 7.84 2.43 11.03 1.13 6.54 

Sep 1.94 18.65 1.53 17.81 2.72 7.28 1.32 9.23 3.35 7.78 3.60 3.34 4.77 7.39 

Oct 1.69 28.63 0.96 25.73 2.14 17.87 1.95 15.56 4.77 12.41 2.36 5.35 2.48 10.00 

Nov 1.60 7.90 3.39 7.68 3.43 14.47 1.94 15.35 2.58 22.13 0.76 21.28 1.58 21.77 

Dec 2.43 20.23 2.41 20.43 1.85 8.61 2.56 9.94 5.18 6.93 1.29 3.06 4.22 6.26 

Annual 0.40 29.06 0.32 27.25 1.08 18.95 0.39 17.86 1.67 12.15 0.48 9.05 1.94 13.01 
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Model simulations of variability as represented by the standard deviation of monthly and 

annual values are poor (Table 3.5). The underestimation of the inter-annual variability of 

monthly and annual precipitation by all the models is expected, and can be attributed to the lack 

of any terms in the models to represent low frequency variation. The inclusion of such low 

frequency variability has been addressed in the literature (Chen et al. 2010), and will be 

addressed for our study region at a future date. It is our intention here to focus this report on 

other aspects of the statistical simulation, and to incorporate low frequency variability at a future 

time. 

3.2.7. Performance of SWGs for Extreme Precipitation Events 

As the study area has experienced an increased frequency of extreme precipitation events 

in recent decades, it is important to evaluate the abilities of SWGs to simulate extreme event 

probabilities. Here we apply a variety of metrics in order to evaluate model simulations in detail.  

Daily Extreme Events 

The first set of metrics we employ include quantile based metrics of daily extreme event 

magnitude: the 95th (Q95) and 99th (Q99) percentiles (Figure 3.9). While all models provide 

reasonable estimates of Q95, Q99 is underestimated by EXP and GAM and tends to be 

overestimated by PN. In terms of MAPE, all models except EXP and GAM perform ‘highly 

accurate’ simulation for both Q95 and Q99 (Table 3.5). 
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Figure 3.9. 95th (Q95) and 99th (Q99) of observed and generated daily precipitations 

from seven models (EXP, GAM, SN, MEXP, EXPP, k-NN and PN) for a) 

Cannonsville, b) Pepacton, c) Neversink, d) Rondout, e) Ashokan and f) 

Schoharie. 

Seasonal Extreme Events 

Matonse and Frei (2013) have studied the nature of the seasonal cycle of extreme 

precipitation events and found it is unimodal, with peak values occurring between August and 

October, including but not limited to the direct influence of tropical storms and hurricanes in this 

region. Following Matonse and Frei (2013), boxplots of all daily precipitation values equal to or 

greater than the 95th percentile for each watershed are evaluated.  Figure 3.10 shows the results 

for the Cannonsville and Ashokan watersheds. For all the watersheds, EXP and GAM 

 

 

Figure 9. 95th (Q95) and 99th (Q99) of observed and generated daily precipitations from seven models (EXP, GAM, SN, 

MEXP, EXPP, k-NN and PN) for a) Cannonsville, b) Pepacton, c) Neversink, d) Rondout, e) Ashokan and 

f) Schoharie. 

(a) (b) 

(c) (d) 

(e) 
(f) 
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underestimate the median and interquartile range compare to the observed boxplot. The 

remaining models perform well in capturing the observed pattern, though the SWG have more 

values bigger than the observed, especially for EXPP and PN. This may be due to their 

overestimation of high values towards the end of the tail of the distribution.  

 

Figure 3.10.  Boxplot of daily precipitation values equal to or greater than 95th percentile of 

observed and generated precipitation for Aug-Sep-Oct from seven models (EXP, GAM, 

SN, MEXP, EXPP, k-NN and PN) for (a) Cannonsville and (b) Ashokan watersheds. 

Extreme Events Indices 

A set of 27 climate extreme indices based on daily temperature and precipitation has been 

proposed by The Expert Team on Climate Change Detection and Indices (ETCCDI) (Klein Tank 

et al., 2009). Due to their robustness and straightforward calculation and interpretation, these 

indices are popular in recent years for numerous applications in climate research (Sillmann et al. 

,2013). Following Zhang et al. (2011), SWG performance based on the four extreme event indices 

associated with large precipitation events is evaluated. These indices are: 

 RX1day: Maximum 1-day precipitation per year. 

 RX5day: Maximum consecutive 5-day precipitation per year. 

 R95p: Annual total precipitation due to events exceeding the 95th percentile of the 

entire data period (1950-2009). 

 R99p: Annual total precipitation due to events exceeding the 99th percentile of the 

entire data period (1950-2009). 

Each index is calculated for each year individually, and yearly results are presented in 

box and whisker plots.  Results for the Cannonsville and Ashokan watersheds are shown in 

 

Figure 10. Boxplot of daily precipitation values equal to or greater than 95th percentile of observed and generated 

precipitation for Aug-Sep-Oct from seven models (EXP, GAM, SN, MEXP, EXPP, k-NN and PN) 

for (a) Cannosnville and (b) Ashokan watersheds. 

 

(a) 
(b) 
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Figure 3.11 and Figure 3.12; results are similar for the other watersheds. RX1day and RX5day 

are underestimated by EXP and GAM while other models perform better. For Cannonsville, all 

models overestimate R95p and R99p for Ashokan results are more mixed. 

 

Figure 3.11.  Boxplot of (a) RX1day, (b) RX5day, (c) R95p and (d) R99p of observed and 

generated daily precipitations from seven models (EXP, GAM, SN, MEXP, EXPP, k-NN 

and PN) for Cannonsville watershed. 

 

 

Figure 11. Boxplot of (a) RX1day, (b) RX5day, (c) R95p and (d) R99p of observed and generated daily 

precipitations from seven models (EXP, GAM, SN, MEXP, EXPP, k-NN and PN) for Cannonsville 

watershed.  

 

(a) (b) 

(c) (d) 
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Figure 3.12.  Boxplot of (a) RX1day, (b) RX5day, (c) R95p and (d) R99p of observed and 

generated daily precipitations from seven models (EXP, GAM, SN, MEXP, EXPP, k-NN 

and PN) for Ashokan watershed. 

  

 

Figure 12. Boxplot of (a) RX1day, (b) RX5day, (c) R95p and (d) R99p of observed and generated daily precipitations 

from seven models (EXP, GAM, SN, MEXP, EXPP, k-NN and PN) for Ashokan watershed. 

 

(a) (b) 

(c) (d) 
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Extreme Value Theory Analysis 

We applied extreme value theory (EVT) to evaluate the abilities of SWG to simulate the 

probabilistic structure of observed extreme precipitation events. The general extreme value 

(GEV) distribution is commonly used to fit block maxima values. The GEV distribution is 

defined as 

 
𝐺 (𝑥; 𝜇; 𝜎; 𝜉) = exp [− (1 +

𝜉 (𝑥−𝜇)

𝜎
)

−1
𝜉⁄

] where  1 +
𝜉 (𝑥−𝜇)

𝜎
> 0 (3.5) 

for the location -∞ < µ < ∞, scale σ > 0 and shape -∞ < ξ < ∞ parameters.  The GEV  distribution 

was fitted to the annual maximum precipitation time series to estimate precipitation magnitudes 

associated with return periods of 50, 75 and 100 years (Figure 3.13). In GEV the return level 

associated with the extreme events can be calculated in three steps: 1) calculate the annual 

maximum rainfall; 2) fit a GEV distribution; 3) estimate the return level by calculating the 

quantiles of the GEV distribution (Coles, 2001). 
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Figure 3.13.  Annual maximum daily precipitation levels at the 50, 75 and 100 year return 

periods of observed and generated daily precipitations from seven models (EXP, GAM, 

SN, MEXP, EXPP, k-NN and PN) for a) Cannonsville, b) Pepacton, c) Neversink, d) 

Rondout, e) Ashokan and f) Schoharie. 

SN, MEXP and k-NN are superior to the other distributions in simulating extreme value 

statistics. EXP and GAM models consistently underestimate precipitation amount corresponding 

to all return periods. EXPP and PN do not accurately reproduce the upper tail of the observed 

daily precipitation due to their exceptional overestimation. In view of MAPE, SN, MEXP and k-

NN fall in either the ‘highly accurate’ or ‘good forecast’ category (Table 3.6). On the other hand, 

EXP, GAM, EXPP and PN provide ‘reasonable forecasts’. 

 

 

Figure 13. Annual maximum daily precipitation levels at the 50, 75 and 100 year return periods of observed and generated 

daily precipitations from seven models (EXP, GAM, SN, MEXP, EXPP, k-NN and PN) for a) 

Cannonsville, b) Pepacton, c) Neversink, d) Rondout, e) Ashokan and f) Schoharie. 

(a) (b) 

(c) (d) 

(e) (f) 
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Table 3.6.  Mean absolute percentage error (MAPE) of 95th (Q95) and 99th (Q99) of observed 

and generated daily precipitations from seven models (EXP, GAM, SN, MEXP, EXPP, 

k-NN and PN) for all watersheds. 

 EXP GAM SN MEXP EXPP k-NN PN 

Q95 13.82 10.71 2.08 2.25 1.32 3.01 2.83 

Q99 24.04 19.61 1.8 1.85 1.71 2.76 8.68 

Table 3.7.  Mean absolute percentage error (MAPE) of 50, 75 and 100 year return level of 

observed and generated annual maximum precipitation from seven models (EXP, GAM, 

SN, MEXP, EXPP, k-NN and PN) for all watersheds. 

Return Level EXP GAM SN MEXP EXPP k-NN PN 

50 year  40.06 33.76 5.45 9.93 43.86 6.71 38.89 

75 year 41.36 34.77 6.23 11.17 51.31 6.5 43.44 

100 year 42.27 35.48 6.78 12.07 56.92 6.37 46.78 

 

Summary and Concluding Remarks  

This work documents the application and tests the skill level of several SWGs over six 

watersheds that comprise the primary source for New York City Water Supply System. This 

study compares the skill of three models for generating precipitation occurrence and seven 

models for simulating precipitation amount in the study area. Precipitation occurrence is 

adequately simulated by first, second, and third order MC models for all watersheds. Considering 

that no significant improvement is achieved when increasing the order of the MC model, and that 

the number of parameters in an MC model increases exponentially with each increase in order 

(Wilks, 1999), under the principle of parsimony the first order MC model (MC1) is selected to 

simulate precipitation occurrence. 

Of the seven models evaluated for generating daily precipitation amount (Table 3.3), five 

are based on parametric distributions, one is based on a semi-parametric k-nearest neighbor 

bootstrapping technique, and one is based on a 2nd degree polynomial curve-fitting approach. 

Parametric distribution models include three single distributions (1-parameter EXP, 2-parameter 

GAM and 3-parameter SN), one compound distribution (3-parameter MEXP) and one hybrid 

distribution (3-parameter EXP-GP). While all these models reasonably reproduce mean daily 

precipitation for all the watersheds, their skills differ with regard to standard deviation, skewness 

coefficient and extreme characteristics of daily precipitation. With the exception of SN, the other 

two single distributions (EXP and GAM) consistently underestimate the standard deviation and 

skewness coefficient of daily precipitation for all watersheds because they are unable to preserve 

the shape of the daily precipitation distribution at the tail. As a result, these two distributions also 

underestimate the extreme indices and return values of annual maxima. The performance of SN 

is consistently better than the other single distributions in all respects. Such improved 

performance may be attributable to the inclusion of additional parameters which increases the 

model’s flexibility, and also to the use of method of moment rather than maximum likelihood to 



3. Modeling the Impacts of Climate Change 

 

39 

 

estimate model parameters (Chen and Brissette, 2014). As in earlier studies (Wilks, 1999; Chen 

and Brissette, 2014) the compound distribution MEXP performed better than single distributions 

except SN perhaps because it specifically takes the entire range of precipitation distribution into 

account, not just the bulk. The EXPP distribution has the unfortunate tendency to overestimate 

extremes, sometimes by an order of magnitude. This is due to the fact that when the generalized 

Pareto distribution is used to simulate the tail of the daily precipitation distribution, a few cases 

of unreasonably large values are typically generated (Li et al., 2013). Chen and Brissette (2014) 

described this issue in detail in their study. The k-NN method consistently performs better at 

reproducing the observed precipitation characteristics including extreme events for all the 

watersheds. Like EXPP, PN also overestimates precipitation amount in terms of standard 

deviation, skewness and extremes. It may be that the 2nd degree polynomial is not the perfect 

choice to fit the Weibull experimental frequency distribution to observe daily precipitation at this 

study location, though an evaluation of other polynomials, which have not previously appeared 

in the literature, is beyond the scope of this analysis. However, for simulating monthly and 

annual mean precipitation, all models are quite comparable though they are unable to reproduce 

the variability as they do not take into account the low-frequency component of climate 

variability. 

In conclusion, though our results are fairly typical in the sense that some models perform 

better with regard to some metrics, while others are superior with regard to other metrics, we are 

able to identify three models (SN, MEXP, and k-NN) that, when combined with the first order 

MC model, consistently reproduce the observed statistics of daily precipitation, including 

statistics of the extreme tail of the distribution. However, as the k-NN method is based on a 

resampling technique, k-NN is inappropriate for use in climate change impact studies due to its 

inability to produce any values that are not found in the observations, nor can it extrapolate to 

produce values that are plausible but outside of the observed range (Chen and Brissette; 2014). 

Therefore, the identification of two models (SN and MEXP) that are appropriate for use in this 

region will be valuable in future vulnerability studies. 

The application of these models in vulnerability studies will require at least two additional 

analyses. Several studies have examined the inability of SWGs to represent the low-frequency 

variability of climatic parameters; an additional analysis will evaluate several known approaches 

to incorporate such variability into SWGs (Chen et al. 2010; Khazaei et al. 2013). Subsequently, 

vulnerability studies will be performed by coupling SWGs with a response model (or a series of 

response models) to facilitate a more complete documentation of system vulnerabilities. A 

number of researchers have been developing these so-called “bottom-up” approaches whereby 

SWGs are used in conjunction with GCM climate scenarios and response models to evaluate 

water system vulnerabilities to extreme hydrological events including storms, floods, and 

droughts (Wilby and Desai, 2010; Brown et al., 2011; Prudhomme et al. 2010, 2015). The 

advantage of such approaches is that they allow the development of a quantitative and potentially 

Bayesian approach that includes future scenarios that are outside the range of GCM predictions, 

allowing water managers to consider potential future conditions when making decisions.   
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3.3. Evaluating a Stochastic Weather Generator (SWG) using simulated 

streamflow responses to synthetic weather time series 

3.3.1. Introduction 

The New York City water supply is currently the largest unfiltered drinking water utility 

in the US serving over 9 million consumers. Historically about 90% of this water is from the 

West of Hudson (WOH) watersheds (Figure 3.14). Recent studies have reported increasing 

trends in total precipitation, and in the frequency and magnitude of extreme precipitation events 

in WOH watersheds (Matonse and Frei 2013). The potential effects of these trends may pose 

challenges for both water quality (such as increased sediment and nutrient loading) and quantity 

(such as reservoir storage and management). NYC DEP’s Climate Change Integrated Modeling 

Project (CCIMP) is exploring climate impacts on water resources by evaluating the effects of 

future climate change on the quantity and quality of water in the NYC water supply, and to 

evaluate how such effects could influence the use and operation of the water supply (DEP 2014). 

Phase I of CCIMP followed a “top down” approach with the goal of making an initial estimate of 

climate change impacts using available General Circulation Model (GCM) data sets and DEP’s 

available suite of watershed, reservoir, and system operation models. The general findings of 

Phase I included a projected shift in the timing of spring snowmelt from a distinct peak in late 

March and April to a more consistent distribution throughout the winter and autumn. This 

projected shift is a function of increased temperatures, which will cause less precipitation to fall 

as snow and faster melting of the snowpack (Zion et al. 2011).  

In Phase I, climate change scenarios were derived from GCMs using simple manipulation 

of current climate observations (e.g., Change Factor Methodology, or CFM, (Anandhi et al. 

2011)).  Using the CFM to downscale GCM output leaves long-term historical patterns of the 

timing of storm events unchanged, even as the magnitude of these events change based on 

projected seasonal changes in climate. In addition, the monthly change factor methodology does 

not account for changes in the frequency or duration of storm events or changes in inter-storm 

periods. It is widely accepted that extreme hydrologic events, including floods and droughts, are 

responsible for a vast majority of water resources problems including a disproportionate 

transport of nutrients and sediments into receiving waterbodies. The ongoing Phase II of CCIMP 

is exploring the use of “bottom-up” or vulnerability based methods to explore climate impacts on 

water resources with a focus on extreme hydrologic events. Stochastic weather generators 

(SWGs) are an integral component of the bottom up approach. The objective of this study was to 

use the stochastic weather generator model developed for the region (Section 3.2) and a 

watershed model to simulate streamflow responses to synthetic weather time series in the WOH 

watersheds. 
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Figure 3.14. Location of six WOH watersheds of NYC water supply. 

 

3.3.2. Methods 

Sensitivity Surface 

Sensitivity surfaces can be used to depict system responses to a range of climate 

scenarios. As a proof of concept of this approach, we generated a streamflow sensitivity surface 

for one of the WOH watersheds by changing the observed precipitation (P) and air temperature 

(T) values by a certain value (-25% to +25% for P and -1oC to +7oC for T), and using it as input 

to the calibrated Generalized Watershed Loading Function (GWLF) -Variable Source Area 

(VSA) watershed model. Specific event periods such as droughts and/or extended flood events 

can be identified on a response surface in addition to water quality parameters of interest (Figure 

3.14).  
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The GWLF-VSA model 

The GWLF-VSA (Schneiderman et al. 2007) is a lumped parameter watershed model 

based on the original GWLF model (Haith and Shoemaker 1987) that simulates daily streamflow 

and monthly sediment and nutrient loads at a watershed scale. Runoff is calculated using the 

USDA Soil Conservation Service (SCS) runoff Curve Number (CN) methodology. The CN is an 

empirical parameter for estimating direct or infiltration excess runoff. The CN values can range 

from 30 to 100 depending on the hydrologic soil group, land cover type, hydrologic condition, 

and antecedent runoff condition (Rawls et al. 1993). The model simulates streamflow 

contributions from runoff and baseflow. Daily snowmelt is estimated based on temperature 

degree-day, with a daily updating of a single watershed-wide snowpack. Inputs to GWLF 

streamflow model include daily precipitation, air temperature, solar radiation, and relative 

humidity data. One important modification introduced in the VSA version of GWLF 

(Schneiderman et al. 2007) is accounting for surface runoff distribution across the landscape 

based on a saturation-excess interpretation of the SCS Curve Number equation and a topographic 

index of saturation probability. This modification is important since saturation-excess is the 

dominant process for runoff generation in the study region (Frankenberger et al. 1999, Lyon et 

al. 2004, Steenhuis et al. 1995, Walter et al. 2003). The calibrated model has been applied in 

previous studies in NYC watersheds (Matonse et al. 2011, Mukundan et al. 2013). 

Streamflow simulation 

Calibrated GWLF-VSA watershed model was used to simulate daily streamflow for the 

predominantly forested six WOH watersheds for the period from 1950 to 2009 (60 years) using 

observed daily precipitation and air temperature (TMAX and TMIN) data from the cooperator 

stations recognized by the National Climate Data Center, obtained from the Northeast Regional 

Climate Center. The daily precipitation station data is averaged for the entire basin using a 

Thiessen polygon method and is used in the model (Burrough 1986). Potential biases of model 

input due to spatial averaging of precipitation were corrected with a constant multiplicative 

factor used in the calibration process. Watershed-specific synthetic weather (precipitation and air 

temperature) time series for 600 years (10 x observed to avoid biases) was generated using the 

WeaGETS SWG and was used as input to the GWLF-VSA model to simulate streamflow under 

a wide range of hydrologic conditions. Other required climate data including solar radiation and 

relative humidity were computed using a climate interpolation model that uses air temperature 

and precipitation data (MT-CLIM, (Running et al. 1987)). Streamflow simulated using observed 

weather data was compared with simulations using SWG-based synthetic weather time series for 

each of six WOH watersheds. 
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Figure 3.15. A representative sensitivity surface showing changes in streamflow in response to 

relative changes in precipitation and air temperature. Long term average conditions 

(green square), drought of 1960s (red square) and periods of high runoff (blue squares) 

are also marked. 

3.3.3. Results 

Average daily streamflow simulated using observed weather as input was comparable 

with streamflow simulated using SWG weather. The seasonal variation in streamflow was well 
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captured by model runs using both observed and SWG derived weather (Figure 3.16). SWG 

based streamflow showed lesser variability in average daily values, which may be due to 

averaging of relatively large number of daily values (600 yr. vs. 60 yr. with observed weather). 

Peak in annual streamflow hydrograph typically observed during winter in the region were 

consistently lower when using SWG based weather in all six watersheds. Streamflow during this 

period is highly influenced by snowmelt runoff and temperature plays a greater role during this 

period than other months. The observed biases in streamflow are possibly due to the stochastic 

generation of temperatures because different temperature series can alter the hydrologic regime 

by influencing the snowmelt processes as reported by Li et al. (2013). 

Long-term median daily streamflow conditions observed in the WOH watersheds were 

simulated very well using SWG derived weather and was comparable with those derived using 

observed weather as GWLF model input. There was close agreement between the 50th percentile 

streamflow simulated by the SWG and observed weather (Figure 3.17), with R2 and Nash-

Sutcliffe coefficient (NSE) ranging from 0.94 to 0.97 and 0.93 to 0.97, respectively (Table 3.8). 

A similar comparison for the 95th percentile streamflow values representing high streamflow 

events gave R2 and NSE between 0.64 to 0.77 and 0.61 to 0.76 respectively (Table 3.9). These 

performance measures estimated using the two sets of simulations are comparable and acceptable 

considering the random nature of high streamflow events during a year. Clustering of points 

around the 1:1 regression line indicates no systematic bias in the magnitude of events for any of 

the six WOH watersheds (Figure 3.18). The temporal structure of daily streamflow examined 

using a partial auto-correlation function showed consistent pattern in both observed and SWG 

based time series with a strong and significant lag of 1-day, and persisting for up to 10 or 12 

days.  

One of the focus areas in the ongoing CCIMP Phase II “bottom-up” approach is the 

ability to represent extreme streamflow events of different magnitudes and frequency of 

occurrence.  This represents an improvement over Phase I evaluation of climate change effects 

using change factor method on GCM outputs, where only magnitude of events changes, leaving 

the frequency and timing of events unchanged. Figure 3.19 compares the magnitude of annual 

maximum and minimum daily flows simulated using observed and SWG weather. It is clear that 

the SWG model is capable of producing weather and associated streamflow events not produced 

by the observed weather. This was generally consistent for all six WOH watersheds. Figure 3.20 

demonstrates the need for generating longer time series of weather (as in this study) using the 

SWG to capture the observed variability in high streamflow events and produce extreme events 

that are beyond the observed range. In this example for the Ashokan watershed, it can be seen 

that maximum variability in annual maximum daily streamflow was seen in the 8th (out of 10) 

series of 60 yr. SWG weather. 
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Figure 3.16. Simulated daily average streamflow (cm) using 60 yr. observed weather as input 

(blue) and using 600 yr. SWG weather as input (red). 
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Figure 3.17. Comparison of 50th percentile of simulated daily streamflow (cm) using SWG and 

observed weather plotted on a 1:1 regression line. 

Table 3.8. Performance measures for SWG based weather in reproducing the 50th percentile 

simulated daily (n=365) streamflows using observed weather. 

Watershed R2 NSE 

1. Ashokan 0.97 0.97 

2. Cannonsville 0.96 0.96 

3. Neversink 0.95 0.95 

4. Pepacton 0.96 0.95 

5. Rondout 0.97 0.96 

6. Schoharie 0.94 0.93 
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Figure 3.18. Comparison of 95th percentile of simulated daily streamflow (cm) using SWG and 

observed weather plotted on a 1:1 regression line. 

Table 3.9. Performance measures for SWG based weather in reproducing the 95th percentile 

simulated daily (n=365) streamflows using observed weather. 

Watershed R2 NSE 

1. Ashokan 0.64 0.61 

2. Cannonsville 0.72 0.70 

3. Neversink 0.77 0.76 

4. Pepacton 0.74 0.72 

5. Rondout 0.68 0.66 

6. Schoharie 0.71 0.69 
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Figure 3.19. Boxplots showing annual maximum (top) and minimum (bottom) daily 

streamflow (cm) simulated using observed and simulated weather for six WOH 

watersheds. 
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Figure 3.20. Boxplots showing annual maximum (top) and minimum (bottom) daily streamflow 

(cm) simulated using observed (60 yr.) and simulated (60 yr. x 10 SWG) weather for the 

Ashokan watershed. 
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3.3.4. Conclusions and future work 

 Long-term average daily streamflow simulated using the synthetic weather time series 

were comparable to values simulated using observed long-term (1950-2009) weather time 

series; the seasonal variation in streamflow was captured by the SWG. 

 

 Streamflow values based on SWG were comparable to observed weather based 

streamflow under all hydrologic conditions (low, average, and high -flows). 

 

 As expected, the synthetic weather produced extreme hydrologic events (floods) not 

found in streamflow predicted using observed weather; this supports the “bottom-up” 

approach. 

 

 Longer time series of SWG weather (10 times observed in this study) is needed to capture 

the required variability in streamflow and generate extreme hydrological events for 

bottom up analysis. 

 

 In future work we will use GCM output from CMIP-5 (discussed in Section 6.3.2) in 

conjunction with SWG to generate multiple scenarios of changing climate in the region. 

 

 Sensitivity surfaces based on GCM scenarios and model runs will be used to evaluate 

water supply system vulnerability to climate change using an integrated suite of 

watershed-reservoir modeling framework. 
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4. Model Development and Application 

4.1. Predicting saturation-excess runoff distribution with a lumped 

hillslope model: SWAT-HS 

4.1.1. Introduction 

Watershed-scale models are important tools in estimating discharge and non-point 

pollutant loading in reservoirs and river systems. Recent reviews by Borah and Bera (2003), Yang 

and Wang (2010), and Daniel et al. (2011) summarized numerous applications of watershed-scale 

models for simulating flow, soil erosion, sediment and nutrient transport, and for evaluating the 

effect of climate change, land use change, and best management practices (BMPs) in watersheds 

of different sizes with different hydrologic, geologic, and climatic conditions. Since surface runoff 

is the primary mechanism transporting sediments, agricultural chemicals, and pathogens to 

receiving waters, it is essential to identify landscape positions of surface runoff correctly in order 

to estimate pollutant fluxes and properly apply conservation practices to improve water quality 

(Rode et al., 2010). The prediction of areas generating surface runoff depends on the assumed type 

of runoff simulated in the model: infiltration-excess runoff and saturation-excess runoff. 

Infiltration-excess runoff occurs when precipitation intensity exceeds infiltration rate of water in 

the soil (Horton, 1933; Horton, 1940) and can be observed  in arid areas with soil crusts and/or 

seals, surface irrigated fields, paved urban areas, and during storms with very high rainfall 

intensities. Saturation-excess runoff is common in humid, well-vegetated areas (Dunne and 

Leopold, 1978) where soils are well structured and infiltration capacity is high. Saturation-excess 

runoff is generated in Variable Source Areas (VSAs) where the  groundwater table is close to the 

surface during rainfall periods (USDA-SCS, 1972). The location of VSAs depends on topographic 

position in the landscape and soil transmissivity, and their extent varies over time with landscape 

wetness (Dunne and Black, 1970).  

Many models are available that simulate watershed hydrology.  A list of approximately 

100 models is given in http://hydrologicmodels.tamu.edu/models.htm. These models range from 

very complex distributed models (e.g. MIKE SHE (Refsgaard and Storm, 1995)) to simple and 

lumped models (e.g. the Generalized Watershed Loading Function model (GWLF) (Haith and 

Shoemaker, 1987)). They also vary in how they simulate runoff generation. Most models are based 

on infiltration-excess runoff and some are based on saturated-excess runoff or a combination of 

the two, as in MIKE-SHE. Infiltration-excess models use land cover and soil types to determine 

runoff amounts and locations (Bayabil et al., 2010). Since detailed measurements of infiltration 

rates for various land covers is generally lacking, the SCS curve number (CN) method (USDA-

SCS, 1972) is employed. Examples include the Agricultural Non-Point Source Pollution model 

(AGNPS) (Young et al., 1989) and its upgrade, the Annualized Agricultural Non-Point Source 

model (AnnAGNPS) (Bingner and Theurer, 2001); the Hydrologic Engineering Center’s 

Hydrologic Modeling System (HEC-HMS) (Feldman, 2000); the Generalized Watershed Loading 

Functions model (GWLF) (Haith and Shoemaker, 1987), the Storm Water Management Model 

http://hydrologicmodels.tamu.edu/models.htm
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(SWMM) (Krysanova et al., 1998) and the Soil and Water Assessment Tool (SWAT) (Arnold et 

al., 1998).  

There are several studies and watershed-scale models that take into account saturation-

excess runoff and VSA hydrology using different approaches. Some studies (Steenhuis et al. 

(1995); Lyon et al. (2004); Schneiderman et al. (2007)) predicted flow generated from VSAs using 

the re-interpretation of the SCS-CN equation to follow VSA theory. Using a statistical dynamic 

approach, TOPMODEL (Beven and Kirkby, 1979; Quinn and Beven, 1993), the Variable 

Infiltration Capacity (VIC) model (Wood et al., 1992; Liang and Lettenmaier, 1994), the 

Probability Distributed Model (PDM) (Moore, 2007), the Xinanjiang model (Zhao et al., 1995), 

and the Australian Water Balance Model (AWBM) (Boughton, 2004) simulate saturation-excess 

runoff by introducing a statistical distribution of soil water storage capacity by different methods. 

In TOPMODEL, the statistical distribution of storage capacity is a function of topographic index. 

The VIC, PDM, and Xinanjiang models use a Pareto distribution of storage capacity to derive the 

saturated fraction of the watershed without simulating the specific spatial locations of saturated 

areas. Boughton (2004) in the AWBM model divided the watershed into a set of sub-areas of 

increasing storage capacity with areas and storage capacities are determined by analysis of rainfall 

and runoff records. A similar variable bucket approach has been proposed in the variable bucket 

capacity (VBC) model (Sivapalan et al., 1997) as an adaptation of TOPMODEL. In an explicit 

modeling approach, as in the Distributed Hydrology Soil Vegetation Model (DHSVM) (Wigmosta 

et al., 1994), the Soil Moisture Routing model (SMR) (Frankenberger et al., 1999) and MIKE SHE 

(Refsgaard and Storm, 1995; Refsgaard et al., 2010), the watershed is discretized into contiguous 

grids with water explicitly routed from cell to cell based on topography.  

Several efforts have been carried out to include saturation-excess runoff in adaptations of 

the SWAT model. In SWAT-VSA, Easton et al. (2008) used a topographic wetness index to 

redefine HRUs, which distributed overland flow in ways consistent with VSA hydrology by 

redefining the definition of CN and available water content. In SWAT-WB (White et al., 2011), 

saturation deficit was defined based on soil wetness classes determined by the values of soil 

topographic index, and a water balance was applied instead of the CN method to calculate runoff 

as water in excess of local soil water storage capacity. Similar to the original version of SWAT, 

both SWAT-VSA and SWAT-WB do not simulate transfer between HRUs. While both models 

were found to capture the spatial distribution of saturation-excess runoff, the underlying 

mechanism of a water table that rises to the surface creating saturated conditions and saturation-

excess runoff was not incorporated into either model. Recent efforts to incorporate landscape 

routing into SWAT may improve SWAT’s ability to simulate VSA hydrology. Arnold et al. (2010) 

introduced a hillslope approach for SWAT that allows flow routing between three landscape units, 

i.e., divide, hillslope, and valley bottom. Bosch et al. (2010) tested this SWAT landscape model 

in a low-gradient coastal plain watershed and showed that average annual surface runoff agreed 

satisfactorily with observations, but monthly simulated results differed significantly from 

measurements and estimates of groundwater flow were greater than expected. It was concluded 

that the landscape model may require additional details to properly describe the interactions 

between soil surface, vadose zone, and groundwater. Recently Rathjens et al. (2015) introduced a 

fully distributed grid-based version of the SWAT landscape model, which incorporated the 

hillslope approach of Arnold et al. (2010) in simulating landscape flow routing between grids. 
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Rathjens et al. (2015) noted that because the curve number was used, the model seemed unable to 

represent temporal variations in flow processes related to saturation conditions in the 334 km2 

Little River Watershed near Tifton, Georgia, USA.  Because data for operating and evaluating a 

detailed grid-based model are not always available, the grid-based SWAT landscape model is most 

efficient for small-scale and data-rich watersheds.   

Models such as VSLF (Schneiderman et al., 2007), SWAT-VSA (Easton et al., 2008) and 

SWAT-WB (White et al., 2011) developed for hilly or mountainous landscapes where saturation-

excess runoff is dominant fell short because the uplands were not connected with the valley bottom. 

The distributed “connected” versions of SWAT (Arnold et al., 2010; Rathjens et al., 2015) use the 

CN method, and therefore do not predict runoff by saturation excess. The VIC (Wood et al., 1992; 

Liang and Lettenmaier, 1994), PDM (Moore, 2007), and Xinanjiang models (Zhao et al., 1995) 

cannot predict the location of saturated areas. These three models, as well as the TOPMODEL 

focus on flow modeling while their ability to model water quality is limited. 

The objective of this study is to develop a computational and data efficient model that can 

represent saturation-excess runoff and predict locations generating this type of runoff in hilly and 

mountainous landscapes with restrictive layers and shallow soils. This model can then be the basis 

for water quality and erosion management models where identifying the location of the runoff is 

critical. We chose to modify the SWAT model because SWAT is the most widely used watershed 

model that predicts flow and pollutant loads from non-point sources to receiving waters under 

varying scenarios of land use, management, and climate change (Gassman et al., 2007; Arnold et 

al., 2010; Bosch et al., 2010). Its free and open source code give opportunities for users to access, 

understand and adapt the model to specific case studies as well as improve the model. Although 

SWAT is a distributed model that simulates hydrological and water quality processes at the level 

of Hydrological Response Unit (HRU), a unique combination of land use, soil, and slope, SWAT 

is a computational and data efficient model due to its simple conceptual hydrological approach. 

Therefore, SWAT has been applied to many watersheds from small to large drainage areas (<10 – 

500,000 km2) (Douglas-Mankin et al., 2010). With the availability of routines modeling 

management practices, SWAT is a useful tool to evaluate the effect of best management practices 

in agricultural dominated watersheds.  

Our modeling approach was inspired by the work of Dooge (1986), Dooge (2005), Savenije 

(2010), and McDonnell et al. (2007) in that the underlying heterogeneous and complex spatial 

processes in the landscape are self-organizing. Our landscape methodology is process-based and 

avoids the fine detail of the Darcy scale (Savenije, 2010; Montanari and Koutsoyiannis, 2012; 

Beven and Young, 2013). Due to the predominant topographical and gravitational influences on 

natural slopes (Hewlett, 1961), there is a regularity in the wetting pattern of humid catchments, as 

shown by other researchers (Boughton, 1989; Grayson and Blöschl, 2001; Sayama et al., 2011) 

and our own experience (Schneiderman et al., 2007; Bayabil et al., 2010; Tilahun et al., 2014). 

Based on this evidence, we divided the watershed into conceptual groups of soil moisture storage 

units with similar wetting up characteristics. These are called wetness classes. In addition, we pose 

(in agreement with Savenije (2010)) that for shallow soils over a restrictive layer found in most 

hilly or mountainous landscapes, lateral flow occurs when the moisture content is above field 

capacity and when macropores are active in moving the water down the hillslope. This flow 
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process is necessarily nonlinear as the conductivity is greatest at the surface and decreases with 

depth (Brooks et al., 2004; Ameli et al., 2016).  

We developed a modified SWAT version, referred as SWAT-Hillslope (SWAT-HS). 

SWAT-HS improves the simulation of saturation-excess runoff by redefining HRUs based on 

wetness classes, and by introducing a “surface aquifer” which is a non-linear reservoir with the 

ability to route interflow from “drier” to “wetter” wetness classes. We tested SWAT-HS in the 

Town Brook watershed in the upper reaches of the West Branch Delaware River in the Catskill 

Mountains where rainfall intensities rarely exceed infiltration rates and saturation-excess runoff is 

common (Walter et al., 2003). 

4.1.2. Methodology 

4.1.2.1. Description of SWAT-HS 

In this section we describe the SWAT-HS model and compare it with the original SWAT 

(SWAT2012). SWAT-HS modifies primarily the subroutines related to surface and lateral runoff 

generation in SWAT2012, by changing the definition of HRUs and introducing a surface aquifer. 

Figure 4.1 illustrates the differences in hydrological approach between SWAT2012 and SWAT-

HS. In SWAT2012, surface runoff is either calculated with the curve number or the Green-Ampt 

method. In SWAT-HS the curve number is replaced by a saturation-excess runoff calculation and 

the built-in Green-Ampt routine of SWAT is employed for the few cases where the rainfall 

intensity is greater than the infiltration capacity of the soils.  
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Figure 4.1 Difference in hydrological processes between the original SWAT and SWAT-HS 

 

4.1.2.1.1. Hydrological response units, wetness classes and sub-basins 

Both SWAT2012 and SWAT-HS divide a watershed into sub-basins, each of which is then 

split into multiple Hydrological Response Units (HRUs) (Neitsch et al., 2011). The HRU is the 

basic modeling unit in the SWAT model. In SWAT2012, HRUs are unique combinations of soil, 

land use, and slope (Neitsch et al., 2011). In SWAT-HS, a watershed is further divided into 

multiple ‘wetness’ classes that are assigned with increasing soil water storage capacity from 

Original SWAT 

SWAT-HS 
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downslope to upslope areas. Soil water storage capacity is defined as the amount of water that can 

be stored above field capacity in the soil before the soil becomes saturated. The downslope wetness 

classes have lower storage capacities (which means they are wetter) while the further upslope ones 

have greater capacities to store water before runoff occurs (which mean they are drier). Based on 

this division, HRUs in SWAT-HS are redefined as unique combinations of soil, land use, slope, 

and wetness class. 

SWAT-HS gives flexibility for users to divide the simulated watershed into wetness 

classes. In this study, we used topographic index (TI) as one of the possible techniques. The TI 

value, calculated for each grid cell, is defined as the quotient of the amount of water delivered to 

the cell in the landscape and the ability to transmit water through the soil at that cell (Beven and 

Kirkby, 1979; Beven, 1986): 

 













DK)tan(
lnTI

s


  (4.1) 

where TI is the soil topographic index [unit: ln(d m -1)], α is upslope contributing area per 

unit contour length (unit: m), )tan(  is the local surface topographic slope, sK  is the mean 

saturated hydraulic conductivity of the soil (unit: m d-1), and D is the soil depth (unit: m). 

The downslope wetness classes correspond to greater TI values while the further upslope 

ones have lower TI values.  

 

The soil water storage capacity, or edc, is assigned for each wetness class. The distribution 

of the soil water storage capacities is set to follow a Pareto distribution. This Pareto distribution 

was used first in the Xinanjiang model (Zhao et al., 1980; Zhao et al., 1995), then in the VIC model 

(Wood et al., 1992; Liang and Lettenmaier, 1994) and the PDM model (Moore, 2007) to define 

the statistical distribution of storage capacity within a watershed. These three models simulate 

saturation-excess runoff and estimate the saturated fraction of the watershed, however, they are 

not able to identify the specific spatial locations of saturated areas. SWAT-HS overcomes this 

shortcoming by categorizing the watershed into as many as 10 wetness classes, each of which has 

a specific spatial location, and then applying the Pareto distribution to define the distribution of 

soil water storage capacities for wetness classes, which is expressed the below equation and Figure 

4.2.  

    b

ii ASedc
/1

max 11   (4.2) 

where edc
i
 is the soil water storage capacity in wetness class i, Smax is the maximum soil water 

storage capacity of the watershed, Ai is the fraction of the watershed for which the storage capacity 

is less than edc
i
, and b is the shape parameter.  The lower edc values are assigned to the wetness 

classes located in downslope areas (“wetter” wetness classes) while higher edc values are assigned 

to wetness classes in upslope areas (“drier” wetness classes). 
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Figure 4.2. Distribution of soil water storage capacity of wetness classes. 

 

4.1.2.1.2. Surface aquifer 

In SWAT2012, HRUs in a sub-basin are individual units that are routed to the stream 

without interaction with each other. In SWAT-HS, interaction is created between wetness classes 

through a “surface aquifer” so that downslope wetness classes can receive input from upslope 

wetness classes. The surface aquifer in SWAT-HS represents a part of the soil profile that 

accumulates water above field capacity, controls soil saturation, provides water for plant use, and 

influences biogeochemical transformation related to saturated soil conditions. The surface aquifer 

connects all wetness classes across the hillslope and transmits subsurface flow that is generated 

from this aquifer (known as lateral flow in SWAT) laterally through the hillslope from “drier” 

(upslope) to “wetter” (downslope) wetness classes. 

The behavior of the surface aquifer in SWAT-HS is based on the assumption that the 

subsurface flow system is in quasi-equilibrium (as in TOPMODEL and other statistical-dynamical 

hydrologic models, see Wigmosta and Lettenmaier (1999).  By this assumption, the water table as 

a whole moves up and down as the average depth of water in the aquifer changes, while the shape 

of the water table in relation to the ground surface is constant over time. 
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Figure 4.3 illustrates the behavior of the water table in the surface aquifer in a hillslope 

with 10 wetness classes. The distribution of soil water storage capacities of wetness classes (Figure 

4.2) results in the shape of water table across the hillslope shown as the blue line in Figure 4.3. 

Supposing this is the initial water table, when there is hydrological input, the water table will rise 

to the red line (water table after rain). The amount of water that is above the soil surface becomes 

saturation-excess runoff, and the remaining becomes infiltration to the soil. Based on the amount 

of water stored in the surface aquifer, lateral flow is estimated by a non-linear equation and 

redistributed to the HRUs in the wetness classes that are saturated. 

 

Figure 4.3. Illustration of behavior of water table in surface aquifer in SWAT-HS. 

4.1.2.1.3. Calculation of water fluxes and moisture content 

Similar to SWAT2012, SWAT-HS is run on a daily time step. Most changes in SWAT-HS 

are in the calculation of lateral fluxes (both interflow and surface runoff) when the soil is above 

field capacity and the surface aquifer storage is greater than zero. Evapotranspiration is also 

adjusted in correspondence to the amount of water available in the surface aquifer. SWAT-HS uses 

the original SWAT2012 equations for calculating vertical fluxes in the soil profile and base flow 

from the shallow aquifer.    

At the daily time step, the various fluxes are calculated as per the following steps. Figure 

4.4 provides an illustration of the sequence of surface aquifer and runoff calculations within a time 

step in SWAT-HS. In this illustration, it is assumed that the watershed is equally divided into 5 

wetness classes with increasing soil water storage capacities. 

Step 1: Checking the saturation status of wetness classes (Figure 4.4a) 

At the beginning of a time step the saturation status of each wetness class is determined by 

calculating the difference between the mean water depth of the surface aquifer ( 0S ) and the soil 
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water storage capacity (edc) of the wetness class (Figure 4.4a). Those wetness classes where 0S

exceeds the storage capacity are saturated (classes 1 and 2) while the remaining classes 3 through 

5 have a storage deficit representing the amount of water that is needed to reach saturation.  

Step 2: Inputting water from rainfall/snowmelt (Figure 4.4b) 

Following precipitation or snowmelt inputs, canopy interception is computed and 

infiltration-excess runoff is calculated by the Green-Ampt method. The remaining water input (P), 

which is precipitation and snowmelt excluding canopy interception and infiltration-excess runoff, 

increases the storage of the surface aquifer to PS 0 . 

Step 3: Calculating vertical water fluxes and saturated-excess runoff (Figure 4.4b and 

Figure 4.4c) 

For HRU’s in wetness classes where PS 0 is greater than the soil water storage capacity 

(edc), the excess water becomes saturation-excess runoff and the HRUs are saturated (Figure 4.4b, 

wetness classes 1 and 2). In the unsaturated areas, the water input becomes infiltration to the soil 

profile (wetness classes 3, 4, and 5). The infiltrated water first fills up the soil profile to field 

capacity and the remaining water drains out of the profile. The seepage out of the soil profile is 

then divided into recharge of the shallow aquifer and adding water to the surface aquifer. The latter 

raises the mean surface aquifer water depth (
1S ) and reduces wetness class storage deficits 

calculated as the difference between 
1S  and edc. Storage deficits are calculated for wetness 

classes. Saturated wetness classes have negative storage deficits while the unsaturated ones have 

positive values. The negative storage deficits will be used in distributing the return flow in the step 

4. 
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Step 4: Calculating lateral flow (Figure 4.4d) 

Lateral flow is calculated in two sub-steps. First, the amount of lateral flow is calculated by 

treating the surface aquifer as a non-linear reservoir to generate lateral flow ( latQ ) for the whole 

sub-basin:  

latBSlatAlatQ ^* 1  (4.3) 

where latA and latB are constant coefficients.  Next, lateral flow is assumed to only return to the 

surface to contribute to streamflow in saturated areas. LatQ  is apportioned to saturated wetness 

classes in proportion to their corresponding negative saturation deficit. With this approach, 

SWAT-HS implicitly routes lateral flow across the hillslope from the upslope dry areas to the 

downslope wet areas.  

  
(a) (c) 

  
(b) (d) 

Figure 4.4. Changes in water content in perched aquifer over a time step as simulated by SWAT-

HS (a) maximum storage capacity of 5 wetness classes and the storage capacity 0S  at the 

beginning of the time step, (b) following water input P from precipitation or snowmelt, (c) 

aquifer recharge ( Rchrg ) raises the mean perched aquifer water depth to 
1S , and (d) 

lateral flow ( latQ ) and plant water use (ETsat) are deducted from storage, resulting in 

perched aquifer water depth 2S  at the end of the time step.  
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Step 5: Calculating evapotranspiration 

Water stored in the surface aquifer is made available to plants when the water table 

intersects the root zone. Plant water use is calculated by layers. For layers above the water table, 

plants use only non-drainable soil water. For saturated layers below the water table, 

evapotranspiration is extracted from the surface aquifer. For the layer in which the water table in 

the surface aquifer is located, the layer is split into two parts: (i) above the water table where plants 

use non-drainable water and (ii) below the water table where plants take the drainable water.  At 

the end of each time step the sub-basin average lateral flow ( latQ ) and plant water use (ETsat) are 

deducted from storage (Figure 4.4d) and the mean surface aquifer water depth is updated (
2S ) and 

becomes the initial water depth for the next time step. 

Table 4.1. New parameters added to SWAT-HS 

Name Unit Definition Range 

Smax mm Maximum soil storage capacity in the watershed 100-400 

b  Shape parameter defining the distribution of soil storage 

capacity 

0.1-3 

effporfactor    - Fraction of effective porosity that can hold water under 

saturated conditions 

0 - 1 

latA  Surface aquifer non-linear reservoir coefficient 0 - 1 

latB  Surface aquifer non-linear reservoir exponent 1 - 3 

perchst_datum mm Mean depth of surface aquifer drawn down just to point 

where lateral flow from aquifer ceases 

 

rchrg_paf - Fraction of root zone percolation that recharges the surface 

aquifer 

0 - 1 

4.1.2.2. Study area: Town Brook watershed, Delaware, New York 

The 37 km2 Town Brook watershed located in the Catskill region of New York State 

(Figure 4.5) was selected as the test case study for SWAT-HS because input data and observations 

to evaluate the model performance were sufficient. Observations of temporal streamflow and the 

spatial extent of saturated areas in 2006 (28-30 April) and 2007 (12 April, 7 June and 2 August) 

were available from previous studies (Schneiderman et al., 2007; Dahlke et al., 2009; Harpold et 

al., 2010). The average annual temperature is 8oC and average annual precipitation is 1123 

mm/year. The landscape is characterized by steep to moderate hillslopes of glacial origin with 

shallow permeable soils. Elevation ranges from 493 to 989 m. The majority of the soils are silt 

loam and silty clay loam overlaying a glacial till. The upper terrain on the north-facing slope of 

the watershed is characterized by shallow soil (average thickness 80 cm) overlaying fractured 

bedrock, steep slopes (average slope 29%) and deciduous and mixed forests (60% of the 

watershed). The south-facing slopes and lowland areas of the watershed have deeper soils (average 

thickness 180 cm) underlain by a dense fragipan restricting layer, more gentle slopes (average 

slope 14%), and are predominantly occupied by pasture and row crops (20%) and shrub land 

(18%). Water and wetland comprise only 2% of the watershed while impervious surface is 

insignificant. The primary agricultural activity is dairy farming, with pastures, corn, and hay being 

grown. 
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Figure 4.5. Town Brook watershed, Delaware County, New York. 
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4.1.2.3. SWAT-HS setup for the Town Brook watershed   

The study watershed was not split up into multiple sub-basins because of its small size. 

Instead, the watershed was divided into 124 multiple wetness class-based HRUs. The wetness class 

indicates the relative position of the HRU in the landscape in respect to surface runoff generation.  

HRU definition   

Wetness map 

We classified the Town Brook watershed into 10 wetness classes, the maximum number 

that can currently be handled by SWAT-HS, by grouping HRUs with similar Topographic Indices 

(TI) values and created a wetness map.  The TI was calculated using Equation 1 and the 10-meter 

DEM. The upslope contributing area, α, was determined by the Terrain Analysis Using Digital 

Elevation Models (TAUDEM) (Tarboton, 1997; Tarboton and Mohammed, 2010). Saturated 

conductivity and soil depth were extracted from Soil Survey Geographic (SSURGO) Database 

(USDA-NRCS, 2012).  

Agnew et al. (2006) developed a relationship between TI and probability of saturation P
sat

 

for the Town Brook watershed and suggested that the areas with TI >17.7 is always saturated. 

Based on this, we grouped the areas with TI > 17.7 as the “wettest” wetness class (wetness class 

1) with no storage capacity (0 mm). This means that when there is hydrological input, wetness 

class 1 is always saturated. Wetness class 1 is actually fit to the perennial stream network and 

occupies a very small fraction of the watershed (0.59%), therefore, it is reasonable to assign no 

storage capacity to this wetness class. Since all Town Brook studies consisting of observations of 

saturated areas (Harpold et al., 2010) and predictions by other watershed models (SMR (Agnew 

et al., 2006), SWAT-VSA (Easton et al., 2008) and SWAT-WB (White et al., 2011) found that 

saturated areas never exceeded 50% of watershed,  we grouped 50% of the watershed with lowest 

TI values as the “driest” wetness class (wetness 10). Assigning the driest wetness class to half of 

the watershed allowed us to classify the remaining areas, which are more prone to saturation, into 

a greater number of wetness classes. We divided the remaining areas into 8 wetness classes 

(wetness class 2 – 9) with equal areas based on TI values. Wetness classes 2 to 10 have increasing 

soil water storage capacities that follow a Pareto distribution (Equation 2). The resulting wetness 

map is shown in Figure 4.6. Table 4.2 shows the final classification of 10 wetness classes in Town 

Brook and their soil storage capacities based on the optimal parameter set resulting from our 

calibration. This classification scheme was used in the evaluation of SWAT-HS performance in 

section 3.1. 
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Figure 4.6. Wetness map for the Town Brook watershed. 

Table 4.2. Classification of wetness classes for the Town Brook watershed. 

Wetness class TI % of watershed area Soil storage capacity 

(mm) 

Characteristics 

1 > 17.7 0.59 0 Wet 

 

 

 

Dry 

2 16.73 – 17.70 6.06 5.2 

3 15.77 – 16.73 6.24 14.2 

4 14.80 – 15.77 6.18 23.5 

5 13.84 – 14.80 6.37 33.2 

6 12.87 – 13.84 6.20 43.2 

7 11.91 – 12.87 6.90 54.0 

8 10.94 – 11.91 6.67 65.6 

9 9.98 – 10.94 6.04 77.0 

10 < 9.98 48.75 133.6 

Soils 

The soil map of Town Brook watershed was extracted from the SSURGO database 

(USDA-NRCS, 2012). There are 17 defined soil types present in the watershed. The data on soil 

properties that are necessary for the SWAT model were taken from the SSURGO database and the 

soil survey of Delaware County (USDA, 2006).  

The soil map was then overlaid with the wetness map to create a new soil map in which 

the same soil types in different wetness classes have different soil names but retain the same soil 

characteristics. The new soil name reflects both wetness class and soil type. This is an essential 

step for running SWAT-HS, which assigns wetness class to each HRU in the final discretization.  

Land use 

The land use map was derived from classified 2009 aerial photography data obtained from 

New York City Department of Environmental Protection (NYCDEP). Town Brook watershed 
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includes 11 land use types (Figure 4.5). The dominant land use types are forest (54%) and 

agriculture (32%). Residential area covers a very small part of the watershed (4%). 

For simplification purposes, we assumed that slope does not have an impact on HRU 

discretization. With 10 wetness classes, 17 types of soil and 11 types of land use, 145 HRUs were 

created for the Town Brook watershed by overlaying the land use map and the redefined soil map.  

Each HRU is then defined by a unique combination of wetness class, soil type, and land use. 

Meteorological inputs 

Daily precipitation and temperature data available in a 4km x 4km gridded format, 

developed using the Parameter-Elevation Relationships on Independent Slopes Model (PRISM) 

interpolation method (Daly et al., 2008), was accessed through the Applied Climate Information 

System (http://www.rccacis.org/). Precipitation and temperature data were assumed to be taken 

from the weather station near the centroid of the watershed. The data at the centroid were 

interpolated from eight surrounding PRISM grid points by the inverse distance weighting method. 

Solar radiation was determined by averaging data from the Albany and Binghamton 

airports. Relative humidity and wind speed were generated in SWAT. 

4.1.2.4. Model calibration/validation and evaluation of model performances 

Streamflow calibration was carried out using observed records of streamflow obtained from the 

USGS gauging station (#01421618) at the outlet of the Town Brook watershed from 1998 to 

2007, of which the first three years served as warming up period. The validation period was from 

2008 to 2012. In SWAT-HS, three groups of parameters were chosen for calibration (Table 4.3). 

Group (i) includes 5 parameters related to snowmelt simulation. This group is important to 

account for in Northeastern US watersheds like Town Brook where snowmelt is significant. 

Group (ii) related to flow simulation includes 4 new parameters of SWAT-HS (RCHRG_PAF, 

latA, latB, EFFPORFACTOR), controlling the generation of saturation-excess runoff and lateral 

flow; SURLAG, affecting the lag time of surface runoff routing; ALPHA_BF, related to 

groundwater flow; and 2 parameters associated with evapotranspiration (EPCO, ESCO). Group 

(iii) including Smax and b defines the statistical distribution of soil water storage capacity for the 

watershed.   

The SWAT-HS model was calibrated by applying the Monte Carlo sampling method. Ten 

thousand parameter sets for both snowmelt and streamflow calibration steps were generated, each 

of which was then run with SWAT-HS. To evaluate the performance of a parameter set, we used 

the Nash-Sutcliffe efficiency (NSE), a measure of the goodness of fit between simulated 

streamflow and observations.  
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Table 4.3. Parameters for streamflow calibration using Monte Carlo sampling method. 

Name Unit Definition Range 
Calibrated 

value 

Group (i): Snowmelt calibration  

SFTMP oC Snowfall temperature -5 - 5 -0.58 

SMTMP oC Snowmelt temperature -5 - 5 1.10 

SMFMX mm/ oC Maximum snowmelt factor 5 - 10 7.62 

SMFMN mm/ oC Minimum snowmelt factor 0 - 5 2.68 

TIMP - Snow pack temperature lag factor 0 – 1 0.022 

Group (ii): Flow calibration  

RCHRG_PAF mm Fraction of root zone percolation that 

recharges the surface aquifer 

0-1000 0.822 

latA  Surface aquifer non-linear reservoir 

coefficient 

0 - 1 0.013 

latB  Surface aquifer non-linear reservoir 

coefficient 

1 - 3 1.626 

ALPHA_BF  days-1 Base flow recession constant  0 - 1 0.05 

EFFPORFACTOR  Fraction of effective porosity that can hold 

water under saturated conditions 

0 - 1 0.877 

EPCO  Plant water uptake compensation factor 0 - 1 0.989 

ESCO  Soil evaporation compensation factor 0 - 1 0.691 

Group (iii): Storage capacity of wetness classes (5 wetness classes were defined in this case study) 

Smax mm Maximum soil water storage capacity in the 

watershed 

100-400 227 

b  Shape parameter defining the distribution 

of soil water storage capacity 

0.1-3 1.59 

The specific steps of the calibration procedure were: 

1. Prepare 10,000 parameter sets of group (i) and 10,000 parameter sets of the combination of 

group (ii) and group (iii) within the default ranges of their corresponding parameters. The 

10,000 parameter sets were randomly generated by the Monte Carlo sampling method 

assuming that all parameters are uniformly distributed.  

2. Assign default values for soil water storage capacity in each wetness class: Smax at 200mm 

and b at 1; soil water storage capacity, edc, was calculated for each wetness classes 2 – 10 and 

set at 0 for wetness class 1.  

3. Calibrate snowmelt: 10,000 simulations corresponding to the 10,000 parameter sets of group 

(i) were run with SWAT-HS. It may be noted that in this step, other remaining parameters were 

assigned default values. The best parameter set with the highest NSE was used in step 4. 

4. Calibrate streamflow: While snowmelt parameters values were set at best parameter set from 

step 3, 10,000 simulations corresponding to the 10,000 parameter sets of group (ii) and (iii) 

were run with SWAT-HS. The parameter sets which result in Nash Sutcliffe Efficiency (NSE) 

above 0.65 were chosen as good performing parameter sets. 
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To evaluate SWAT-HS performance for flow modeling, we compared the simulated results 

with both temporal and spatial observations. Temporally, simulated streamflow at the watershed 

outlet was compared with measurements. Spatially, the prediction of saturated areas was compared 

with available observations on 6 observed days: 28, 29, 30 April 2006 (Dahlke et al., 2009), 12 

April 2007, 7 June 2007, and 2 August 2007 (Harpold et al., 2010). Among all the parameter sets 

with good performance from step 4, the parameter set that gave both best fit to observations of 

streamflow and saturated areas in all six observed days was chosen as the optimal set. This set was 

used in all evaluations of SWAT-HS performance. Four statistical criteria: Nash Sutcliffe 

efficiency (NSE), Percent bias (PBIAS), RMSE – observations standard deviation ratio (RSR), and 

Kling Gupta efficiency coefficient (KGE) were used for model evaluation.  

 Nash Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970): ranges between -∞ and 1.0, with 

NSE = 1 being the optimal value. 
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where 
obs

iY  is the ith observation, 
sim

iY  is ith simulated value, 
sim

iY  is the mean of observed 

data and n is the total number of observations. 

 Percent bias (PBIAS): the optimal value of PBIAS is 0.0, with low magnitude values indicating 

accurate model simulation. Positive values specify underestimation bias and negative values 

indicate overestimation bias (Gupta et al., 1999). 
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 RMSE – observations standard deviation ratio (RSR): RSR standardizes RMSE using the 

observations standard deviation (Singh et al., 2004). It varies from the optimal value of 0, 

which indicates zero RMSE to +∞. The lower RSR, the lower RMSE, the better the model 

performance. 

































2

1

1

2

)(

)(

mean
n

i

obs

i

n

i

sim

i

obs

i

obs YY

YY

STDEV

RMSE
RSR  (4.6) 

 KGE - Kling–Gupta efficiency: KGE was introduced by Gupta et al. (2009). It can be 

decomposed into a correlation term, a bias term and a variability term. KGE is evaluated to 

have advantages over NSE. While NSE is found to be sensitive to large runoff values, KGE 

overcomes this problem by giving equal weights for three component measures: correlation, 
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bias and variability. A value of 1 indicates a perfect fit between model predictions and 

observations. 

222 )1()1()1(1  rKGE  (4.7) 

0


 s  (4.8) 

0CV

CVs  

 (4.9) 

where r is the correlation coefficient, µ is the average, CV is the coefficient of variation, 

and the subscripts s and o represent simulations and observations. 

Moreover, to clarify the effect of modifications made in SWAT-HS, we also compared 

with SWAT2012. A setup was built with SWAT2012 in the same case study and was calibrated 

by SWAT-CUP (SWAT Calibration and Uncertainty Programs) using the Parameter Solution 

(Parasol) algorithm (van Griensven and Meixner, 2006). The comparison of the two models 

focused on three aspects: the fit of simulated streamflow at the watershed outlet to observations, 

the spatial distribution of saturated areas and the contributions of different flow components.  

Because of the availability of numerous parameter sets that are able to give equally good 

SWAT-HS performance in step 4, we used the Generalized Likelihood Uncertainty Estimation 

(GLUE) approach (Beven and Binley, 1992) to estimate the uncertainty of streamflow and 

saturated area predictions resulting from parameter uncertainty. Following the GLUE approach, a 

threshold criterion of NSE at 0.65 was set to filter the 10,000 Monte Carlo simulations into 

behavioral models (NSE ≥ 0.65) and non-behavioral models (NSE < 0.65). The criterion for NSE 

was set at 0.65 because it is the criterion for “good” model performance according to Moriasi et 

al. (2007). The subset of behavioral models was used for uncertainty estimation while the subset 

of non-behavioral models was rejected. 

4.1.3. Results and discussion 

4.1.3.1. SWAT-HS and SWAT2012 performances 

In this section, the performances of SWAT-HS and SWAT2012 are evaluated. We focus 

on three aspects: comparison of simulated and observed discharge at the outlet, evaluation of 

simulated spatial distribution of saturated areas, and relative contributions of the different flow 

components to streamflow.  

4.1.3.1.1. Evaluation of discharge at the watershed outlet 

The calibrated SWAT-HS and SWAT2012 model simulated discharges were compared 

with observations at daily and monthly time steps using their optimal parameter sets (Figure 4.7). 

The calibrated parameter set for SWAT-HS is shown in Table 4.3. The SWAT-HS model captured 
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the observed variation of streamflow in both summer (May to October) and winter (November to 

April) periods slightly more accurately than SWAT2012. However, SWAT2012 was able to 

capture the winter peaks more accurately compared to SWAT-HS. Overall, statistical evaluation 

of both models for observed streamflow at the outlet showed SWAT-HS performing better or 

comparable to SWAT2012 (Table 4.4). With SWAT-HS, the NSE values for daily discharge were 

0.68 and 0.52, PBIAS values were 7.17 and -3.61, and RSR values were 0.57 and 0.69 during the 

calibration and validation periods, respectively. The NSE, PBIAS, and RSR for daily discharge 

predictions by SWAT-HS are all within the range of “good” model performance for the calibration 

period while NSE is rated as “satisfactory”, PBIAS as “very good” and RSR as “satisfactory” 

performance for the validation period, based on the guidelines for evaluation of model 

performance by Moriasi et al. (2007). The NSE improved from 0.52 to 0.6 in the validation period 

if we excluded the year 2011 when extreme events (Hurricane Irene and Tropical Storm Lee) 

occurred in August 2011 that were not simulated very well by SWAT-HS. We also calculated 

KGE values (Gupta et al., 2009), which is less sensitive to high streamflow values compared to 

NSE and gives a better measure of model fit to data at all ranges of streamflow (a value of 1 

indicates a perfect fit).  Daily KGE values with SWAT-HS were 0.75 and 0.65, respectively during 

the calibration and validation periods. The SWAT2012 prediction for daily streamflow resulted in 

NSE of 0.52 and 0.37, PBIAS of 4.25 and -6.27, RSR of 0.65 and 0.75, and KGE of 0.65 and 0.60 

during the calibration and validation periods, respectively. The PBIAS of SWAT2012 is rated as 

“good” while the NSE and RSR are within the range of “satisfactory” performance during the 

calibration period, and are “unsatisfactory” in the validation periods. The values of statistical 

metrics for both models improved significantly for the monthly predictions (Table 4.4).  
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Table 4.4: Statistical evaluation for SWAT-HS and SWAT2012 in daily and monthly time steps. 

Period Time 

steps 

SWAT-HS SWAT2012 

NSE PBIAS RSR KGE Average streamflow 

(mm/a) 

NSE PBIAS RSR KGE Average streamflow 

(mm/a) 

  Simulated Observed Simulated Observed 

Calibration 

(2001-2007) 

Daily 0.68 7.17 0.57 0.75 302.76 326.14 0.52 4.25 0.65 0.65 312.30 326.14 

Monthly 0.87 7.25 0.36 0.87   0.72 4.38 0.53 0.76   

Validation 

(2008 – 2012) 

Daily 0.52 -3.61 0.69 0.65 331.61 320.05 0.37 -6.27 0.75 0.60 340.13 320.05 

Monthly 0.78 -3.38 0.46 0.86   0.62 -6.11 0.61 0.73   

Validation 

(excluding 2011) 

Daily 0.60 0.73 0.63 0.71 232.47 234.18 0.46 -2.71 0.70 0.69 240.54 234.18 

Monthly 0.82 1.03 0.43 0.81   0.65 -2.53 0.59 0.68   
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 (a)  Daily 

 

(b)  Monthly 

Figure 4.7. Comparison of simulated daily and monthly discharge values between SWAT-HS, 

SWAT2012, and measured data. 

Figure 4.8 presents flow duration curves from daily streamflows simulated by SWAT2012 

and SWAT-HS versus observed flows. It again shows the closer fit of simulated streamflow from 

SWAT-HS to observed flow compared to SWAT2012. SWAT-HS slightly underestimated but 

showed better predictions of low flows while SWAT2012 overestimated low flows. During high 

flow periods, SWAT-HS gave a better fit to observed flow than SWAT2012 although it 

underestimated extreme high peak flows as shown in Figure 4.7a. The six dates with observations 

of saturated areas, corresponding streamflow values, and their percentages of exceedance are 

included in Figure 4.8 
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Figure 4.8. Flow duration curves of simulated flow by SWAT-HS and SWAT2012 versus 

observed flow. 

4.1.3.1.2. Evaluation of Spatial Distribution of surface runoff areas  

While SWAT-HS was slightly better than SWAT2012 in simulating streamflow at the 

outlet as per model evaluation statistics, one could argue that these differences could be due to 

calibration procedures used in the two models. Evaluation of the spatial distribution of runoff-

generating areas by both models showed that SWAT-HS gave a better representation of actual 

locations of runoff generation. The spatial distributions of annual surface runoff during the 

calibration period generated by the SWAT-HS and SWAT2012 models are shown in Figure 4.9a 

and Figure 4.9b depict the wetness and land use map of the Town Brook watershed, while Figure 

4.9c and Figure 4.9d show differences in the spatial locations of surface runoff generation between 

SWAT-HS and SWAT2012. The distribution of annual surface runoff predicted by SWAT-HS 

follows the wetness map. Runoff can only be found in areas corresponding to “wetter” wetness 

classes with low storage capacity. On the other hand, the distribution of surface runoff predicted 

by SWAT2012 follows the distribution of land use in which forests contribute the least runoff and 

agriculture is the most significant contributor. While residential areas have high amounts of surface 

runoff, they cover a very small area in the watershed.  
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Figure 4.9. Spatial distribution of annual surface runoff simulated by SWAT-HS and 

SWAT2012. 

The spatial distribution of simulated saturated areas by SWAT-HS was compared with 

observations in a headwater drainage area of Town Brook (Figure 4.5) on 6 observed days: 3 

consecutive days from 28-30 April 2006 (Figure 4.10a), 12 April 2007 (Figure 4.10b), 7 June 2007 

(Figure 4.10c), and 2 August 2007 (Figure 4.10d). SWAT-HS gave a reasonable fit to observed 

saturated areas on 28-30 April 2006 and 12 April 2007, but overestimated the saturated areas on 

June and August 2007. Although in all observed events, the extent of saturated areas simulated by 

SWAT-HS did not perfectly match observations, the locations where saturation occurred were 

relatively well predicted. It should be noted here that the extent of saturated areas that were 

observed in the field using a global positioning system (GPS) unit may have uncertainty and may 
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not have covered the entire extent of saturated areas very accurately. Therefore, although the 

assessment of the extent of saturated area prediction is still limited, SWAT-HS is useful in 

predicting areas where saturation-excess runoff occurs, which can also be hot-spots for water 

quality issues. 

Out of the six days with observations, five days including 28-30 April 2006, 7 June 2007 

and 2 August 2007 were days with no rainfall while there was small amount of rainfall on 12 April 

2007 (Figure 4.10). In these 5 dry days, SWAT2012 predicted no surface runoff (therefore, we did 

not show the runoff map) due to the use of the curve number concept. In contrast, SWAT-HS 

predicted the existence of saturated areas, which is comparable with field observations.  

We chose the 3-day observation period (28-30 April 2006) to look into details on how the 

hydrological approaches of the two models differed in their predictions of saturated areas. The 

relative contribution of different flow components were compared between the two models for 

April 2006, with the three observed days indicated (Figure 4.11). During the period of 28-30 April 

2006, SWAT-HS predicted lateral flow and groundwater contributions and no surface runoff 

contribution to streamflow (Figure 4.11a). On April 23-24, there was a high rainfall event (60 mm) 

that caused high lateral flow and high water storage in the surface aquifer. Therefore, although 

there was no rainfall on April 28-30, lateral flow stored in the surface aquifer was routed from 

upslope dry areas to downslope wet areas where it surfaced as runoff and created saturated areas. 

In contrast, SWAT2012 predicted a dominant groundwater contribution, a small lateral flow 

contribution, and no surface runoff contribution to streamflow during these days (Figure 4.11). 

Based on the approach of SWAT2012, both lateral flow and groundwater flow cannot reach the 

ground surface to form saturated areas. 

  



4. Model Development and Application 

 

75 

 

 
Figure 4.10. Saturated areas simulated by SWAT-HS compared with observations on (a) 28-30 

April 2006, (b) 12 April 2007, (c) 7 June 2006 and (d) 2 August 2007. Rainfall 

variation in the observed months were presented with the red box highlighting the 

rainfall amount of the observed events. 
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(a) SWAT-HS 

 

(b) SWAT2012 

Figure 4.11. Flow components simulated by SWAT-HS and SWAT2012 in April 2006  

(The red rectangle focuses the three observed days April 28 – 30, 2006). 
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4.1.3.1.3. Simulated flow components  

While the discharge values at the outlet did not differ greatly between the two models using 

their optimized parameters’ values, the origin of flow varied greatly as exemplified in 2003 (Figure 

4.12). For large rainfall events, SWAT2012 predicted that the main component of discharge at the 

outlet was surface runoff (Figure 4.12b), while SWAT-HS simulated the largest contribution to 

streamflow from lateral flow originating in the saturated areas. For the Town Brook watershed, 

SWAT-HS predicted all surface runoff coming from the saturation-excess process and the 

infiltration-excess runoff was estimated at 0; this is reasonable for the Catskill region where 

infiltration rates often exceed rainfall intensity. Lateral flow derived from the surface aquifer in 

SWAT-HS occurred throughout the year except during the period of snowfall (Jan – Feb). SWAT-

HS estimated stable groundwater flow that contributed to streamflow throughout the year, but with 

small contributions at the beginning of the year when there was snowpack accumulation. In 

contrast to SWAT-HS, surface runoff in SWAT2012 is implicitly considered as infiltration-excess 

runoff and occurs with high rainfall except during the snowfall period (Jan – Feb). Lateral flow in 

SWAT2012, derived from soil moisture in excess of field capacity, occurred throughout the year 

whenever there was rainfall. Groundwater flow had the same trend in the two models with slightly 

more fluctuations in the SWAT2012 model because of the difference in calibrated values for the 

groundwater-related parameters. 

Because of the difference in hydrological approach, SWAT-HS and SWAT2012 predicted 

dissimilar distributions of flow components. It should be noted here that no observations are 

available to confirm which model is correct and which type of flow is dominant. However, the 

results from SWAT-HS are in agreement with the conclusion of Walter et al. (2003) who indicated 

a low frequency of Hortonian flow and identified saturation-excess runoff as the primary surface 

runoff process for generating overland flow in the Catskill region of New York state. The dominant 

contribution of lateral flow simulated from SWAT-HS may be compatible with the finding of 

Harpold et al. (2010) in an intensive field survey in a 2.5 km2 headwater watershed of Town Brook 

watershed where hillside lateral preferential flow paths rapidly transported water to near-stream 

saturated areas during runoff events under relatively dry antecedent conditions. Harpold et al. 

(2010) also suggested that the lateral redistribution of water from hillside areas reduces the 

influence of surface topography and channel topology on the sources of stream runoff. 

  



2016 Water Quality Modeling Annual Report 

 

78 

 

 

SWAT-HS 

 

(b) SWAT2012 

Figure 4.12. Time series of flow components simulated by (a) SWAT-HS compared with (b) 

SWAT2012. 

 

4.1.3.2. Uncertainty of the predictions of streamflow and saturated areas using SWAT-

HS 

Similar to other hydrological models, SWAT-HS can use numerous parameter sets that can 

give equally good fit to the observed data. This is known as the equifinality problem which is due 
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to non-linearity and interdependence of parameters (Bárdossy and Singh, 2008) and results in 

uncertainty of model predictions. In this section, we estimated the uncertainty of the SWAT-HS 

predictions of streamflow and saturated areas using the GLUE approach (Beven and Binley, 1992). 

Figure 4.13 presents scatter plots of parameter values versus NSE resulting from Monte 

Carlo simulations. It can be observed that within a value range, each parameter with the same value 

can result in significantly different NSE values when it is combined with different values of other 

parameters. Moreover, there are numerous combinations of parameter values that vary in wide 

ranges that can provide behavioral models (NSE ≥ 0.65) for streamflow. From our 10,000 Monte 

Carlo parameter sets, the number of behavioral models for streamflow was 995.  We compared the 

performance of 995 behavioral models for their fit to field observations of saturated areas on six 

observed days. Finally, only 53 parameter sets remained that gave good predictions for both 

streamflow and saturated areas.  

 

Figure 4.13. Scatter plot of parameter values versus NSE resulting from Monte Carlo simulations 

Figure 4.14 shows the distributions of parameter values that gave good predictions for 

streamflow (in light green, 995 values) and parameter values that gave good predictions for both 

streamflow and saturated areas (in green, 53 values). It can be seen that for all parameters, the 

values with good performance are broadly varied in their value ranges, which means that the effect 

of one parameter can be compensated for other parameters, thus, different combinations of 

parameter values are able to give similar results. Although the uncertainty ranges of all parameters 

are still wide and same as the ranges that are used to generate Monte Carlo parameter sets, the 

distributions of values with good performance for most parameters differ from the uniform 

distribution which identifies where, within the parameter ranges, a higher probability of good 

results can be found. If only streamflow is considered, among 995 good models, more 

good/behavioral models are found when rchrg_paf is within 0.7 – 0.75, latb from 1.2-1.5, 

effporfactor closer to 1, epco is close to 1, and esco is close to 0. Soil water storage capacity 

functions built with Smax larger than 200 and b larger than 1 have a higher probability of giving 

good predictions. Lata and alpha_bf remain uniform in distribution, which means that these two 

NSE-=0.65 

NSE-=0.65 
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parameters are not as sensitive as other parameters.  If both streamflow and six predictions of 

saturated areas are considered, only 53 parameter sets are qualified for good performance which 

is a relatively small number to discuss about the parameter distribution. However, what we found 

here is that including prediction of saturated areas in choosing parameter sets with good 

performance did help to reduce a significant number of good sets that are based on streamflow 

prediction alone. We also realized that even though we could restrict good parameter sets to a 

small number, only two parameters, Smax and b, had narrow uncertainty ranges (Smax values less 

than 150 and b less than 1 are removed) while the uncertainty ranges of other parameters remain 

wide. Smax and b, as expected, are main controlling parameters of saturated area prediction, 

although their effects on predictions are still strongly controlled by other parameters.  

 

Figure 4.14. Distribution of good performing parameters for streamflow (in light green) and for 

both streamflow and saturated areas (in green). 

Using the 53 good parameter sets identified, we estimated the uncertainty of streamflow 

prediction (Figure 4.15a) and uncertainty of the probability of saturation in 10 wetness classes 

(percentage of the days that the wetness class is saturated) (Figure 4.15b). The uncertainty bound 

of streamflow could capture correctly the statistical distribution of measured streamflow, as shown 

in Figure 15a. Taking into account parameter uncertainty, SWAT-HS predicted that the 

probabilities of saturation for wetness classes 7, 8, 9, 10 are almost 0, which means that 64% of 

the watershed is almost never saturated. Wetness class 1 has the highest probability of saturation 

(84-100%) because it has the lowest storage capacity i.e., it is always filled when there is rainfall. 

Wetness class 2 is also prone to saturation with a high probability of saturation varying from 62 – 

85%. Wetness class 3 has the largest uncertainty of probability of saturation ranging from 29 – 

53%. Wetness classes 4 and 5 have smaller uncertainties because they are only saturated with high 

rainfall events. 
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(a) Uncertainty of streamflow prediction in the form of flow duration curve 

 

(b)  Uncertainty of probability of saturation in wetness classes 

Figure 4.15. Uncertainty of modelled predictions by SWAT-HS: (a) Uncertainty of streamflow 

prediction and (b) Uncertainty of probability of saturation in wetness classes. 

4.1.4. Conclusion 

This paper introduces SWAT-HS, which uses a new approach to represent the mechanism 

of saturation-excess runoff. By redefining HRU to include wetness information and introducing a 

surface aquifer to route interflow laterally from “drier” (upslope) to “wetter” (downslope) wetness 

classes, SWAT-HS changed the distribution of surface runoff and predicted soil saturation and 

excess runoff occurring only in wet downslope areas. Our novel contribution is in calibrating and 

evaluating a watershed model based on both temporal and spatial observations of streamflow and 

saturated areas respectively. The SWAT-HS model provided better performance of streamflow 

simulation and better prediction of saturated areas in the Town Brook watershed, compared to 

SWAT2012, which uses the curve number approach to compute surface runoff.  
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Similar to other distributed watershed models, the equifinality problem that causes 

uncertainty in model predictions is acknowledged in the application of SWAT-HS. However, the 

use of the combination of temporal and spatial observations helped to reduce a significant number 

of “good” parameter sets and shorten the uncertainty ranges of several parameters. More 

observations of saturated areas on high rainfall events with different antecedent soil storage 

conditions will be useful to identify robust parameter values and test the validity of SWAT-HS in 

high rainfall conditions.  

Finally, the concept of self-organizing wetting patterns in the landscape on which SWAT-HS 

is based made it possible to identify the dominant response of the watershed (i.e., runoff and 

location of saturated areas) to climate forcing using the saturated runoff mechanism. Current best 

management practices in the NYC source watershed in which Town Brook is located are based on 

targeted application of manure and other fertilizers to avoid area that are periodically saturated. 

This practice has resulted in greatly reducing phosphorus concentration in the stream and 

reinforces the validity and usefulness of models with saturation excess and self-organization of 

moisture patterns for watershed management (Walter et al., 2001; Bryant et al., 2008). This study 

is the first step towards extending the application of SWAT-HS to larger watersheds for both water 

quantity and quality evaluations. 
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4.2. Key controls on spatial and temporal variability of dissolved organic 

carbon in Neversink River basin 

4.2.1. Introduction  

 Recent studies of long-term trends have shown an increase in DOC concentrations in 

streams and lakes across northern Europe and North America (Evans et al., 2005). This increase 

in DOC may be problematic for drinking water supplies due to the potential for a corresponding 

increase in disinfection by-products (DBPs) following chlorination. Here we describe analysis of 

the spatial and temporal variability of DOC within the Neversink River Basin in order to 

understand sources of variability and change in this important water quality parameter. 

4.2.2. Study sites and methodology  

This analysis used DOC data from 12 USGS stream gauging stations within the 

Neversink River Basin, located in the Catskill Mountains, New York and included an analysis of 

the changes in DOC concentration at daily, seasonal, and annual scales. We examined the 

relationships between DOC concentrations observed at these 12 sites and watershed 

characteristics. The watershed characteristics included topography (slope, wetness index), soil 

properties (soil carbon content), and vegetation density (leaf area index). Equation (4.10) lists the 

key variables that were used to explain observed DOC concentrations in streams.  

 

 𝐷𝑂𝐶 = 𝑓(𝑇𝑜𝑝, 𝑉, 𝑆, 𝐻) (4.10) 

 

where Top is topographic parameters (slope, topographic wetness index), V is vegetation density 

(leaf area index), S is soil properties (soil organic matter), and H is hydrologic flow partition. 

Figure 4.16 and Table 4.5 show the name and location of the 12 sub-watersheds in 

Neversink River Basin and their size. DOC data is available for all 12 sub-watersheds for 1992-

94. This study focused on analysis of the spatial variability of DOC between the 12 sub-

watersheds. We identified the properties of 12 sub-watersheds, including slope, topographic 

wetness index, leaf area index (LAI), baseflow ratio, and soil organic content (SOC) (Figure 

4.17). SOC values are based on SSURGO soil maps. Baseflow was calculated using the baseflow 

separation method of Nathan and McMahon (1990). Landsat-TM images (06/21/1991) were used 

to derive normalized difference vegetation index (NDVI), applying an empirical calibrated 

equation of NDVI and LAI developed in other studies (Hwang, unpublished data) to derive the 

LAI values for the 12 sub-watersheds. Based on these data, it was found that watersheds W2 and 

W12 have the lowest slopes, while W7 has the highest slope, the lowest TWI and the lowest 

LAI. Base flow ratio (base flow/ total flow) has a consistent pattern among years. WY 1992 has 

the highest base flow ratio. WY 1993 has lower base flow ratios than WY 1994, while WY 1994 

has higher annual precipitation than WY 1993.  Among the watersheds, W-3 has the lowest base 

flow ratio, while W-6 has the highest.  
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. 

Figure 4.16. Study sites: USGS gauging stations and Slide 

mountain climate station. 

 

Table 4.5. Location of streamflow and DOC sampling sites. 

ID Watershed name Gauge ID Area(mi2) Period of record USGS 

W1 Main Branch (MB) 01435000 .66.6 1954-04-06 to 2016-07-13 

W2 West Branch (WB) 01434498 33.8 1985-09-04 to 2014-08-27 

W3 East Branch (EB) 01434017 22.9 1991-07-02 to 2014-08-20 

W4 New Hill (NH) 01434013 18.6 1991-07-02 to 2014-07-08 

W5 Biscuit Brook (BB) 01434025 3.72 1983-04-10 to 2015-03-31 

W6 Wild Cat (WC) 0143402265 7.89 1991-05-01 to 1994-07-19 

W7 Winnisook (WS) 01434021 0.77 
1991-01-01 to 2013-03-13 

(water quality data is 1985-2015) 

W8 Otter Pool (OP) 01434176 25.3 1991-07-01 to 1994-07-19 

W9 High Falls (HF) 01434105 2.74 
1990-10-01 to 1995-09-30 

(water quality 1983-1999) 

W10 Tisons (TS) 0143400680 8.93 1990-10-01 to 2013-03-31 

W11 Shelter Creek (SC20) 01434092 0.62 1992-10-01  to 2007-09-30 

W12 Clear Creek (CL25) 01434112 0.20 water quality:1992-10-01  to 2010-03-17 
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Figure 4.17. Catchment properties: (a) Slope, (b) TWI, (c) LAI and (d) Baseflow ratio. 

4.2.3. Temporal variability of dissolved organic carbon 

To analyze the temporal variability of DOC in the 12 sub-watersheds, we used DOC 

concentration data in water years (WY) 1992, 1993 and 1994.  Figure 4.18 shows the daily 

averaged DOC concentration data of the 12 sub-watersheds in 1992, 1993 and 1994. WY 1994 

has higher DOC concentrations for most of the sub-watersheds as compared to WY 1992, and 

1993.  Figure 4.19a, and Figure 4.19b show the annual precipitation and annual maximum daily 

temperature in WY 1992, 1993 and 1994. The difference in annual maximum daily temperature 

among the three years is minimal but the annual precipitation of WY 1994 is greater than those 

of WY 1992 and 1993. The relationship between annual precipitation and annual median DOC 

concentration was analyzed using WY1992 to WY 2014 data in Biscuit Brook (Figure 4.19c). 

Stream DOC concentrations at Biscuit Brook are positively correlated with the annual 

precipitation. The coefficient of determination (R2) between annual precipitation and annual 

median daily stream DOC concentration at the Biscuit Brook is 0.22.  These results suggest that 
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in higher precipitation year stream DOC tends to increase.  We also found that annual 

streamflow is positively correlated with stream DOC concentrations (not shown here). 

In addition to annual DOC variability, we also explored the relationship between DOC 

concentration and daily average streamflow. Figure 4.20 shows the relationship between storm 

flow (and baseflow) and stream DOC concentration for Biscuit Brook in the WY 1993, and 

1994. WY 1993 has stronger relationship (R2=0.42, 0.18) between storm flow (and baseflow) 

and stream DOC concentration than WY 1994 (R2=0.33, 0.03). Storm flow can better explain the 

variance of measured stream DOC concentration than baseflow. These patterns are also shown in 

other sub-watersheds. The statistical relationship between streamflow and stream DOC 

concentration is summarized in Table 4.6. 

 

 

Figure 4.18. Daily DOC concentration variations among watersheds in water year (WY) 1992, 

1993 and 1994:Sampled DOC data is averaged per day.  Middle line in the box is the 

median; upper and lower ends of the box are 75th and 25th percentiles; thin lines are the 

data range; circles are considered outliers. 
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Figure 4.19. Climate variability in WY 1992, 1993 and 1994 and the relationship between 

annual DOC concentration and annual precipitation of Biscuit Brook: (a) Annual 

precipitation, (b) annual maximum daily temperature, (c) the relationship between 

annual median DOC and annual precipitation. 

 
Figure 4.20. Relationship between daily storm/baseflow and daily DOC concentration of 

Biscuit Brook in the period of 1993 and 1994: (a) storm flow vs DOC in year 1993, (b) 

baseflow vs DOC in year 1993, (c) storm flow vs DOC in year 1994, and (d) baseflow 

vs DOC in year 1994. 
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Table 4.6. Statistical relationship (R2)1 between daily streamflow and 

DOC concentration in Neversink River Basin 

ID Watershed name WY 1993 WY 1994 

W1 Main Branch (MB) 0.45 0.58 

W2 West Branch (WB) 0.55 - 

W3 East Branch (EB) 0.65 0.42 

W4 New Hill (NH) 0.55 0.43 

W5 Biscuit Brook (BB) 0.43 0.30 

W6 Wild Cat (WC) 0.66 - 

W7 Winnisook (WS) 0.56 0.67 

W8 Otter Pool (OP) 0.68 - 

W9 High Falls (HF) 0.40 0.41 

W10 Tisons (TS) 0.59 0.26 

W11 Shelter Creek (SC20) 0.81 0.05 

W12 Clear Creek (CL25) 0.05 0.08 
1: R2 is coefficient of determination. 

 

We also explored how the relationship between storm flow and DOC concentration varies 

among different seasons. Figure 4.21 shows the scatter plots between calculated storm flow and 

measured stream DOC concentration in spring, summer, fall, and winter. Data from WY 1992 to 

2004 were used to calculate these relationships. We used R2 (coefficient of determination) of as a 

measure of how well storm flow explains the variance of stream DOC concentrations, and 

applied a linear power regression model to explain the relationship between streamflow and 

stream DOC. Stream DOC is positively correlated with streamflow in spring, summer, fall and 

winter seasons, and the relationship between the two variables in all seasons has a power form 

(DOC=aQb). Calculated R2 varies between seasons; R2 values of spring, summer, fall and winter 

seasons are 0.40, 0.51, 0.54, and 0.42 respectively. Storm runoff has a higher correlation with 

stream DOC concentration than baseflow (not shown here), suggesting that most of the organic 

matter is transported to the stream via surface and shallow subsurface runoff that is in contact 

with organic rich soil horizons.  

 We also used the relationship between flow and DOC fluxes to characterize DOC export 

patterns as source-limited or transport-limited. The relationship between flow and DOC fluxes 

also has a power form. Figure 4.22 shows the scatter plots between measured flow and measured 

stream DOC fluxes. Linear power regression models had robust goodness of fit for the four 

seasons (R2>0.95). The estimated ‘b’ (exponent) values are larger than 1, which suggests that 

DOC export in Biscuit Brook is transport limited rather than source-limited. These results are 

consistent with the results of Raymond and Saiers, (2010) showing that most of DOC is exported 

during large events.  

The difference in R2 between seasons may be attributed to the difference of the 

antecedent moisture conditions, and available DOC variability within the watershed. The study 

of Brown et al. (1998) in Shelter Creek showed that summer DOC concentrations are lower in 

the rising limb of the hydrograph than those on the recession limb.  In the small forested 
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watershed in the Rocky Mountains of Colorado, spring stream DOC concentration were found to 

peak on the rising limb of the snowmelt hydrograph, prior to peak snowmelt (Boyer et al.,1997). 

Since seasonal soil moisture (or groundwater level) and organic matter data is not available in 

the watershed, application of a hydrologic model can be an alternative in order to explore the 

changes of soil moisture and DOC availability within a watershed. Boyer et al. (1996) combined 

a hydrologic model (TOPMODEL) and a simple DOC model to explain the flushing mechanism 

of DOC in streams of Deer Creek catchment, Colorado.  

. 

Figure 4.21. Relationship between log daily storm flow and log daily averaged DOC 

concentration of Biscuit Brook in different seasons, 1992-2014. 
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Figure 4.22. Relationship between log daily flow and log daily DOC fluxes of Biscuit Brook 

in different seasons, 1992-2014. 

4.2.4. Spatial variability of dissolved organic carbon in Neversink River 

Basin 

We analyzed the relationship between median annual DOC concentration and watershed 

properties (Figure 4.23). Slope was the only characteristic that has a statistically significant 

relationship (p-value<0.05) with DOC in these watersheds. Steeper sloped watersheds tend to 

have lower stream DOC concentrations than milder sloped watersheds.  Other watershed 

properties, including TWI, LAI, baseflow ratio and SOC do not show statistically significant 

relationship with the difference of stream DOC concentrations between the watersheds.  
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Figure 4.23.  Relationship between catchment properties and annual median daily DOC: (a) 

TWI (b) slope, (c) LAI, (d) baseflow ratio and (e) soil organic carbon 

4.2.5. Developing a conceptual model for explaining the variability of 

dissolved organic carbon  

We analyzed the spatial and temporal variability of DOC concentration within Neversink 

River basin. The analysis is based on watershed properties (topography, soil and vegetation and 

hydrologic flow partition) and stream DOC concentration variation. The analysis showed that 

flatter sloped watersheds tend to produce higher DOC concentration than steeper sloped 

watersheds. Flatter slope can be related to the probability of having saturated areas, and 

wetlands. Webster et al.( 2011) present topographic templates that estimates the soil carbon 

pools in the forested catchments, and the template demonstrates that larger soil carbon pools are 

observed in the footslope, toeslope and wetland features. Since soil carbon pool tends to 

positively correlated with stream DOC, we can infer that flatter sloped watershed will have 

higher accumulated soil carbon and its higher soil carbon leads to transporting higher DOC 

concentration in streams. 

The stream DOC concentration is also positively correlated with storm flow (Figure 4.20 

and Figure 4.24). A study by Brown et al. (1998) in Shelter Creek watersheds showed that Soil B 

and C horizon carbon levels are too low to explain the higher DOC concentration in the stream 

during peak events. Through end-member mixing analysis, Brown et al. (1998) found that at the 

start of an event, stream DOC concentrations were close to groundwater DOC levels.  At the 

peak of event, stream concentrations were close to through fall (under canopy) samples, while 

after the peak of the hydrograph, stream concentrations became close to that observed in the O 

horizon.  These results suggest that the higher surface organic layer is a major contributor to 
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stream DOC, when groundwater level is close to surface. These finding are similar to the study 

of Boyer et al. (1997) that suggest the flushing mechanism explained the higher DOC transport 

in the snowmelt periods in the Deer Creek watershed in Colorado. 

 

Figure 4.24. Daily time series of streamflow with sampled DOC concentration data in water 

year 1993, Biscuit Brook 

4.2.6. Summary and conclusion 

To understand the key control(s) on stream DOC processes, we explored the DOC data 

from 12 USGS stream gauging stations, and examined the relationship between DOC 

concentrations and watershed characteristics at the 12 sites. These characteristics included 

topography (slope and topographic wetness index), soil properties (soil carbon) and vegetation 

density (leaf area index).  We found that only slope has a significant relationship with observed 

DOC concentration. In addition to spatial variation of DOC concentration, we also explored the 

temporal variability of DOC.  At an annual time scale, precipitation has a positive relationship 

with annual median DOC concentration.  Daily DOC concentration is positively correlated with 

daily streamflow as well. In particular, storm runoff has higher correlation with daily DOC 

concentration than baseflow. Similar results were found for seasonal DOC patterns; spring, 

summer, fall and winter DOC concentrations are positively correlated with storm runoff.  These 

results suggest that most organic matter is transported to stream via surface and shallow 

subsurface runoff that are in contact with organic rich soil horizons. In addition, high slopes 

(b>1) of the power-law relationship between flow and DOC fluxes for four seasons suggest that 

DOC export is characterized as transport-limited rather than source-limited. However, the 
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relationship between storm flow and stream DOC concentration varied between seasons. This 

difference may be attributed to variation in antecedent moisture conditions, and available DOC 

variability. Current data analysis is solely based on instream DOC and flow. Therefore, the 

analysis is limited to explaining spatial and temporal distribution of DOC sources areas, and 

associated water movements within the watershed. In the next section, an ecohydrologic model 

RHESSys (Tague and Band, 2004) is used to investigate how DOC sources vary spatially and 

temporally within a watershed, and how available DOC is transported to stream.   
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4.3.  RHESSys model predictions of streamflow, nitrate and dissolved 

organic carbon in two Neversink River watersheds  

4.3.1. Introduction  

Catskill Mountain watersheds in New York State have historically experienced soil and 

stream acidification due to atmospheric deposition of SO2 and NOx. Change in atmospheric 

deposition has altered the biogeochemistry in soil and stream, as evidenced by increases in 

dissolved organic carbon (DOC) (Findlay, 2005) and nitrate (Murdoch and Stoddard, 1992).  

These DOC and nitrate increases are key questions for watershed and water supply management 

in this region.  This study applies a process-based ecohydrologic model (RHESSys) to two 

watersheds in Neversink River Basin to improve the understanding of the sources, fate and 

transport mechanisms, and export patterns for nitrate and DOC. 

4.3.2. Study sites and methodology  

This study focus on the two headwater watersheds, Shelter Creek (1.6 km2) and Biscuit 

Brook (9.2 km2), located in Neversink River Basin. Figure 4.25 shows the location and boundary 

of each watershed. The major land cover type is forest, and mixed northern hardwood forest is 

the dominant forest type, consisting of American beech, red maple, sugar maple and yellow birch 

(Harpold, et al., 2010). Balsam fir is found above 1000 m elevation, and hemlock is found at the 

ridge and near streams. The major soil type is Inceptisols, and its depths range from 0.5 - 1 m.  

Soils have coarse texture, and are well drained. The major surface geologic type is sandstone 

(60%). Underlying bedrock type is sedimentary rock, and the bedrock has high percentages of 

fractures. Bedrock mineralogy is spatially uniform. The till depth is shallow (<1 m), and in the 

valley bottoms, the coarse sand and gravel is formed by the glacial outwash and recent alluvium 

deposits. The average precipitation (based on Slide Mountain climate station, located in the 

summit of Neversink River Basin) is 1570 mm, and mean air temperature is 5.2 ̊C.  Snow as a 

percentage of the total precipitation ranges from 20 to 35% (Harpold et al., 2010). 



4. Model Development and Application 

 

95 

 

 

Figure 4.25. Study sites: (a) Neversink River Basin, (b) Biscuit Brook and (c) Shelter 

Creek. 

 

 

The model used for this study is RHESSys, a physically based, spatially explicit model 

that has the capability to simulate climate and vegetation change impacts on hydrology and 

ecosystem carbon and nutrient cycling.  Figure 4.26 shows RHESSys modeling framework, 

including the model structure, and detailed vertical and horizontal hydrological processes. This 

model was applied to the Shelter Creek and the Biscuit Brook watersheds.  

RHESSys requires various input data; climate inputs (e.g. daily precipitation and daily 

minimum and maximum temperature), topography (i.e. Digital Elevation Model), soil and 

vegetation data.  Figure 4.27 shows some of the RHESSys input data for Shelter Creek. Similar 

level of model input data was used for Biscuit Brook. NYC DEP produced 1m Digital Elevation 

Model (DEM) using LIDAR point data. This study used resampled 10m DEM (for Shelter Cr.) 

and 30m DEM (for Biscuit Br.) to generate the topographic parameters (elevation, slope, aspect, 

flow drainage maps, watershed boundary maps, etc.). Soils parameters are initially estimated 

based on Soil Survey Geographic (SSURGO, USDA Natural Resources Conservation Service) 

and existing RHESSys parameter library (available at 

https:www.github.com/RHESSys/ParamDB).  We used a detailed vegetation species map 

(Driese et al., 2004) for characterizing the different vegetation functional types, and associate 

vegetation parameters for each vegetation type was based on the RHESSys parameter library. 

Current model setups used Landsat TM-based LAI estimates for Biscuit Brook and Shelter 

Creek. Landsat-TM image (06/21/1991) were used to derive normalized difference vegetation 

index (NDVI).  LAI values were estimated using an empirical calibrated equation of NDVI and 



2016 Water Quality Modeling Annual Report 

 

96 

 

LAI developed in other studies (Hwang, unpublished data) because measured LAI data are not 

available in our sites. 

 

Figure 4.26. RHESSys modeling framework. 
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Figure 4.27. RHESSys input data for Shelter Creek: (a) LAI, (b) vegetation species, (c) soil 

types, and (d) slope. 

For climate input data, this study used precipitation and air temperature data from the 

Slide Mountain climate station, located about 9 km and 6 km from Shelter Creek and Biscuit 

Brook, respectively. Other climate variables (e.g. solar radiation, saturation vapor pressure, and 

relative humidity) are computed using a climate interpolation model (MT-CLIM, Running et al., 

1987).  

RHESSys is initially calibrated with measured streamflow, with the focus on calibrating 

soil parameters. Six soil parameters were varied in the model calibration described below; these 

parameters are vertical and horizontal saturated hydraulic conductivities (Ksat), decay coefficient 

of Ksat with depth (m), soil depth (sd), the percentage of preferential flow from the soil surface 

to deep groundwater storage (gw1), and the linear coefficient of groundwater storage (gw2). The 

predictive performance of the model is evaluated using a combination of three accuracy 

measures (Equations (4.11, (4.12, and (4.13); a) Nash-Sutcliffe efficiency coefficient, NSE 

(Nash and Sutcliffe, 1970), b) Nash-Sutcliff efficiency coefficient with logarithmic values, 

logNSE and c) the percent volume error (PerErr). The value of combining the three accuracy 

(Equation (4.14)) measures range from 0 to 1 with the perfect fit at 1. 
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𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑠𝑖𝑚,𝑖)

2
𝑖

∑ (𝑄𝑠𝑖𝑚,𝑖 − �̅�𝑜𝑏𝑠,𝑖)
2

𝑖

 (4.11) 

𝑙𝑜𝑔𝑁𝑆𝐸 = 1 −
∑ (log (𝑄𝑜𝑏𝑠,𝑖) − log(𝑄𝑠𝑖𝑚,𝑖))2

𝑖

∑ (log (𝑄𝑠𝑖𝑚,𝑖) − log (�̅�𝑜𝑏𝑠))2
𝑖

 (4.12) 

𝑃𝑒𝑟𝐸𝑟𝑟 =
( �̅�𝑠𝑖𝑚 − �̅�𝑜𝑏𝑠)

�̅�𝑜𝑏𝑠

× 100 (4.13) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑁𝑆𝐸 × 𝑙𝑜𝑔𝑁𝑆𝐸 × (1 − |
𝑃𝑒𝑟𝐸𝑟𝑟

100
|) (4.14) 

 

where Qobs,i is the observed streamflow and Qsim,i is the simulated flow at any given time step (i), 

and   and  are the average of daily streamflow.  Following calibration for streamflow, 

the model was used to predict stream nitrate and DOC for the two watersheds. In addition, LAI 

predicted by RHESSys is compared with LAI based on Landsat TM imagery. 

4.3.3. Prediction of flow, nitrate, and DOC in Shelter Creek 

RHESSys was applied to the Shelter Creek watershed (SC20), and the model was 

calibrated based on the measured streamflow. The calibration period of the model is from 

10/1/1992 to 09/30/1995. Figure 4.28 shows the calibration results of modeled monthly flow. 

RHESSys failed to capture the timing of the peak flow, but the low flow prediction is better; 

(logNSE = 0.32). RHESSys also underestimated the annual flow (PerErr = -16%). However, 

RHESSys was able to reproduce the measured monthly flow; NSE and logNSE equal to 0.80 and 

0.6, respectively. The poor prediction of daily streamflow may be attributed to high uncertainty 

in climate input data since this study used meteorological data from the Slide Mountain station, 

located about 9 km from Shelter Creek.  
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Figure 4.28. RHESSys streamflow predictions: monthly modeled flow vs measured flow, obs 

is measured streamflow, and model is modeled streamflow. 

 
Figure 4.29. RHESSys nitrate simulations for Shelter Creek (SC20): (a) comparison of 

simulated and observed stream nitrate concentration, grouped by month, 1992-1995 in 

Shelter Creek (SC20), and (b) model estimates of stream nitrate sources. 
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The calibrated model was used to predict stream nitrate and DOC concentrations and 

fluxes. The diagnosis of the model performance regarding nitrate and DOC is limited to the 

monthly scale. Figure 4.29 shows RHESSys nitrate simulation results for Shelter Creek.  

RHESSys tends to overestimate the stream nitrate particularly in summer (Figure 4.29a). The 

overestimation of summer nitrate may result from underprediction of denitrification in 

groundwater storage because simulated NO3 export is dominated by the deep groundwater N flux 

in summer (Figure 4.29b). Ashby et al. (1998) showed high denitrification rates in the 

groundwater seepage and near-stream areas in the Shelter Creek watersheds. Improving the 

denitrification processes in those areas will be necessary. We also found that stream nitrate 

estimates are sensitive to N deposition rates with RHESSys (not shown here). Current model 

implementation assumes a steady N deposition rate. Therefore, accounting for time-variable N 

deposition in RHESSys modeling will be necessary to improve the stream nitrate predictions.  

Figure 4.30 shows the monthly DOC prediction for Shelter Creek. The model 

overestimates winter DOC and underestimates summer DOC; however, the ranges of modelled 

stream DOC concentration are within the measured values. The model estimate has very low 

seasonality of available soil DOC (Figure 4.30c). These results suggest that stream DOC 

processes is dominated by hydrologic transport rather than by source magnitude.  It should be 

noted that this current model prediction is only based on soil parameters calibration. Future 

research requires adjusting DOC decay and adsorption parameters to improve the stream DOC 

predictions.  
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Figure 4.30. RHESSys stream DOC simulations in Shelter Creek (SC20): (a) Comparison of 

simulated and observed stream DOC concentration, grouped by month, 1992-1995, and 

(b) modeled estimates of flow components, (c) model estimates of soil DOC and 

surface DOC. 

4.3.4. Prediction of flow, nitrate and DOC in Biscuit Brook 

RHESSys was applied to Biscuit Brook, and the model was calibrated with measured 

streamflow. The calibration period of the model is from 10/1/1992 to 09/30/1995. As in the 

Shelter Creek application, six soil parameters were calibrated.  Figure 4.31 compares RHESSys 

streamflow predictions with observations.  Predicted daily streamflow is underpredicted in fall 

and early winter flow, with large error in the timing and magnitude of peak flow (R2 value is 0.3 
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and daily NSE is 0.25). The error in early winter may be due to missing snow-rain transition, and 

the partition of total precipitation in rain and snow. Due to climate inputs from outside the 

watershed and lack of snow data, it may be difficult to correct these model errors. In addition, the 

underestimated peak flow in fall may be related to poor parameterization of soil depths. 

Estimated soil depth may be too deep to generate storm runoff when rain occurs. The predictions 

for low flow (logNSE=0.47) were better than those for high flow (NSE=0.25). Predictions of the 

seasonal pattern of streamflow (not shown here) were better; (NSE = 0.76 for monthly average 

streamflow). 

 

Figure 4.31. RHESSys streamflow predictions for Biscuit Brook: (a) measured daily 

streamflow vs modeled daily streamflow, and (b) measured log daily streamflow vs 

modeled log daily streamflow. 
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Following calibration for streamflow, the model was used to predict DOC concentration 

in the stream.  For 1993, RHESSys overpredicts stream DOC in winter, but underpredicts in fall 

(Figure 4.32). High predicted winter DOC is likely related to underestimated streamflow (Figure 

4.32b). Underestimated DOC in fall 1992 may be related to lower groundwater level because the 

temporal patterns of modeled DOC corresponds to the timing of rising groundwater level (Figure 

4.32c). These results suggest that DOC export occurs when the groundwater table is close to the 

surface.  

To improve RHESSys predictions of fall streamflow and stream DOC, we evaluated 

model sensitivity to soil depth. We preserved the spatial variation in soil depth, but reduced these 

by percentages ranging from 10% to 90%, with other soil parameters unchanged. We 

 

Figure 4.32. Model estimates of the calibrated RHESSys for Biscuit Brook in WY1993: (a) 

measured DOC concentration samples vs RHESSys estimates of stream DOC, (b) 

streamflow estimate (black solid line) vs measured streamflow (red dotted line), (c) 

watershed averaged groundwater estimates of RHESSys and (d) measured DOC 

concentration samples (red triangle)  vs modelled DOC fluxes (blue solid line). 
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hypothesize that shallower soil depth will increase the peak flow estimates in fall and early 

winter, and that improved hydrologic predictions lead to better stream DOC predictions. In 

general, reducing soil depth increased peak flow as well as stream DOC prediction. Figure 4.33 

shows the streamflow and DOC prediction with 10% of calibrated soil depth with fixed other 

calibrated soil parameters values. The results showed that peak flow is improved with shallower 

soil depth, and improved peak flow simulation lead to better capturing the measured DOC 

concentration and fluxes. Model predictions of DOC fluxes (R2=0.30) are better than those of 

DOC concentration (R2=0.04). These result suggest that estimate of DOC concentration is very 

sensitive to flow variability.  

 
Figure 4.33. RHESSys streamflow predictions and DOC fluxes with shallower soil depths for 

Biscuit Brook: (a) daily streamflow, (b) model estimates of DOC concentration (black 

solid line) vs measured stream DOC concentration (red triangle), (c) modeled DOC 

fluxes (black solid line) vs measured stream DOC fluxes (red triangle), and (d) 

statistical relationship (R2) between measured stream DOC fluxes and modeled stream 

DOC fluxes. 
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The calibrated model was also used to compare the model estimates of LAI with Landsat 

TM-based LAI estimates (Figure 4.34). Average model estimates of LAI are lower than average 

TM-LAI values, and the two estimates have different spatial patterns. The RHESSys estimate of 

LAI showed that high flow accumulation areas tend to have higher LAI. However, the spatial 

patterns of TM-LAI values tend to reflect difference of aspect within the watershed. The 

sensitivity of LAI estimates to soil depth showed that lower LAI values of RHESSys estimates 

are due to shallower soil depth (not shown here). To correct the magnitude of LAI and its 

distribution in RHESSys simulation, we may consider improving soil depth parameterization. A 

suggestion is to parameterize the soil depth according to vegetation index (LAI, EVI and NDVI, 

etc.), and tree biomass. We hypothesize that deeper soil supports taller, larger trees.  Turner et al. 

(2003) used the calibration of soil depth in Biome-BGC modeling to enable simulated LAI 

values to match with remotely sensed-based LAI values. In this study, LAI values were 

estimated using an empirical calibrated equation of NDVI and LAI developed in other studies 

(Hwang, unpublished data). Therefore, in order to improve the estimate of LAI, field 

measurement of LAI will be necessary. Recent studies (Ganguly et al., 2008, 2012) show the 

potential utility of using radiative transfer theory of canopy spectral invariant to estimate the LAI 

at the Landsat TM scale (30 m). In addition, the MODIS LAI 1km product can be used to 

generate the variation of LAI over time, and these data will be very useful to diagnose RHESSys 

performance.  

 
Figure 4.34. Comparison of RHESSys estimates of LAI and Landsat TM based LAI: (a) 

RHESSys estimates of LAI, (b) Landsat TM-based LAI estimates, and (c) the scatter 

plots of the two estimates. 
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4.3.5. Summary and conclusion 

RHESSys was tested to predict streamflow, stream nitrate, and DOC concentration and 

fluxes for Shelter Creek and Biscuit Brook in the Neversink River Basin. The model results for 

Shelter Creek showed that the current model was only able to accurately reproduce streamflow at 

a monthly or longer time scale, and tended to overestimate the summer nitrate. The 

overestimation of summer nitrate may be due to the underestimation of denitrification in the 

groundwater storage. The model also failed to produce the seasonal variability of DOC 

concentration, even though the magnitude of DOC estimates is within the ranges of measured 

values. The RHESSys estimate shows a low temporal variability of soil DOC, suggesting that 

stream DOC processes is dominated by hydrologic transport mechanism.  For Biscuit Brook, 

RHESSys-predicted streamflow showed a larger error in fall and early winter, and its error also 

leads to poor prediction of DOC concentration in the stream. Through lowering soil depth for the 

calibrated soil parameters, streamflow estimates in fall and early winter were improved, and its 

improvement also leads to better prediction of stream DOC concentration and fluxes. However, 

the model simulations with the shallow soil depth cause the underestimation of LAI values, and 

different spatial patterns, compared with remotely sensed based LAI values. The LAI estimated 

by RHESSys is sensitive to soil depth. We therefore suggest that vegetation properties (leaf area 

and biomass, etc.) can be used to guide the soil depth parameterization, and perhaps improve 

LAI estimates. 
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4.4. Impact of forest harvesting on streamflow in Neversink Reservoir 

streams 

4.4.1. Introduction  

Forest harvesting is a common forest management practice, but long-term consequences 

of forest harvesting to water yield and water quality are not consistent since harvesting may 

impact hydrology and forest ecosystem differently depending on the extent and intensity of 

forest harvesting, climate variability and natural forest succession in the recovery period. In the 

1990s the USGS implemented an ambitious project in the Neversink Reservoir watershed to 

assess the long-term consequences of forest harvesting. A set of experimental catchments along 

Shelter Creek in the upper Neversink basin were established. These catchments were gaged, 

differing intensities of forest harvesting were applied, and the subsequent effects on stream 

chemistry were evaluated (Siemion et al., 2011). Here, we revisit the Shelter Creek experimental 

watersheds to examine the effects of forest harvesting on streamflow, and to assess: 

1. the recovery of the forest canopy following varying harvest intensities using remotely 

sensed data to derive vegetation indices, 

2. the effect of forest harvest on streamflow using a paired (harvested/control) watershed 

approach. 

4.4.2. Study sites  

The study site is the Frost Valley YMCA Model Forest, located in the Neversink River 

Basin.  Three areas within the site experienced different forest harvesting practices: light 

selective cut, heavy selective cut, and clear-cut. Figure 4.35 and Table 4.7 show the area of forest 

harvesting in Shelter Creek watersheds and the different harvesting history for each sub-

watersheds, including CL25, DC57, NS25 and SS20. Figure 4.35b shows the forested areas 

harvested by USGS (McHale et al., 2008). This map is used as a reference when we analyze the 

forest harvesting areas using remotely sensor-based vegetation indices. SC20 is the entire Shelter 

Creek watershed. NS25 is ‘light selective harvest’ watershed with 2% basal area decrease after 

the harvest. SC20 is ‘heavy selective harvest’ watershed with 8% basal area decrease after the 

harvest. DC57 is ‘clear cut harvest’ watershed with 80% decrease in the basal area. CL25 is used 

as a control watershed. A detailed description of the forest harvesting history is provided in 

McHale et al., 2008. 
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Table 4.7. Shelter Creek sub-watersheds with different forest harvesting regimes and their 

harvesting periods. 

Watershed 
Size 

(km2) 

Harvesting 

Period 
Intensity 

CL25  0.52 --- Control (0%) 

NS25 0.34 Winter, 1995-96 Light harvest (2% decrease in basal area) 

SS20 0.43 Fall, 1996 Heavy harvest (8% decrease of basal area) 

DC57 0.24 Winter, 1996-97 Clear Cut (97% cut, 90% decrease of basal area) 

SC40 1.0 Winter, 1995-96 and Fall, 

1996 

NS2 and SS20 are the sub-watersheds of SC40 

SC20 1.6 Winter, 1995-96 and Fall, 

1996, Winter, 1996-97 

DC57, NS2 and SS20 are sub-watersheds of SC20 

 

 

Figure 4.35. Shelter Creek watersheds including control watersheds, and forest harvested 

watersheds: (a) the location of Shelter Creek and Biscuit Brook, (b) forest harvesting 

maps (McHale et al., 2008), and (c) the map of sub-watersheds with different forest 

harvesting history. 
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4.4.3. Recovery of the forest canopy following varying harvest intensities 

based on remotely-sensed data derived vegetation indices  

The recovery of the forest canopy following varying harvest intensities is assessed using 

remotely-sensed data derived vegetation indices. Landsat-TM images were used to derive three 

vegetation indices: normalized difference vegetation index (NDVI), enhanced vegetation index 

(EVI), and normalized different moisture index (NDMI). Image analysis was conducted using 

GRASS 7.0 GIS imagery tools. The calculation of the vegetative indices is given by Equations 

(4.15), (4.16), and (4.17):  

 

 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑉𝐼𝑆

𝑁𝐼𝑅 + 𝑉𝐼𝑆
 (4.15) 

 

 

 𝐸𝑉𝐼 = 2.5 ×
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 6 × 𝑅𝐸𝐷 − 7.7 × 𝐵𝐿𝑈𝐸 + 1.0)
 (4.16) 

 

 

 𝑁𝐷𝑀𝐼 =
𝑁𝐼𝑅 − 𝑀𝐼𝑅

𝑁𝐼𝑅 + 𝑀𝐼𝑅
 (4.17) 

where NIR is near infrared light (0.7 to 1.1µm wavelength), VIS is visible light (0.4 to 0.7µm), 

RED is red light (0.63-0.69 µm), BLUE is blue-green light (0.45-0.52 µm), and MIR is mid-

infrared (1.55-1.75 µm).  

Figure 4.36 shows the calculated NDVI, EVI and NDMI values in the period of 

08/09/1995. NDVI values tend to have higher values than the other two indices, and the spatial 

patterns of each index are different. NDVI is sensitive to the density of leaf greenness. EVI is 

similar to NDVI but is preferred in that NDVI is easily saturated in dense forest environments. 

EVI also corrects for some distortion of light by air particles and the ground cover below the 

vegetation. Figure 4.36(b) shows several long strips along slopes and the strips related to 

exposed boulders. Figure 4.36(c) show the NDMI values. NDMI is sensitive to leaf water 

content. NDMI has the lowest values compared with the two indices (Figure 4.36d). EVI has the 

highest spatial variance, but NDVI has lowest spatial variance. Since each vegetation index 

shows different features of vegetation, we consider which vegetation index better reflects the 

hydrologic changes (evapotranspiration and streamflow) both in the forest harvesting periods and 

forest recovery periods.   
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Figure 4.36. Calculated vegetation index: (a) NDVI, (b) EVI,(c) NDMI, and (d) summary of 

each vegetation index 

4.4.4. Recovery after light forest harvesting 

Three vegetation indices, NDVI, NDMI and EVI were used to detect the light forest 

harvested areas in NS25 and the pattern of recovery. Light harvesting was conducted in the 

winter of year 1995.  Since the light harvested area also included the downstream area of NS25 

as well as the areas within NS25, the indices values for SC40 was calculated instead. To detect 

the light forest harvested area and its recovery pattern, we used the two TM images collected on 

June 12, 1995 and June 2, 1996 to calculate the three indices per each date. Figure 4.37 (a), (d) 

and (g) show the vegetation indices values in early summer of year 1995 prior to forest 

harvesting. Figure 4.37(b), (e) and (h) show the vegetation indices in early summer of year 1996 

after the light forest harvesting. NDVI ranges from 0.85 to 0.91 for 1995, and from 0.72 to 0.86 

for 1996. The reduction of the NDVI values was only shown in the upper part of NS25, where 

forest harvesting was not conducted. However, the NDVI values of the harvested areas between 

the two dates is very similar. These patterns were observed in the other two indices. Therefore, 

we can conclude that the forest recovered in the light forest harvested areas within a year.  
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Figure 4.37. Calculated NDVI, NDMI and EVI for SC40 before and after light forest 

harvesting: (a) 06/16/1995, (b) 06/02/1996 , (c) the difference of the two images , (d) 

06/16/1995, (e) 06/02/1996, (f) the difference of the two images,(g) 06/16/1995,  (h) 

06/02/1996 and (i) the difference of the two images. 

4.4.5. Recovery after heavy partial forest harvesting 

We explored the heavy forest harvested areas in SS20 using the three indices. Since SS20 

had heavy partial forest harvesting in the fall of year 1996, we used three TM images collected at 

on October 3, 1994, October 24, 1996 and October 11, 1997. Figure 4.38 shows the calculated 

NDVI values at the three dates. The NDVI values of the lower parts of SS20 distinctively 

reduced, and the areas with the low values matched with existing forest harvesting map (Figure 

4.35b). Figure 4.38c shows the difference of the NDVI values at the two dates (October 3,1994 

and October 24, 1996) has the negative values (<-0.3) in the lower part of SS20. NDVI values at 

the October 11, 1997 shows positive values (>0.2) compared with the NDVI values at the 

October 24, 1996. These results are supported by the report of McHale et al. (2008). However, 

the NDVI values on October 11, 1997 still showed lower values than those at the October 3th, 

1994. It is not clear that forest leaf fully recovered from the harvesting, or that the lower values 

of NDVI on October 11, 1997 can be attributed to climate difference. The analysis of using EVI 

values for the three dates are similar (Figure 4.39).  The EVI values on October 24, 1996 had 
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lower and negative (<-0.3).values, compared with the EVI values at the October 3, 1994 (Figure 

4.39c), and the distinctive increase of EVI values was shown in the lower part of SS20 on  

October 11, 1997. However, the analysis of NDMI showed different results (Figure 4.40). Even 

though NDMI values on October 24, 1996 were lower than those on October 4, 1994, the lower 

part of SS20 had still very similar values between the two dates. These results suggest that NDVI 

and EVI may show better performance to detect the heavy forest harvesting area, and recovery 

patterns.  

 

Figure 4.38. Calculated NDVI values for SS20: (a) 10/03/1994, (b) 10/24/1996 and (c) the 

difference of the indices at the two dates (10/3/1994 and 10/24/1996), (d) 10/11/1997, 

(e) the difference of the indices at the two dates (10/11/1997 and 10/24/1996), and (f) 

the difference of the indices at the two dates (10/11/1997 and 10/003/1994) 
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Figure 4.39. Calculated EVI values for SS20: (a) 10/03/1994, (b) 10/24/1996 and (c) the 

difference of the indices at the two dates (10/3/1994 and 10/24/1996), (d) 10/11/1997, 

(e) the difference of the indices at the two dates (10/11/1997 and 10/24/1996), and (f) 

the difference of the indices at the two dates (10/11/1997 and 10/003/1994). 
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Figure 4.40. Calculated NDMI values for SS20: (a) 10/03/1994, (b) 10/24/1996 and (c) the 

difference of the indices at the two dates (10/3/1994 and 10/24/1996), (d) 10/11/1997, 

(e) the difference of the indices at the two dates (10/11/1997 and 10/24/1996), and (f) 

the difference of the indices at the two dates (10/11/1997 and 10/003/1994). 

4.4.6. Recovery after clear-cutting  

We explored forest clear-cut areas in DC57 using the TM images collected in summer 

from 1996 to 2003 (Figure 4.41).  In the lower part of DC57, the three indices values had very 

low values in 1997 compared to 1996. The areas with the low values were consistent with the 

forest harvesting map (Figure 4.35b).  In 2000, the three indices values are likely close to the 

values prior to the clear-cut harvesting. In the year 2003, the three indices showed that the lower 

part of DC57 (clear-cut sites) had higher values than the upper parts of DC57, which is similar to 

the pre-harvesting conditions (Figure 4.41a, Figure 4.41b and Figure 4.41c).   
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Figure 4.41. Calculated NDVI, NDMI and EVI for DC57 using summer TM images from 

1996 to 2003. 
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4.4.7. Temporal changes in the three vegetation indices 

We explored the temporal change of the three indices in CL25 (control site), DC57 

(clear-cut site), and SC20. Figure 4.42 shows summer NDVI, NDMI and EVI values of CL25 

from 1995 and 2003. Three indices show similar temporal patterns in most years, but in 2002 and 

2003, NDVI and NDMI values became lower than year 2001, but the EVI values in the two 

years became larger than in 2001. In the clear-cut site (DC57) the three indices decreased in 

1997, and thereafter increased (Figure 4.43). The NDMI values 2002, and the EVI values in year 

2000, are close to the values in year 1995, respectively. After forest clear-cuts in DC57, the 

NDVI values increased until 2002, then decreased again in 2003. The NDVI values did not fully 

recover to the levels of 1995. These patterns are also found in CL25 (Figure 4.42) and SC20 

(Figure 4.44). These results are similar to a study of Khomik et al. (2014).  Their study showed 

the quick recovery of young trees in small study sites in the Harvard Forest Long-Term 

Ecological Research sites in Petersham, MA after forest clear cut; LAI value also quickly 

increases.  

Forest regeneration following forest clear-cut also changed the forest stand structure as 

well as dominant forest species. Figure 4.45 shows the 2016 forest stand structure and species in 

the unharvested area, and clear-cutting site. The unharvested areas have red maples, yellow 

birch, black cherry, and beech but the regenerated forest compositions of the clear-cut sites are 

now dominated by pin cherry and yellow birch. The clear-cut sites have denser vegetation 

structures than the unharvested sites. We expect that the regenerated forest will alter the 

magnitude and timing of forest water use and streamflow as well as water qualities in the stream, 

even if the forest leaf area recovers to the conditions prior to forest harvesting.  
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Figure 4.42. Calculated NDVI, NDVMI and EVI values of CL25 using Landsat TM images 

collected in summer of year 1995 to 2003: (a) NDVI, (b) NDMI and (c) EVI. 

 

Figure 4.43. Calculated NDVI, NDMI and EVI for DC57 using Landsat TM images collected 

in summer of year 1995 to 2003: (a) NDVI, (b) NDMI and (c) EVI. 
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Figure 4.44. Calculated NDVI and EVI for SC20 using Landsat TM images collected in 

summer of year 1995 to 2003: (a) NDVI, (b) NDMI and (c) EVI. 

 

Figure 4.45. Changes of forest structure and species after clear cut forest harvesting: (a) 

unharvested area in DC57, and (b) clear cut sites. This picture was taken in the year 

2016. 
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4.4.8. Effect of forest harvest on streamflow using a paired 

(harvested/control) watershed approach 

The paired watershed approach uses two hydrologically similar watersheds, a disturbed 

watershed and an undisturbed watershed. Biscuit Brook was selected as a control watershed 

because Biscuit Brook has not experienced forest harvesting practices and other forest 

disturbances, and has gaged streamflow data. We developed a linear regression model using 

measured streamflow data (10/1/1992 to 09/30/1995) at Biscuit Brook and SC20 prior to forest 

harvesting (Figure 4.46). This regression model is used to represent the streamflow variability of 

SC20 in the unharvested conditions from 10/1/1995 to 10/1/2003. The impact of forest 

harvesting on flow changes can be calculated by comparing the flow values of the developed 

regression model with the measured streamflow of SC20. 

 

Figure 4.46. Paired watershed approach: streamflow of undistributed watershed (Biscuit 

Brook) is compared with streamflow of disturbed watershed (SC20). 

 

Figure 4.47 shows the results of the developed regression model. The regression model 

shows high streamflow accuracies, with daily NSE of 0.92, and monthly NSE of 0.97. The 

regression model also captures the timing of the measured daily flow in SC20 (R2=0.92). 

Observed low flows of SC20 tend to be lower than those of the regression model. Measured 

streamflow of SC20 in the calibration periods is about 140 mm larger than the measured 

streamflow of Biscuit Brook but the streamflow difference of the regression model and SC20 is 

less than 1%.  
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Figure 4.47. Comparison of predicted streamflow with measured streamflow of SC20 prior to 

harvesting: (a) comparison of modeled flow with measured streamflow of SC20, (b) 

comparison of modeled flow with measured streamflow of SC20 with log scale, (c) 

fitted streamflow of Biscuit Brook against the measured streamflow of SC20, and (d) 

the streamflow differences of Biscuit Book and SC20, and the difference of modeled 

streamflow of SC20 and measured streamflow. 

 

This linear regression model was used to detect flow changes after the three different 

harvesting practices (Table 4.7). Here the regression model represents flow variability in the pre-

harvesting conditions. Flow changes at SC20 were investigated at daily, monthly and annual 

time scales. Figure 4.48 shows the difference of daily streamflow between the regression model 

and SC20 in the light forest harvesting periods (winter 1995). SC20 tends to have higher peak 

streamflow, and lower baseflow, but it is difficult to conclude that these patterns are attributable 

to forest harvesting because the regression model showed mismatch of peak flows in some 

events and overestimation of baseflow in the calibration periods. However, we can observe the 
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R2 value decrease from 0.92 to 0.81 and annual flow in the year 1996 increased to 118mm 

compared with the calibrated model.  Figure 4.49 shows the difference of daily streamflow 

between the regression model and SC20 in the heavy forest harvesting periods (Fall of year 

1996) and the clear-cut periods (Winter of year 1996-1997). The measured streamflow of SC20 

shows higher peak flow and lower baseflow than those of the regression model. The flow timing 

of SC20 and the regression model is similar to pre-harvesting periods, with R2 of 0.92, but annual 

flow of SC20 increases to 145mm, compared with the regression model.  

 

Figure 4.48. Flow change of SC20 following light selective harvesting: model is predicted 

streamflow based on measured streamflow of Biscuit Brook, and obs is measured 

streamflow at the outlet of SC20. 
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Figure 4.49. Flow change of SC20 following heavy selective harvesting in SS20 and clear- cut 

in DC57: model is predicted streamflow based on measured streamflow of Biscuit 

Brook, and obs is measured streamflow at the outlet of SC20. 

 

We also explored the monthly flow changes following forest harvesting and forest 

recovery (Figure 4.50). According to the forest harvesting history and the analysis of vegetation 

indices, we divided the forest harvesting periods in the four periods, (1) the pre-harvesting 

periods (WY 1993 to 1995), (2) harvesting periods (WY 1996 to 1997), and (3) forest recovery 

periods (WY 1998 to 2000), and forest mature periods (WY 2001 to 2003). In the pre-harvesting 

periods, median of monthly flow difference between SC20 and the regression model is close to -

4 mm. In the harvesting periods, median value of the streamflow difference is about 5 mm. In the 

forest recovery periods and mature periods, the median of the streamflow difference is 1 and -2 

mm respectively.  These results suggest that monthly flow in the forest mature periods is close to 

those in the pre-harvesting conditions. Figure 4.49b summarizes the annual flow changes before 

and after forest harvesting. In the pre-harvesting periods, the median of annual streamflow 

difference between SC20 and the regression model is close to -5 mm. In the harvesting periods, 

the median of the annual streamflow difference increases to 118mm. In the forest recovery 

periods, the median of the annual streamflow difference is about 178mm. However, in the forest 
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mature periods, the median of annual streamflow difference is about 21mm. This result suggests 

that annual flow did not fully recover even if the forest leaf conditions (based on vegetation 

indices) recovered to the pre-harvesting conditions. This result can have two explanations. The 

first explanation is due to the limitation of the regression model.  The annual flow estimates of 

the regression model are based on a simple assumption that the flow relationship between SC20 

and Biscuit Brook in the calibration periods remains same in the un-calibrated periods. 

Therefore, the difference in annual flow between the pre-harvesting periods and the forest mature 

periods may attribute to the limitation of this model assumption. An alternative explanation is 

that remotely sensed vegetation indices may not fully capture the hydrological behaviors such as 

evapotranspiration.  

 

Figure 4.50. Changes in monthly flow and annual flow after forest harvesting completed: (a) 

monthly flow, and (b) annual flow. Model is the predicted streamflow of SC20 based 

on measured streamflow of Biscuit Brook, and obs is the measured streamflow at the 

outlet of SC20 
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4.4.9. Summary and conclusion 

 

This analysis focused on detecting forest recovery patterns using remotely sensed 

vegetation indices, and improving our understanding of the relationship between forest changes 

and streamflow using paired watershed approach. Landsat TM images were used to calculate 

three different vegetation indices (NDVI, NDMI and EVI), and these indices were analyzed to 

detect forest recovery patterns after harvesting. Each index showed different sensitivity to forest 

harvesting and forest recovery pattern. NDMI is the least sensitive to forest changes, while EVI 

is most sensitive. For example, NDMI values cannot detect the heavy forest harvesting patterns 

in SS20. The derived vegetation indices can detect the forest recovery patterns following the 

three forest harvesting practices. The derived vegetation indices quickly recovered within a year 

after partial forest harvesting.  For DC57 (clear cut site), recovery pattern of the forest varies 

among the three indices.  The analysis using the NDMI and EVI values suggests that the forest 

fully recovered by 5 years and 3 years, respectively. However, the analysis of using NDVI values 

suggest that the forest did not fully recovered by year 2003. 

The paired watershed approach using a linear regression model was used to examine the 

impact of forest harvesting on streamflow. This approach assumes that the difference of the 

modeled streamflow and measured streamflow includes the impact of forest harvesting and 

inherent model uncertainty. The regression model showed that forest harvesting increased the 

annual and monthly flow, which was generally expected due to reduction in evapotranspiration. 

In the forest recovery periods, the annual and monthly flow decreased. However, the regression 

model showed that annual flow did not fully recover to the conditions that existed prior to 

harvesting even when the forest leaf (based on vegetation indices) recovered to the pre-

harvesting conditions.  However, the monthly flow did recover to nearly pre-harvesting 

conditions. These results can be interpreted in two ways: (1) the assumption in the paired 

watershed approach that the flow relationship between SC20 and Biscuit Brook determined for 

the calibration periods remains same in the uncalibrated periods may not be valid, and (2) the 

remotely-sensed vegetation indices do not fully represent hydrological changes of the 

watersheds, such as evapotranspiration, that are associated with shifts in forest stand structure 

and species. 

In addition to the impact of forest harvesting on streamflow changes, it was observed that 

forest harvesting changed the biogeochemistry of soils and stream (Siemion et al., 2011). These 

changes will be critical to maintain high quality water in streams. Future research will use the 

paired-watershed approach to quantify the impact of forest harvesting on dissolved organic 

carbon and nitrate in streams.  
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4.5. Preliminary testing of a turbidity model for Neversink Reservoir 

The two-dimensional model for temperature and turbidity for Neversink Reservoir is based 

on CE-QUAL-W2 (Cole and Wells 2013).  The turbidity submodel has previously undergone 

development, testing, and application for Schoharie, Ashokan, Kensico and Rondout reservoirs 

during earlier Catskill Turbidity Control studies (Gelda and Effler 2007, Gelda et al. 2009, 2012, 

2013).  The Water Quality Modeling has plans to extend the testing and application of this model 

to the remaining West of Hudson reservoirs, these being Cannonsville, Neversink, and Pepacton.  

This section describes application and testing of the model for Neversink Reservoir.  Model 

calibration for 2015 and validation for 2012–2014 is described here. This effort is preliminary; 

further testing of the model will be conducted as more data become available. The model may be 

integrated into OST in the future. 

4.5.1. Input Data  

The bathymetric information needed for the model was developed from a survey conducted 

by USGS. The reservoir was represented by a grid of segments and layers in the model, as 

summarized in Table 4.8. 

Table 4.8. Neversink Reservoir: specification of model grid and hydraulic features. 

Parameter Value Intake/Release Elevation* 

No. of branches 1 NR1 1314-1328 ft. 

No. of active segments 19 NR2 1344-1358 ft. 

Maximum No. of active layers 54 NR3 1374-1388 ft. 

Average length of a segment 530 m NR4 1404-1418 ft. 

Height of a layer 1 m   

Spillway elevation, NAVD88 438.67 m (1439.21 ft.) Dam Release 1314 ft. 

Spillway length 182.88 m (600 ft.)   
* BWS datum 

 

The primary tributary of the reservoir, Neversink River, is gauged at Claryville, NY, 

capturing runoff from ~ 74% of the watershed. Outflow from the reservoir occurs via an aqueduct 

(Neversink Tunnel) that discharges into Rondout Reservoir, through release works located in the 

Dam, and over the spillway. The ungauged inflow for the study period was estimated by 

performing a flow budget according to Owens et al. (1998). It represented ~ 26% of the total 

inflow. Other input data included meteorological data, inflow temperature, and inflow turbidity, 

which are described in Sections 5.1, 5.3, and 5.4, respectively. Data for model testing comprised 

observed profiles of temperature and turbidity at the single robotic monitoring site, biweekly 

observations at 3-4 depths at DEP’s routine monitoring sites, and observations (5 days/week) in 

Neversink Tunnel at the point of discharge into Rondout Reservoir. The coefficients and their 

values adopted in this preliminary effort are listed in Table 4.9.  
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Table 4.9. Coefficient values for two-dimensional hydrothermal/transport 

submodel for Neversink Reservoir. 

Coefficient Value 

Longitudinal eddy viscosity 1 m2 s−1 

Longitudinal eddy diffusivity 0.4 m2 s−1 

Chezy coefficient 70 m0.5 s−1 

Wind sheltering coefficient (dimensionless) 1 

Fraction of incident solar radiation absorbed at the water surface 0.45 

 

 

 

 

Figure 4.51. Evaluation of the hydrologic budget calculations as comparison of predicted and 

observed water surface elevation for 2012–2015. Mean absolute error was 0.084 m. 

4.5.2. Model Performance 

Comparison of the observed and model-predicted water surface elevation for 2012–2015 

indicate good performance (Figure 4.51) with a mean absolute error of 0.084 m. For temperature 

and turbidity, model performance was evaluated both in terms of predictions of in-reservoir 

vertical profiles, and withdrawal conditions. The submodel performed well in simulating the 

stratification regime of the reservoir, including the timing of the onset of stratification in spring, 

the duration of stratification, the onset of fall turnover, and layer temperatures, with the exception 

of slight over prediction in the epilimnetic layers during July–September interval. Comparisons of 
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detailed vertical profiles of observations and simulations are presented for the April to November 

interval of 2015 (Figure 4.52–Figure 4.54), which illustrate generally the high level of 

performance. Performance for 2013–2014 was similar (results not shown). Over prediction in the 

epilimnetic layers may be due to over mixing caused by wind stress. In future work, we plan to 

evaluate this effect by conducting sensitivity runs with dynamic wind sheltering coefficient.  

Performance of the turbidity submodel for the detailed vertical profiles data for 2015 is 

shown in Figure 4.55–Figure 4.57, and in Figure 4.58–Figure 4.60 for 2012–2015 with limited 

laboratory-measured data. 2015 did not represent a rigorous test of the model as there were no 

major turbidity events in the reservoir in that year. However, the model performed satisfactorily 

in maintaining the generally uniform vertical structure in turbidity, with occasional signatures of 

interflow with somewhat higher turbidity. The most recent significant turbidity event in Neversink 

Reservoir occurred in September, 2012, when it peaked around 350 NTU at site 2NN (Figure 4.58; 

profile #25). The model predicted the timing and the longitudinal extent of the turbid interflow 

well, however the overall magnitude was under predicted and can be attributed to uncertainty in 

the estimates of loading.  

In conclusion, time series of temperature and turbidity observations in Neversink Tunnel 

at NRR2CM are compared to continuous simulations for the entire 2012–2015 period of testing in 

Figure 4.61 and Figure 4.62, respectively. The model under predicted withdrawal temperatures 

during the summer stratification period, despite good performance in the water column. This is 

likely due to the uncertainty in the empirical selective withdrawal algorithm in the model (Cole 

and Wells 2013) and specification of the effective depth of withdrawal. This will be investigated 

in the future work. The average absolute error was 2.2 °C. Performance of the model with respect 

to withdrawal turbidity was good (average absolute error = 0.7 NTU; Figure 4.62). Performance, 

in this format, during September, 2012 for high turbidity event could not be assessed because the 

tunnel was shut down and no observations of turbidity. However, limited observations from 

elevation tap in the reservoir (NR2) that draws water from the corresponding diversion elevation 

indicate good agreement with the predictions (Figure 4.62).  Further work may include sensitivity 

runs, improving the estimates of turbidity loading from Neversink River, additional testing, and 

hindcasting. 
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Figure 4.52. Performance of model for Neversink Reservoir for April–July, 2015 as 

comparisons of predicted and observed vertical profiles of temperature at robotic 

monitoring site 1.5NN. MAE and RMSE indicate mean absolute error (°C) and root 

mean square error (°C), respectively. 
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Figure 4.53. Performance of model for Neversink Reservoir for July–September, 2015 as 

comparisons of predicted and observed vertical profiles of temperature at robotic 

monitoring site 1.5NN. MAE and RMSE indicate mean absolute error (°C) and root 

mean square error (°C), respectively. 
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Figure 4.54. Performance of model for Neversink Reservoir for September–November, 2015 

as comparisons of predicted and observed vertical profiles of temperature at robotic 

monitoring site 1.5NN. MAE and RMSE indicate mean absolute error (°C) and root 

mean square error (°C), respectively. 
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Figure 4.55. Performance of model for Neversink Reservoir for April–July, 2015 as 

comparisons of predicted and observed vertical profiles of turbidity at robotic 

monitoring site 1.5NN. MAE and RMSE indicate mean absolute error (NTU) and root 

mean square error (NTU), respectively. 
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Figure 4.56. Performance of model for Neversink Reservoir for July–September, 2015 as 

comparisons of predicted and observed vertical profiles of turbidity at robotic 

monitoring site 1.5NN. MAE and RMSE indicate mean absolute error (NTU) and root 

mean square error (NTU), respectively. 
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Figure 4.57. Performance of model for Neversink Reservoir for September–November, 2015 

as comparisons of predicted and observed vertical profiles of turbidity at robotic 

monitoring site 1.5NN. MAE and RMSE indicate mean absolute error (NTU) and root 

mean square error (NTU), respectively. 
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Figure 4.58. Performance of model for Neversink Reservoir for March, 2012–June, 2013 as 

comparisons of predicted and observed vertical profiles of turbidity at routine 

monitoring sites (1NN, 2NN, 3NN, 4NN). MAE and RMSE indicate mean absolute 

error (NTU) and root mean square error (NTU), respectively. 
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Figure 4.59. Performance of model for Neversink Reservoir for June, 2013–October, 2014 as 

comparisons of predicted and observed vertical profiles of turbidity at routine 

monitoring sites (1NN, 2NN, 3NN, 4NN). MAE and RMSE indicate mean absolute 

error (NTU) and root mean square error (NTU), respectively. 
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Figure 4.60. Performance of model for Neversink Reservoir for October, 2014–December, 

2015 as comparisons of predicted and observed vertical profiles of turbidity at routine 

monitoring sites (1NN, 2NN, 3NN, 4NN). MAE and RMSE indicate mean absolute 

error (NTU) and root mean square error (NTU), respectively. 
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Figure 4.61. Performance of model for Neversink Reservoir for 2012–2015 as comparison of 

predicted and observed temperatures in Neversink Tunnel (NRR2CM; diversion). 

 

Figure 4.62. Performance of model for Neversink Reservoir for 2012–2015 as comparison of 

predicted and observed turbidities in Neversink Tunnel (NRR2CM; diversion). 

Observed turbidities from NR2 (an in-reservoir location at the point of withdrawal at 

level 2) are also shown for the storm event of September 2012. 

4.5.3. Routine Water Quality Forecasting 

DEP’s Operations Support Tool (OST) is used to guide reservoir operating decisions 

involving both the quantity and quality of water. In the position analysis (PA) mode, OST can be 

used to generate near-term as well as long-term forecasts of storage and turbidity levels in the 

NYC’s water supply system. Water quality model runs with OST have been conducted on 

demand, generally in response to forecast of a storm in the watershed. In the future, it is 

envisioned that in addition to on-demand operation, OST forecasts will be generated on a regular 

schedule, such as once per week.  Such routine water quality forecasting is intended to provide 
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Bureau staff with the opportunity to conduct OST runs and interpret output more frequently.  

This will allow any shortcomings in software or procedures to be identified and corrected 

quickly.  We will then be better prepared to rapidly respond to watershed storm events and adjust 

water supply operations effectively and efficiently. The Water Quality Modeling group is 

developing software tools based on OST to greatly reduce the time and effort required to setup 

and complete water quality runs with OST.     

The scope of the work will include predictions of turbidity as the water quality parameter 

at three important keypoints in the system – the water supply diversion from Rondout Reservoir 

(RDRR), the diversion from Ashokan Reservoir (EARCM), and the diversion from Kensico 

(DEL18DT). The predictions will be generated in a probabilistic format indicating the 

probabilities of exceedance of selected levels of turbidities that are appropriate for a keypoint at 

the time of forecast. The forecasts would be generated for a period of two weeks and updated 

once a week.  This software to generate these forecasts is currently under development. 
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4.6. Streamflow simulation for East of Hudson watersheds 

4.6.1. Background 

Streamflow contribution from watersheds draining to NYC DEP’s East of Hudson (EOH) 

reservoirs are required to make simulations with Operations Support Tool (OST) and to study the 

impact of climate change on NYC water supply. Currently regression-based mass balance 

methods are used to estimate historical inflows to EOH reservoirs (DEP 2016). One approach to 

estimate inflows is based on observed water surface elevation, but this is limited by the 

availability of daily records of reservoir water surface elevation, and diversions and other 

reservoir outflows. An alternative approach to estimate inflows to a reservoir is the use of a 

watershed scale hydrologic model. Watershed models have the advantage of applicability to 

ungauged watersheds using calibrated model parameters from nearby watersheds with similar 

landscape characteristics. In 2016, staff from DEP’s Water Quality Modeling Section and 

Operations Directorate jointly completed a modeling project using GWLF model to estimate 

historical streamflow from EOH watersheds. A brief summary of the progress on this project 

follows. 

4.6.2. Methods 

The GWLF-VSA model was set up for five natural inflow gauged watersheds, seven flow 

regulated watersheds and two controlled lake watersheds that are part of the Croton system of 

NYC water supply (Figure 4.63). A 2009 land use map was overlaid on a 10-class topographic 

wetness index map to create land use-wetness index combinations and was used as input to the 

model. The Parameter-elevation Relationships on Independent Slopes Model (PRISM) climate 

data (daily precipitation and daily maximum and minimum air temperature (TMAX and TMIN)) 

available on a 4-km grid were used as input to drive the model. For each watershed the PRISM 

grid near the centroid of the watershed was used and this dataset was accessed through the 

applied climate information system (http://www.rccacis.org/). Other required climate data 

including solar radiation and relative humidity were computed using a climate interpolation 

model that uses air temperature and precipitation data (MT-CLIM, (Running et al. 1987)).  

file://///kngoitfs01/Modeling/wwqmod/Projects/MultieredModStatus_Mar17/Contributions/Rajith/Section4.4.docx%23_ENREF_1
file://///kngoitfs01/Modeling/wwqmod/Projects/MultieredModStatus_Mar17/Contributions/Rajith/Section4.4.docx%23_ENREF_2
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Figure 4.63. Location of NYC East of Hudson Watershed. 

.  
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The GWLF model was calibrated to observed streamflow for the five natural inflow 

reservoir watersheds using available streamflow observations from USGS stream gauges for the 

period from 10/1/2011 to 09/30/2015. The calibrated models were validated by comparing model 

simulated streamflows to observed streamflows for an independent time period. Model 

performance was evaluated using R2 and Nash Sutcliffe efficiency (NSE) coefficient. In addition, 

inflow volumes simulated by the model was compared to measured volumes for the period of 

available USGS data record for each watershed. Calibrated parameters from the five gauged 

watersheds were then applied to estimate the total inflows into the same five reservoirs including 

inflows from ungauged areas. The same approach was used to estimate inflows from the seven 

flow regulated watersheds and two controlled lake watersheds by using calibrated parameters 

from the natural inflow watersheds. Finally, long-term simulations were made for all 14 EOH 

reservoir watersheds for the period from 01/01/1981 to 12/31/2015 to generate historical inflows. 

4.6.3. Results 

Simulated streamflows were comparable to observed streamflows for all five calibrated 

watersheds with R2 ranging from 0.60 to 0.78 and NSE ranging from 0.60 to 0.76 during the 

calibration period. During the validation period R2 values ranged from 0.69 to 0.75 and NSE 

values ranged from 0.66 and 0.75 (Table 4.10). In all cases the model underestimated the high 

flow events (Figure 4.64). Difference in inflow volumes simulated by the model for the period of 

available USGS streamflow record were as follows: (Amawalk at USGS station #1374930 

+6.7%; Boyd Corners at USGS station# 1374559, +2.9%; Cross River at USGS station# 

1374890, -7.8%; East Branch at USGS station# 137449480, +2.6%; Titicus at USGS station# 

1374781, -5.9%). 

A comparison of simulated monthly streamflow with observations for the period of 

available USGS streamflow record shows close agreement (Figure 4.65). This corresponds to 

the calibration/validation period of this study. Use of average model parameters did not cause 

major change in model performance at the daily time step except for Titicus at USGS station# 

1374781 where R2 and NSE dropped from 0.60 to 0.55 and 0.54 for the calibration period. For 

the validation period this change was from 0.73 to 0.66 for R2 and 0.70 to 0.60 for NSE.  

Overall, this analysis shows that using a simple lumped parameter model like GWLF it is 

possible to use parameters from a calibrated model to simulate streamflow responses in nearby 

small watersheds. This also provides confidence in simulated estimates of long-term (1981-

2015) inflows from the seven regulated and two controlled lake watersheds. This preliminary 

work is part of a study investigating multiple complementary approaches to obtain best 

estimates of inflows from watersheds draining to NYC EOH reservoirs. 
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Table 4.10. GWLF model performance for selected (natural inflow) east of Hudson 

reservoir watersheds (R2 and NSE are for daily streamflow). 
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NSE 
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Validation 
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0.70 

 

0.69 
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0.75 
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to 
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Cross River at 

USGS station# 
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0.78 

 

0.76 

 

0.72 

 

0.70 
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to 
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USGS station# 
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0.69 
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Titicus at 

USGS station# 

1374781 

 

33.4 

 

0.60 

 

0.60 

 

0.73 

 

0.70 
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to 
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Figure 4.64. Comparison of GWLF model simulated vs. observed daily streamflow (cm/day) 

for five natural inflow EOH watersheds. Linear regression lines of model vs. simulated 

values are shown in red and 1:1 regression line in black. 
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Figure 4.65. Comparison of GWLF model simulated and observed monthly streamflow during 

the calibration and validation periods for five natural inflow EOH watersheds. 
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4.7. Effect of PRISM precipitation input on streamflow simulation in 

NYC WOH watersheds 

4.7.1. Introduction 

Weather is one of the most important drivers in watershed scale hydrologic models 

(Beven 2001) and the accuracy of any model simulation is directly linked to the accuracy in 

weather inputs. In recent years there has been a steady decline in the number of precipitation 

monitoring stations in NYC West of Hudson (WOH) watersheds from 18 stations in the 1990s to 

8 stations in the late 2000s. These are mostly cooperator stations recognized by the National 

Climate Data Center (NCDC). Currently there are only two active precipitation stations in the 

region. This has necessitated testing and use of alternative climate data sources, including radar 

based products in watershed models. 

One source of climate data is the climate forecast system reanalysis (CFSR) data 

(http://globalweather.tamu.edu/). This is an interpolated dataset on a 38-km grid based on the 

National Weather Service Global Forecast system. The CFSR is based on hourly forecasts 

generated using information from the global weather station network and satellite-derived 

products, covering any land location in the world. A review of recent articles on studies using 

CFSR data for hydrological modeling indicates satisfactory or comparable to poor performance 

when compared to conventional rain gauge data (Dile and Srinivasan 2014, Fuka et al. 2014, 

Worqlul et al. 2015, Yang et al. 2014). Another source of interpolated daily weather data that has 

not been commonly used or tested in watershed models is the Parameter-elevation Relationships 

on Independent Slopes Model (PRISM) data (Daly et al. 2008, Di Luzio et al. 2008) available on 

a 4-km grid covering the conterminous U.S. for the period from 1981 to present 

(www.prism.oregonstate.edu/). The daily time series of temperature and precipitation starting 

1981 was developed using a process called climatologically aided interpolation (CAI). For 

precipitation, CAI, using 1981-2010 monthly climatology as the predictor grids, is applied in the 

western U.S. (Rockies westward), and, starting on January 1, 2002, a combination of CAI and 

Doppler radar data is used in the central and eastern U.S. A number of observer station network 

data that adhere to the “PRISM day” criterion are included in the PRISM dataset. A recent study 

by Radcliffe and Mukundan (2017) compared PRISM climate data with other data sources 

including CFSR and NCDC observer station data in simulating streamflow using the SWAT 

model for two small watersheds in Georgia and Louisiana. PRISM models outperformed models 

using CFSR and NCDC rain gauge data, but the CFSR grid/rain gauge in this study was located 

outside the watershed boundary in each of the watersheds. While intra-basin variability in 

rainfall was minimal among various PRISM stations in the small watersheds tested (44 and 132 

km2), agreement among NCDC, PRISM, and CFSR rainfall data were dependent on the 

proximity of the stations compared. They concluded that using PRISM data is a promising 

approach when rain gauge data are not available as PRISM data are available at near real time. 

However additional testing is needed at different scales and locations including snowmelt 

dominated watersheds. The objective of this study was to evaluate the performance of PRISM 

climate data in simulating streamflow in NYC WOH watersheds. 
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4.7.2. Methods 

The Generalized Watershed Loading Function-Variable Source Area (GWLF-VSA) 

model was set up to simulate streamflow at 10 USGS gauging stations within WOH watersheds 

with drainage areas ranging from 65 to 859 km2 (Table 4.11). Two sets of models were 

calibrated for streamflow at the gauging stations for a five-year period from 10/1/2004 to 

9/30/2009; one using observer station climate data as input and the other using PRISM climate 

data as input. A single time series of daily precipitation and air temperature (TMAX and TMIN) 

from 10 observer stations in and around WOH watersheds and 324 PRISM grid points were used 

as model input (Figure 4.66). For each watershed daily station/grid data were averaged for the 

entire basin using Thiessen polygon method interpolation for precipitation and inverse distance 

squared interpolation for air temperature. Over the duration of the simulation period the number 

of observer stations reporting precipitation declined to seven. The PRISM dataset was accessed 

through the applied climate information system (http://www.rcc-acis.org/). Streamflow simulated 

by the two sets of models for each watershed was compared to observations using standard 

hydrologic model evaluation statistics. In addition, final calibrated values of model parameters 

were compared to evaluate the effect of climate input on streamflow simulation. 

Table 4.11. Location of USGS gauging stations and corresponding drainage areas. 

USGS Gauge 

No. 

Watershed Description Reservoir Drainage Area (km2) 

1414500 Millbrook near Dunraven Pepacton 63.8 

1350080 Manor Kill near Gilboa Schoharie 84.0 

1415000 Tremper Kill near Andes Pepacton 85.5 

1365000 Rondout Cr. near Lowes Corners Rondout 99.5 

1362200 Esopus Creek at Allaben Ashokan 164.8 

1435000 Neversink River near Claryville Neversink 172.5 

1413500 EBDR at Margaretville Pepacton 421.7 

1362500 Esopus Creek at Coldbrook Ashokan 493.2 

1350000 Schoharie Creek at Prattsville Schoharie 612.5 

1423000 WBDR at Walton Cannonsville 859.3 
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Figure 4.66. Gauged watersheds that provide major inflows to NYC West of Hudson 

Reservoirs, and locations of NCDC stations and 4-km PRISM grid points. 

4.7.3. Results and Discussion 

Streamflow simulations using PRISM data were comparable or better than simulations 

using available observer station data for nine out of ten streams based on R2 and Nash-Sutcliffe 

efficiency (NSE) values (Table 4.12). Nevertheless all simulations qualified as “good 

simulations” based on hydrologic model evaluation criteria (monthly NSE > 0.65) proposed by 

Moriasi et al. (2007). In all cases simulations showed GWLF model underestimating the peak 

flow values in all watersheds simulated when compared to observed values (Figure 4.67). Model 

vs. observed regression lines were all below the 1:1 line. For Esopus Creek at Allaben and 

Coldbrook, Schoharie Creek at Prattsville, and Rondout Creek near Lowes Corners improvement 

in streamflow simulation when using PRISM was minimal. No apparent differences in model 

performance were observed for Neversink River near Claryville and Millbrook near Dunraven. 

The only stream where observer station clearly outperformed PRISM was in Manor Kill at 

Conesville near Gilboa. This was found to be due to the fact that PRISM gave a low value for the 

largest precipitation event during this period when observer station reported a relatively high 

value (Figure 4.67). 
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PRISM based models clearly outperformed observer station based models for three 

streams. These include West Branch Delaware River (WBDR) at Walton, East Branch Delaware 

River (EBDR) at Margaretville, and Tremper Kill near Andes. While there were two observer 

stations within the Cannonsville watershed during the period of analysis, their locations were at 

the middle or near the outlet of the watershed. Therefore, improved simulation of streamflow at 

WBDR when using PRISM input could be due to better estimation of total rainfall within the 

watershed. Other hydrologic modeling studies have reported that accurate estimates of total 

rainfall within a watershed are more important than spatial distribution or timing. (Andréassian et 

al. 2001, Obled et al. 1994). In the case of EBDR at Margaretville improved streamflow 

simulations could be due the denser network of PRISM grid points producing more accurate 

estimates of total rainfall within the watershed compared to a single observer station below the 

outlet of this relatively large (421 km2) watershed. Moreover, unlike PRISM data, observer 

station records were discontinuous due to inconsistent reporting from this observer station. For 

Tremper Kill near Andes, the observer station was outside the watershed boundary and near the 

outlet resulting in PRISM providing better estimates of total rainfall in this relatively small (85 

km2) watershed. 

Table 4.12. Model performance evaluation and comparison for daily streamflow. 

 Observer 

station 

PRISM Observer 

station 

PRISM 

 Esopus at Allaben Esopus at Coldbrook 

NSE 0.66 0.67 0.64 0.66 

R2 0.66 0.67 0.65 0.65 

 WBDR at Walton Neversink near Claryville 

NSE 0.65 0.76 0.58 0.56 

R2 0.65 0.77 0.61 0.59 

 EBDR at Margaretville Mill Brook near Dunraven 

NSE 0.62 0.71 0.59 0.56 

R2 0.64 0.73 0.62 0.60 

 Tremper Kill near Andes Rondout Creek at Lowes 

NSE 0.59 0.66 0.62 0.66 

R2 0.60 0.68 0.65 0.68 

 Schoharie Creek at Prattsville Manor Kill near Gilboa 

NSE 0.62 0.64 0.65 0.55 

R2 0.65 0.65 0.68 0.58 

 *better fit values are highlighted 

Differences in GWLF predictions of streamflow when using different climate input were 

reflected in four calibrated model parameters in all watersheds. These parameters are 

summarized in Table 4.13 and include: 

 

1. Precipitation correction factor: Factor to adjust precipitation input to basin.  

Default of 1 yields no adjustment. Calibrated to minimize cumulative error in 

simulated vs. measured streamflow, where long-term measured streamflow data is 

available. 
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2. Runoff recession coefficient: Surface water recession constant. The fraction of 

surface water stored in stream channels and waterbodies within the watershed 

which takes 1 day or less to reach the outlet.  

3. Recession coefficient: Coefficient to determine rate at which baseflow is drawn 

from the saturated zone. 

4. Bypass coefficient: Fraction of infiltration that bypasses the unsaturated zone and 

directly enters the saturated zone.   

 

Minimal adjustments were made to precipitation correction factor when using PRISM as 

input to GWLF compared to observer station data. This implies that PRISM provides a better 

estimate of total rainfall within the watershed compared to estimates made from limited 

number of available weather stations in and around the watersheds studied. Consistently 

greater calibrated values were used for runoff coefficient, recession coefficient, and bypass 

coefficient when using PRISM data reflecting model response to input climate data. 

Table 4.13. GWLF parameters and values reflecting predicted streamflow differences. 

 Parameter Obs. Station range PRISM range 

1 Precipitation factor 0.84-1.12 (1.04) 0.92-1.06 (1.01) 

2 Runoff coefficient 0.36-0.58 (0.46) 0.41-0.61 (0.52) 

3 Recession coefficient 0.05-0.06 (0.05) 0.06-0.07 (0.06) 

4 Bypass coefficient 0.0-0.08 (0.04) 0.03-0.14 (0.07) 

*average values are shown in parenthesis 

4.7.4. Conclusions 

Streamflows simulated using PRISM based precipitation were comparable or better than 

simulations using precipitation values interpolated from a coarse network of ten available 

weather stations used in this analysis. Improvements in streamflow simulation using PRISM 

depend on the availability and proximity of weather station in the watershed simulated. In the 

absence of observer stations PRISM can be a useful source of climate data for watershed 

modeling in WOH watersheds.  Unlike observer stations, PRISM offers a continuous time series 

of climate record from 1981 to present with no geographic data gaps or inconsistent reporting 

periods. Model simulations using PRISM were in most cases classified as “good” as per model 

evaluation guidelines at the daily time step. Although PRISM climate data are useful for 

watershed modeling they are not a substitute for observer station data. Simulated streamflows in 

this analysis underestimated high flows in all cases, possibly due to inaccurate estimates of total 

rainfall during large events. PRISM data incorporates station data, so an active network of local 

stations will better inform PRISM, and likely result in better estimation of high flows. For best 

model estimates of streamflow from watersheds that provide major inflows to NYC WOH 

reservoirs, an active network of observer stations would be desirable. 
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Figure 4.67. Comparison of GWLF model simulated vs. observed daily streamflow (cm/day) for 

watersheds that provide major inflows to NYC West of Hudson Reservoirs. Linear 

regression lines are shown in color and 1:1 line in black.  



4. Model Development and Application 

 

151 

 

4.8. Estimating predictive uncertainty in turbidity-flow relations 

4.8.1. Background 

Like most utilities managing surface water supplies, turbidity control is a critical function 

of New York City (NYC) water supply, currently operating under a renewable filtration 

avoidance determination granted by the New York State Department of Health and the US 

Environmental Protection Agency. While water quality is usually pristine, high magnitude runoff 

events can cause significant increases in stream and reservoir turbidity, which at times limits the 

use of this unfiltered drinking water supply (Effler et al. 1998, Gelda et al. 2009). A logical 

strategy for turbidity control is to reduce the diversions or temporarily remove the turbid 

reservoirs from service. It is thus important to understand how long a particular turbidity event 

will affect the system. In order to understand the duration, intensity and total load of a turbidity 

event, predictions of future in-stream turbidity values are important. Traditionally, turbidity 

predictions have been carried out by applying turbidity-flow rating curves. However, predictions 

from rating curves are often inaccurate due to inter and intra event variability in turbidity-flow 

relations. Variability in sediment-flow relations has been reported in several studies (Asselman 

1999, Lenzi and Marchi 2000, Seeger et al. 2004, Walling and Webb 1988, Zabaleta et al. 2007). 

In the Catskill streams this variability can be due to turbidity-flow hysteresis, geologic factors, 

and antecedent conditions. Our previous analysis has shown that for a given value of streamflow 

the rising limb of streamflow hydrograph contributed higher turbidity compared to the falling 

limb due to sediment source depletion as an event progresses (Mukundan et al. 2013). While it is 

often difficult to make accurate predictions of stream turbidity given the variability in erosion 

rates and sediment transport in space and time within a watershed, quantifying uncertainty in 

stream turbidity predictions will be valuable for predicting reservoir turbidity and for operational 

decisions for maintaining high water quality in the NYC water supply. 

4.8.2. Method 

A turbidity rating curve is an empirical relationship between measured stream turbidity 

and streamflow. In NYC Catskill streams a second order polynomial (non-linear least square 

regression) is commonly used to model this relationship which is expressed as 

𝐿𝑜𝑔𝑇 = 𝑎 𝐿𝑜𝑔𝑄2 + 𝑏 𝐿𝑜𝑔𝑄 + 𝑐                4. 18 

where T is the turbidity in NTU; 𝑄 is the streamflow;𝑎,𝑏, and 𝑐 are regression coefficients.  

The quantile regression approach was used to estimate regression coefficients at various 

quantiles (e.g. 0.5) of this general regression model in addition to regression on the mean. This 

approach can capture the broad range of variability in measured data particularly at high 

streamflows. Thus it is possible to derive a probabilistic distribution of turbidity value for a given 

streamflow value by using multiple quantile-dependent turbidity rating curves instead of a single 

one that provides a mean estimate. Shiau and Chen (2015) applied this approach to a power law 

function sediment rating curve for a river in southern Taiwan. Theoretical details of quantile 
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regression can be found in Koenker (2005). The quantile regression based turbidity rating curve 

for equation 1.1 for various quantiles can be expressed as 

𝐿𝑜𝑔𝑇𝑞 = 𝑎𝑞 𝐿𝑜𝑔𝑄2 + 𝑏𝑞 𝐿𝑜𝑔𝑄 + 𝑐𝑞     4. 19 

where q is the quantile which can range between 0 and 1; 𝑇𝑞 is a conditional turbidity value at 

quantile q; 𝑎𝑞, 𝑏𝑞, and 𝑐𝑞 are quantile-dependent regression coefficients determined for a 

selected quantile by minimizing the sum of asymmetrically weighted absolute values of residuals 

as 

 

𝑚𝑖𝑛 [(𝑞) ∑ |𝐿𝑜𝑔𝑇𝑖 − 𝐿𝑜𝑔�̂�𝑖|

𝐿𝑜𝑔𝑇𝑖≥𝐿𝑜𝑔�̂�𝑖

+ (1 − 𝑞) ∑ |𝐿𝑜𝑔𝑇𝑖 − 𝐿𝑜𝑔�̂�𝑖|

𝐿𝑜𝑔𝑇𝑖<𝐿𝑜𝑔�̂�𝑖

]            4. 20 

 

where 𝐿𝑜𝑔�̂�𝑖 is the predicted value of  𝐿𝑜𝑔𝑇𝑖. The first component of the sum in the above 

expression is the total of vertical distances of data points that are above the fitted line at a 

selected quantile (e.g. 0.75). The second component of the sum is for all data points that are 

below the fitted line for the selected quantile. For a selected quantile, observations above the 

regression line are given a weight of q and those below the line are given a weight of 1-q. This 

approach is different from estimates of least squares that involves the minimization of sum of 

squares of the residuals. Quantile-dependent regression coefficients were estimated numerically 

by solving an algorithm developed by Koenker and d'Orey (1987) using the R-package quantreg 

(Koenker 2014). 

4.8.3. Test Application 

The methodology outlined above was applied to a turbidity-flow rating curve used to 

predict average daily stream turbidity for the Esopus Creek at Coldbrook, using average daily 

streamflow and flow weighted average daily turbidity (calculated from turbidity and flow 

measurements made at 15-minute intervals). A total of 736 pairs of average daily flow and daily 

turbidity values between 6/13/2003 to 5/17/2016 were included in the analysis. Data collected 

during the period immediately after Hurricane Irene and Tropical Storm Lee (Aug-Sept 2011) 

and up to 12/31/2012 were excluded from the analysis to avoid biases resulting from the effect of 

extreme events and post-event restoration efforts carried out in the streams. 

A comparison of turbidity estimates using non-linear least square (NLS) regression 

(Equation 1.1) and quantile regression at the 0.5 quantile (median) with observed turbidity is 

shown in Figure 4.68. A regression line of simulated vs. observed turbidity shows that NLS 

regression over-predicted the observed values whereas quantile regression method under-

predicted the observations. However, a vast majority of the high turbidity values that may create 

water quality concerns to NYC water supply, when predicted using quantile regression were 
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closer to the 1:1 regression line compared to NLS estimates. Overall predictive capability of the 

two regression models were compared using model evaluation statistics and is shown in Table 

4.14. 

Table 4.14. Model performance evaluation statistics 

Statistic 

Non-linear least 

square (NLS) 

regression 

Quantile 

regression        

(0.5 quantile) 

Coefficient of determination, R2 0.83 0.83 

Nash-Sutcliffe coefficient, NSE 0.77 0.81 

Mean Absolute Error (NTU) 13.65 13.07 

Root Mean Square Error (NTU) 42.21 38.36 

   

 

 

Figure 4.68. Comparison of simulated vs. observed turbidity for non-linear least square (NLS) 

regression and 0.5 quantile (median) regression estimates. The 1:1 regression line is 

shown in black. 
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In addition to the 0.5 quantile (median), turbidity estimates were made at various 

quantiles (0.1, 0.25, 0.75, and 0.9) to obtain the uncertainty in turbidity predictions for the range 

of observed flows (Figure 4.69). This information was used to generate the 50% and 80% 

prediction intervals of estimated turbidity as illustrated in Figure 4.70. 

Performance of quantile regression based turbidity-flow rating curve (0.5 quantile) for the 

Esopus Creek at Coldbrook were comparable or better when compared to non-linear least square 

regression estimates. Additional testing is needed at multiple sites to further evaluate the method. 

Quantile regression based method provides the ability to estimate and quantify the wide range in 

uncertainty observed in turbidity-flow relations. 

 

 

Figure 4.69. Quantile regression based turbidity rating curves for Esopus Creek at Coldbrook. 

Quantiles shown are 0.9, 0.75, 0.5, 0.25, and 0.1 from top to bottom. 
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Figure 4.70. Illustration of uncertainty in turbidity predictions estimated using quantile 

regression method. Values shown are turbidity for the Esopus Creek at Coldbrook for the 

period 08/01/2003 to 12/31/2003. 

4.8.4. Comparison of methods used to estimate turbidity rating curve 

coefficients  

 

 Coefficients based on quantile regression are robust and are estimated by minimizing the 

sum of absolute residuals compared to minimizing sum of squared residuals in least 

square estimates. 

 

 Quantile regression based estimates of regression coefficients are more efficient than 

those based on least squares when the error terms are not normally distributed or when 

there are outliers in the dataset as often seen in turbidity-flow relations. 

 

 Coefficients are derived iteratively in quantile regression using least square estimates as 

the initial value. Coefficient are derived analytically in least square estimates. 

 

 Least square estimates provide one best fitting regression line whereas quantile 

regression may find more than one best fitting line. This will enable users of the quantile 

regression approach to select or modify the best fitting line (e.g. 0.52 or 0.55 quantile) for 

the range of flow and turbidity conditions that are of interest. 
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5. Data Analysis to Support Modeling 

5.1. Meteorological data analyses to support development of turbidity 

models for Cannonsville, Pepacton, and Neversink Reservoirs 

5.1.1. Introduction 

Turbidity models for Cannonsville, Pepacton, and Neversink reservoirs are planned for 

development, which will be based on the hydrodynamic and transport framework of CE-QUAL-

W2 (W2; Cole and Wells 2013). Similar turbidity models, based on W2, for Rondout, Schoharie, 

Ashokan, and Kensico reservoirs had been developed in earlier studies (Gelda and Effler 2007, 

Gelda et al. 2009, 2012, 2013). W2 requires specifications of surface boundary conditions 

(surface heat exchange, solar radiation absorption, wind stress, and gas exchange) calculated 

from meteorological parameters. These parameters are air temperature, dew point temperature 

(or relative humidity), wind velocity, and solar radiation (or cloud cover), all specified at an 

hourly time step.  

DEP began installing meteorological stations throughout the NYC watershed since mid-

1990s, including some stations on the reservoir monitoring buoys (RoboMon). Data with varying 

duration of records are available at these sites. Common problems with these data are (i) missing 

observations, (ii) systematic errors (i.e., bias) due to long-term drift of sensors, (iii) errors caused 

by malfunctioning of instruments, and (iv) errors made during data processing. In addition, data 

from certain sites are not representative of the local reservoir conditions or simply, the duration 

of available data is not long-enough for model calibration and validation purposes.  

This study was conducted to develop representative and continuous, long-term (e.g., 

greater than 60 years) records of meteorological data for input to the reservoir models, and 

eventually input to Operations Support Tool (OST). 

5.1.2. Methods 

The general approach consisted of using data from DEP’s local watershed stations as well 

as NOAA’s regional weather stations and establishing empirical inter-site relationships for 

various parameters. Such relationships are then used to fill-in missing observations, check 

consistency and quality of the observations, and extrapolate to time intervals outside the records 

of observations. 

The stations considered in this study are Binghamton Airport site operated by NWS of 

NOAA, and sites DCM074, DPM110, DPM114, DNM146, DNM152 operated by DEP (Table 

5.1).  
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Table 5.1. Summary of meteorological data. 

Location Site Years Agency 

Cannonsville Reservoir Dam DCM074 1995-2015 DEP 

Pepacton Reservoir Dam DPM110 1997-2015 DEP 

Pepacton Watershed DPM114 2013-2015 DEP 

Neversink Reservoir Dam DNM146 1997-2015 DEP 

Neversink Watershed DNM152 2012-2015 DEP 

Greater Binghamton Airport 4725 1948-2015 NOAA 

 

For DEP sites, dew point temperature was computed from relative humidity and air 

temperature (Lawrence 2005). For NOAA site, solar radiation was estimated from cloud cover 

data (Cole and Wells 2013). Hourly observations were averaged to daily values. Hourly 

observations of wind velocity were vector averaged and then the X-Y components were used to 

establish inter-site relationships. Linear regression models were fitted to the paired data from 

different sites for air temperature, dew point, X-Y wind components, and solar radiation, while 

forcing the intercept value to zero. The slope value of the regressions thus can be applied to 

hourly observations without altering the dynamics of diurnal variations that may be present in the 

data.  

5.1.3. Results and Discussion 

Evaluation of the inter-site regression relationships from the point of view of establishing 

meteorological inputs for Cannonsville, Pepacton, and Neversink reservoirs is presented in  

Figure 5.1–Figure 5.11.  Generally, excellent relationship was obtained for air temperature and 

dew point (i.e., slope value close to 1) in all pairings of the data. Relationships for solar radiation 

exhibited relatively greater scatter even though the slope value remained approximately equal to 

0.9 or greater indicating random nature of the variability among different locations for this 

variable. Relationships for the components of wind velocity were quite variable perhaps due to 

strong effects of local topography. It is proposed that the following general hierarchy be used to 

build long-term input data files for hydrodynamic, water quality models and OST: (i) use off-

shore data from reservoir buoys when available, (ii) use on-shore (adjusted to reservoir surface if 

paired measurements available) data, (iii) use adjusted data from local sites in the watershed, (iv) 

use adjusted data from the regional NOAA sites. When no buoy data are available, as in the 

current study, all other data will be adjusted to the on-shore site data. Finally, wind sheltering 

coefficient (WSC) in the models will be calibrated to achieve a representative wind field over the 

reservoir surface.   
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Figure 5.1. Evaluation of relationship between daily average meteorological data observed at 

Binghamton (New York) Airport and Cannonsville Reservoir site DCM074, for 1994–

2015: (a) air temperature, (b) dewpoint temperature, (c) x-component of wind speed, 

(d) y-component of wind speed, and (e) solar radiation. 
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Figure 5.2. Evaluation of relationship between daily average meteorological data observed at 

Pepacton Reservoir site DPM110 and Cannonsville Reservoir site DCM074, for 1996–

2015: (a) air temperature, (b) dewpoint temperature, (c) x-component of wind speed, 

(d) y-component of wind speed, and (e) solar radiation. 
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Figure 5.3. Evaluation of relationship between daily average meteorological data observed at 

Rondout Reservoir site DRM181 and Cannonsville Reservoir site DCM074, for 2011–

2015: (a) air temperature, (b) dewpoint temperature, (c) x-component of wind speed, 

(d) y-component of wind speed, and (e) solar radiation. 
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Figure 5.4. Evaluation of relationship between daily average meteorological data observed at 

Neversink Reservoir site DNM146 and Cannonsville Reservoir site DCM074, for 

1996–2015: (a) air temperature, (b) dewpoint temperature, (c) x-component of wind 

speed, (d) y-component of wind speed, and (e) solar radiation. 
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Figure 5.5. Evaluation of relationship between daily average meteorological data observed at 

Binghamton (New York) Airport and Pepacton Reservoir site DPM110, for 1996–

2015: (a) air temperature, (b) dewpoint temperature, (c) x-component of wind speed, 

(d) y-component of wind speed, and (e) solar radiation. 
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Figure 5.6. Evaluation of relationship between daily average meteorological data observed at 

Rondout Reservoir site DRM181 and Pepacton Reservoir site DPM110, for 2011–

2015: (a) air temperature, (b) dewpoint temperature, (c) x-component of wind speed, 

(d) y-component of wind speed, and (e) solar radiation. 
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Figure 5.7. Evaluation of relationship between daily average meteorological data observed at 

Neversink Reservoir site DNM146 and Pepacton Reservoir site DPM110, for 1996–

2015: (a) air temperature, (b) dewpoint temperature, (c) x-component of wind speed, 

(d) y-component of wind speed, and (e) solar radiation. 
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Figure 5.8. Evaluation of relationship between daily average meteorological data observed at 

Pepacton Reservoir sites DPM114 and DPM110, for 2013–2015: (a) air temperature, 

(b) dewpoint temperature, (c) x-component of wind speed, and (d) y-component of 

wind speed. Solar radiation data at these two sites were not available for comparison. 
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Figure 5.9. Evaluation of relationship between daily average meteorological data observed at 

Binghamton (New York) Airport and Neversink Reservoir site DNM146, for 1996–

2015: (a) air temperature, (b) dewpoint temperature, (c) x-component of wind speed, 

(d) y-component of wind speed, and (e) solar radiation. 
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Figure 5.10. Evaluation of relationship between daily average meteorological data observed at 

Rondout Reservoir sites DRM181 and Neversink Reservoir site DNM146, for 2012–

2015: (a) air temperature, (b) dewpoint temperature, (c) x-component of wind speed, 

(d) y-component of wind speed, and (e) solar radiation. 
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Figure 5.11. Evaluation of relationship between daily average meteorological data observed at 

Neversink Reservoir sites DNM152 and DNM146, for 2012–2015: (a) air temperature, 

(b) dewpoint temperature, (c) x-component of wind speed, (d) y-component of wind 

speed, and (e) solar radiation. 
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5.2. Development of polynomials for release temperatures below 

Cannonsville and Pepacton Reservoirs 

The analysis presented here supports the development and application of a stream 

temperature model for the West and East Branch Delaware River below Cannonsville (site CNB) 

and Pepacton (site PDB) reservoirs. Polynomials were fitted through the temperatures observed 

at sites CNB and PDB located below Cannonsville and Pepacton dams, respectively. For 

planning and evaluation purposes, these polynomials may be used in OST to predict release 

temperatures and force the empirical stream temperature model (to be developed). Additionally, 

uncertainty in the predictions of release temperatures may be included in OST by conducting 

Monte-Carlo simulation within a range of ± 1 standard deviation or ± 10th and 90th percentiles of 

observed values. 

This analysis will be integrated in an empirical model of daily average stream 

temperature for the lower Delaware reaches for the months of June through September. The 

model is expected to help develop short-term forecasts to estimate the volume of reservoir 

releases needed to keep water temperatures below a threshold to protect cold water fisheries from 

potentially harmful warm water. 

 

 

 

Figure 5.12. Temperatures observed at site CNB below Cannonsville Reservoir for 1987-2015. 

A best-fit polynomial is shown. Data points with spill flow > 0 are excluded. 
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Figure 5.13. Temperatures observed at site PDB below Pepacton Reservoir for 1987-2015. A 

best-fit polynomial is shown. Data points with spill flow > 0 are excluded. 
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5.3. Development of an empirical stream temperature model for 

Neversink River 

This section describes the development of an empirical regression model to predict 

historic temperatures in the Neversink River at Claryville, NY where it enters Neversink 

Reservoir.  The predicted temperatures will be used as input to the long-term probabilistic water 

quality model for Neversink Reservoir that is currently under development.  The data used to 

build the model were hourly average air temperature recorded at the Binghamton Airport, hourly 

average flow measured at Claryville, NY in Neversink River, and hourly average stream 

temperature at Claryville, NY in Neversink River.  These data were for the period of 2012-2015.   

Multiple nonlinear regressions were developed for individual months to specify water 

temperature Tw at an hourly frequency as a function of stream flow, Q and air temperature, Tair, 

according to the relationship: 

 𝑇𝑤,𝑖 = 𝑎0 + 𝑎1𝑇𝑎𝑖𝑟,𝑖−2 + 𝑎2 log 𝑄𝑖 (5.1) 

 

where Tw,i = Neversink River temperature (°C) for hour i; Tair,i−2 = air temperature (°C) for 2 

hours before hour i; Qi = stream flow (m3·s-1) for Neversink River for hour i; and a0, a1, and a2 

are regression coefficients.  The analysis was based on paired values from 2012-2015 interval for 

which measurements of Tw,i were available. 

Model coefficients a0, a1, and a2 were computed for each month used least squares 

regression (Table 5.2).  Plots of observed and predicted water temperature Tw for individual 

months are shown in Figure 5.14 through Figure 5.25.  The model(s) generally performed well at 

within-a-day and day-to-day time scales for the various months, as summarized by the 

performance statistics in the table below. Adding other independent variable(s), e.g., ice-

conditions in the River may improve model performance for the winter months, however, such 

data are scarce and would severely limit model’s application. 

Table 5.2. Coefficients and performance statistics for the Neversink River temperature model. 

 a0 a1 a2 r2 RMSE (°C) 

January 1.544598 0.060403 -0.05482 0.404423 0.658601 

February 1.34221 0.069384 0.183285 0.350289 0.604665 

March 1.76543 0.212519 1.102734 0.591571 1.436336 

April 6.560054 0.286242 -3.2646 0.59465 1.659607 

May 7.292366 0.312197 -1.01666 0.60824 1.519336 

June 8.841445 0.344087 -1.45693 0.703056 1.118783 

July 11.17401 0.317921 -2.36552 0.667484 1.105493 

August 9.808569 0.332045 0.39693 0.624923 1.006289 

September 9.510929 0.335726 -0.36038 0.681606 1.256662 

October 7.946925 0.303309 -0.61619 0.633223 1.223196 

November 4.261754 0.284066 0.52697 0.591717 1.469512 

December 2.921218 0.24825 0.228926 0.574917 1.232532 
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Figure 5.14. Performance of empirical temperature model for Neversink River for hourly 

observations in January 2012 – January 2015. 
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Figure 5.15. Performance of empirical temperature model for Neversink River for hourly 

observations in June 2012 – June 2015. 
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Figure 5.16. Performance of empirical temperature model for Neversink River for hourly 

observations in February 2012 – February 2015. 
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Figure 5.17. Performance of empirical temperature model for Neversink River for hourly 

observations in March 2012 – March 2015. 
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Figure 5.18. Performance of empirical temperature model for Neversink River for hourly 

observations in April 2012 – April 2015. 
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Figure 5.19. Performance of empirical temperature model for Neversink River for hourly 

observations in May 2012 – May 2015. 
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Figure 5.20. Performance of empirical temperature model for Neversink River for hourly 

observations in July 2012 – July 2015. 
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Figure 5.21. Performance of empirical temperature model for Neversink River for hourly 

observations in August 2012 – August 2015. 
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Figure 5.22. Performance of empirical temperature model for Neversink River for hourly 

observations in September 2012 – September 2015. 
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Figure 5.23. Performance of empirical temperature model for Neversink River for hourly 

observations in October 2012 – October 2015. 
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Figure 5.24. Performance of empirical temperature model for Neversink River for hourly 

observations in November 2012 – November 2015. 
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Figure 5.25. Performance of empirical temperature model for Neversink River for hourly 

observations in December 2012 – December 2015. 
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5.4. Development of an empirical stream turbidity model for Neversink 

River 

To develop loading of turbidity for a turbidity model for Neversink Reservoir, an analysis 

of the flow-turbidity relationship for Neversink River was conducted.  Data from 2013–2016 

based on frequent (once every 15 min) sonde measurements were used.  From the high-

frequency flow and turbidity data, the time series of daily average streamflow (Q) and flow-

weighted daily average turbidity (Tn) were computed.  These were then the basic data which 

were analyzed as described below.  A regression equation of the general form 

  01

2

2 logloglog aQaQaTn         (5.2) 

was used, where the logs are base 10.  A least-squares regression was used to determine the 

following coefficient values based on the entire dataset: a2= 0.8133, a1= - 0.0785, and               

a0= - 0.2391, yielding a correlation coefficient r2=0.363. 

 

The predicted stream turbidity using Equation (5.2) is shown together with the daily 

average Q, Tn data and correlation coefficient in Figure 5.26.  The period of data did not include 

sufficient runoff events to conduct additional event-specific empirical analyses.  A quantile 

regression approach is under consideration to address the uncertainty in this simple regression 

(see Section 4.8 of this report). 

 

 

Figure 5.26. Neversink River turbidity model. Flow-weighted daily average turbidity versus 

daily average flow rate. 
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5.5. Relative contribution of turbidity loads from the Esopus Creek 

versus Shandaken Tunnel 

The Esopus Creek is the primary tributary of Ashokan Reservoir that carries suspended 

material from its watershed and from the Schoharie Reservoir discharge (Shandaken Tunnel). 

Elevated turbidity levels are known to occur in the Esopus Creek during runoff events, even 

during periods when the tunnel is not discharging. The turbidity of the water discharged from 

Schoharie Reservoir can vary seasonally and year-to-year, depending upon the operation of the 

reservoir and runoff events in its own watershed. Thus, the turbidity of the water entering 

Ashokan Reservoir depends upon the flow rate and turbidity of both the tunnel and the Esopus 

Creek (e.g., stream banks) sources. Here the relative importance of each of these sources of 

turbidity is quantified. 

Site SRR2 is located at the end of Shandaken Tunnel just before it meets the Esopus 

Creek. Site E16i is proximate to the mouth of the Esopus Creek at Coldbrook where it enters 

Ashokan Reservoir. The flow and turbidity monitored at E16i reflect contributions from both the 

tunnel and Esopus watershed. Turbidity, while an optical property, behaves as an intensive 

property, just like concentration of any other water quality constituent due to the additive 

character of its sources and components. This behavior allows us to perform mass balance type 

calculations for turbidity and to estimate turbidity (quasi-) loads (Davies-Colley et al. 1993). 

Estimates of daily values of turbidity at SRR2 were obtained by linearly interpolating 

observations made 5 days/week by DEP. To obtain daily values of turbidity at E16i, an empirical 

model (called best-fit deterministic) developed earlier (Gannett Fleming & Hazen and Sawyer, 

2008, Catskill turbidity control studies: Phase III Implementation Plan) was used. Then, daily 

turbidity loading was computed by simply multiplying turbidity by the flow rate and then 

summing up for the whole year to yield annual estimates. As shown in Figure 5.27, the 

contributions from the Shandaken Tunnel have remained very low for the entire period of the 

analysis.  
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Figure 5.27. Esopus Creek watershed turbidity loading from BFD regression curves (UFI July 

2008 report), Shandaken turbidity loading from observations (interpolated, DEP, 

unpublished). 2016 data through 12/12/2016. 
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6. Model Data Analysis and Acquisition 

6.1. GIS Data Development for Modeling 

6.1.1. WQ Monitoring Sites 

In 2016, the GIS data library was updated with additions to water quality monitoring sites 

and biomonitoring sites.  These locations were georeferenced from site descriptions provided by 

data samplers as part of the LIMS database entry.  DEP snow monitoring and snow pillow 

locations data were updated with revised information provided by the Operations Directorate. 

6.1.2. Support for modeling projects 

GIS support was provided to members of the DEP Water Quality Modeling Section, the 

Division of Water Quality Science and Research, as well as CUNY Postdoctoral fellows.  This 

support included the production and revision of maps for inclusion in annual reports, conference 

presentations and posters.   

Table 6.1 lists the types of GIS data used by the Modeling Section.  SWAT and 

RHESSys are watershed models used by DEP to assess the effects of terrestrial processes on 

inflows to WOH reservoirs.  The CE-QUAL-W2 (W2) reservoir water quality model requires 

many input datasets, including bathymetry.  The W2 model uses as inputs bathymetry data 

divided into segments across the reservoir.  The GIS data delivered for the WOH reservoir 

bathymetry survey project were resampled from 1-meter resolution source rasters to 2.5, 10m 

100 and 250 meter versions of the dataset.  These rasters have been converted to W2 input files, 

and will be tested to assess the sensitivity of the model to the various resolutions.  The results of 

this sensitivity analysis will determine the appropriate version of the bathymetry which will be 

used to update the W2 model. 
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Table 6.1. Inventory of GIS data used in modeling.  

Data Type Data Source Data Description Dates Modeling Needs 

LiDAR DEP Tree height, canopy fraction and LAI 2009 
RHESSys Model 

Input 

DEM (1 meter) DEP 
Watershed delineation, topographic 

parameters 
2009 

Watershed 

delineation 

Land Use/ Land 

Cover 
DEP 

Spatial extent of types of land use and 

land cover 
2009 SWAT Model Input 

SSURGO2 Soil 

Survey 
USDA 

Soil Characteristics, Percent Clay, Ksat, 

Ksattop, Available Water Content, 

Depth to Water Table,  

2012 SWAT Model Input 

Aerial Imagery 

USGS Landsat TM multispectral imagery 1990-current 

Leaf area index 

(LAI) values and 

tree phenology  

NASA MODIS multispectral imagery 2002-current 
LAI, and tree 

phenology 

Forest Stands DEP, USFS Forest spatial extent 2009 
RHESSys Model 

Input 

Vegetation 

Cary Institute of 

Ecosystem 

Studies 

Spatial extent of 11 vegetation species 1986-1993 
RHESSys Model 

Input 

Reservoir 

Bathymetry 
DEP 1 meter resolution bathymetric surfaces 2015 

CE-QUAL-W2 

Model Input 

  

6.2. Ongoing Modeling/GIS Projects 

6.2.1. West of Hudson Reservoir Bathymetry Surveys 

Through an Intergovernmental Agreement signed with the USGS in 2013, the six West of 

Hudson reservoirs were surveyed from 2013-15 to generate updated bathymetric surfaces.  The 

USGS employed a single-beam echosounder to survey transects across each reservoir.  The 

transects were designed to measure depths below the survey boat with a maximum spacing 

between transects of less than 1% of the reservoir length.  Higher density transects were 

completed near the intakes and spillways for each of the reservoirs to increase the accuracy of 

the surveys in those areas.   

To accurately convert the measured depths to elevation above sea level, all reservoir 

spillways were surveyed in the NAVD88 vertical datum.  Offsets between the original spillway 

elevation values and the survey elevations were calculated to enable comparison between as-built 

volume estimates and the updated survey volumes.  The resulting echosounder elevation data 

were combined with secondary datasets and converted to a triangular irregular network (TIN), 

producing a bathymetric surface model.  The raw TIN surfaces were then edited to enforce linear 

features such as channels and slopes. The final edited TINs were used to generate raster versions 
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of the surfaces for inclusion in DEP GIS databases, 2-foot increment contours, represented in 

depth below spillway and elevation, and elevation-volume capacity tables calculated at 0.01 foot 

increments. 

The final bathymetry data were delivered to DEP in August 2016, and draft report was 

delivered to DEP in December, 2016.  DEP is in the process of reviewing the recent bathymetry 

data for incorporation into our existing models. 

 

6.2.2. East of Hudson Reservoir Bathymetry Surveys 

Following the surveys done for the West of Hudson reservoirs, DEP and the USGS are 

working to complete a new Intergovernmental Agreement to survey the 13 reservoirs and 3 

controlled lakes in the East of Hudson System.  Bathymetry data for the EOH reservoirs are 

incomplete, or of poor quality, having been developed from generalized atlas pages or fishing 

maps.  The scope of work proposed for the Intergovernmental Agreement will produce results 

comparable to those of the WOH surveys.  The project is scheduled to run from 2017-2020, and 

will produce surface models, 2-foot elevation contours and elevation-area-capacity tables. 

6.2.3. Modeling Database 

A modeling database is currently under development to store, format and document the 

datasets used by the Modeling Section.  The database is being constructed using SQL Server 

database management software, along with a series of scripts written in python.  The scripts 

automate the process of importing data into the database from source locations, and reformat the 

data into input files for use in DEP’s models. 

In 2016, the initial database was created on a DEP server.  The database currently 

includes tables that define data sources external to DEP which are required by the Modeling 

Section.  While internal DEP datasets are not intended to be duplicated, external datasets are 

copied locally to facilitate use of the data.  Scripts have been written to collect data from the 

USGS and NOAA.  The USGS-maintained stream gages collect hourly data on stream flow 

volume, water surface elevation, and other variables.  The data are available in as a JSON 

formatted web service, which is imported into the database, and checked against previously 

downloaded data for any changes in values or data status, such as provisional data being 

finalized or corrected.  NOAA publishes hourly meteorology data through the Integrated Surface 

Database (ISD).  The ISD include data from locations such as airports and other meteorological 

stations.  NOAA publishes these data to an FTP site as text files, which are added to the database 

with python scripts. 
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6.3. Time Series Data Development 

6.3.1. Model Input Datasets 

An inventory of the necessary raw time series data for watershed and reservoir model 

input and calibration is presented in Table 6.2 and Table 6.3, respectively.  The time series data 

includes meteorology, streamflow, water quality, and point source loads for watershed models.  

For reservoir models the data includes meteorology, streamflow, stream, reservoir and key point 

water quality and reservoir operations.  Data sets are updated as new data become available.  Lag 

times between the current date and the dataset end dates are the result of QA/QC processes at the 

data source and/or procurement timelines driving the acquisition of any purchased data. 

 

Table 6.2. Inventory of time-series data used for watershed modeling.  

Data Type Data Source Data Description Dates* Modeling Needs 

Meteorology  

Northeast 

Regional Climate 

Center 

Daily Precipitation and Max/Min 

Temperature  

Pre 1960-

2013  
Model Input  

PRISM Climate Data 1981-present Model Input 

Wastewater 

Treatment Plants  
DEP Monthly WWTP Nutrient Loads  1990-2009  Model Input  

Streamflow  USGS 
Daily and Instantaneous 

Streamflow  

Period of 

record 

available 

online via 

USGS  

Hydrology Module 

Calibration / 

Nutrient and 

Sediment Loads  

Water Quality  DEP 
Routine and Storm Stream 

Monitoring  

Period of 

record avail. 

via LIMS  

Nutrient and 

Sediment Loads for 

Water Quality 

Calibration  

 NYSDEC** 
Stream Monitoring at West 

Branch Delaware River  

1992-2010 

w/ recent 

years avail. 

via LIMS  

Nutrient and 

Sediment Loads for 

Water Quality 

Calibration  

*Dates represent total span for all data sets combined. Individual station records vary. 

**Now part of the DEP Water Quality dataset. 
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Table 6.3. Inventory of time-series data used for reservoir modeling.  

Data Type 
Data 

Source 
Data Description Dates* 

Modeling 

Needs 

Meteorology DEP 

Air Temperature, Relative Humidity, 

Solar Radiation, PAR, Wind Speed, 

Wind Direction, and Precipitation 

1994-June, 2010 

Period of record 

avail. Operations 

Model Input 

Keypoint and 

Reservoir 

Operations 

DEP 

Tunnel Water Quality, Flow and 

Temperature; Reservoir Storage, Spill, 

Withdrawal, and Elevation 

Period of record 

avail. via LIMS 
Model Input 

Streamflow USGS Daily and Instantaneous Streamflow 

Period of record 

available online via 

USGS 

Model Input 

Stream 

Hydrology 
DEP 

Stream Water Quality, Flow and 

Temperature 

Period of record 

avail. via LIMS 
Model Input 

Limnology DEP 
Reservoir Water Quality, and 

Temperature Profiles 

Period of record 

avail. via LIMS 
Model Input 

*Dates represent total span for all data sets combined. Individual station records vary. 

6.3.2. General Circulation Models Time Series 

The CMIP5 (Coupled Model Intercomparison Project Phase 5) program provides a 

framework to generate modeled time series climate data hindcasts and long term forecasts under 

a variety of carbon emissions scenarios.  Through the CMIP5 project, 20 General Circulation 

Models (GCMs) have been developed to simulate the global effects of greenhouse gas emissions 

on climatic variables, including temperature and precipitation.  These GCMs can be adapted for 

use as the meteorological drivers in DEP’s watershed and reservoir models.  The GCMs were 

produced with daily values for minimum and maximum temperature and precipitation at a global 

scale with resolutions ranging from ½ degree to 5 degrees.   

To standardize the datasets for future downscaling analyses, python scripts were 

developed to resample the GCM outputs to a standard 1.5-degree grid cell.  Each time series was 

resampled using the natural neighbor interpolation method (Sibson, 1981) in ArcGIS and 

sampled at the centroid of the WOH watershed.  The natural neighbor algorithm calculates a 

weighted average for each value based on the nearby input point values.  Table 6.4 lists the 

CMIP5 climate models that were resampled.  Note that not all climate models included all 

variables or future emissions scenarios, but all model outputs were resampled for future 

evaluation of their utility to the Modeling Section. 
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Table 6.4 CMIP5 GCM climate models used in resampling analysis.  Variables used in this 

analysis included precipitation (Pr), minimum daily temperature (Tmin) and maximum 

daily temperature (Tmax).  The representative concentration pathways (RCP’s) available 

and time period of each model are listed. 

Climate Model 
Variable RCP Scenarios 

Time Period 
Pr Tmin Tmax 2.6 4.5 6 8.5 

BCC-CSM 1.1 ● ● ● ● ● ● ● 1850-2301 

BCC-CSM1.1(m) ●    ● ● ● ● 1850-2101 

CanCM4 ●      ●    1961-2036 

CanESM2 ●    ● ●  ● 1850-2301 

CESM1(BGC) ●      ●  ● 1850-2101 

CESM1(CAM5) ●    ● ● ● ● 1850-2101 

CMCC-CESM ● ● ●     ● 1850-2101 

CMCC-CM ● ● ●    ● ● 1850-2101 

CMCC-CMS ● ● ●    ● ● 1850-2101 

CNRM-CM5 ●    ● ●  ● 1850-2101 

GFDL-CM3 ●    ● ● ● ● 1860-2101 

GFDL-ESM2G ●    ● ● ● ● 1861-2101 

GFDL-ESM2M ●    ● ● ● ● 1861-2101 

GISS-E2-H ● ● ●     ● 1850-2101 

GISS-E2-R ●      ●  ● 1850-2101 

HadCM3 ●      ●    1934-2035 

HadGEM2-CC ● ● ●   ●  ● 1859-2101 

INM-CM4 ●      ●  ● 1850-2101 

IPSL-CM5A-LR ●    ● ● ● ● 1850-2101 

IPSL-CM5A-MR ●    ● ● ● ● 1850-2101 

IPSL-CM5B-LR ●      ●  ● 1850-2101 

MIROC-ESM-CHEM ●    ● ● ● ● 1850-2101 

MIROC-ESM ●    ● ● ● ● 1850-2101 

MIROC4h ●      ●    1950-2036 

MIROC5 ●    ● ● ● ● 1850-2101 

MPI-ESM-MR ●    ● ●  ● 1850-2101 

MRI-CGCM3 ●    ● ● ● ● 1850-2101 

MRI-ESM1 ●        ● 1851-2101 

NorESM1-M ●     ● ● ● ● 1850-2101 
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7. Modeling Program Collaboration 

7.1. Water Utility Climate Alliance (WUCA) 

New York City DEP is one of ten large water utilities in the United States that form the 

Water Utility Climate Alliance.  This group was formed in order to identify, understand, assess 

the impact of climate change, and to plan and implement programs to meet climate challenges.   

WUCA members are involved in enhancing climate change research and improving water 

management decision-making to ensure that water utilities will be positioned to respond to 

climate change and protect our water supplies.  Two white papers recently released by the Water 

Utility Climate Alliance feature case studies of water utilities, including DEP, addressing the 

threat of climate changes. These white papers advance understanding of how the relatively new 

enterprise of climate change assessment and adaptation is developing. 

DEP is also one of four WUCA utilities (New York, Tampa Bay, Seattle, and Portland) 

participating in the Piloting Utility Modeling Applications (PUMA) project.  In this program, the 

four PUMA utilities have formed partnerships with scientific institutions to explore how to 

integrate climate considerations into their specific programs for water quality and quantity 

management.  PUMA has convened workshops where water utility representatives and 

researchers meet to discuss and compare approaches for addressing the impact of climate change 

on water utilities.  The four utilities pursued customized approaches based on specific utility 

needs and learned important lessons in conducting assessments that may be of interest to the 

wider adaptation community. In addition, these projects attempted to create a “climate services” 

environment in which utility managers worked collaboratively and iteratively with climate 

scientists to understand both utility concerns and the ability or limitations of today’s climate 

science to respond to those concerns.  

7.2. Global Lake Ecological Observatory Network (GLEON) 

GLEON is a 10-year old organization that has been built around issues associated with 

the setup and deployment of robotic buoys for observing physical and water quality conditions in 

lakes and reservoirs, storage, processing, and analysis of the high-frequency data gathered by 

such buoys, and use of the data in modeling.  DEP staff have attended recent annual GLEON 

meetings in Quebec and South Korea.  DEP staff are also collaborating with other GLEON 

members in the intervals between meetings, including sharing of selected data.  This 

participation has helped to ensure that DEP is getting the most out of its sizable investment in 

robotic monitoring in the reservoirs and tributary streams.  DEP has made use of GLEON 

software tools in the analysis of robotic buoy data. 

DEP is also applying the reservoir hydrothermal model GLM (General Lake Model) and 

associated Aquatic Ecodynamics (AED) water quality model.  These models are “open source” 

software, and are thus open to use and revision by other researchers and professionals.  These 
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models are currently being applied to Cannonsville and Neversink Reservoirs by one of the 

CUNY postdoctoral researchers working in DEP’s Water Quality Modeling Section. 

Several collaborations have developed from DEP’s participation in GLEON annual 

meetings, where scientists meet yearly to develop ideas and tools to analyze data from an array 

of lake and reservoir sensors deployed around the globe to address local issues for individual 

aquatic ecosystems. Additionally, this network of collaborators works to document changes in 

lake and reservoir ecosystems that occur in response to different environmental conditions and 

stressors. This is done in part by sharing and interpreting high-frequency sensor data and other 

water quality and environmental data. DEP contributed data to two collaborative GLEON 

research projects in 2016. 

7.3. NYCDEP – City University of New York (CUNY) Modeling 

Program  

Through the reporting period, DEP has maintained a contract with the Research 

Foundation of the City University of New York (RF-CUNY) that provides support for model and 

data development by providing postdoctoral scientists who work with DEP water quality 

modeling staff, and supporting research advisors.  The results described in 3.2, 4.1,4.2, 4.3, and 

4.4 of this report has been completed largely by CUNY postdoctoral research staff, working 

together with their research advisors and staff of the Water Quality Modeling Section.  

In August, 2014, a new 4-year contract was initiated between DEP and RF-CUNY.  Under 

this contract, RF-CUNY has hired four fulltime postdoctoral researchers who work in DEP’s 

Water Quality Modeling office in Kingston, NY.  Each of the researchers has an associated 

research advisor who receive part-time support under this contract.  The research that has been 

initiated by these researchers continues to be a significant and critical component of DEP’s 

modeling work.  The postdoctoral program provides support in the form of providing model 

development and application expertise, modeling software, and data sets and in three project 

areas: (1) Evaluation of the effects of climate change on watershed processes and reservoir water 

quality as a part of CCIMP; (2) evaluation of FAD programs and land use changes on watershed 

processes and stream and reservoir water quality; and (3) development of the modeling 

capability to simulate watershed loading of dissolved organic carbon (DOC), and reservoir and 

water supply concentrations of DOC and disinfection byproduct formation potential (DBPFP).   

The post-doctoral position in reservoir modeling of DOC and DBPFP was open from July 

2016 to the end of the year.  A candidate was selected to fill the position in August and has 

started work in January 2017.  The climate science post-doctoral position was open from 

September 2016 to the end of the year.  A candidate was selected in November and started work 

in February 2017.  As a result, at the time of preparation of this report (March 2017), all four 

post-doctoral positions were filled.  Planning is underway for a new 4-year CUNY-DEP contract 

to begin in August 2018.
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8. Modeling Program Scientific Papers and Presentations 

8.1. Scientific Papers 

Acharya, N., A. Frei, J. Chen, L. DeCristofaro, and E. M. Owens, 2017.  Evaluating 

Stochastic Precipitation Generators for Climate Change Impact Studies of New York City’s 

Primary Water Supply. Journal of Hydrometeorology 18(3):879-896.  DOI: 10.1175/JHM-D-16-

0169.1. 

Hoang, L, E. M. Schneiderman, R. Mukundan, K. E. B. Moore, E.  M. Owens, and T. S. 

Steenhuis, 2017.  Predicting saturation-excess runoff distribution with a lumped hillslope model: 

SWAT-HS. Hydrological Processes (accepted). 

 

8.2. Conference Presentations 

 

Water Utility Climate Alliance (WUCA) Meeting 

May 2-3, 2016 

Boulder CO 

 

New York City’s Climate Change Integrated Modeling Project 

E. M. Owens, A. Cohn, NYCDEP, A. Frei, Hunter College, CUNY 

 

Abstract: This presentation described the NYC water supply system, and the efforts of 

the NYC Department of Environmental Protection to forecast the effects of climate 

change on this system using predictive models. 

 

 

American Water Resources Assoc. (AWRA) Summer Specialty Conference, GIS and 

Water Resources 

July 11-13, 2016 

Sacramento, CA 

 

Creation of a Data Warehouse to Support New York City Water Quality Modeling 

Program 

J. Gass and E. M. Owens, NYCDEP 

 

Abstract: The NYC Department of Environmental Protection (DEP) is the agency 

responsible for supplying drinking water to the 8.5 million residents of New York City.  

Comprised on 19 reservoirs and 3 controlled lakes with a combined watershed area of 
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more than 1.25 million acres, the drinking water system must provide more than 1 billion 

gallons of clean drinking water each day.  With up to 90% of this demand provided from 

the 6 reservoirs that are part of the unfiltered Catskill/Delaware System, special attention 

must be paid to the water quality of that system. 

 

 

Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI) Biennial 

Symposium  

July 24 - 27, 2016 

National Conservation Training Center, Shepherdstown, WV 

 

The relationship of dissolved organic carbon to catchment characteristics in the 

Neversink River Basin, New York 

K. Son and K. E. B. Moore, NYCDEP 

  

Abstract: Recent studies of long-term trends have shown an increase in dissolved 

organic carbon (DOC) concentrations in surface waters (streams and lakes) across 

northern Europe and North America. This increase in DOC may be problematic for 

drinking water supplies due to the potential for a corresponding increase in disinfection 

by products (DBPs). In this study, a variety of alternative hypotheses are proposed and 

tested to explore the mechanisms for observed DOC increases in order to understand 

sources of variability and change in this important water quality parameter.  This testing 

was based on DOC data from 11 USGS stream gauging stations within the Neversink 

River Basin, located in the Catskill Mountains, New York and included an analysis of the 

changes in DOC concentration at the event, seasonal, and annual scales. We examined 

the relationships between DOC concentrations observed at these 11 sites and catchment 

characteristics. The catchment characteristics include topography (slope, elevation, and 

aspect), soil properties (soil hydraulic features and soil carbon content), vegetation 

(density and dominant species), and climate influences (precipitation, temperature, and 

atmospheric deposition). This study will increase our understanding of several factors 

influencing DOC concentrations in stream water in this locale. This is a first step in 

developing a model to accurately estimate DOC concentrations in an area that is an 

important drinking water source, beginning with headwater streams and scaling up to the 

whole watershed in an effort to inform future watershed management strategies.  

 

 

New York City Watershed Science and Technical Conference 

September 16, 2016 

Saugerties, New York 

 

Mass Balance Modeling and Laboratory Experiments to Evaluate Production/Loss 

of Trihalomethane Precursors 

E. M. Owens, NYCDEP 
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Abstract: EPA’s Stage 2 Disinfectants/Disinfection Byproducts rule places restrictions 

on trihalomethanes (THMs) and haloacetic acids (HAAs) in drinking water.  In order to 

comply with these federal regulations, and to more generally understand the behavior of 

the precursors to these disinfection byproducts (DBPs), NYCDEP is developing models 

that are capable of predicting the sources, transport, and fate of DBP precursors in the 

watersheds and reservoirs that make up the water supply.  A monitoring program for 

THM precursors and dissolved organic carbon (DOC) was conducted on six West of 

Hudson reservoirs in 1997-98.  This program involved weekly sampling and analysis 

over the full reservoir depth at a single site, at the mouth of the largest stream inflow to 

each reservoir, and in aqueducts discharging to downstream reservoirs.  This monitoring 

data is presented and analyzed, leading to estimation of external precursor 

(allochthonous) loading and the net internal (autochthonous) production within each 

reservoir over the spring to fall period for an individual year.  A series of laboratory 

experiments were conducted to directly measure the rate of various processes that 

produce and deplete organic carbon and THM precursors in the reservoir water column, 

including carbon fixation and excretion in laboratory cultures, THM precursor 

production, biodegradation, and photolysis.  The results of these experiments are 

summarized.   A predictive model for the internal production of THM precursors is 

presented and evaluated using the field and laboratory data. 

 

 

Development of High-Resolution Bathymetry for the 6 West of Hudson Reservoirs: 

Implications for Water Quality Management  

J. Gass, NYCDEP 

 

Abstract: The New York City Department of Environmental Protection (DEP) utilizes 

simulation models to inform management decisions for reservoir operations and water 

quality management.  These models require a variety of accurate input data, including 

reservoir bathymetry, to generate reliable predictions.  Comprehensive bathymetric 

surveys of the 6 West of Hudson (WOH) reservoirs were last completed in 1997.  Since 

that time, processes such as sedimentation, erosion and watershed management may have 

changed the overall morphology of the reservoirs.  These processes necessitate updated 

bathymetry to support current modeling activities, produced at a higher resolution 

available with current technology. In 2013, DEP contracted with the United States 

Geologic Service to survey the 6 WOH reservoirs to generate a high resolution 

bathymetry dataset for use in water quality and operations modeling.  This project will 

improve DEP’s knowledge of the reservoirs by using more accurate methods and 

technology than were available during the previous surveys.  This presentation will focus 

on the newly collected reservoir data, including comparisons with the dataset currently in 

use.  The bathymetric data will be reviewed for any spatial patterns that may help to 

explain the change, and thereby inform future management scenarios.  It will describe 

how the storage capacity estimates for each reservoir have changed, and discuss some of 

the possible reasons for these changes. 
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Development and Testing of a Probabilistic Turbidity Model for Rondout Reservoir. 

R. K. Gelda, NYCDEP 

 

Abstract: NYCDEP now routinely uses the Operations Support Tool (OST) software to 

help guide reservoir operating decisions involving both the quantity and quality of water. 

An important water quality parameter of concern for the City’s water supply is turbidity.  

Here we develop a tool to forecast more realistic simulations of turbidity in Rondout 

Reservoir withdrawal which can then be specified as input to Kensico Reservoir turbidity 

model in OST thus making the forecasts of turbidity in the Kensico Reservoir withdrawal 

more accurate. The proposed modeling tool is based on a separate turbidity model for 

Rondout Reservoir, which was developed and validated earlier. With the added capability 

of using short-term ensemble forecasts of hydrological inputs, turbidity, and climatology 

as the model drivers, it can generate probabilistic forecasts of turbidity. The tool is 

expected to help guide operations of Rondout Reservoir during storm events in the 

watershed as well as provide realistic estimates of turbidity inputs for the Kensico 

Reservoir model in OST. 

 

 

Realistically predicting saturation excess runoff with SWAT-Hillslope.  

L. Hoang, E. M. Schneiderman, T. S. Steenhuis, K. E. Moore, E. M. Owens 

 

Abstract: Saturation excess runoff is without doubt the major runoff mechanism in the 

humid well vegetated areas where infiltration rates often exceed the medium rainfall 

intensity. Despite its preponderance, incorporating this runoff in distributed models has 

been slow and fraught with difficulties. Soil and Water Assessment Tool (SWAT) uses 

information of soil plant characteristics and hydrologic condition to predict runoff and 

thus is implicitly based on infiltration-excess runoff. Previous attempts to incorporate 

saturation excess runoff mechanism in SWAT fell short because the inability to distribute 

water from a Hydrological Response Unit (HRU) to another. This paper introduces a 

modified version of SWAT, referred as SWAT-Hillslope. It improves the simulation of 

saturation excess runoff by redefining HRUs to include landscape position, grouping the 

newly defined HRUs into wetness classes and by introducing a perched water table with 

the ability to route interflow from “dryer” to “wetter” HRUs. Mathematically, the 

perched aquifer is a non-linear reservoir that generates rapid subsurface stormflow as the 

perched water table rises. The SWAT-Hillslope model was tested in the Town Brook 

watershed in the upper reaches of the West Branch of the Delaware in the Catskill 

Mountains. The results show that SWAT-Hillslope could predict discharge well with 

Nash-Sutcliffe Efficiency of 0.68 and 0.87 for daily and monthly time steps. Compared to 

the original SWAT model, SWAT-Hillslope predicted less surface runoff and 

groundwater flow and more lateral flow. The saturated areas in SWAT-Hillslope were 

concentrated in locations with high topographic index and was in agreement with field 

observations. With the incorporation of topography characteristics and the addition of the 

perched aquifer, SWAT-Hillslope gives a realistic representation of hydrological 
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processes and will lead to better water quality models where the source of the surface 

runoff matters. 

 

 

The predictability of forest recovery using a mechanistic hydro-ecological model. 

K. Son, NYCDEP 

 

Abstract: Forests plays a key role in regulating water quality in streams, and forest 

disturbances and harvesting can affect the water quality through major changes in 

hydrologic function and ecosystem.  However, the prediction of forest recovery following 

forest disturbance through modeling is still difficult given the complex interactions 

among climate, hydrology and biogeochemistry. As well, the forest recovery data over 

large areas and long time periods are limited. This study tested the predictability of a 

mechanistic hydro-ecological model, Regional Hydro-Ecologic Simulation System 

(RHESSys) for capturing forest recovery after forest harvesting. The study site is Frost 

Valley YMCA Model Forest, located in the Neversink River Basin that is also a part of 

New York City Water supply watersheds. Three areas within the site experienced 

different forest harvesting practices: light selective cut, heavy selective cut and clear-cut. 

First, we used vegetation indices derived from Landsat imagery in order to develop the 

forest recover data for three sites.  Second, we calibrated the RHESSys model with 

measured streamflow, nitrate and dissolved organic carbon (DOC) fluxes. Third, the 

predictions of leaf area index using the calibrated model was compared with the 

estimated forestry recovery data. This study provides a framework to improve the model 

predictability of forest recovery after forest harvesting. 

 

 

Deciphering the Climate Signal and Other Sources of Change in Stream Water 

Quality, NYC Watershed Science and Technical Conference 

K. E. B. Moore, NYCDEP, and K. Son, NYCDEP 

 

Abstract: Climate projections for New York City’s water supply watersheds generally 

indicate that increases in temperature, precipitation, and potential evapotranspiration, 

with consequent reductions in snowpack and changes in the timing of runoff, are 

anticipated. These changes have important implications for impacts on the nitrogen cycle, 

with potential increases in the release of nitrate to surface waters. Murdoch et al. (1998) 

used a novel approach to examine the long-term effects of temperature on nitrate leaching 

from Biscuit Brook, a headwater stream in the Catskill region, and showed that 

mineralization and nitrification, rather than deposition or vegetation uptake, were the 

primary factors controlling nitrogen leaching from the watershed for the period of 1983-

1995. We revisited their approach for later years at the same site and expand our inquiry 

to other sites in the region to investigate trends in nitrate concentration over a 20+ year 

period of record. We used a variety of approaches to look at trends in annual, seasonal, 

and event-based nitrate concentration, and the relationship between trends in nitrate 

concentration and different flow conditions. We also explored the patterns in dissolved 
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organic carbon and look at the interrelationships between nitrate and other water quality 

indicators. We expect that using long-term records of water quality in this study will 

allow us to have a better understanding of changes in stream water quality with respect to 

climate change. 

 

 

Catskill Environmental Research & Monitoring (CERM) Conference 

October 27-28, 2016 

Belleayre Ski Center, Highmount, NY 

 

Estimating carbon budgets of the Biscuit Brook watershed using RHESSys  

K. Son, E.S. Schneiderman, E.M. Owens, L. Lin, and L. Band 

 

Abstract: Carbon inputs to New York City (NYC) reservoirs are potential precursors to 

disinfection by-products (DBPs) which are subject to regulatory limits in the NYC 

drinking water distribution system. As a first step towards increasing understanding of 

the potential sources of watershed carbon, a forest ecosystem model (Regional 

Hydrologic Ecologic System Simulation, RHESSys) was applied to estimate the carbon 

pools and fluxes associated with soil, litter, coarse woody debris and live trees in selected 

NYC watersheds under historical climate conditions. As a case study, RHESSys was 

applied to Biscuit Brook, a headwater stream in the watershed of Neversink Reservoir 

that has a long record of streamflow, dissolved organic carbon (DOC) and other water 

chemistry data. Using measured streamflow, RHESSys was calibrated to estimate soil 

parameters. To parameterize the soil carbon pools in RHESSys, we estimated forest stand 

ages for 30m grid cells within the NYC watersheds using LIDAR-based stand heights 

and an empirical age-height relationship. Vegetation type for each grid is characterized 

from the Landsat TM based- vegetation map for the Catskill Mountains. RHESSys was 

first run in spin-up mode to bring soil carbon pools in approximate equilibrium with local 

climate conditions. The spun-up model was then run for as many years as the oldest 

stand. For each model output variable of interest (carbon pools, including leaves, fine 

roots, coarse roots, coarse woody debris, litter, and soil), a composite map was 

constructed by extracting, for each grid cell, the value of the variable at the age in the 

model run that corresponds to the stand age previously derived from LIDAR. The 

resultant spatial data are summarized to provide a carbon snapshot of the watershed and 

compared with existing national carbon database and the SSURGO carbon database. In 

addition to soil carbon, simulated LAI is compared with LAI based on Landsat TM 

imagery. Related parameters were calibrated to match the predicted LAI with the remote 

sensing-based LAI.  The simulated DOC values at the outlet of a watershed were 

compared to measured values. Following application to Biscuit Brook and other 

watersheds of similar size, the model application will be scaled up to the Neversink and 

other NYC reservoir watersheds in an effort to inform future water supply management 

strategies. 
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Integrated tools to improve the understanding of linkages among hydrology, 

sediment and carbon in Catskills headwater streams 

M. Vian, K. Son and R. Mukundan, NYCDEP 

 

Abstract: New York City (NYC) daily consumes one billion gallons of water, provided 

by an unfiltered water supply delivered largely from headwater streams in the Catskill 

Mountains.  Numerous anthropogenic influences present challenges to NYC’s efforts to 

maintain high raw quality for this water supply. Notable influences are hydrologic 

alteration due to climate change, and impacts on riparian forest cover due to introduced 

forest pests, including Hemlock Woody Adelgid and Emerald Ash Borer. Through a 

series of complex functional linkages, these changes increase sediment and carbon 

exports to streams that potentially diminish raw water quality. In order to maintain high 

raw water quality, resource managers need to understand the factors contributing to 

entrainment of organic carbon and sediment. To date, no single model adequately 

represents the complexity of the linkages among hillslope hydrology, riparian forest 

conditions, and channel processes. Here we present a framework for integrating an 

ecohydrologic model, a landslide mapping model, and several channel morphologic and 

hydraulic models. Integration of these tools can spatially quantify the probability of wood 

and sediment loading from the stream corridor and adjoining hillslopes, predict the 

progressive cascading downstream of related disturbances, and provide estimates of their 

cumulative impact on sediment and carbon fluxes.  Model analyses can estimate impacts 

on these fluxes resulting from climate change and forest pests. These tools can then 

provide key information to target management treatments.  Application of the suite of 

tools is demonstrated in a case study of Biscuit Brook, a tributary to the Neversink River. 

 

 

Modeling of DOC and Disinfection By-Product Precursors in the NYC Water 

Supply 

E. M. Owens, NYCDEP 

 

Abstract: EPA’s Stage 2 Disinfectants/Disinfection Byproducts (DBP) rule places 

restrictions on trihalomethanes (THMs) and haloacetic acids (HAAs) in drinking water.  

In order to comply with these federal regulations, and to more generally understand the 

behavior of the precursors to these disinfection byproducts (DBPs), NYCDEP is 

developing models that are capable of predicting the sources, transport, and fate of DBP 

precursors in the watersheds and reservoirs that make up the water supply.  These models 

will also be used to evaluate the effect of watershed protection programs, and of climate 

change and extreme weather events, on the water supply.  The models include two 

existing distributed parameter terrestrial (watershed) models.  In addition, NYCDEP is 

investigating two alternative approaches for modeling the production and loss processes 

for DBP precursors in the City’s water supply reservoirs.  Preliminary testing and 

analysis of these two alternative approaches is presented here.  This analysis focuses on 

evaluating net production and loss of precursors occurring in Cannonsville and Neversink 
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Reservoirs, and on the spatial (vertical) and seasonal patterns in the net production/loss in 

the reservoirs. 

 

 

2016 North American Lake Management Society (NALMS) International Symposium  

November 2–4, 2016  

Banff Springs Hotel, Banff, Alberta, Canada 

 

 

Futuristic Simulation of Turbidity in Rondout Reservoir, New York 

R. K. Gelda, NYCDEP 

 

Abstract: Rondout Reservoir is one of New York City’s (NYC) 19 water supply 

reservoirs, located approximately 130 km northwest of the city. This narrow dimictic 

reservoir receives withdrawals from three upstream reservoirs (Cannonsville, Pepacton, 

and Neversink) within the NYC Delaware water supply system. Water withdrawn from 

Rondout Reservoir enters an aqueduct for conveyance to a further downstream reservoir 

where it mixes with water from other parts of the system in Kensico Reservoir before 

disinfection and supply to NYC (no filtration).  An important water quality parameter of 

concern for the City’s water supply is turbidity. The turbidity of the water withdrawn 

from Rondout Reservoir is less than 2.8 NTU 95% of the time (1987-2014), however, 

higher turbidities have been observed during extreme runoff events. Mathematical 

models of turbidity are desired for such situations to predict transport and fate of 

turbidity-causing particles and to guide reservoir operations.  Here we adopt a previously 

validated two-dimensional multi-size class dynamic turbidity model for this reservoir and 

develop a tool to generate probabilistic forecasts of withdrawal turbidity. The tool utilizes 

short-term ensemble forecasts of hydrological inputs, turbidity inputs, and climatology as 

the model drivers, and generates probabilistic forecasts of in-reservoir and withdrawal 

turbidity. The tool is expected to help guide operations of Rondout Reservoir during 

storm events in the watershed as well as provide realistic estimates of turbidity inputs for 

the downstream Kensico Reservoir turbidity model. 

 

 

American Geophysical Union Fall Meeting 

December 12-16, 2016 

San Francisco, CA 

 

Streamflow simulation by a watershed model using stochastically generated weather 

in New York City watersheds 

R. Mukundan, N. Acharya, R. K. Gelda, E. M. Owens, A. Frei, and E. M. Schneiderman 

 

Abstract: Recent studies have reported increasing trends in total precipitation, and in the 

frequency and magnitude of extreme precipitation events in the West of Hudson (WOH) 

watersheds of the New York City (NYC) water supply. The potential effects of these 
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changes may pose challenges for both water quality (such as increased sediment and 

nutrient loading) and quantity (such as reservoir storage and management). The NYC 

Dept. of Environmental Protection Climate Change Integrated Modeling Project 

(CCIMP) is using “bottom-up” or vulnerability based methods to explore climate impacts 

on water resources. Stochastic weather generators (SWGs) are an integral component of 

the bottom-up approach. Previous work has identified and evaluated the skill of 

alternative stochastic weather generators of varying complexity for simulating the 

statistical characteristics of observed minimum and maximum daily air temperature and 

occurrence and amount of precipitation. This evaluation focused on the skill in 

representing extreme streamflow event probabilities across NYC West of Hudson (WOH) 

watersheds. Synthetic weather time series from the selected (skewed normal) SWG were 

used to drive the Generalized Watershed Loading Function (GWLF) watershed model for 

a 600-year period to simulate daily streamflows for WOH watersheds under a wide range 

of hydrologic conditions. Long-term average daily streamflows generated using the 

synthetic weather time series were comparable to values generated using observed long-

term (1950-2009) weather time series. This study demonstrates the ability of the selected 

weather generator to adequately represent the hydrologic response in WOH watersheds 

with respect to the total, peak, and seasonality in streamflows. Future application of 

SWGs in NYC watersheds will include generating multiple scenarios of changing climate 

to evaluate water supply system vulnerability and selection of appropriate adaptation 

measures. 

 

 

The effect of input data complexity on the uncertainty of streamflow simulation 

using SWAT-HS 

L. Hoang, E.M. Schneiderman, T. S. Steenhuis, K. E. B. Moore, E. M. Owens 

 

Abstract: SWAT-Hillslope (SWAT-HS) is a modified version of the Soil and Water 

Assessment Tool (SWAT) that incorporates the simulation of saturation-excess runoff in 

SWAT and can be used in humid vegetated areas where this form of runoff is common. 

Similar to other distributed hydrological models, model uncertainty is an issue of concern 

due to its effects on prediction and subsequent decision makihng. Previous research has 

shown how SWAT predictions are affected by uncertainty in parameter estimation and 

input data resolution. Nevertheless, little information is available on how parameter 

uncertainty is affected by input data of varying complexity. SWAT-HS was applied to 

study the effects of input data with varying degrees of complexity on parameter 

uncertainty and output uncertainty. Four digital elevation model (DEM) resolutions (30, 

10, 3 and 1 m) were tested for their ability to predict streamflow and saturated areas. In a 

second analysis, three soil maps and three land use maps were used to build nine SWAT-

HS setups from simple (fewer soil types/ land use classes) to complex (more types/ 

classes), which were then compared to study the effect of input data complexity on model 

uncertainty. The case study was the Town Brook watershed in the upper reaches of the 

West Branch Delaware River in the Catskill Region, New York, USA. The results 

showed that grid size did not affect the simulation of streamflow but significantly 
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affected the spatial pattern of saturated areas, with the 10m being the most appropriate 

grid size to use. The comparison of nine model setups revealed that input data complexity 

did not affect parameter uncertainty. The most simple soil/ land use specification resulted 

in a very low probability of good model performance, while the most complex setup did 

not give the highest probability of good performance either. It was found that increasing 

model complexity may not necessarily improve model performance or reduce parameter 

and output uncertainty, but using multiple temporal and spatial observations can aid in 

finding the most realistic parameter set and in reducing uncertainty. 

 

 

A study of dissolved organic carbon and nitrate export in Catskill Mountain 

watersheds 

K. Son, K. E. B. Moore, L. Lin, E. M. Schneiderman and L. Band 

 

Abstract: Watersheds in the Catskill Mountain region of New York State have 

historically experienced soil and stream acidification due to atmospheric deposition of 

SO2 and NOx. Recent studies in this region, and elsewhere in North America and 

Europe, have shown increases in dissolved organic carbon (DOC) in streams and lakes. 

Catskill watersheds are the major source of drinking water for New York City and other 

communities in the region. Due to use of chlorine for disinfection, there is potential for 

the increase in DOC to lead to increased levels of disinfection byproducts in treated 

drinking water. Therefore, developing an improved understanding of the sources, fate and 

transport mechanisms, and export patterns for nitrate and DOC is important for informing 

watershed and water supply management. In this study, we analyzed the relationships 

between watershed characteristics, nitrate, and DOC for 12 gauged streams in the 

Neversink River watershed. Watershed characteristics included topography (elevation, 

slope, topographic wetness index), vegetation (leaf area index, species composition), soil 

(soil hydraulic parameters, soil carbon, wetland soil), atmospheric deposition (SO2, 

NOx), and climate (precipitation, temperature). Our preliminary analysis showed that 

both watershed slope and baseflow ratio are negatively correlated with annual median 

DOC concentration. At Biscuit Brook in the Neversink watershed, annual precipitation 

explained about 25% of annual DOC median concentration. DOC concentration was 

highly correlated with storm runoff in spring, summer, and fall, but stream nitrate 

concentration was weakly correlated with storm runoff in most seasons except summer 

when it was highly correlated with baseflow. We also applied a process-based 

ecohydrologic model (Regional Hydrologic Ecologic System Simulation, RHESSys) to 

the Biscuit Brook watershed to explore sources of nitrate and DOC and their movement 

within the watershed. We expect that this study will increase our understanding of how, 

when, and where DOC and nitrate are stored and transported to streams, as well as give 

insights into the key controls on nitrate and DOC processes in Catskill Mountain 

watersheds.
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