

Industrial Pretreatment Program 2010 Annual Progress Report

January 1, 2010 to December 31, 2010

Cas Holloway, Commissioner Vincent Sapienza, Deputy Commissioner Bureau of Wastewater Treatment

Executive Summary

This 2010 Annual Progress Report summarizes the New York City Department of Environmental Protection (DEP) Industrial Pretreatment Program (IPP) from January 1, 2010 to December 31, 2010. The report is prepared and submitted in accordance with the Pretreatment Program Implementation Requirements Section of the State Pollutant Discharge Elimination System (SPDES) permits.

The report "briefly describes the permittee's program activities over the previous year" and includes the following:

- 1. Updated industrial survey information in accordance with 40 CFR 403.12(i)(1).
- 2. Status of program implementation, including:
 - a) Any interference, upset or permits violations experienced at the WWTP directly attributable to industrial users;
 - b) Listing of significant industrial users (SIUs) issued permits;
 - c) Listing of SIUs inspected and/or monitored during the previous reporting period and summary of results;
 - d) Listing of SIUs notified of promulgated pretreatment standards or applicable local standards who are on compliance schedules. The listing should include for each facility the final date of compliance;
 - e) Toxic loadings from SIUs organized by parameters;
 - f) A summary of additions or deletions to the list of SIUs, with a brief explanation for each deletion.
- 3. Enforcement status and activities on regulated industrial users.

In addition, this progress report describes the development of the industrial inventory, initiation of regulations, compliance and monitoring of companies, and the enforcement of violations.

In 2010, there were 205 SIUs; DEP inspected all SIUs except one that have not yet been built, and a total of 66 SIUs were issued discharge permits. DEP inspectors issued 122 Notices of Violation to SIUs and Non-SIUs due to exceedance of pollutant limits (79), failure to submit reports or violation of Commissioner's Orders (38), and for miscellaneous violations (5). During 2010, DEP completed a total of 660 samplings. It was determined that the 205 SIUs discharged an estimated average of 16.1 lbs/day of the nine metals of concern.

Historically, DEP has found a continued reduction in the number of WWTP effluent limit violations. For 2010, there was no WWTP interference or pass-through caused by industrial wastewater discharges. DEP believes that the IPP has served to significantly reduce pollution in New York City.

2010 Annual Progress Report

This page was intentionally left blank.

Table of Contents

Executive Summary	i
Table of Contents	iii
List of Figures	iv
List of Tables	iv
List of Attachments	v
Introduction	2 3
2. Implementation Status	4
(a) WWTP Interference, or Permit Violations	4
(b) Control Documents	
(c) Inspections and Monitoring	5
(d) Compliance Schedules	6
(e) Toxic loadings from SIUs	6
(f) Additions or deletions to the list of SIUs	7
Enforcement Status	7 7
(b) Significant Non-Compliance	8
(c) Other Enforcement Activities	9
4. Additional DEP Initiatives	9
(a) Grease Reduction Enforcement and Education Strategy	9
(b) Perchloroethylene Regulatory Compliance Enforcement Program	9

(c) Silver Halide Regulatory Compliance Enforcement Program	10
Abbreviations and Acronyms	11
Endnotes	12
List of Figures	
1. NYC Drainage Areas and Industrial Statistics	14
List of Tables	
l. New York City Industrial Pretreatment Program Listing of Significant Industrial Users	15
2. SIU Summary as of December 31, 2010	29
3. New York City Industrial Pretreatment Program Listing of Non-SIU	30
4. Minor Incidents at NYC Publicly Owned Treatment Works during 2010	41
5a to x. Plant Action or Permit Levels	42
5y. High Intensity Monitoring at NYC Publicly Owned Treatment Works in 2010	66
6. List of SIUs Issued Permits during 2010	67
7. SIU P-Cases without Permits at the end of 2010	70
8. List of Non-SIUs Issued Directives during 2010	71
9a. Estimated Average Contributions of Significant Industrial Users (12/31/2010)	72
9b. Summary of Estimated Average Metal Loading Contributions (lb/day) from SIUs in 2010	89
10. Non-SIUs that were Reclassified to SIUs in 2010	90
11. SIUs that were Reclassified to Non-SIUs in 2010	91
12. P-Cases that were made Z-Cases in 2010	92
13. Summary of NOVs Issued in 2010 to SIUs for Exceedences (Violators of Regulations 19-03(a), 19-04(a) & 19-04 (c))	93
14. Summary of NOVs Issued in 2010 to SIUs for Late Reporting or Violating	

2010 Annual Progress Report

Commissioner's Orders (Violators of Regulation 24-524(f))	95
15. SIUs with Unresolved NOVs for Exceedances as of 12/31/2010	96
16a. Summary of NOVs Issued in 2010 to Non-SIUs for Exceedences (Violators of Regulations 19-03(a), 19-04(a) & 19-04 (c))	98
16b. Summary of NOVs Issued in 2010 to Non-SIUs for Late Reporting or Violating Commisioner's Order (Violators of Regulations 24-524(f))	99
17. Summary of Notices of Violations Issued to P-Cases from 1/1/10 to 12/31/10	100
List of Attachments	
1. Copy of Public Notification of Significant Non-Compliance for 7/09-6/10	101
2. Preventing Grease Discharge Brochure	102

This page was intentionally left blank.

Introduction

The United States Environmental Protection Agency (EPA) requires approximately 1,500 municipalities around the country to implement "Industrial Pretreatment Programs" or IPPs. The intent of these programs is to control the introduction of toxic substances into public sewers that are tributary to Wastewater Treatment Plants (WWTPs), by regulating the discharge from "Significant Industrial Users".

If a proposed Industrial Pretreatment Program is deemed acceptable, EPA will decree the local municipality a "control authority". The New York City Department of Environmental Protection (DEP) has been a control authority since January 1987. Its Bureau of Wastewater Treatment (Bureau) has been assigned the responsibility of administering the City's IPP. The EPA and/or the New York State Department of Environmental Conservation (DEC) annually audit the City's program to ensure that it is acceptable.

The Bureau had published semiannual progress reports on its Industrial Pretreatment Program since 1988. In 1995, DEC amended the IPP reporting schedule to once a year, thereby conforming to EPA policy. Beginning with the 20th progress report for 1996, the annual report was required to cover the status and activities of the IPP for the calendar year. Therefore, this 2010 Annual Progress Report covers DEP's IPP from January 1, 2010 to December 31, 2010.

1. Industrial Survey

Over the years, DEP's IPP has compiled and updated a Business Inventory, a database of all business establishments within NYC, from the New York State Department of Labor (NYSDOL). As of 2005, business data has not been obtained from NYSDOL as the law prohibits the release of their information to DEP because it is derived from tax and employment records. Instead, DEP has obtained business data from Dun and Bradstreet, a private company that provides information on businesses, or from EPA's Facility Information Database.

From the Business Inventory, an Industrial Survey was conducted to compile a list of facilities that could be of regulatory concern to the Industrial Pretreatment Program. This list of industrial users was obtained and continuously updated for each WWTP in accordance with 40 CFR Part 403.12(i)(1). Facilities potentially subject to the IPP program were found by querying the Business Inventory for the North American Industrial classification System (NAICS) codes of regulatory concern, and are listed in the following table:

212221	321920	325910	327999	332999	337127	339914
213112	322221	325992	331419	333298	337129	339950
221111	322232	325998	331491	333315	337211	339992
221112	323112	326111	332312	333514	337212	339993
221119	323113	326199	332321	333921	337214	339999
221122	323116	326212	332322	334220	337215	532411
237120	323117	327112	332323	334612	337910	562219
313312	323118	327215	332510	335121	337920	811118
316110	325412	327320	332618	336399	339113	812332
321113	325510	327331	332710	336611	339115	
321911	325612	327390	332812	337124	339911	
321918	325620	327420	332813	337125	339913	

In addition, establishments for DEP initiatives such as the Perchloroethylene and Silver Halide Regulatory Compliance Enforcement Programs were obtained from the Business Inventory. Other records making up much of the Business Inventory include gas stations, auto washers, as well as other just-for-reference categories.²

DEP assesses the Business Inventory for facilities that may belong in the IPP Industrial Inventory. A review of the surveys determines those facilities that call for additional actions to establish if they are of regulatory concern. DEP also adds facilities to its Industrial Inventory through its various field inspections (i.e. P-Case investigations, emergency responses, etc.) and through information from concerned citizens.

Facilities that were determined to be of IPP regulatory concern are assigned a "P-Case" number. These P-Cases are classified as either a Significant Industrial User (SIU) or a Non-Significant

Industrial User (Non-SIU). At the end of 2010, DEP had a total of 359 P-Cases of which 205 are SIUs and 154 are Non-SIUs. An illustration of New York City, with a summary of SIUs and Non-SIUs for each WWTP drainage area, is provided in Figure 1 (see page 14).

(i) Significant Industrial Users

P-Cases that discharge process wastewater and are subject to one of the 55 industrial types with a nationwide categorical discharge standard³ are defined by EPA as a "Significant Industrial User" (SIU). Standards for each industry were developed, pursuant to Section 301(b) of Clean Water Act, based on "best available technology economically achievable". Factors relating to the assessment of best available technology take into account equipment age, processes employed, engineering aspects, process changes, cost and non-water quality environmental impacts, including energy requirements. Facilities are usually given up to three years after promulgation of a nationwide categorical standard to achieve compliance, in accordance with Section 301 (b)(2)(F) of the Act.

Other considerations for classifying P-Cases as SIUs can be due to their large flow of wastewater, or the pollutant concentrations of their discharges. This is because EPA, in its amended General Pretreatment Regulations, considers establishments that discharge a daily average of more than 25,000 gallons of process wastewater to be SIUs, as well as if they have a reasonable potential of adversely affecting a WWTP or exceeding a pretreatment standard.⁴

As of December 31, 2010, there were 205 SIUs within DEP's Industrial Inventory. Their names and addresses are listed in Table 1 by their corresponding WWTP drainage area. Out of the 205 SIUs, 184 are subject to one or more EPA categorical standards. For the other 21 non-categorical SIUs, 7 are industrial laundries and 2 are photofinishers. Table 2 summarizes the number of categorical and non-categorical SIUs for each industrial type.

(ii) Non-Significant Industrial Users

Facilities of IPP regulatory concern, and not classified as SIUs, are discretionally regulated by DEP under the jurisdiction of the General Pretreatment Regulations and the New York City Sewer Use Regulations as "Non-SIU". Generally, Non-SIUs are monitored less frequently than SIUs. These facilities include paint and ink formulators, photoengravers, industrial launderers, steel drum reconditioners, and auto radiator repair shops. DEP believes that to have a successful industrial pretreatment program, these facilities require oversight.

In addition, facilities subject to one of the 55 industrial types but not discharging any wastewater from a categorical process of concern (or zero categorical discharge) are listed as Non-SIUs. Facilities that store a significant amount of chemicals on-site with no wastewater discharges can also be regulated as Non-SIUs, because these chemicals could be discharged into the public sewers.

There were a total of 154 Non-SIUs within DEP's Industrial Survey at the end of 2010. Their names and addresses are listed, by drainage area, in Table 3.

2. Implementation Status

(a) WWTP Interference, or Permit Violations

(i) Interference and Pass-Through

In 2010, there were no incidents of interference or pass-through at the WWTPs due to an industrial user. There were four minor incidents reported during 2010. A summary of these incidents is shown in Table 4.

(ii) SPDES Permits Action Levels and Permit Limits

The plant specific SPDES Permits regulate up to seventeen parameters with Type 1 Action Levels, Type 2 Action Levels, and/or Permit Limits. The detailed monthly reports submitted to DEC with the Discharge Monitoring Reports are reproduced in Tables 5-a to 5-x. During 2010, there were seven excursions in which the reported sampling results were higher than the Action Levels or Permit Limits.

It is important to note that monitoring results from industrial users have not shown any substantial exceedances that would cause permit violations or excursions at the WWTP.

The SPDES permits excursions by parameter, WWTP and month for 2010 were:

- 1) Zinc at Owls Head in January
- 2) Cadmium at Wards Island in February
- 3) Copper at Coney Island in February
- 4) Copper at 26th Ward in March
- 5) Copper at Coney Island in March
- 6) Copper at Rockaway in June
- 7) Copper at 26th Ward in December

As per the SPDES Permits, an exceedance of Action Levels may trigger additional High Intensity Monitoring. A summary of parameters in which High Intensity Monitoring was triggered can be seen on Table 5-y. If any pollutant persistently exceeds the Action Levels, the Division of Pollution Prevention and Monitoring will engage in a series of intensive pollutant trackdown actions. These actions include identifying P-Cases located in the drainage area that use or store chemicals containing the pollutant. Once these establishments are identified, the Division of Pollution Control and Monitoring will inspect these companies to determine if they were the source of the pollutant discharged to the sewer system. For 2010, intensive pollutant trackdowns were not deemed necessary.

(b) Control Documents

When the DEP initially determines a facility to be a P-Case, a Commissioner's Order is issued requiring the submittal of an initial self-monitoring report. The facility must provide estimates of the pollutants in their wastewater as per 40 CFR Part 403.12(b). A report consisting of

wastewater quality, flow data and other miscellaneous information must then be submitted to DEP for review. The Commissioner's Order also notifies the facility of applicable categorical standards and local limits, thus satisfying a Federal requirement.

The initial self-monitoring report for SIUs is called a Baseline Monitoring Report (BMR). For Non-SIUs, it is called a non-categorical BMR and requires three days of sampling results of its wastewater discharges. If a complete BMR is not submitted by its due date, the DEP's IPP Inspection and Permit Section issues a Notice of Violation (NOV) against the facility.⁶

Once an acceptable report is received, the DEP's IPP Inspection and Permit Section issues a "control document" to the facility. An SIU receives a control document called a "Permit" that expires within five years from its date of issuance. The five years period is the maximum allowed under federally mandated requirements. The new facility is also required to submit a 90-day Compliance Report that includes an analysis of its wastewater discharge.

Table 6 lists the 66 SIUs that were issued Permits during 2010. One SIU was without an applicable Permit at the end of 2010 because the facility has yet to be built, as shown in Table 7.

A discretionarily regulated Non-SIU receives a control document called a "Directive". The Directive has no expiration date, but is otherwise similar to a Permit. Each control document specifies appropriate self-monitoring and reporting requirements to be satisfied at least every six months. Periodic Self-Monitoring Reports (SMRs) from both SIUs and Non-SIUs can be used to determine violations of applicable categorical standards or Sewer Use Regulation limits. Table 8 lists the 13 Non-SIUs issued Directives during 2010. A total of 96 Permits and Directives were issued by DEP during 2010.

(i) Dilution Prohibition Notice

Each P-case is required to post a Dilution Prohibition Notice in a conspicuous manner as a requirement of its Permit or Directive. DEP has also informed the facilities that failure to post a Dilution Prohibition Notice may result in the issuance of a Notice of Violation. During routine inspections, inspectors check facilities for the posting of Dilution Prohibition Notices.

(c) Inspections and Monitoring

Unannounced visits are made to each SIU at least once a year, although many firms are inspected more frequently. In 2010, visits were made to all SIUs except one, which has not yet been built. During each inspection, Bureau personnel determine if a facility's pretreatment system is operating properly and if production level has changed significantly since the prior inspection. SPDES Permits require a minimum of 700 of these on-site investigations per year that "focus on significant industrial users, commercial and industrial facilities for 'toxic track down' purposes.

The Division of Pollution Control and Monitoring performed a total of 1,054 inspections in 2010. From this total, 694 inspections were for SIUs and the remaining inspections were for Non-SIUs, scavengers and regulated users of Perchloroethylene.

In addition to unannounced inspections, the Bureau performs annual sampling for each SIU. DEP is required by the SPDES Permits to perform a minimum of 640 samplings per year for SIUs, trackdown of toxicants of concern and headworks analysis. The Bureau's Compliance Monitoring Section performs this ongoing sampling. During 2010, a total of 660 samplings were performed.

State certified laboratories, operated by the DEP at Wards Island and Lefrak City, analyze the collected samples for various pollutants. Strict "chain of custody" procedures are followed for the collected samples. The Industrial Inspections and Permitting Section enters the analytical results after reviewing hard copies obtained from laboratory reports into a computer database.

As of September 2001, DEP ceased taking grab samples at the end of process point for categorical SIUs and now performs only composite sampling, except in limited circumstances. These exceptions include batch discharges and low flow precious metal electroplaters (i.e. the 60 small jewelers with less than 50 gallons per day process wastewater discharges).

It is common practice for precious metal electroplaters (i.e. small jewelers) to intermittently discharge small amounts of wastewater into a tank below a rinse sink, thereby settling out valuable precious metal particles at the bottom of the tank. The settled metal is removed and shipped out for refinement whenever necessary. The DEP often collects grab samples from the discharge of these "equalization" tanks. In these cases, grab samples have been determined to be representative of the industrial user's process wastewater discharge.

(d) Compliance Schedules

There were no SIUs who were on a compliance schedule during 2010.

(e) Toxic loadings from SIUs

Analytical results and flow data from BMRs, SMRs, 90 day Compliance Reports, other company samplings, and DEP composite samplings are stored in a database that is maintained by the Pollution Control and Monitoring Division.

From this database, loadings were calculated by multiplying a daily flow by the metal concentration. If more than one sample was submitted in 2010, the average loading value was used. If a sample concentration did not have a corresponding flow, then another flow reading from that facility was substituted. Typically the flow used to calculate the loading in these situations was taken from the nearest sampling date that contained flow data.

Estimates of the average daily loadings (in pounds) of arsenic, cadmium, copper, chromium, lead, mercury, nickel, silver, zinc, and molybdenum contributed by each of the 205 SIUs (except as noted) at the end of 2010 are given, by drainage area, in Table 9a. The 205 SIUs that were active at the end of 2010 discharged an estimated average of 16.1 lbs/day of the nine metals of concern; this includes the above-mentioned metals except molybdenum. A summary of the estimated average metal loadings contribution from SIUs by drainage area is provided in Table 9b.

(f) Additions or deletions to the list of SIUs

Additions to the SIU list (Table 1) are made when new cases are discovered; refer to the Industrial Survey section for details. Reclassifying Non-SIUs to SIUs is another way to append the SIU list. This occurs if a Non-SIU becomes subjected to any of the SIU qualifications, as stated in 40 CFR Part 403.3(t). As indicated in Table 10, there were six Non-SIUs that were reclassified to SIU status by the end of 2010.

Once SIUs are re-classified as Non-SIUs, as per 40 CFR Part 403.3(t)(2), they are removed from the SIU list. Table 11 lists two SIU that was reclassified as Non-SIU during 2010. Other deletions to the SIU list are made when P-Cases that have either gone out of business or terminated the process of concern are re-classified as "Z-Cases". Table 12 lists the 23 P-Cases that were changed to Z-Cases during 2010, 14 of which were SIUs.

Coin-operated launderers can potentially discharge wastewater greater than 25,000 gallons per day. Based on this flow the facility would normally be classified as an SIU; however, under streamlining, if the facility does not have the potential "for adversely affecting the POTW's operation or for violating any pretreatment standards or requirement..., the Control Authority may at any time, on its own initiative... determine that such Industrial User is not a Significant Industrial User." The Division of Pollution Control and Monitoring determines that these types of facilities are not SIUs.

A permit was not issued to Verdopolis JFK LLC (case number 3213) in 2010 because the facility has not yet been built and a complete BMR has not yet been submitted.

3. Enforcement Status

(a) Violations and Enforcement Responses

Exceedances of categorical standards or sewer use limits can be revealed through BMRs, SMRs, 90-day Compliance Reports, other company sampling, and DEP sampling. For significant or chronic exceedances, an NOV is issued, while a Notice of Violation (NOV) or Notification of Non-compliance (NON) is issued for isolated non-significant exceedances. NOVs are also issued during responses to spill incidents involving gasoline/explosivity, chemicals, cement and oil and grease discharges.

A total of 59 out of 205 SIUs received NOVs during 2010 for exceeding Sewer Use or categorical limits, failing to comply with Commissioner's Orders, or failing to submit required reports on time. It should be noted that the adjudication of some of these violations were pending as of the date of this report, and that an Administrative Law Judge of the Environmental Control Board (ECB) may ultimately find that there was no violation. NOVs for exceedances are generally issued under sections 19-03(a), 19-04(a) and 19-04(c) of Title 15 of the Rules of the City of New York (RCNY). For late submission of required monitoring and compliance

reports, or failing to comply with Commissioner's Orders, NOVs are issued under section 24-524(f) of the New York City Administrative Code.

Table 13 provides a summary of SIUs that exceeded Sewer Use limits or Federal categorical standards during 2010, and Table 14 provides a summary of SIU violators for late reporting or failing to comply with Commissioner's Orders. Fourteen of the 205 SIUs, or 6.8%, have unresolved NOVs as of the end of 2010, and are listed in Table 15. A summary of the compliance status for categorical and non-categorical SIUs at the end of 2010 is also provided in Table 2.

There were 2 Non-SIUs issued NOVs for not complying with the Sewer Use Regulation limits, as indicated in Table 16a; 4 Non-SIUs, listed in Table 16b, were issued a total of 8 NOVs for late reporting or violating Commissioner's Orders during 2010.

During 2010, a total of 122 NOVs were issued to P-Cases. Provided below is a summary of NOVs issued to P-Cases active as of December 2010:

- 79 NOVs were issued for exceedances of Federal categorical standards or local sewer use limits
- 38 NOVs were issued for late reporting or violating Commissioner's Orders
- 5 NOVs were issued for miscellaneous violations

A total of 843 NOVs were also issued as a result of complaint investigations and grease inspections. 50 NOVs were issued for other miscellaneous violations such as failure to properly dispose of dry cleaning wastes, failure to comply with letter of approval for groundwater discharges or Commissioner's Order, or violation of scavenger permit. A combined total of 1,015 NOVs were issued by the Division of Pollution Control and Monitoring during 2010.

The aggregate sum of penalties, not including default penalties, assessed during 2010 was \$187,250. Table 17 shows that \$45,525 were from penalties issued to P-cases. An Administrative Law Judge at the ECB determines the penalty amount.

(b) Significant Non-Compliance

In 2010, DEP published a list of industrial users in Significant Non Compliance (SNC) (see attachment 1) as defined in 40 CFR 403.8(f)(2)(viii), during the Fiscal Year of 2010 (July 1, 2009 through June 30, 2010). For 2010, this list was composed of SIUs and establishments belonging to the NYC Department of Education.

The referenced regulation defining SNC was revised in 2005 by a final rule published in the Federal Register on October 14, 2005 titled, "Streamlining the General Pretreatment Regulations for Existing and New Sources of Pollution" effective November 14, 2005. Instead of applying to all regulated establishments, which includes Non-SIUs and Food Service Establishments, SNC now applies only to SIUs and to those industrial users that have caused pass through or interference, have a discharge that resulted in the WWTP's exercise of its emergency authority to halt or prevent such a discharge, have caused imminent endangerment to human health, welfare,

or the environment, or have otherwise adversely affected the WWTP's ability to operate its pretreatment program. This change accounts, in part, for the divergence between the current and previous SNC lists. Beginning in 2005, DEP began notifying establishments on their upcoming reports to reduce violations due to late reporting. This and other efforts have contributed to a reduction in the number of establishments in SNC.

(c) Other Enforcement Activities

There are no other significant enforcement activities to report for 2010.

4. Additional DEP Initiatives

(a) Grease Reduction Enforcement and Education Strategy

In 2010, DEP continued the Grease Education and Enforcement Initiative Program developed in May 2000. The program was created to help reduce the amount of fats, oil and grease (FOG) discharged from food service establishments to the sewer system. DEP approaches the problem with a combination of public outreach and educational efforts, such as materials distributed to restaurants (see attachment 2), and enforcement actions.

DEP obtains a list of food service establishments annually from the NYC Department of Health. Using this list, the Grease Remediation staff conducts two types of inspections and issues Commissioner's Orders and Notices of Violation as necessary. The first type is an initial inspection for new establishments that have never been inspected by DEP. During one of these, a Commissioner's Order is issued to any establishment that does not have the required grease interceptor(s). The Commissioner's Order requires the installation of a properly sized interceptor(s) by a Licensed Plumber within 30 days. A re-inspection is performed to verify its installation. The second type, called a follow-up or maintenance inspection, is performed periodically to ensure that grease interceptors are being regularly cleaned and maintained. Failure to maintain an interceptor results in a Notice of Violation.

In 2010, 840 initial inspections and 2,214 follow-up inspections were performed. These resulted in nearly 1,826 Commissioner's Orders and 717 Notices of Violation. 2,182 new grease interceptors were required to be installed or upgraded. Since the program's inception in May 2000, approximately 18,898 Commissioner's Orders and 8,892 Notices of Violation have been issued. A total of 27,558 grease interceptors have been installed or upgraded as a result of the program.

(b) Perchloroethylene Regulatory Compliance Enforcement Program

Starting in May 2000, DEP launched a Perchloroethylene Regulatory Compliance Enforcement Program for the enforcement of the Best Management Practices for Perchloroethylene discharges to the public sewer from Dry Cleaning facilities (15RCNY Section 19-12). A list of Dry Cleaner establishments was compiled from a combination of referrals from DEP's HAZMAT and Air

Resources Divisions, and from a list provided by the DEC. Investigations were exclusively devoted to Dry Cleaners within a targeted drainage area, prioritized according to the historical concentrations of Perchloroethylene, also known as Tetrachloroethylene, in the WWTP influents.

Since the program's inception, the Perchloroethylene plant influent loadings have decreased considerably. This leads DEP to believe that the program has been effective in reducing Perchloroethylene. In 2010, a total of 97 Dry Cleaners were inspected (2,288 since May 2000), and 33 NOVs were issued against Dry Cleaners.

(c) Silver Halide Regulatory Compliance Enforcement Program

In December 2000, DEP embarked on a program to enforce the NYC Silver Halide regulations, 15RCNY Section 19-07, by developing a comprehensive plan targeting establishments such as hospitals, photo-finishers, and medical/dental care centers. The program's strategy was to focus enforcement actions on a statistically representative sample of each individual industrial category (hospitals, then photo-finishers, and third, medical/dental care centers). If a high rate of noncompliance is found, a greater number of establishments within the targeted industrial category will then be inspected. During 2010, no complaint regarding silver halide discharge was received, therefore silver BMP inspections were not performed.

2010 Annual Progress Report

Abbreviations and Acronyms

BMP Best Management Practice

BMR Baseline Monitoring Report

CFR Code of Federal Regulations

DEP New York City Department of Environmental Protection

DEC New York State Department of Environmental Conservation

ECB Environmental Control Board

EPA United States Environmental Protection Agency

ERP Emergency Response Plan

HAZMAT Hazardous Material Response Team

IPP Industrial Pretreatment Program

NAICS North American Industrial Classification System

Non-SIU Non-Significant Industrial User

NON Notification of Non-compliance

NOV Notice of Violation

NYSDOL New York State Department of Labor

P-Case Pretreatment Case

POTW Publicly Owned Treatment Works

RCNY Rules of the City of New York

SIC Standard Industrial Classification

SIU Significant Industrial User

SMR Self-Monitoring Report

SNC Significant Non-compliance

SPDES State Pollutant Discharge Elimination System

WWTP Wastewater Treatment Plant

Z-Case P-Case that has gone out of business or terminated process of concern

Endnotes

¹ An establishment is an economic unit, generally at a single physical location, where business is conducted or industrial operations performed. A central administrative office or a factory is an example. The U.S. Department of Commerce Bureau of the Census Standard Industrial Classification, or SIC, categorizes an establishment by the type of activity in which it is primarily engaged (over 400 SIC codes). In recent years, a new classification system, the North American Industrial Classification System (NAICS), has replaced the SIC system. It should be

pointed out that more than one account in the inventory might represent the same establishment. On the other hand, an establishment is not necessarily identical with the company itself, which may consist of multiple establishments.

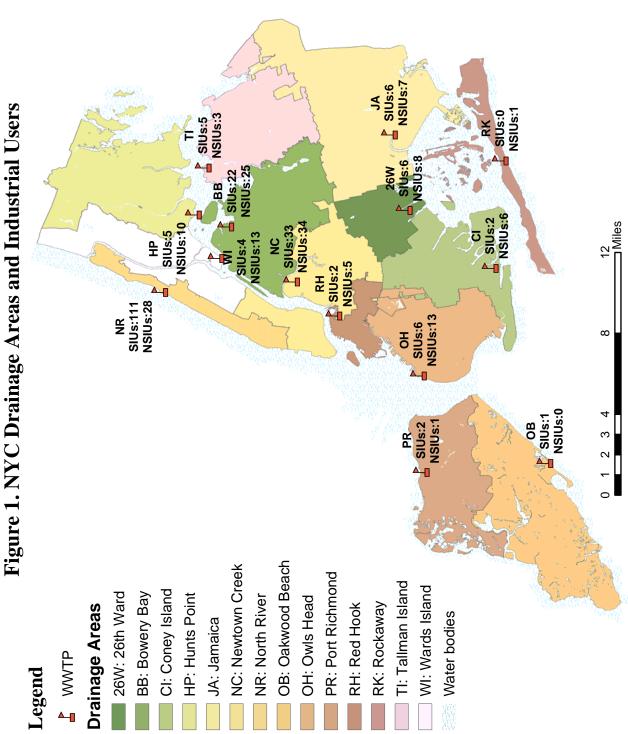
² These just-for-reference establishments are not routinely investigated. During the last drought, when car washes had to be investigated by the Bureau for Water Conservation, the data proved useful. Leaking storage tanks at gas stations have sometimes caused explosive conditions in public sewers, while grease discharges from food service establishments promote sewer backups.

³ Nationwide categorical standards specify concentrations or daily loadings of pollutants, which may be discharged to public sewers by certain types of establishments. The desired result of categorical standards is "to further the progress toward the national goal of eliminating the discharge of pollutants" from industry. EPA has thus far promulgated such standards for 55 different types of industries, and is considering others for future regulation.

⁴ National pretreatment standards include, in addition to categorical standards, general and specific prohibitions, as defined by Section 403.5 of the General Pretreatment Regulations. A user of the public sewers, pursuant to the general prohibitions, may not introduce any pollutant(s), which cause pass-through or interference. The term "interference" means a discharge that inhibits or disrupts a Publicly Owned Treatment Works, causing a violation of a SPDES permit. Pursuant to the specific prohibitions, pollutants that create a fire or explosion hazard, which cause corrosive structural damage, or which cause obstruction to flow, cannot be introduced into a public sewer.

⁵ Previously the Bureau called these Non-SIU establishments "Tier II". Once the Bureau discovers that a Non-SIU establishment has increased its discharge of process wastewater to over 25,000 gallons a day, or if it has the potential to violate a local limit, the facility is re-categorized as an SIU.

⁶ An NOV is adjudicated within sixty 60 days (unless adjourned) by an Administrative Law Judge at the Environmental Control Board (ECB), which is a New York City administrative tribunal. If an establishment is issued more than one NOV at the same time for multiple violations, they are usually all adjudicated at a single ECB hearing. The Board is independent of DEP.


⁷ Five-year Permits were first issued to SIUs during June 1992. These control documents were drafted in accordance with the July 1990 amendments to the General Pretreatment Regulations

and the September 1989 Industrial Users Permitting Guidance Manual published by EPA. Prior to 1992, all SIUs and Non-SIUs were issued non-expiring Directives.

⁸ Loading estimates are provided for Total Chromium, even though Hexavalent Chromium is the only regulated form of Chromium. There are few Hexavalent Chromium records, because the more complicated laboratory analysis for Hexavalent Chromium is only performed when a sample is found to have a concentration of Total Chromium exceeding 5 mg/l. Hexavalent Chromium can never be more than Total Chromium.

⁹ A non-significant minor exceedance is defined by the Bureau, as wastewater with pollutant concentration marginally above a regulatory limit.

P-NO	NAME AND ADDRESS	<u>DA</u>	<u>CATEGORY</u>
569	S & N CHEMICALS CO., INC. 1000 LINWOOD ST BROOKLYN, NY 11208	26	SOAP & OTHER DETERGENTS
2680	PEPSI-COLA BOTTLING COMPANY OF NY, INC. 9701 AV D BROOKLYN, NY 11236	26	MISCELLANEOUS
2757	HALMARK ARCHITECTURAL FINISHING CORP. 353 STANLEY AV BROOKLYN, NY 11207	26	NEW SOURCE METAL FINISHING
3072	GLEEM INDUSTRIES INC. 656 ATKINS AV BROOKLYN, NY 11208	26	SOAP & OTHER DETERGENTS
3093	L & M OPTICAL DISC LLC 303 LOUISIANA AV BROOKLYN, NY 11207	26	NEW SOURCE METAL FINISHING
3145	NYCDEP PENNSYLVANIA AVENUE LANDFILL 1750 PENNSYLVANIA AV BROOKLYN, NY 11239	26	MISCELLANEOUS/LANDFILL
2	EMPIRE METAL FINISHING, INC. 24-69 46TH ST ASTORIA, NY 11103	ВВ	NEW SOURCE METAL FINISHING
5	PROGRAMATIC PLATERS, INC. 49-25 20TH AV E ELMHURST, NY 11370	ВВ	ELECTROPLATING-U
56	HYGRADE POLISHING & PLATING CO., INC. 22-07 41ST AV LIC, NY 11101	ВВ	NEW SOURCE METAL FINISHING
57Y	ANACOTE CORPORATION 45-22 VERNON BLVD LIC, NY 11101	ВВ	ELECTROPLATING-O
108Y	VERNON PLATING WORKS, INC. 33-20 57TH ST WOODSIDE, NY 11377	ВВ	NEW SOURCE METAL FINISHING
615	AMERICAN WAX COMPANY, INC. 39-30 REVIEW AV LIC, NY 11101	ВВ	SOAP & OTHER DETERGENTS
632	THE METRO GROUP, INC. 50-23 23RD ST LIC, NY 11101	ВВ	PESTICIDE CHEMICALS
641	MODERN ART FOUNDRY, INC. 18-70 41ST ST LIC, NY 11105	ВВ	METALS MOLDING & CASTING
1403	JUNG SUN LAUNDRY GROUP CORP. 37-10 24TH ST LIC, NY 11101	ВВ	INDUSTRIAL LAUNDERER

P-NO	NAME AND ADDRESS	<u>DA</u>	<u>CATEGORY</u>
2530	ALSCO JEWELRY OF NEW YORK, INC. 47-09 30TH ST, STE # 605 LIC, NY 11101	BB	NEW SOURCE METAL FINISHING
2603	CONSOLIDATED EDISON CO. OF NY INC. 31-01 20TH AV LIC, NY 11105	ВВ	CENTRALIZED WASTE TREATMENT
2682	COCA COLA ENTERPRISES INC. 59-02 BORDEN AV MASPETH, NY 11378	ВВ	MISCELLANEOUS
2826	KERNS MANUFACTURING CORP. 37-14 29TH ST, FL 1 LIC, NY 11101	ВВ	NEW SOURCE METAL FINISHING
2894	RAYANA DESIGNS, INC. 25-20 40TH AV LIC, NY 11101	ВВ	NEW SOURCE METAL FINISHING
2941	B. M. CREATION INC. 47-28 37TH ST, FL 2 LIC, NY 11101	ВВ	NEW SOURCE METAL FINISHING
2990	ELDORADO FINISHING INC. 47-09 30TH ST, FL 5 LIC, NY 11101	ВВ	NEW SOURCE METAL FINISHING
3069	NATIONAL RAILROAD PASSENGER CORPORATION 39-29 HONEYWELL ST LIC, NY 11101	ВВ	MISCELLANEOUS
3081	ALLSTAR CASTING CORP. 44-02 11TH ST, # 405 LIC, NY 11101	ВВ	NEW SOURCE METAL FINISHING
3140	ASTORIA ENERGY LLC.ASTORIA ENERGY II LLC 17-10 STEINWAY ST ASTORIA, NY 11105	ВВ	STEAM ELECTRIC POWER GENERATION
3141	CONSOLIDATED EDISON CO. OF NY, INC. ASTORIA GAS DRIP WT FACILITY 31-01 20TH AV	ВВ	CENTRALIZED WASTE TREATMENT
3185	LIC, NY 11105 JOHN JOSEPH JEWELRY, INC. 11-11 43RD RD, FL 2 LIC, NY 11101	ВВ	NEW SOURCE METAL FINISHING
3203	G.P.I. DIAMOND, CORP. 44-02 11TH ST, STE # 405 LIC, NY 11101	ВВ	NEW SOURCE METAL FINISHING
190	ABLE ANODIZING CORP. 984 E 35TH ST BROOKLYN, NY 11210	CI	ELECTROPLATING-U
2601	EW YORK CITY HEALTH & HOSPITALS CORP. 645 KINGSTON AV BROOKLYN, NY 11203	CI	INDUSTRIAL LAUNDERER

P-NO	NAME AND ADDRESS	<u>DA</u>	CATEGORY
12	VICTORIA PLATING CO., INC. 650 TIFFANY ST BRONX, NY 10474	HP	ELECTROPLATING-U
110	GENERAL GALVANIZING & SUPPLY CO., INC. 652 WHITTIER ST BRONX, NY 10474	HP	NEW SOURCE METAL FINISHING
2830	NEW YORK ORGANIC FERTILIZER COMPANY 1108 OAK POINT AV BRONX, NY 10474	НР	MISCELLANEOUS
3139	PLASTODENT, INC. 2881 MIDDLETOWN RD BRONX, NY 10461	НР	PHARMACEUTICAL MANUFACTURING (ZERO CATEGORICAL DISCHARGE)
3179	NYCDEP PELHAM BAY LANDFILL 301 SHORE RD BRONX, NY 10465	НР	MISCELLANEOUS/LANDFILL
85	DURASPEC ELECTROPLATING, INC. 87-83 139TH ST JAMAICA, NY 11435	JA	NEW SOURCE METAL FINISHING
556	EPIC PHARMA, LLC. 227-15 N CONDUIT AV LAURELTON, NY 11413	JA	PHARMACEUTICAL MANUFACTURING
987	CHEMCLEAN CORP. 130-45 180TH ST SPRINGFIELD GARDEN, NY 11434	JA	SOAP & OTHER DETERGENTS
2760	BOUNDARY FENCE & RAILING SYSTEMS, INC. 131-02 JAMAICA AV RICHMOND HILL, NY 11418	JA	NEW SOURCE METAL FINISHING
2812	DEPARTMENT OF VETERANS AFFAIRS 179TH ST && LINDEN BL ST ALBANS, NY 11425	JA	INDUSTRIAL LAUNDERER
3213	VERDOPOLIS JFK LLC JFK A/P,E HANGER RD,HANGER 16 QUEENS, NY 10016	JA	TO BE DETERMINED
48	WILCO FINISHING CORPORATION 1288 WILLOUGHBY AV BROOKLYN, NY 11237	NC	ELECTROPLATING-U
49	TRU-TONE METAL PRODUCTS, INC. 1261 WILLOUGHBY AV BROOKLYN, NY 11237	NC	NEW SOURCE METAL FINISHING
80	STRUCTURAL PROCESSING, CORP. 59-30 56TH RD MASPETH, NY 11378	NC	ELECTROPLATING-O
299	H & B PLASTIC PLATING CO., INC. 299 WYTHE AV BROOKLYN, NY 11211	NC	NEW SOURCE METAL FINISHING

P-NO	NAME AND ADDRESS	<u>DA</u>	<u>CATEGORY</u>
300	SILVERMAN-GORF INC. 60-62 FRANKLIN AV BROOKLYN, NY 11205	NC	NEW SOURCE METAL FINISHING
626	JOS. H. LOWENSTEIN AND SONS, INC. 420 MORGAN AV BROOKLYN, NY 11222	NC	ORGANIC CHEMICALS/CATEGORICAL
635	M.SCHNEIDER SOAP & CHEMICAL COMPANY,INC 19-30 TROUTMAN ST RIDGEWOOD, NY 11385	NC	SOAP & OTHER DETERGENTS
1402	WING GONG LAUNDRY, INC. 240 HURON ST BROOKLYN, NY 11222	NC	INDUSTRIAL LAUNDERER
2052	PEPE CREATIONS, INC. 2 W 45TH ST, RM 1003 NEW YORK, NY 10036	NC	NEW SOURCE METAL FINISHING
2057I	OHANNES KESHISHIAN-STAR JEWELRY POLISHER 578 5TH AV, STE 9 NEW YORK, NY 10036	NC	NEW SOURCE METAL FINISHING
2355A	REGAL EMBLEM CO., INC. 250 W BROADWAY, FL 2 NEW YORK, NY 10013	NC	NEW SOURCE METAL FINISHING
2689	ACME ARCHITECTURAL PRODUCTS, INC. 95 LOMBARDY ST BROOKLYN, NY 11222	NC	NEW SOURCE METAL FINISHING
2764	CORBEL INC. 1625A CODY AV RIDGEWOOD, NY 11385	NC	NEW SOURCE METAL FINISHING
2849	PANOYAN BROTHERS JEWELRY 21 W 45TH ST, FL 3 NEW YORK, NY 10036	NC	NEW SOURCE METAL FINISHING
2850	LES ATELIERS DE VAN CLEEF & ARPELS, INC. 10 E 52ND ST , FL 7 NEW YORK, NY 10022	NC	NEW SOURCE METAL FINISHING
2884	CARVIN FRENCH JEWELERS, INC. 515 MADISON AV, RM 1605 NEW YORK, NY 10022	NC	NEW SOURCE METAL FINISHING
2906	TANAGRO JEWELRY CORP. 5 E 57TH ST, FL 17 NEW YORK, NY 10022	NC	NEW SOURCE METAL FINISHING
2960	HONORA INDUSTRIES,INC. 18 E 48TH ST, FL 3 NEW YORK, NY 10017	NC	NEW SOURCE METAL FINISHING
2984	CONTROL ELECTROPOLISHING CORP. 109 WALWORTH ST BROOKLYN, NY 11205	NC	NEW SOURCE METAL FINISHING

<u>P-NO</u> 3005	NAME AND ADDRESS RAM JEWELRY, INC.	<u>DA</u> NC	CATEGORY NEW SOURCE METAL
	7 W 45TH ST, FL 6 NEW YORK, NY 10036		FINISHING
3029	ARCHITECTURAL COATINGS, INC. 538 JOHNSON AV BROOKLYN, NY 11237	NC	NEW SOURCE METAL FINISHING
3033	CHARLES VAILLANT, INC. 37 W 57TH ST, STE # 803 NEW YORK, NY 10019	NC	NEW SOURCE METAL FINISHING
3044	589 JEWELRY DESIGN, INC. 2 W 45TH ST, STE 1108 NEW YORK, NY 10036	NC	NEW SOURCE METAL FINISHING
3045	ANTONINO GAGLIARDO NICOLO D'ANGELO 7 W 45TH ST, RM 1201 NEW YORK, NY 10036	NC	NEW SOURCE METAL FINISHING
3116	HUGO CARTAGENA,ELIZABETH CARTAGENA,XAVIE R CARTAGENA/CARTAGENAS JEWELRY 7 W 45TH ST, RM 1202 NEW YORK, NY 10036	NC	NEW SOURCE METAL FINISHING
3117	GEM MINE CORP. 35 W 45TH ST, RM 800 NEW YORK, NY 10036	NC	NEW SOURCE METAL FINISHING
3122	TASLEEM A. SHERWANI 1288 WILLOUGHBY AV BROOKLYN, NY 11220	NC	NEW SOURCE METAL FINISHING
3127	TECHNICOLOR EAST COAST, INC. 110 LEROY ST NEW YORK, NY 10014	NC	PHOTOFINISHER
3130	J & V INTERNATIONAL TRADING INC. 17 W 45TH ST, STE 802 NEW YORK, NY 10036	NC	NEW SOURCE METAL FINISHING
3146	APEXX OMNI-GRAPHICS, INC. 58-29 64TH ST MASPETH, NY 11378	NC	NEW SOURCE METAL FINISHING
3156	DIANE VON BASEDOW, INC. 611 BROADWAY, STE # 622 NEW YORK, NY 10012	NC	NEW SOURCE METAL FINISHING
3195	RICHMONT NORTH AMERICA, INC. 4 E 52ND ST,FL 5 NEW YORK, NY 10022	NC	NEW SOURCE METAL FINISHING
3215	G CREATIONS INC. 16 E 48TH ST FL 7 NEW YORK, NY 10017	NC	NEW SOURCE METAL FINISHING
35A	DAN KANE PLATING INC. 115 W 27TH ST, FL 2 NEW YORK, NY 10001	NR	NEW SOURCE METAL FINISHING

<u>P-NO</u>	NAME AND ADDRESS	<u>DA</u>	CATEGORY
38	MAGIC NOVELTY CO., INC. 308 DYCKMAN ST	NR	NEW SOURCE METAL FINISHING
	NEW YORK, NY 10034		
124	T & M PLATING, INC.	NR	NEW SOURCE METAL FINISHING
	355 W 36TH ST, FL 7 NEW YORK, NY 10018		FINISHING
125	P. E. GUERIN, INC.	NR	NEW SOURCE METAL
	23 JANE ST NEW YORK, NY 10014		FINISHING
144	KARBRA COMPANY	NR	NEW SOURCE METAL
	131 W 35TH ST, FL 8 NEW YORK, NY 10001		FINISHING
102		ND	NEW COURSE METAL
183	CINER MANUFACTURING CO., INC. 20 W 37TH ST, FL 10	NR	NEW SOURCE METAL FINISHING
	NEW YORK, NY 10018		
2006Н	LEO INGWER, INC.	NR	NEW SOURCE METAL
	62 W 47TH ST, FL 10 NEW YORK, NY 10036		FINISHING
2006I	TRI-MART DESIGNS LTD.	NR	METAL FINISHING
20001	62 W 47TH ST, STE 911	1NK	WEIAL FINISHING
	NEW YORK, NY 10036		
2009C	BK JEWELRY CONTRACTORS INC.	NR	NEW SOURCE METAL
	71 W 47TH ST, RM 1100 NEW YORK, NY 10036		FINISHING
2000	,	ND	NEW COUD OF METAL
2009F	M & A JEWELRY POLISHING CORP. 64 W 48TH ST, RM 1010	NR	NEW SOURCE METAL FINISHING
	NEW YORK, NY 10036		
2011D	MARINA ENTERPRISE, INC.	NR	NEW SOURCE METAL
	42 W 48TH ST # 804 NEW YORK, NY 10036		FINISHING
	NEW TORK, NT 10050		
2018	SUNA BROS. INC. 10 W 46TH ST, FL 5	NR	NEW SOURCE METAL FINISHING
	NEW YORK, NY 10036		THUBINIO
2020	GEMKRAFT JEWELRS.COM CORP.	NR	NEW SOURCE METAL
	21 W 47TH ST, LOWER LEVEL		FINISHING
	NEW YORK, NY 10036		
2023	MAZZA/BARTHOLOMEW LTD.	NR	NEW SOURCE METAL
	677 5TH AV, FL 6 NEW YORK, NY 10022		FINISHING
2026P	ABRAHAM BARBER	ND	NEW SOURCE METAL
2026B	580 5TH AV, RM 725	NR	NEW SOURCE METAL FINISHING
	NEW YORK, NY 10036		
2031	L. A. B. JEWELRY CO., INC.	NR	NEW SOURCE METAL
	8-10 37TH ST, RM 602 NEW YORK, NY 10018		FINISHING
	MEN TOKE, INT 10010		

P-NO	NAME AND ADDRESS	<u>DA</u>	CATEGORY
2034F	JAMES PITTA JEWELRY POLISHING, INC. 31 W 47TH ST, RM 200 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2034I	MITCHELL EGENBERG D/B/A ELIGERE 31 W 47TH ST, RM 201 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2057A	KAPRIELIAN ENTERPRISES, INC. 207 W 25TH ST, FL 8 NEW YORK, NY 10001	NR	NEW SOURCE METAL FINISHING
2057B	RUDOLF FRIEDMANN, INC. 42 W 48TH ST, STE 1102 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2058C	HMS JEWELRY CONTRACTING LIMITED 48 W 48TH ST, RM 906 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2058N	UNITED BROS. CONTRACTORS,INC. 48 W 48TH ST, FL 7 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2071	NEW YORK POLISHING CORP. 29 W 47TH ST, MEZZANINE NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2074B	FOUR STAR JEWELRY, INC. 2 W 47TH ST, RM 406 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2080F	GRAMERCY JEWELRY MANUFACTURING CORP. 115 W 30TH ST, FL 10 NEW YORK, NY 10001	NR	NEW SOURCE METAL FINISHING
2083A	FREDERICK GOLDMAN, INC. 154 W 14TH ST, FL 7 NEW YORK, NY 10011	NR	NEW SOURCE METAL FINISHING
2086B	MARCO D. DELANO D/B/A MARCO DELANO POLIS HING CO. 71 W 47TH ST, RM 608	NR	NEW SOURCE METAL FINISHING
2096	NEW YORK, NY 10036 B.Z.B. JEWELRY CONTRACTING CORP. 78 W 47TH ST, MEZZANINE, RM 12 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2347	SEYMOUR TOREM JEWELRY POLISHERS, INC. 75 W 47TH ST, FL 1 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2434	BEST JEWELRY CONTRACTING, INC. 25 W 47TH ST, FL 2 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2440A	MR.APET KAPU DBA INTERNATIONAL JEWELRY CO. OF N.Y. 37 W 47TH ST, RM 204 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING

P-NO	NAME AND ADDRESS	<u>DA</u>	<u>CATEGORY</u>
2448	EMA JEWELRY INC. 246 W 38TH ST, FL 6 NEW YORK, NY 10018	NR	NEW SOURCE METAL FINISHING
2505	FAM CREATIONS, INC. 46 W 46TH ST, FL 4 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2509A	IMENA JEWELRY MANUFACTURER, INC. 2 W 45TH ST, FL 2 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2509C	GOTTLIEB JEWELRY MANUFACTURING COMPANY 21 W 47TH ST, FL 4 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2512	BRILLIANT JEWELERS/MJJ INC. 902 BROADWAY, FL 18 NEW YORK, NY 10010	NR	NEW SOURCE METAL FINISHING
2516	JUPITER JEWELRY CO., INC. 62 W 47TH ST, STE 309 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2519	STAR MANUFACTURING, INC. 214 W 29TH ST, STE 704 NEW YORK, NY 10001	NR	NEW SOURCE METAL FINISHING
2527	CHAINDOM ENTERPRISES INC. 48 W 48TH ST, STE 200 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2579	PALA JEWELRY, INC. 62 W 47TH ST, FL 9 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2748	DIRAN AYKAZ (EUROPEAN JEWELRY POLISHERS) 33 W 47TH ST, FL 2 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2774	CONSOLIDATED EDISON COMPANY OF NY, INC. 28TH ST FLUSH TRUCK FACILITY 281 11TH AVENUE	NR	CENTRALIZED WASTE TREATMENT
2797	NEW YORK, NY 10001 YACOUBIAN BROTHERS,INC. 2 W 45TH ST, RM 1104 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2802	TIMELESS DESIGNS BY JACOB BRYAN, LTD. 2 W 47TH ST, STE 305 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2817	ASHER JEWELRY COMPANY, INC. 48 W 48TH ST, FL 3 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2860	PERMA-GLOW, LTD. 64 W 48TH ST, FL 17 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING

P-NO	NAME AND ADDRESS	<u>DA</u>	CATEGORY
2865	EMG CREATIONS, INC. 8-10 W 37TH ST, FL 9 NEW YORK, NY 10018	NR	NEW SOURCE METAL FINISHING
2883	GRANDEUR CREATIONS, INC. 146 W 29TH ST, STE 9E NEW YORK, NY 10001	NR	NEW SOURCE METAL FINISHING
2886	ART-TEC JEWELRY DESIGNS LTD. 64 W 48TH ST, FL 12 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2908	HOUSE OF CLASPS, INC. 47 W 47TH ST, FL 4 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2936	HOU SING DESIGN, INC. 48 W 48TH ST, RM 1208 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2947	HAROLD HOWARD SCOTT/H.S.JEWELRY POLISHER 64 W 48TH ST, RM 1007 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2954	ALMOD DIAMONDS LTD. 38 W 48TH ST, FL 3 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2955	ARMAN'S JEWELRY POLISHING CORP. 33 W 47TH ST, FL 2 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2957	BNNS CO., INC. 71 W 47TH ST, STE 610 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2961	RODEO OF N.Y., INC. 62 W 47TH ST, STE 14A2 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2963	MARTIN TAUBER 48 W 46TH ST, FL 3 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
2964	JEAN & ALEX JEWELRY MANF.CONSULTANTS,INC 587 5TH AV, FL 2 NEW YORK, NY 10017	NR	NEW SOURCE METAL FINISHING
2967	M & D JEWELRY CO. OF NEW YORK, INC. 222 W 37TH ST, FL 11 NEW YORK, NY 10018	NR	NEW SOURCE METAL FINISHING
2975	ATLANTIS JEWELRY CONTRACTORS, INC. 38 W 48TH ST, STE 203-B NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3003	AMERICO IZZO 21 W 46TH ST, RM 401 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING

P-NO	NAME AND ADDRESS	<u>DA</u>	CATEGORY
3007	ZAVEN SARAFYAN DBA VICTORIA JEWELRY MFG. 23 W 47TH ST, STE # 602 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3030	DUART FILM LABORATORIES, INC. 245 W 55TH ST NEW YORK, NY 10019	NR	PHOTOFINISHER
3031	F. BLANCATO, LLC. 64 W 48TH ST, STE 1401 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3034	ROYAL JEWELRY MANUFACTURING, INC. 1001 AV OF AMERICANS, FL 7 NEW YORK, NY 10018	NR	NEW SOURCE METAL FINISHING
3035	AVON PRODUCTS, INC. 1251 AV OF AMERICAS, FL 6 NEW YORK, NY 10020	NR	NEW SOURCE METAL FINISHING
3042	BEA WOO LEE D/B/A LEE JEWELRY TRADING 48 W 48TH ST, RM 706 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3043	JP JEWELRY CORPORATION 48 W 48TH ST, RM 1611 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3053	MARTIN FLYER JEWELRY LLC. 48 W 48TH ST, STE 401 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3063	WEINMAN BROS., INC. 142 W 36TH ST, FL 15 NEW YORK, NY 10018	NR	NEW SOURCE METAL FINISHING
3067	VARTAN MANUFACTURING CORP. 35 W 45TH ST, STE 900 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3068	TAVIT SEPETCI D/B/A TAVIT SETTING CO. 62 W 47TH ST, STE 1510 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3070	SUMER GOLD LTD. 33 W 46TH ST, FL 4 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3071	ATR JEWELRY, INC. 21 W 46TH ST, STE 901 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3074	RIVIERA GOLD, INC. 37 W 37TH ST, STE # 701 NEW YORK, NY 10018	NR	NEW SOURCE METAL FINISHING
3083	PREMIERE POLISHING & CONTRACTING USA,INC 31 W 47TH ST, RM 206 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING

P-NO	NAME AND ADDRESS	<u>DA</u>	<u>CATEGORY</u>
3092	MILANO FINE JEWELRY, INC. 55 W 47TH ST, BSMT RM 580 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3096	QUALITY JEWELRY CONTRACTORS, INC. 37 W 47TH ST, STE # 802 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3101	BIG EYE CORP. 64 W 48TH ST, FL 2 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3106	JACY'S JEWELRY INC. 17-19 45TH ST, STE 605 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3109	J.S.A. JEWELRY, INC. 2 W 46TH ST,STE 1502 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3112	SPARK CREATIONS INC. 10 W 46TH ST, FL 9 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3113	BETH FINE JEWELRY, INC. 46 W 46TH ST, FL 5 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3114	ARYA'S COLLECTION, INC. 37 W 47TH ST, RM 401 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3118	LE AND SONS JEWELRY INC. 55 W 45TH ST, FL 2 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3121	A.M.A. JEWELRY, CORP. 43 W 46TH ST STE 403 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3123	KYUNG M LEE D/B/A SOLOMON LEE JEWELRY 71 W 47TH ST, RM 514 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3126	ROMIR TRADING, INC. 21 W 46TH ST, # 1103 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3129	THE NEW YORK AND PRESBYTERIAN HOSPITAL 627 W 165TH ST NEW YORK, NY 10032	NR	INDUSTRIAL LAUNDERER
3135	O.K. SONG JEWELERY, INC. 37 W 47TH ST, RM 308 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3137	AP GOLDMAN JEWELERS, INC. 37 W 47TH ST, STE 903 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING

P-NO	NAME AND ADDRESS	<u>DA</u>	<u>CATEGORY</u>
3150	EURO BANDS, INC. 247 W 37TH ST, FL 7 NEW YORK, NY 10018	NR	NEW SOURCE METAL FINISHING
3154	EUGENE BIRO CORP. 581 5TH AV,FL 3 NEW YORK, NY 10017	NR	NEW SOURCE METAL FINISHING
3157	ESSENCE JEWELRY CORP. 46 W 46TH ST, FL 2 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3158	F & R JEWELRY, INC. 71 W 47TH ST, STE 204A NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3161	JEWELRY UNLIMITED, INC. 71 W 47TH ST, RM # 706 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3163	CHONG GEON KIM DBA KIM'S SEOUL JEWELRY 71 W 47TH ST, RM 1205 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3166	F & P TAPIA JEWELRY INC. 17-19 W 45TH ST, STE 601 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3170	S. KASHI & SONS, INC. 71 W 47TH ST, STE 1403 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3184	LOREMI JEWELRY SERVICES INC. 222 W 37TH ST, FL 14 NEW YORK, NY 10018	NR	NEW SOURCE METAL FINISHING
3188	LE PAVEH LTD. 16 PENN PLAZA, 481 8TH AV, RM # 810	NR	NEW SOURCE METAL FINISHING
3192	NEW YORK, NY 10001 48 JEWELRY CORP. 64 W 48TH ST, RM 508 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3194	EARRING KING JEWELRY MFG., INC. 64 W 48TH ST RM 1006 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3196	SUNRISE JEWELRY CORP. 48 W 48TH ST, RM 900 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3200	D & B WEDDING BANDS INC. 17 W 45TH ST, STE 806 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINSHING
3201	59TH ST DEMINERALIZATION PLANT 850 12TH AV NEW YORK, NY 10019	NR	MISCELLANEOUS

P-NO	NAME AND ADDRESS	<u>DA</u>	<u>CATEGORY</u>
3202	GUILLERMO H. SEGARRA D/B/A GUILLERMO GOL D DESIGNS 36 W 47TH ST, STE# 801	NR	NEW SOURCE METAL FINISHING
3204	NEW YORK, NY 10036 MR. YONG J. PARK 71 W 47TH ST, RM 306 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3206	G & I ARTISIANS LLC. 42 W 38TH ST, RM 604 NEW YORK, NY 10018	NR	NEW SOURCE METAL FINISHING
3209	EXCLUSIVE JEWELRY CASTING & CONTRACTING, INC. 17-19 W 45TH ST, RM 301	NR	NEW SOURCE METAL FINISHING
3212	NEW YORK, NY 10036 C & P POLISHING 71 W 47TH ST, LOWER LEVEL, # 110 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING
3149	NYCDEP BROOKFIELDS AVENUE LANDFILL 575 ARTHUR KILL ROAD STATEN ISLAND, NY 10308	ОВ	MISCELLANEOUS/LANDFILL
148	F.M. CIRCUITS CORP. 152 11TH ST BROOKLYN, NY 11215	ОН	NEW SOURCE METAL FINISHING
1397	CENTRAL LAUNDRY SERVICE CORP. D/B/A SEACREST LINEN SUPPLY CO. 46 CROWN ST	ОН	INDUSTRIAL LAUNDERER
2725	BROOKLYN, NY 11225 ARROW LINEN SUPPLY CO., INC. 467 PROSPECT AV BROOKLYN, NY 11215	ОН	INDUSTRIAL LAUNDERER
2773	CONSOLIDATED EDISON CO. OF NY,INC. 3RD A VENUE YARD FLUSH TRUCK FACILITY 222 1ST ST	ОН	CENTRALIZED WASTE TREATMENT
2863	BROOKLYN, NY 11215 BRET JEWELRY MFG. CORP. D/B/A PERFECT JEWELRY COMPANY 170 53RD ST, FL 3	ОН	NEW SOURCE METAL FINISHING
3009	BROOKLYN, NY 11232 GLISSEN CHEMICAL CO., INC. 1321 58TH ST BROOKLYN, NY 11219	ОН	SOAP & OTHER DETERGENTS
2305	TECH PRODUCTS, INC. 105 WILLOW AV STATEN ISLAND, NY 10305	PR	NEW SOURCE METAL FINISHING
2828	VISY PAPER (NY), INC. 4435 VICTORY BLVD STATEN ISLAND, NY 10314	PR	PULP & PAPER PRODUCTS
1146	ULANO CORPORATION 280 BERGEN ST BROOKLYN, NY 11217	RH	MISCELLANEOUS

D 110		-	G
P-NO	NAME AND ADDRESS	<u>DA</u>	<u>CATEGORY</u>
2796	BNY POWER OPERATIONS, LLC	RH	STEAM ELECTRIC POWER
	BROOKLYN NAVY YARD		GENERATION (ZERO
	63 FLUSHING AV,BLDG#41,UNIT 234		CATEGORICAL DISCHARGE)
6	BROOKLYN, NY 11205 KENT ELECTRO PLATING CORP.	TI	NEW SOURCE METAL
U	36-34 PRINCE ST	11	FINISHING
	FLUSHING, NY 11354		11.1101111.10
	,		
1363	S & L AEROSPACE METALS, LLC.	TI	NEW SOURCE METAL
	120-12 28TH AV		FINISHING
	COLLEGE POINT, NY 11354		
2486	COR-RBD LLC	TI	METAL FINISHING
	42-08 COLLEGE PT BL		
	FLUSHING, NY 11355		
2599	PEPSI-COLA BOTTLING COMPANY OF NY, INC	TI	MISCELLANEOUS
	112-02 15TH AV		
	COLLEGE POINT, NY 11356		
2776	CONSOLIDATED EDISON CO. OF NY(QUEENS)	TI	CENTRALIZED WASTE
2770	FARRINGTON FLUSH TRUCK FACILITY		TREATMENT
	31-06 FARRINGTON ST		
	FLUSHING, NY 11354		
163	D. W. HABER & SON, INC.	WI	NEW SOURCE METAL
	825 E 140TH ST		FINISHING
	BRONX, NY 10454		
540X	PERRIGO NEW YORK, INC.	WI	PHARMACEUTICAL
	1625 BATHGATE AV		MANUFACTURING
	BRONX, NY 10457		
540Y	PERRIGO NEW YORK, INC.	WI	PHARMACEUTICAL
	1700 BATHGATE AV		MANUFACTURING
	BRONX, NY 10457		
3197	CON EDISON-74 ST DEMINERALIZATION PLANT	WI	MISCELLANEOUS
J.,	506 E 75 TH ST		
	NEW YORK, NY 10021		

Table 2. SIU Summary as of December 31, 2010

CODE	CATEGORY	Number of P-cases	BMR to be Submitted	Compliance to be Verified	In Compliance	Inactive	Not in Compliance
	CATEGORICALS						
437	CENTRALIZED WASTE TREATMENT	5	0	0	4	0	1
413	ELECTROPLATING-O	2	0	1	0	1	0
413	ELECTROPLATING-U	4	0	2	1	0	1
433	METAL FINISHING	2	0	0	2	0	0
464	METALS MOLDING & CASTING	1	0	0	0	0	1
433	NEW SOURCE METAL FINISHING	155	0	14	118	4	19
421	NONFERROUS METALS MANUFACTURING	0	0	0	0	0	0
414	ORGANIC CHEMICALS/CATEGORICAL	1	0	1	0	0	0
455	PESTICIDE CHEMICALS	1	0	1	0	0	0
439	PHARMACEUTICAL MANUFACTURING	4	0	0	3	1	0
430	PULP & PAPER PRODUCTS	1	0	1	0	0	0
417	SOAP & OTHER DETERGENTS	6	0	5	1	0	0
423	STEAM ELECTRIC POWER GENERATION	2	0	0	2	0	0
	Categorical Totals	184	0	25	131	6	22
	NON CATEGORICALS						
	INDUSTRIAL LAUNDERER	7	0	0	6	1	0
	MISCELLANEOUS	9	0	4	3	1	1
	MISCELLANEOUS/LANDFILL	3	0	1	2	0	0
	PHOTOFINISHER	2	0	0	1	1	0
	TEXTILE DYER	0	0	0	0	0	0
	Non Categorical Totals	21	0	5	12	3	1
	SIU Totals	205	0	30	143	9	23

P-NO	NAME AND ADDRESS	<u>DA</u>	CATEGORY
11	WATERMARK DESIGNS, LTD. 350 DEWITT AV BROOKLYN, NY 11207	26	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
588	INDUSTRIAL FINISHING PRODUCTS, INC. 465 LOGAN ST BROOKLYN, NY 11208	26	PAINT FORMULATOR (ZERO DISCHARGE)
664	BELMONT METALS, INC. 330 BELMONT AV BROOKLYN, NY 11207	26	METALS MOLDING & CASTING/NON-CAT
1335	Z AND L TRADING CORP. 539 WORTMAN AVE BROOKLYN, NY 11208	26	FUR DRESSER & DYER
2704	WILFREDO POMA 1745 EASTERN PY BROOKLYN, NY 11233	26	RADIATOR SHOP
2794	JET HARDWARE MFG. CORP. 800 HINSDALE ST BROOKLYN, NY 11207	26	METAL FINISHING/NON-CAT
2837	EASTERN PLATING INC. 1943 PITKIN AV BROOKLYN, NY 11207	26	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
3218	MAC ARTSPRAY FINISHING CORP. 799 SHEFFIELD AV BROOKLYN, NY 11207	26	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
985	ALBATROSS USA, INC. 36-59 36TH ST LIC, NY 11106	ВВ	ORGANIC CHEMICALS/NON-CAT
1508	HANNA ALTINIS CO., INC. 36-01 48TH AV LIC, NY 11101	ВВ	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2309	THOMAS C. WILSON, INC. 21-11 44TH AV LIC, NY 11101	ВВ	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2342C	CONTINENTAL-ANCHOR LTD.DBA CONTINENTAL CORPORATE ENGRAVERS 31-00 47TH AV FL 2 LIC, NY 11101	ВВ	PHOTOENGRAVER
2381	JACMEL JEWELRY, INC. 30-30 47TH AV, FL 8 LIC, NY 11101	ВВ	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2496	GALMER, LTD. 43-01 21ST ST LIC, NY 11101	ВВ	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)

P-NO	NAME AND ADDRESS	<u>DA</u>	<u>CATEGORY</u>
2591	SO ACCURATE GROUP INC. 31-00 47TH AV, RM 503 LIC, NY 11101	BB	NONFERROUS METALS MANUFACTURING (ZERO CATEGORICAL DISCHARGE)
2661	SAMUEL AARON, INC. 31-00 47TH AV, FL 4 LIC, NY 11101	ВВ	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2692	CRAFTSMAN AUTO TECH INC. 97-20 NORTHERN BLVD CORONA, NY 11368	ВВ	RADIATOR SHOP
2694	WOODSIDE RADIATORS AUTO SERVICE INC. 69-40 51ST AV WOODSIDE, NY 11377	ВВ	RADIATOR SHOP
2729	INDEPENDENT CHEMICAL CORP. 70-30 79TH PL GLENDALE, NY 11385	ВВ	ORGANIC CHEMICALS/NON-CAT
2738	JEWELS FOR ME, INC. 43-01 22ND ST, FL 5 LIC, NY 11101	ВВ	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2762	ARC REMANUFACTURING INC. 19-40 42ND ST ASTORIA, NY 11105	ВВ	MISCELLANEOUS
2781	EDISON PRICE LIGHTING, INC. 41-10 22ND ST LIC, NY 11101	ВВ	METAL FINISHING/NON-CAT
2805	RAYCO MANUFACTURING CO., INC. 30-55 VERNON BLVD, FL 1 LIC, NY 11102	ВВ	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2816	GOTHAM REFINING CHEMICAL CORP. 23-74 48TH ST ASTORIA, NY 11103	ВВ	ORGANIC CHEMICALS/NON-CAT
2871	RIVA JEWELRY MANUFACTURING, INC. 41-31 39TH ST, FL 1 LIC, NY 11104	ВВ	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2982	BULOVA CORPORATION 1 BULOVA AV WOODSIDE, NY 11377	ВВ	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2983	POSTERLOID CORPORATION 48-62 36TH ST LIC, NY 11101	ВВ	MISCELLANEOUS
2992	POWER AUTHORITY OF THE STATE OF NEW YORK 42-30 VERNON BLVD LIC, NY 11101	ВВ	STEAM ELECTRIC POWER GENERATION (ZERO CATEGORICAL DISCHARGE)

<u>P-NO</u> 3010	NAME AND ADDRESS ASTORIA GENERATING COMPANY, L.P. 18-01 20TH AV ASTORIA, NY 11105	DA BB	CATEGORY STEAM ELECTRIC POWER GENERATION (ZERO CATEGORICAL DISCHARGE)
3040	QLS LINEN SERVICE, INC. 131-07 14TH AV COLLEGE POINT, NY 11356	ВВ	INDUSTRIAL LAUNDERER
3077	BEYOND SIGNS, INC. 45-14 51ST ST WOODSIDE, NY 11377	ВВ	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
3090	K.F.REFINERY INC. 21-21 41ST AV, FL 5 LIC, NY 11101	ВВ	NON FERROUS METAL MANUFACTURING (ZERO CATEGORICAL DISCHARGE)
3189	N. S. FRIEDMAN DESIGNS, INC. 37-02 48TH AV LIC, NY 11101	ВВ	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
585	MERCURY PAINT CORP. 4808 FARRAGUT RD BROOKLYN, NY 11203	CI	PAINT FORMULATOR (ZERO DISCHARGE)
2708	LARRY'S AUTO RADIATOR, INC. 1419 NEPTUNE AV BROOKLYN, NY 11224	CI	RADIATOR SHOP
2758	JERRY'S AUTO RADIATOR, INC. 1139 UTICA AV BROOKLYN, NY 11203	CI	RADIATOR SHOP
2923	BROOKLYN RESOURCE RECOVERY, INC. 5811 PRESTON CT BROOKLYN, NY 11234	CI	MISCELLANEOUS
3210	BROOKLYN JEWELRY CENTER, INC. 257 BRIGHTON BEACH AV BROOKLYN, NY 11235	CI	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
3211	ALMAZ JEWELRY CORP 256 BRIGHTON BEACH AV BROOKLYN, NY 11235	CI	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
568	TWI-LAQ INDUSTRIES, INC. 1345 SENECA AV BRONX, NY 10474	HP	SOAP & OTHER DETERGENTS (ZERO CATEGORICAL DISCHARGE)
734	CONFIDENCE MANAGEMENT SYSTEM, INC. 1010 UNDERHILL AV BRONX, NY 10472	НР	INDUSTRIAL LAUNDERER
737	A-1 INTERNATIONAL HEAT TREATING, INC. 907 BRUSH AV BRONX, NY 10465	НР	HEAT TREATER

P-NO	NAME AND ADDRESS	<u>DA</u>	<u>CATEGORY</u>
742	INDUSTRIAL DIAMOND LABS, INC. 528 TIFFANY ST BRONX, NY 10474	HP	MISCELLANEOUS
842	CHAMPION PAINT MFG. CO., INC. 1743 W FARMS RD BRONX, NY 10460	HP	PAINT FORMULATOR (ZERO DISCHARGE)
2715	PETER DEHNERT DBA WOODLAWN AUTO RADIATO 4400 BRONX BL BRONX, NY 10470	HP	RADIATOR SHOP
2716	BRONX WHOLESALE RADIATOR, INC. 1630 E 233RD ST BRONX, NY 10466	HP	RADIATOR SHOP
2909	WORLDWIDE WINDOW TREATMENT, L.L.C. 840 BARRY ST BRONX, NY 10474	НР	MISCELLANEOUS
3059	B & M LINEN CORP.DBA MIRON & SONS LAUNDR Y AND DRY CLEANING SERVICE 220 COSTER STREET BRONX, NY 10474	HP	INDUSTRIAL LAUNDERER
3191	NYESC ACQUISITION CORP. 1281 VIELE AV BRONX, NY 10474	HP	MISCELLANEOUS
1036	LIRR-RICHMOND HILL CAR WASH 124TH ST && ATLANTIC AV RICHMOND HILL, NY 11419	JA	MISCELLANEOUS
1152	LIRR-HILLSIDE MAINTANCE COMPLEX 93-59 183RD ST HOLLIS, NY 11423	JA	MISCELLANEOUS
1162	MTA LIRR-MORRIS PARK YARD 91-53 121ST ST RICHMOND HILL, NY 11418	JA	MISCELLANEOUS
1289	VOLKERT PRECISION TECHNOLOGIES, INC. 222-40 96TH AV QUEENS VILLAGE, NY 11429	JA	METAL FINISHING/NON-CAT
2699	CROSSTOWN RADIATOR INC. 97-20 SUTPHIN BL JAMAICA, NY 11435	JA	RADIATOR SHOP
2706	K&W AUTO RADIATOR & AIR CONDITIONING INC 148-06 LIBERTY AV JAMAICA, NY 11435	JA	RADIATOR SHOP
3038	NKR LAUNDRY, INC. 155-45 LINDEN BLVD JAMAICA, NY 11434	JA	INDUSTRIAL LAUNDERER

<u>P-NO</u> 87	NAME AND ADDRESS EPNER TECHNOLOGY INCORPORATION 25 DIVISON PL BROOKLYN, NY 11222	<u>DA</u> NC	CATEGORY NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
534	W. H. CHRISTIAN & SONS, INC. 22-28 FRANKLIN ST BROOKLYN, NY 11222	NC	INDUSTRIAL LAUNDERER
534Y	W. H. CHRISTIAN & SONS, INC. 211 BANKER ST BROOKLYN, NY 11222	NC	INDUSTRIAL LAUNDERER
594	HARCO CHEMICAL COATINGS, INC. 208 DUPONT ST BROOKLYN, NY 11222	NC	PAINT FORMULATOR (ZERO DISCHARGE)
611	HERCULES HEAT TREATING CORP. 101 TO 113 CLASSON AV BROOKLYN, NY 11205	NC	HEAT TREATER
650	EXCALIBUR BRONZE SCULPTURE FOUNDRY, INC 309 STARR ST BROOKLYN, NY 11237	NC	METALS MOLDING & CASTING (ZERO CATEGORICAL DISCHARGE)
653	BARKER BROS., INC. 1666 SUMMERFIELD ST RIDGEWOOD, NY 11385	NC	METAL FINISHING/NON-CAT
720	MILLER & WEBER, INC. 1637 GEORGE ST RIDGEWOOD, NY 11385	NC	INSTRUMENTS & RELATED PRODUCTS
746	MILLENNIUM PROCESSORS LLC. 349 SCHOLES ST BROOKLYN, NY 11206	NC	FUR DRESSER & DYER
753	J. R. COOPERAGE CO., INC. 100 DIVISION PL BROOKLYN, NY 11222	NC	STEEL DRUM RECONDITIONER
1346	FLUSH METAL PARTITIONS, LLC 54-35 46TH ST MASPETH, NY 11378	NC	METAL FINISHING/NON-CAT
1365	ADELPHIA CONTAINER CORP. 125 DIVISION PL BROOKLYN, NY 11222	NC	STEEL DRUM RECONDITIONER
2027	JOHN PIAZZA 72 BOWERY NEW YORK, NY 10013	NC	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2041	BIELKA, INC. 136 E 57TH ST, RM 907 NEW YORK, NY 10022	NC	METAL FINISHING/NON-CAT

P-NO	NAME AND ADDRESS	<u>DA</u>	<u>CATEGORY</u>
2063A	SUBERI BROTHERS, INC. 902 BROADWAY, FL 14 NEW YORK, NY 10010	NC	METAL FINISHING/NON-CAT
2063B	PETER ATMAN INC. 18 E 48TH ST, FL 5 NEW YORK, NY 10017	NC	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2106	ANDIN INTERNATIONAL INC. 609 GREENWICH ST NEW YORK, NY 10014	NC	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2720	LUIS MERCADO DBA BIG MAN AUTO RADIATOR 3 KNICKERBOCKER AV BROOKLYN, NY 11237	NC	RADIATOR SHOP
2827	AAM CONTAINER, INC. 306 MAUJER ST, BROOKLYN, NY 11206	NC	STEEL DRUM RECONDITIONER
2874	THE DIVERSIFIED HEAT TRANSFER, INC. 1710 FLUSHING AV RIDGEWOOD, NY 11385	NC	MISCELLANEOUS
2893	T. S. MANUFACTURING, INC. 17 E 48TH ST, FL 6 NEW YORK, NY 10017	NC	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2921	ANATOLI'S MANUFACTURING CORP. 91 CANAL ST, FL 2 NEW YORK, NY 10002	NC	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2922	AMSCOR, INC. 188 DUPONT ST BROOKLYN, NY 11222	NC	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2948	FINE JEWELRY ASSOCIATES CORP. 17-19 W 45TH ST, RM 305 NEW YORK, NY 10036	NC	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2997	POWER AUTHORITY OF THE STATE OF NEW YORK 47-79 RIVER ST BROOKLYN, NY 11211	NC	STEAM ELECTRIC POWER GENERATION (ZERO CATEGORICAL DISCHARGE)
3001	NEW YORK OIL RECOVERY INC. 94 HAUSMAN ST BROOKLYN, NY 11222	NC	CENTRALIZED WASTE TREATMENT (ZERO DISCHARGE)
3037	KARP ASSOCIATES, INC. 54-54 43RD ST MASPETH, NY 11378	NC	METAL FINISHING/NON-CAT
3099	STU-ART JEWELRY DESIGNS, LTD. 103 SULLIVAN ST NEW YORK, NY 10012	NC	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)

<u>P-NO</u> 3152	NAME AND ADDRESS CON EDISON-EAST RIVER STATION APF 14 ST & EAST RIVER NEW YORK, NY 10003	<u>DA</u> NC	CATEGORY MISCELLANEOUS
3176	CON ED-EAST RIVER GENERATING STATION RO 801 E 14TH ST NEW YORK, NY 10009	NC	MISCELLANEOUS
3186	IMPERIAL FULL SERVICE LLC 236 STAGG ST, BROOKLYN, NY 11206	NC	INDUSTRIAL LAUNDERER
3190	60TH STREET STEAM PLANT 514 E 60TH ST NEW YORK, NY 10022	NC	STEAM ELECTRIC POWER GENERATION (ZERO CATEGORICAL DISCHARGE)
3199	WASTE MANAGEMENT OF NY, LLC. 123 VARICK AV BROOKLYN, NY 11237	NC	MISCELLANEOUS
3207	COOPER TANK & WELDING CORP. 222 MASPETH AV BROOKLYN, NY 11211	NC	MISCELLANEOUS
504	MAJESTIC RAYON CORP. 116 W 23RD ST, FL 4 NEW YORK, NY 10011	NR	TEXTILE DYER
1147B	ELITE ENGRAVING LTD. 247 W 35TH ST, STE 1002 NEW YORK, NY 10001	NR	PHOTOENGRAVER
1267	INTERNATIONAL FLAVORS & FRAGRANCES 521 W 57TH ST NEW YORK, NY 10019	NR	MISCELLANEOUS
1275	ASHLAND INC. 608 W 132ND ST NEW YORK, NY 10027	NR	MISCELLANEOUS
2034R	EUGENE UNGER & CO., INC. 31 W 47TH ST NEW YORK, NY 10036	NR	METAL FINISHING/NON-CAT
2034 U	ARDEN INC. 31 W 47TH ST, RM 1602 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2090	MR. SUPHI COBAN D/B/A COBAN 62 W 47TH ST, RM 811 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2119	UNOK KANG DBA DANIEL SIMON PLATING CO 64 W 48TH ST, RM 1307 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING (ZERO DISCHARGE)

P-NO	NAME AND ADDRESS	DA	CATEGORY
2435A	BRANDT & OPIS, INC. 46 W 46TH ST, FL 5 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2528	J & M MOLD MAKER, INC. 2 W 47TH ST, RM 705 NEW YORK, NY 10036	NR	METALS MOLDING & CASTING/NON-CAT
2722	BARRY KIESELSTEIN ENTERPRISES,INC. D/B/A KIESELSTEIN-CORD INTERNATIONAL 119 W 40TH ST, FL 18 NEW YORK, NY 10018	NR	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2768	JACOBS & COHEN, INC. 255 W 36TH ST, FL 7 NEW YORK, NY 10018	NR	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2790	SATURNINO BELTRAN D/B/A SILO REFINING 48 W 46TH ST, FL 4 NEW YORK, NY 10036	NR	NONFERROUS METALS MANUFACTURING (ZERO CATEGORICAL DISCHARGE)
2810	JNA ENTERPRISES LLC DBA DVIR & STOLER REFINING 31 W 47TH ST, RM 608	NR	METAL FINISHING/NON-CAT
2822	NEW YORK, NY 10036 COBRA JEWELRY DESIGNS, INC. 2 W 47TH ST, STE 902 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING (ZERO DISCHARGE)
2829	AMPEX CASTING CORPORATION 23 W 47TH ST, FL 4 NEW YORK, NY 10036	NR	METAL FINISHING/NON-CAT
2953	NOLHAK INC. 36 W 47TH ST, RM # 408 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2974	MILLER FUR BLEACHING & BLENDING, INC. 150 W 28TH ST, RM 903 NEW YORK, NY 10001	NR	FUR DRESSER & DYER
3015	ROMAN KHAIMOV DBA ROMA POLISHING 66 W 47TH ST BASEMENT NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING (ZERO DISCHARGE)
3047	207 FINE JEWELRY,INC. DBA B&D WEDDDING RINGS CO. 31 W 47TH ST, STE 302	NR	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
3056	NEW YORK, NY 10036 KAHAN JEWELRY CORP. 1156 6TH AV, FL 8 NEW YORK, NY 10036	NR	MISCELLANEOUS
3089	LAURA ULLAO DBA LAURA JEWELRY DESIGN 66 W 47TH ST, BOOTH 13M NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)

P-NO	NAME AND ADDRESS	<u>DA</u>	<u>CATEGORY</u>
3094	DIAMOND DIRECT, L.L.C. 145 W 45TH ST, FL 5 NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
3148	CITY CASTING CORP. 151 W 46TH ST, FL 5 NEW YORK, NY 10036	NR	NON-CAT METAL FINISHING
3205	Y. SCHMIDT ASSAYERS INC. 36 W 47TH ST, RM 1202 NEW YORK, NY 10036	NR	NSMF/NONFERROUS METAL MANUFACTUR (ZERO CATEGORICAL DISCHARGE)
3208	EXPRESS METAL REFINING, INC. 2 W 47TH ST , STE # 804 NEW YORK, NY 10036	NR	NONFERROUS METAL MANUFACTURING (ZERO CATEGORICAL DISCHARGE)
3214	CORE JEWELRY INC 62 W 47TH ST STE # 406E NEW YORK, NY 10036	NR	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
3216	ARMENA REFINERY USA INC. 5 W 46TH ST, FL 4 NEW YORK, NY 10036	NR	NONFERROUS METAL MANUFACTURING (ZERO CATEGORICAL DISCHARGE)
168	LEE SPRING COMPANY LLC. 140 58TH ST, UNIT B, # 3C BROOKLYN, NY 11220	ОН	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
692	AIM DENTAL LABORATORY, INC. 1010 MCDONALD AV BROOKLYN, NY 11230	ОН	METAL FINISHING/NON-CAT
761	GENERAL COATING TECHNOLOGIES, INC. 421 20TH ST BROOKLYN, NY 11215	ОН	PAINT FORMULATOR (ZERO DISCHARGE)
836	MAGNET PAINT & SHELLAC CO., INC. 184 LAWRENCE AV BROOKLYN, NY 11234	ОН	PAINT FORMULATOR (ZERO DISCHARGE)
1253	IEH CORP. 140 58TH ST, 8E BROOKLYN, NY 11220	ОН	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
1419	BATTERY PARK INDUSTRIES CORP. 334 DOUGLASS ST BROOKLYN, NY 11217	ОН	SOAP & OTHER DETERGENTS (ZERO CATEGORICAL DISCHARGE)
2681	VIRGINIA DARE EXTRACT CO., INC. 882 3RD AV, FL 1,5,6,7 BROOKLYN, NY 11232	ОН	ORGANIC CHEMICALS/NON-CAT
2759	A.S.A. MANUFACTURING INC. 1350 39TH ST BROOKLYN, NY 11218	ОН	METAL FINISHING/NON-CAT

P-NO	NAME AND ADDRESS	<u>DA</u>	<u>CATEGORY</u>
2769	1ST EMPIRE AUTO RADIATOR, INC. 725 3RD AV BROOKLYN, NY 11232	ОН	RADIATOR SHOP
2772	A1 RADIATOR EXPRESS & AUTO REPAIRS,INC. 4218 3RD AV BROOKLYN, NY 11232	ОН	RADIATOR SHOP
2823	UTRECHT MANUFACTURING CORPORATION 33 35TH ST BROOKLYN, NY 11232	ОН	PAINT FORMULATOR (ZERO DISCHARGE)
2993	POWER AUTHORITY OF THE STATE OF NEW YORK 730 23RD ST BROOKLYN, NY 11232	ОН	STEAM ELECTRIC POWER GENERATION (ZERO CATEGORICAL DISCHARGE)
3178	CANAL JEWELRY OF BROOKLYN, INC. 55-06 5TH AV, FL 1 BROOKLYN, NY 11220	ОН	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2994	POWER AUTHORITY OF THE STATE OF NEW YORK 1013 BAY ST STATEN ISLAND, NY 10305	PR	STEAM ELECTRIC POWER GENERATION (ZERO CATEGORICAL DISCHARGE)
121	REGENCY SERVICE CARTS, INC. 337-361 CARROLL ST BROOKLYN, NY 11231	RH	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
1146X	ULANO CORPORATION 601 BERGEN ST BROOKLYN, NY 11238	RH	MISCELLANEOUS
2113	UNITED INSIGNIA CO., INC. 397 BRIDGE ST, FL 4 BROOKLYN, NY 11201	RH	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
3000	PETROLEUM TANK CLEANERS, INC. 236 BUTLER ST BROOKLYN, NY 11217	RH	CENTRALIZED WASTE TREATMENT-OIL (ZERO DISCHARGE)
3048	PRIMO UNIFORM SERVICE, INC. 606 DEAN ST BROOKLYN, NY 11238	RH	INDUSTRIAL LAUNDERER
2755	NATIONAL GRID GENERATION LLC.(FRPS) 1425 BAY 24TH ST FAR ROCKAWAY, NY 11691	RK	STEAM ELECTRIC POWER GENERATION (ZERO CATEGORICAL DISCHARGE)
32	PRECISION GEAR, INC. 112-07 14TH AV COLLEGE POINT, NY 11356	TI	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
766	IPC DIV. OF COMSTAR INTERNATIONAL INC. 20-45 128TH ST COLLEGE POINT, NY 11356	TI	ORGANIC CHEMICALS/NON-CAT

P-NO	NAME AND ADDRESS	<u>DA</u>	CATEGORY
2598	LOVE UNLIMITED NY INC. 114-15 15TH AV COLLEGE POINT, NY 11356	TI	MISCELLANEOUS-SILK SCREENING
540	PERRIGO NEW YORK, INC. 1701 BATHGATE AV BRONX, NY 10457	WI	PHARMACEUTICAL MANUFACTURING (ZERO CATEGORICAL DISCHARGE)
605	STARLITE PAINT & VARNISH CO. 724 E 140TH ST BRONX, NY 10454	WI	PAINT FORMULATOR (ZERO DISCHARGE)
610	S & S SOAP COMPANY, INC. 815 E 135TH ST BRONX, NY 10454	WI	SOAP & OTHER DETERGENTS (ZERO CATEGORICAL DISCHARGE)
726Y	POLYTEX ENVIRONMENTAL INK LTD. 820 E 140TH ST BRONX, NY 10454	WI	INK FORMULATOR (ZERO CATEGORICAL DISCHARGE)
850	T J RONAN PAINT CORP. 749 E 135TH ST BRONX, NY 10454	WI	PAINT FORMULATOR (ZERO DISCHARGE)
2376	COOL MANUFACTURING INC. 4231 PARK AV BRONX, NY 10457	WI	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
2709	NEW RADIATOR, INC. 2801 WEBSTER AV BRONX, NY 10458	WI	RADIATOR SHOP
2775	CONSOLIDATED EDISON CO. OF NY, INC. HELL GATE FLUSH TRUCK FACILITY EAST 132 STREET & EAST RIVER BRONX, NY 10454	WI	CENTRALIZED WASTE TREATMENT (ZERO DISCHARGE)
2995	POWER AUTHORITY OF THE STATE OF NEW YORK 98 LINCOLN AV BRONX, NY 10454	WI	STEAM ELECTRIC POWER GENERATION (ZERO CATEGORICAL DISCHARGE)
2996	POWER AUTHORITY OF THE STATE OF NEW YORK 910 E 134TH ST BRONX, NY 10454	WI	STEAM ELECTRIC POWER GENERATION (ZERO CATEGORICAL DISCHARGE)
3025	MANUEL J PERDOMO D/B/A M P RADIATOR REPA IR SHOP 500 W 168TH ST NEW YORK, NY 10032	WI	RADIATOR SHOP
3134	SUNDIAL FABRICATORS, INC. 159 E 118 ST NEW YORK, NY 10035	WI	NEW SOURCE METAL FINISHING (ZERO CATEGORICAL DISCHARGE)
3198	PARALLEL PRODUCTS OF NEW ENGLAND, INC. 900 E 137TH ST BRONX, NY 10454	WI	MISCELLANEOUS

	Table 4	I. Minor Incidents at NYC Wastewater T	reatment Plants During 2010
WWTP	Date	Description	Actions Taken & Status
WI	10/5/2010	Chemical entering the plant	High pH and high VOCs were detected. Upon follow up, levels were normal. No source was found; no impact on treatment.
WI	12/20/2010	Chemical entering the plant	High pH was detected upon grab sample. Follow up grab sample showed normal pH levels. No source was found; no impact on treatment.
NC	12/22/2010	Odor reported	Odor detected. 0% LEL levels were detected at plant and in manhole on street. This appeared to be an isolated dumping. No source was found; no impact on treatment.
WI	12/23/2010	Chemical entering the plant	High VOC was detected in influent stream. Follow up sampling showed the levels have dissipated. No source was found; no impact on treatment.

Table 5a

METALS REPORT ACTION LEVELS/PERMIT LEVELS (lbs/day)

January-2010 Type II Action Levels

, , , , , , , , , , , , , , , , , , ,				
	TO	DLUENE	1,4-DICHLO	DROBENZENE
PLANT	A/L	Effluent	A/L	Effluent
Wards Island			4.6	0.48
North River			2.8	0.21
Hunts Point			6.0	0.37
26th Ward			1.4	0.13
Coney Island			2.1	0.18
Owls Head			2.0	0.18
Newtown Creek			9.4	< 0.41
Red Hook			Monitor	< 0.046
Jamaica			4.0	0.19
Tallman Island			2.3	< 0.084
Bowery Bay			2.5	0.26
Rockaway			Monitor	0.033
Oakwood Beach	2.6	0.13	1.9	< 0.043
Port Richmond			1.3	< 0.044

Type II Action Levels

Type II Action Levels														
	CADI	MIUM (Cd)	CHR	OMIUM (Cr)	LEAD (Pb)		NI	CKEL (Ni)	SILV	ER (Ag)	ZIN	IC (Zn)	COPF	PER (Cu)
PLANT	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	0.90	< 0.099	10.0	1.06	27	1.4	22	2.8	4.3	0.21	155	44.7	75	18
North River	1.3	0.086	12	0.76	11	0.81	14	1.9	14	1.3	115	27.0	60	17
Hunts Point	0.90	0.076	7.0	0.57	29	0.76	11	2.6	1.8	0.098	78	33	30	8.3
26th Ward	0.49	< 0.025	5.1	0.19	4.0	0.27	5.5	0.81	0.60	0.0081	41	7.1		
Coney Island	2.0	0.051	3.8	0.34	8.0	0.25	10.0	1.56	1.2	0.067	40.0	26.1		
Owls Head	0.70	< 0.044	22	0.41	9.0	0.58	19	0.92	4.3	0.19	78	162	38	13
Newtown Creek	3.5	0.41	33	2.4	41	2.7	50	6.5	35	1.3	225	63.1	160	36.7
Red Hook	0.40	0.027	2.0	0.13	3.6	0.11	2.6	0.37	0.81	0.010	30.0	8.36	6.0	1.7
Jamaica	0.60	< 0.039	5.8	0.40	10.2	0.490	4.1	1.2	2.4	0.077	75	24		
Tallman Island	0.45	< 0.026	2.7	0.32	3.4	0.43	5.6	0.80	2.7	0.089	56	17	17	5.5
Bowery Bay	1.3	< 0.052	8.0	0.82	11	0.86	39	1.9	6.5	0.22	111	30.5	32	12
Rockaway	0.15	0.012	1.5	0.096	1.5	0.049	1.5	0.38	0.30	0.010	15	3.5		
Oakwood Beach	0.13	0.013	1.3	0.15	1.3	0.13	5.3	2.0	0.50	0.023	15	6.6	7.0	2.7
Port Richmond	0.21	< 0.013	2.0	0.17	4.3	0.077	4.4	0.98	1.3	0.038	33	5.6	15	1.6

COPI	PER (Cu)	MEF	RCURY (Hg)	CYA	NIE	DE (CN)	TETRAC	HLOROETHYLENE
P/L	Effluent	P/L	Effluent	P/L		Effluent	P/L	Effluent
		1.8	0.053	Monitor	<	12.3	37	0.57
		1.1	0.031	85	٧	7.7		
		1.3	0.023	100	٧	8.07		
11	2.5	0.57	0.0060	42.5	٧	3.07	0.71	0.11
14.1	9.43	0.73	0.018	55	٧	5.1		
		0.80	0.061	60	٧	5.5		
		2.07	0.0310	155	٧	16.5		
		0.40	0.0035	30	٧	1.7		
21.5	15.9	0.67	0.020	50	٧	4.9	5.8	
		0.53	0.040	40	٧	3.2	2.7	0.34
		1.0	0.023	75	<	6.5	12.5	0.481
2.5	1.4	0.30	0.0048	22.5	٧	1.07		
	_	0.27	0.0046	20.0	<	1.66		
		0.40	0.0095	30	<	1.7		
	11 14.1 21.5	11 2.5 14.1 9.43 21.5 15.9	P/L Effluent P/L 1.8 1.1 1.3 1.3 1.1 2.5 0.57 14.1 9.43 0.73 0.80 2.07 0.40 2.15 15.9 0.67 0.53 1.0 0.53 2.5 1.4 0.30 0.27 0.27 0.27	P/L Effluent P/L Effluent 1.8 0.053 1.1 0.031 1.3 0.023 11 2.5 0.57 0.0060 14.1 9.43 0.73 0.018 2.07 0.0310 0.06 0.061 2.07 0.0310 0.003 21.5 15.9 0.67 0.020 0.53 0.040 1.0 0.023 2.5 1.4 0.30 0.0048 0.27 0.0046	P/L Effluent P/L Effluent P/L 1.8 0.053 Monitor 1.1 0.031 85 1.3 0.023 100 10 11 2.5 0.57 0.0060 42.5 14.1 9.43 0.73 0.018 55 55 2.07 0.0310 155 155 0.40 0.0035 30 30 21.5 15.9 0.67 0.020 50 50 0.53 0.040 40 40 2.5 1.4 0.30 0.0048 22.5 0.27 0.0046 22.0	P/L Effluent P/L Effluent P/L P/L 1.8 0.053 Monitor 4 1.1 0.031 85 5 1.3 0.023 100 2 100 42.5 5 14.1 9.43 0.73 0.018 55 6 60 42.5 6 2.07 0.0310 155 5 6 2.07 0.0310 155 5 2.1.5 15.9 0.67 0.003 30 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 0.020 50 6 6 6 7 0.020 50 6 7 0.020 75 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7 6 7 7 7 6 7	P/L Effluent P/L Effluent P/L Effluent 1.8 0.053 Monitor < 12.3 1.1 0.031 85 < 7.7 1.3 0.023 100 < 8.07 11 2.5 0.57 0.0060 42.5 < 3.07 14.1 9.43 0.73 0.018 55 < 5.1 0.80 0.061 60 < 5.5 2.07 0.0310 155 < 16.5 0.40 0.0035 30 < 1.7 21.5 15.9 0.67 0.020 50 < 4.9 0.53 0.040 40 < 3.2 1.0 0.023 75 < 6.5 2.5 1.4 0.30 0.048 22.5 < 1.07 0.27 0.0046 2.0 < 1.65	P/L Effluent P/L Effluent P/L Effluent P/L 37 37 37 1.1 0.031 85 < 7.7

Table 5b

ORGANICS/VOLATILES ACTION LEVELS (lbs/day)

January-10

Type II Action Levels

	Chloro	form	Tetrachlo	roethylene	1,4-Dichlo	robenzene	Tol	uene	1,1,1-Tr	ichloroethane	Carbon 1	Tetrachloride	Ph	ienol	1,2,4-Trich	lorobenzene
PLANT	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	11				4.6	0.48										
North River	12		10		2.8	0.21	2.8		5.0							
Hunts Point	5.0		4.0		6.0	0.37										
26th Ward	2.7				1.4	0.13	2.6									
Coney Island	5.6		4.0		2.1	0.18										
Owls Head	11		14		2.0	0.18							2.5		5.0	
Newtown Creek	18		21		9.4	< 0.41	18		7.1							
Red Hook*	1.7		3.2		Monitor	< 0.046			Monitor							
Jamaica	3.4				4.0	0.19										
Tallman Island	2.7				2.3	< 0.08										
Bowery Bay	3.8				2.5	0.26										
Rockaway	1.0		1.2		Monitor	0.033					0.75]				
Oakwood Beach	2.0		0.67		1.9	< 0.043	2.6									
Port Richmond	3.7		1.0		1.3	< 0.044										

Note: New limts as per DEP/DEC correspence for VOC limits for WI, NR, OH, RK, OB modified $^{+}1,1,1$ -Trichloroethane for RH is reported as mg/L

Table 5c

METALS REPORT ACTION LEVELS/PERMIT LEVELS (Ibs/day)

February-2010 Type II Action Levels

	T	OLUENE	1,4-DICHLO	DROBENZENE			
PLANT	A/L	Effluent	A/L	Effluent			
Wards Island			4.6	0.45			
North River			2.8	0.25			
Hunts Point			6.0	0.44			
26th Ward			1.4	0.10			
Coney Island			2.1	0.28			
Owls Head			2.0	0.24			
Newtown Creek			9.4	0.53			
Red Hook			Monitor	< 0.042			
Jamaica			4.0	0.18			
Tallman Island			2.3	< 0.088			
Bowery Bay			2.5	0.28			
Rockaway			Monitor	0.062			
Oakwood Beach	2.6	0.45	1.9	< 0.041			
Port Richmond			1.3	0.044			

Type II Action Levels

Type II Action Levels														
	CADI	MIUM (Cd)	CHR	OMIUM (Cr)	LE	AD (Pb)	NI	CKEL (Ni)	SILV	ER (Ag)	ZIN	IC (Zn)	COPF	PER (Cu)
PLANT	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	0.90	22	10.0	2.86	27	4.5	22	6.0	4.3	0.58	155	69.6	75	36
North River	1.3	0.83	12	0.72	11	0.80	14	3.7	14	0.71	115	31.1	60	13
Hunts Point	0.90	0.11	7.0	0.74	29	0.57	11	6.2	1.8	0.092	78	48	30	10
26th Ward	0.49	0.10	5.1	0.77	4.0	0.18	5.5	1.6	0.60	0.0081	41	8.7		
Coney Island	2.0	0.092	3.8	0.41	8.0	0.30	10.0	1.71	1.2	0.055	40.0	26.1		
Owls Head	0.70	0.074	22	0.59	9.0	0.90	19	1.7	4.3	0.20	78	31	38	13
Newtown Creek	3.5	0.44	33	2.1	41	1.5	50	7.4	35	0.56	225	81.6	160	23.7
Red Hook	0.40	0.028	2.0	0.16	3.6	0.085	2.6	0.46	0.81	0.032	30.0	8.33	6.0	1.8
Jamaica	0.60	0.12	5.8	0.42	10.2	0.383	4.1	1.3	2.4	0.049	75	14		
Tallman Island	0.45	< 0.027	2.7	0.42	3.4	0.40	5.6	0.97	2.7	0.090	56	16	17	5.5
Bowery Bay	1.3	0.071	8.0	3.1	11	0.97	39	13	6.5	0.62	111	30.2	32	14
Rockaway	0.15	0.044	1.5	0.14	1.5	0.078	1.5	0.52	0.30	0.025	15	5.1		
Oakwood Beach	0.13	< 0.013	1.3	0.13	1.3	0.048	5.3	1.8	0.50	0.010	15	4.9	7.0	1.9
Port Richmond	0.21	0.025	2.0	0.30	4.3	0.12	4.4	1.1	1.3	0.032	33	7.6	15	2.5

COPI	PER (Cu)	MEF	RCURY (Hg)	CYA	NIE	DE (CN)	TETRAC	HLO	ROETHYLENE
P/L	Effluent	P/L	Effluent	P/L		Effluent	P/L		Effluent
		1.8	0.071	Monitor	<	12.1	37	٧	0.31
		1.1	0.040	85	٧	7.4			
		1.3	0.029	100	٧	7.87			
11	2.5	0.57	0.013	42.5	٧	3.00	0.71	٧	0.074
14.1	14.2	0.73	0.022	55	٧	5.9			
		0.80	0.037	60	٧	7.2			
		2.07	0.0393	155	٧	13.5			
		0.40	0.0035	30	<	1.6			
21.5	7.78	0.67	0.014	50	٧	4.6	5.8		
		0.53	0.014	40	٧	3.9	2.7		0.92
		1.0	0.021	75	<	6.4	12.5		0.253
2.5	1.5	0.30	0.0034	22.5	<	1.33			
		0.27	0.0047	20.0	<	1.45			
		0.40	0.0041	30	<	1.5			
	11 14.1 21.5	11 2.5 14.1 14.2 21.5 7.78	P/L Effluent P/L 1.8 1.1 1.3 1.3 11 2.5 0.57 14.1 14.2 0.73 0.80 2.07 0.40 2.1.5 7.78 0.67 0.53 1.0 0.53 2.5 1.5 0.30 0.27 0.27 0.27	P/L Effluent P/L Effluent 1.8 0.071 1.1 0.040 1.3 0.029 11 2.5 0.57 0.013 14.1 14.2 0.73 0.022 2.07 0.0393 0.40 0.0035 2.15 7.78 0.67 0.014 0.53 0.014 1.0 0.021 2.5 1.5 0.30 0.0034 0.27 0.0047 0.027 0.0047	P/L Effluent P/L Effluent P/L 1.8 0.071 Monitor 1.1 0.040 85 1.3 0.029 100 10 10 11 2.5 0.57 0.013 42.5 55 14.1 14.2 0.73 0.022 55 56 0.037 60 0.037 60 0.037 60 0.037 60 0.037 60 0.03 155 0.06 2.07 0.0333 155 0.06 2.07 0.033 30 0.034 4 0.037 60 0.044 40 0.035 30 0.044 40 0.05 0.004 0.003 30 0.0034 2.5 1.5 0.30 0.0034 2.0 0.004 2.0 0.004 2.0 0.004 2.0 0.004 2.0 0.004 2.0 0.004 2.0 0.004 2.0 0.004 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	P/L Effluent P/L Effluent P/L P/L 1.8 0.071 Monitor 4 1.1 0.040 85 5 1.3 0.029 100 5 6 100 2 1.1 2.5 0.57 0.013 42.5 5 2 55 60 60 60 2 60 60 2 207 0.0393 155 5 60 4 0.033 30 6 2 2.0 6 6 0.014 50 5 6 6 0.014 50 5 6 6 0.014 40 6 6 6 0.014 40 6 6 1 0.021 75 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7 8 7 7 7 7	P/L Effluent P/L Effluent P/L Effluent 1.8 0.071 Monitor < 12.1 1.1 0.040 85 < 7.4 1.3 0.029 100 < 7.87 11 2.5 0.57 0.013 42.5 < 3.00 14.1 14.2 0.73 0.022 55 < 5.9 2.07 0.037 60 < 7.2 2.07 2.07 0.0393 155 < 13.5 0.40 0.0035 30 < 1.6 2.1,5 7.76 0.67 0.014 50 < 4.6 0.53 0.014 40 < 3.9 1.0 0.021 75 < 6.4 2.5 1.5 3.03 0.034 22.5 < 1.33 0.27 0.0047 2.0 1.48	P/L Effluent P/L Effluent P/L Effluent P/L 37 P/L 37	P/L Effluent P/L Effluent Monitor P/L Effluent Monitor P/L Effluent Monitor P/L Seffluent Monitor P/L 37 1.1 0.040 85 7.4

Table 5d

ORGANICS/VOLATILES ACTION LEVELS (lbs/day)

February-10

Type II Action Levels

i																
	Chloro	form	Tetrachlo	roethylene	1,4-Dichlo	robenzene	Tol	uene	1,1,1-Tı	ichloroethane	Carbon 7	Tetrachloride	PI	nenol	1,2,4-Tric	hlorobenzene
PLANT	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	11				4.6	0.45										
North River	12		10		2.8	0.25	2.8		5.0							
Hunts Point	5.0		4.0		6.0	0.44										
26th Ward	2.7				1.4	0.10	2.6									
Coney Island	5.6		4.0		2.1	0.28										
Owls Head	11		14		2.0	0.24							2.5		5.0	
Newtown Creek	18		21		9.4	0.53	18		7.1							
Red Hook*	1.7		3.2		Monitor	< 0.042			Monitor							
Jamaica	3.4				4.0	0.18										
Tallman Island	2.7				2.3	< 0.09										
Bowery Bay	3.8				2.5	0.28										
Rockaway	1.0		1.2		Monitor	0.062					0.75					
Oakwood Beach	2.0		0.67		1.9	< 0.041	2.6	0.45								
Port Richmond	3.7		1.0		1.3	0.044										

Note: New limts as per DEP/DEC correspence for VOC limits for WI, NR, OH, RK, OB modified * 1,1,1-Trichloroethane for RH is reported as mg/L

Table 5e

METALS REPORT ACTION LEVELS/PERMIT LEVELS (lbs/day)

March-2010 Type II Action Levels

	TO	DLUENE	1,4-DICHLOROBENZENE				
PLANT	A/L	Effluent	A/L	Effluent			
Wards Island			4.6	0.75			
North River			2.8	0.29			
Hunts Point			6.0	0.45			
26th Ward			1.4	0.18			
Coney Island			2.1	0.26			
Owls Head			2.0	0.20			
Newtown Creek			9.4	0.50			
Red Hook			Monitor	< 0.046			
Jamaica			4.0	0.29			
Tallman Island			2.3	< 0.089			
Bowery Bay			2.5	0.25			
Rockaway			Monitor	< 0.039			
Oakwood Beach	2.6	0.60	1.9	< 0.055			
Port Richmond			1.3	0.073			

Type II Action Levels

Type II Action Levels														
	CADI	MIUM (Cd)	CHR	OMIUM (Cr)	LE	AD (Pb)	NI	CKEL (Ni)	SILV	ER (Ag)	ZIN	IC (Zn)	COPE	PER (Cu)
PLANT	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	0.90	0.13	10.0	1.95	27	2.6	22	5.5	4.3	0.29	155	47.7	75	30
North River	1.3	0.10	12	0.70	11	0.93	14	2.9	14	2.1	115	27.5	60	17
Hunts Point	0.90	0.074	7.0	0.71	29	0.80	11	5.2	1.8	0.072	78	38	30	10
26th Ward	0.49	0.066	5.1	0.28	4.0	0.35	5.5	1.3	0.60	0.020	41	13		
Coney Island	2.0	0.037	3.8	0.51	8.0	0.60	10.0	2.25	1.2	0.21	40.0	23.9		
Owls Head	0.70	0.069	22	0.51	9.0	0.62	19	1.9	4.3	0.26	78	26	38	12
Newtown Creek	3.5	0.22	33	1.9	41	1.5	50	7.2	35	0.53	225	51.6	160	22.4
Red Hook	0.40	0.028	2.0	0.22	3.6	0.12	2.6	0.61	0.81	0.063	30.0	8.00	6.0	1.3
Jamaica	0.60	0.034	5.8	0.39	10.2	0.291	4.1	1.8	2.4	0.032	75	15		
Tallman Island	0.45	0.14	2.7	0.32	3.4	0.35	5.6	1.2	2.7	0.11	56	14	17	6.8
Bowery Bay	1.3	0.076	8.0	0.89	11	0.83	39	3.2	6.5	0.13	111	32.0	32	12
Rockaway	0.15	0.026	1.5	0.15	1.5	0.052	1.5	0.73	0.30	0.019	15	4.7		
Oakwood Beach	0.13	0.026	1.3	0.15	1.3	0.050	5.3	3.2	0.50	0.010	15	7.1	7.0	2.4
Port Richmond	0.21	0.019	2.0	0.35	4.3	0.11	4.4	2.1	1.3	0.027	33	8.7	15	2.3

I CITILL LITTIES									
	COP	PER (Cu)	MER	RCURY (Hg)	CYA	NID	E (CN)	TETRAC	HLOROETHYLENE
PLANT	P/L	Effluent	P/L	Effluent	P/L		Effluent	P/L	Effluent
Wards Island			1.8	0.10	Monitor	٧	13.2	37	< 0.34
North River			1.1	0.041	85	<	7.5		
Hunts Point			1.3	0.046	100	<	8.81		
26th Ward	11	11.5	0.57	0.016	42.5	٧	3.54	0.71	0.17
Coney Island	14.1	15.8	0.73	0.050	55	٧	5.0		
Owls Head			0.80	0.034	60	٧	5.5		
Newtown Creek			2.07	0.101	155	٧	13.3		
Red Hook			0.40	0.011	30	٧	1.7		
Jamaica	21.5	15.5	0.67	0.030	50	٧	5.3	5.8	0.45
Tallman Island			0.53	0.024	40	٧	3.4	2.7	0.35
Bowery Bay			1.0	0.040	75	٧	6.7	12.5	0.433
Rockaway	2.5	1.6	0.30	< 0.0046	22.5	<	1.53		
Oakwood Beach			0.27	0.012	20.0	<	2.09		
Port Richmond			0.40	0.0085	30	<	2.1		

Table 5f

ORGANICS/VOLATILES ACTION LEVELS (lbs/day)

March-10

Type II Action Levels

	Chloro	form	Tetrachio	proethylene	1,4-Dichle	orobenzene	To	luene	1,1,1-T	ichloroethane	Car	on Tetrachloride	F	henol	1,2,4-Trich	lorobenzene
PLANT	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluen	A/1	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	11	6.9			4.6	0.75										
North River	12	5.8	10	< 0.20	2.8	0.29	2.8	0.42	5.0	< 0	.16					
Hunts Point	5.0	3.0	4.0	0.43	6.0	0.45										
26th Ward	2.7	0.92			1.4	0.18	2.6	0.092								
Coney Island	5.6	2.2	4.0	0.41	2.1	0.26										
Owls Head	11	3.1	14	0.45	2.0	0.20							2.5	< 0.62	5.0	< 1.4
Newtown Creek	18	5.8	21	0.92	9.4	0.50	18	< 0.30	7.1	< 0	.28			•		
Red Hook*	1.7	0.67	3.2	0.11	Monitor	< 0.046			Monitor	< 0.000	17					
Jamaica	3.4	1.3			4.0	0.29										
Tallman Island	2.7	1.3			2.3	< 0.089										
Bowery Bay	3.8	3.1			2.5	0.25										
Rockaway	1.0	0.42	1.2	< 0.039	Monitor	< 0.039						0.75 < 0.037				
Oakwood Beach	2.0	1.1	0.67	0.13	1.9	< 0.055	2.6	0.60								
Port Richmond	3.7	1.0	1.0	0.33	1.3	0.073										

Note: New limts as per DEP/DEC correspence for VOC limits for WI, NR, OH, RK, OB modified *1,1,1-Trichloroethane for RH is reported as mg/L

Table 5g

METALS REPORT ACTION LEVELS/PERMIT LEVELS (lbs/day)

April-2010 Type II Action Levels

	TO	DLUENE	1,4-DICHLO	DROBENZENE
PLANT	A/L	Effluent	A/L	Effluent
Wards Island			4.6	0.63
North River			2.8	0.24
Hunts Point			6.0	0.76
26th Ward			1.4	0.081
Coney Island			2.1	0.17
Owls Head			2.0	< 0.17
Newtown Creek			9.4	0.46
Red Hook			Monitor	< 0.047
Jamaica			4.0	0.19
Tallman Island			2.3	< 0.096
Bowery Bay			2.5	0.22
Rockaway			Monitor	< 0.047
Oakwood Beach	2.6	1.2	1.9	< 0.068
Port Richmond			1.3	< 0.058

Type II Action Levels

CADI	MIUM (Cd)	CHR	OMIUM (Cr)	LE	AD (Pb)	NI	CKEL (Ni)	SILV	ER (Ag)	ZIN	IC (Zn)	COP	PER (Cu)
A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
0.90	0.12	10.0	1.24	27	2.6	22	4.0	4.3	0.22	155	55.9	75	23
1.3	0.16	12	0.95	11	0.91	14	3.1	14	1.4	115	48.9	60	14
0.90	0.086	7.0	0.70	29	0.63	11	4.3	1.8	0.056	78	31	30	11
0.49	0.062	5.1	0.31	4.0	0.37	5.5	1.3	0.60	0.015	41	16		
2.0	< 0.045	3.8	0.65	8.0	0.43	10.0	2.45	1.2	0.086	40.0	19.1		
0.70	0.35	22	1.4	9.0	5.0	19	2.6	4.3	0.57	78	61	38	36
3.5	0.33	33	2.1	41	1.2	50	7.5	35	0.64	225	68.6	160	21.1
0.40	0.062	2.0	0.15	3.6	0.082	2.6	0.55	0.81	0.0082	30.0	8.11	6.0	1.5
0.60	< 0.048	5.8	0.46	10.2	0.318	4.1	1.8	2.4	0.071	75	11		
0.45	0.050	2.7	0.43	3.4	0.37	5.6	2.6	2.7	0.092	56	14	17	6.6
1.3	0.077	8.0	0.94	11	0.91	39	2.5	6.5	0.14	111	30.0	32	11
0.15	0.026	1.5	0.22	1.5	0.066	1.5	0.76	0.30	0.015	15	6.6		
0.13	< 0.020	1.3	0.26	1.3	0.14	5.3	3.9	0.50	0.014	15	6.2	7.0	2.5
0.21	0.018	2.0	0.32	4.3	0.14	4.4	1.9	1.3	0.027	33	8.1	15	3.0
	A/L 0.90 1.3 0.90 0.49 2.0 0.70 3.5 0.40 0.60 0.45 1.3 0.15	0.90 0.12 1.3 0.16 0.90 0.086 0.49 0.062 2.0 < 0.045 0.70 0.35 3.5 0.33 0.40 0.062 0.60 < 0.048 0.45 0.050 1.3 0.077 0.15 0.026 0.13 < 0.020	A/L Effluent A/L 0.90 0.12 10.0 1.3 0.16 12 0.90 0.086 7.0 0.49 0.062 5.1 2.0 < 0.045	A/L Effluent A/L Effluent 0.90 0.12 10.0 1.24 1.3 0.16 12 0.95 0.90 0.086 7.0 0.70 0.49 0.062 5.1 0.31 2.0 < 0.045	A/L Effluent A/L Effluent A/L 0.90 0.12 10.0 1.24 27 1.3 0.16 12 0.95 11 0.90 0.086 7.0 0.70 29 0.49 0.062 5.1 0.31 4.0 2.0 < 0.045	A/L Effluent A/L Effluent A/L Effluent 0.90 0.12 10.0 1.24 27 2.6 1.3 0.16 12 0.95 11 0.91 0.90 0.086 7.0 0.70 29 0.63 0.49 0.062 5.1 0.31 4.0 0.37 2.0 0.045 3.8 0.65 8.0 0.43 0.70 0.35 22 1.4 9.0 5.0 3.5 0.33 33 2.1 41 1.2 0.40 0.062 2.0 0.15 3.6 0.082 0.60 0.048 5.8 0.46 10.2 0.318 0.45 0.050 2.7 0.43 3.4 0.37 1.3 0.077 8.0 0.94 11 0.91 0.15 0.026 1.5 0.22 1.5 0.066 0.13 0.020 1.3	A/L Effluent A/L Effluent A/L Effluent A/L 0.90 0.12 10.0 1.24 27 2.6 22 1.3 0.16 12 0.95 11 0.91 14 0.90 0.086 7.0 0.70 29 0.63 11 0.49 0.062 5.1 0.31 4.0 0.37 5.5 2.0 < 0.045	A/L Effluent A/L Effluent A/L Effluent 0.90 0.12 10.0 1.24 27 2.6 22 4.0 1.3 0.16 12 0.95 11 0.91 14 3.1 0.90 0.086 7.0 0.70 29 0.63 11 4.3 0.49 0.062 5.1 0.31 4.0 0.37 5.5 1.3 2.0 0.045 3.8 0.65 8.0 0.43 10.0 2.45 0.70 0.35 22 1.4 9.0 5.0 19 2.6 3.5 0.33 33 2.1 41 1.2 50 7.5 0.40 0.062 2.0 0.15 3.6 0.082 2.6 0.55 0.60 0.048 5.8 0.46 10.2 0.318 4.1 1.8 0.45 0.050 2.7 0.43 3.4 0.37 5.6	A/L Effluent A/L Effluent A/L Effluent A/L Effluent A/L Output A/L A/L A/L Effluent A/L A/L Effluent A/L A/L Effluent A/L A/L Effluent A/L A/L <td>A/L Effluent A/L 2 1.3 0.06 12 0.95 11 0.91 14 3.1 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.0 0.055 1.2 0.066 0.015 2.6 0.55 1.9 2.6 4.3 0.57 3.5 0.33 33 3.2 1.4 1.2</td> <td>A/L Effluent A/L Effluent A/</td> <td>A/L Effluent A/L Effluent A/</td> <td>A/L Effluent A/L Effluent A/</td>	A/L Effluent A/L 2 1.3 0.06 12 0.95 11 0.91 14 3.1 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.0 0.055 1.2 0.066 0.015 2.6 0.55 1.9 2.6 4.3 0.57 3.5 0.33 33 3.2 1.4 1.2	A/L Effluent A/	A/L Effluent A/	A/L Effluent A/

	COP	PER (Cu)	ME	RCURY (Hg)	CYA	NIDE (CI	N)	TETRAC	HLOROETHYLENE
PLANT	P/L	Effluent	P/L	Effluent	P/L	Efflu	ent	P/L	Effluent
Wards Island			1.8	0.14	Monitor	<	13.1	37	0.60
North River			1.1	< 0.017	85	<	6.7		
Hunts Point			1.3	0.11	100	<	9.14		
26th Ward	11	6.9	0.57	0.017	42.5	<	3.60	0.71	0.17
Coney Island	14.1	13.6	0.73	0.076	55	<	5.7		
Owls Head			0.80	0.041	60	<	6.5		
Newtown Creek			2.07	0.154	155	<	14.1		
Red Hook			0.40	0.014	30	<	1.8		
Jamaica	21.5	10.7	0.67	0.017	50	<	5.9		
Tallman Island			0.53	0.018	40	<	3.7	2.7	0.73
Bowery Bay			1.0	< 0.028	75	<	7.1	12.5	0.723
Rockaway	2.5	1.8	0.30	0.021	22.5	<	1.93		
Oakwood Beach			0.27	< 0.0073	20.0	<	2.96		
Port Richmond			0.40	0.015	30	<	2.3		

Table 5h

ORGANICS/VOLATILES ACTION LEVELS (lbs/day)

April-10 Type II Action Levels

	Chloro	form	Tetrachlo	roethylene	1,4-Dichlo	robenzene	Tol	uene	1,1,1-Tr	ichloroethane	Carbon	Tetrachloride	PI	nenol	1,2,4-Tric	hlorobenzene
PLANT	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	11				4.6	0.63										
North River	12		10		2.8	0.24	2.8		5.0							
Hunts Point	5.0		4.0		6.0	0.76										
26th Ward	2.7				1.4	0.08	2.6									
Coney Island	5.6		4.0		2.1	0.17										
Owls Head	11		14		2.0	< 0.17							2.5		5.0	
Newtown Creek	18		21		9.4	0.46	18		7.1							
Red Hook*	1.7		3.2		Monitor	< 0.047			Monitor							
Jamaica	3.4				4.0	0.19										
Tallman Island	2.7				2.3	< 0.096										
Bowery Bay	3.8				2.5	0.22										
Rockaway	1.0		1.2		Monitor	< 0.047					0.75]				
Oakwood Beach	2.0		0.67		1.9	< 0.068	2.6	1.24								
Port Richmond	3.7		1.0		1.3	< 0.058										

Note: New limts as per DEP/DEC correspence for VOC limits for WI, NR, OH, RK, OB modified *1,1,1-Trichloroethane for RH is reported as mg/L

Table 5i

METALS REPORT ACTION LEVELS/PERMIT LEVELS (lbs/day)

May-2010 Type II Action Levels

	TO	DLUENE	1,4-DICHLO	DROBENZENE
PLANT	A/L	Effluent	A/L	Effluent
Wards Island			4.6	0.68
North River			2.8	0.54
Hunts Point			6.0	0.95
26th Ward			1.4	0.24
Coney Island			2.1	0.52
Owls Head	1		2.0	0.45
Newtown Creek	1		9.4	0.62
Red Hook	1		Monitor	0.052
Jamaica	1		4.0	0.34
Tallman Island	1		2.3	< 0.11
Bowery Bay	1		2.5	0.39
Rockaway	1		Monitor	0.077
Oakwood Beach	2.6	0.13	1.9	0.056
Port Richmond			1.3	0.074

Type II Action Levels

Type II Action Levels														
	CADI	MIUM (Cd)	CHR	OMIUM (Cr)	LE	AD (Pb)	NI	CKEL (Ni)	SILV	ER (Ag)	ZIN	C (Zn)	COPE	PER (Cu)
PLANT	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	0.90	< 0.090	10.0	0.946	27	1.5	22	3.1	4.3	0.14	155	37.5	75	15
North River	1.3	0.089	12	0.73	11	0.64	14	2.5	14	0.71	115	39.0	60	15
Hunts Point	0.90	0.066	7.0	0.75	29	0.58	11	3.6	1.8	0.045	78	24	30	8.1
26th Ward	0.49	< 0.027	5.1	0.32	4.0	0.18	5.5	1.0	0.60	< 0.0068	41	12		
Coney Island	2.0	< 0.046	3.8	0.50	8.0	0.23	10.0	2.32	1.2	0.081	40.0	24.1		
Owls Head	0.70	< 0.058	22	0.81	9.0	1.1	19	1.9	4.3	0.31	78	41	38	19
Newtown Creek	3.5	0.17	33	2.0	41	1.1	50	7.3	35	0.45	225	49.5	160	20.7
Red Hook	0.40	0.022	2.0	0.21	3.6	0.085	2.6	0.51	0.81	0.0065	30.0	6.29	6.0	0.87
Jamaica	0.60	< 0.041	5.8	0.52	10.2	0.403	4.1	1.5	2.4	0.044	75	14		
Tallman Island	0.45	0.20	2.7	0.59	3.4	0.76	5.6	1.6	2.7	0.13	56	22	17	11
Bowery Bay	1.3	< 0.050	8.0	0.63	11	0.80	39	2.6	6.5	0.12	111	27.6	32	12
Rockaway	0.15	0.018	1.5	0.20	1.5	0.082	1.5	0.61	0.30	0.017	15	6.3		
Oakwood Beach	0.13	< 0.016	1.3	0.20	1.3	0.045	5.3	2.5	0.50	0.010	15	6.7	7.0	2.3
Port Richmond	0.21	0.016	2.0	0.32	4.3	0.090	4.4	1.3	1.3	0.026	33	6.8	15	2.6

COP	PER (Cu)	MER	RCURY (Hg)	CYA	NIE	DE (CN)	TETRACI	HLOROETHYLENE
P/L	Effluent	P/L	Effluent	P/L		Effluent	P/L	Effluent
		1.8	0.050	Monitor	<	11.3	37	0.41
		1.1	0.033	85	<	7.0		
		1.3	0.033	100	<	7.74		
11	3.9	0.57	< 0.0072	42.5	٧	3.40	0.71	0.18
14.1	9.76	0.73	0.025	55	٧	5.7		
		0.80	0.036	60	٧	7.3		
		2.07	0.176	155	٧	13.1		
		0.40	0.0076	30	<	1.5		
21.5	7.98	0.67	0.017	50	<	5.1		
		0.53	0.025	40	<	3.9	2.7	0.37
		1.0	0.023	75	<	6.2	12.5	0.328
2.5	1.5	0.30	0.0093	22.5	٧	1.40		
		0.27	0.012	20.0	<	1.98		
		0.40	0.016	30	<	1.6		
	P/L	11 3.9 14.1 9.76 21.5 7.98	P/L Effluent P/L 1.8 1.1 1.3 1.3 1.1 3.9 0.57 14.1 9.76 0.73 0.80 2.07 0.40 2.1.5 7.98 0.67 0.53 1.0 0.53 2.5 1.5 0.30 0.27 0.27 0.27	P/L Effluent P/L Effluent 1.8 0.050 1.1 0.033 1.3 0.033 1.1 3.9 0.57 < 0.0072 14.1 9.76 0.73 0.025 2.07 0.176 0.40 0.0076 21.5 7.98 0.67 0.017 0.53 0.025 1.0 0.023 2.5 1.5 0.30 0.0093 0.27 0.012 0.027 0.012	P/L Effluent P/L Effluent P/L <	P/L Effluent P/L Effluent P/L 1.8 0.050 Monitor	P/L Effluent P/L Effluent P/L Effluent 1.8 0.050 Monitor 11.3 11.3 0.033 85 < 7.0 7.74 1.1 0.033 100 < 7.74 7.74 <td< th=""><th>P/L Effluent P/L Effluent P/L Effluent P/L P/L</th></td<>	P/L Effluent P/L Effluent P/L Effluent P/L P/L

Table 5j

ORGANICS/VOLATILES ACTION LEVELS (lbs/day)

May-10 Type II Action Levels

i																
	Chloro	form	Tetrachlo	roethylene	1,4-Dichlo	robenzene	Tol	uene	1,1,1-Tı	ichloroethane	Carbon	Tetrachloride	PI	nenol	1,2,4-Tric	hlorobenzene
PLANT	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	11				4.6	0.68										
North River	12		10		2.8	0.54	2.8		5.0							
Hunts Point	5.0		4.0		6.0	0.95										
26th Ward	2.7				1.4	0.24	2.6									
Coney Island	5.6		4.0		2.1	0.52										
Owls Head	11		14		2.0	0.45							2.5		5.0	
Newtown Creek	18		21		9.4	0.62	18		7.1							
Red Hook*	1.7		3.2		Monitor	0.052			Monitor							
Jamaica	3.4				4.0	0.34										
Tallman Island	2.7				2.3	< 0.112										
Bowery Bay	3.8				2.5	0.39										
Rockaway	1.0		1.2		Monitor	0.077					0.75					
Oakwood Beach	2.0		0.67		1.9	0.056	2.6	0.13								
Port Richmond	3.7		1.0		1.3	0.074										

Note: New limts as per DEP/DEC correspence for VOC limits for WI, NR, OH, RK, OB modified * 1,1,1-Trichloroethane for RH is reported as mg/L

Table 5k

METALS REPORT ACTION LEVELS/PERMIT LEVELS (lbs/day)

June-2010 Type II Action Levels

	TO	DLUENE	1,4-DICHLO	OROBENZENE
PLANT	A/L	Effluent	A/L	Effluent
Wards Island			4.6	1.7
North River			2.8	0.31
Hunts Point			6.0	0.59
26th Ward			1.4	0.21
Coney Island			2.1	0.47
Owls Head			2.0	0.32
Newtown Creek			9.4	0.62
Red Hook			Monitor	0.063
Jamaica			4.0	0.43
Tallman Island			2.3	< 0.13
Bowery Bay			2.5	0.27
Rockaway			Monitor	0.092
Oakwood Beach	2.6	0.14	1.9	0.078
Port Richmond			1.3	0.053

Type II Action Levels

Type II Action Levels														
	CADI	MIUM (Cd)	CHR	OMIUM (Cr)	LE	AD (Pb)	NI	CKEL (Ni)	SILV	ER (Ag)	ZIN	IC (Zn)	COPF	ER (Cu)
PLANT	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	0.90	< 0.11	10.0	1.12	27	1.2	22	2.8	4.3	0.12	155	43.7	75	17
North River	1.3	0.13	12	0.88	11	0.95	14	2.2	14	0.71	115	34.0	60	10
Hunts Point	0.90	< 0.062	7.0	0.79	29	0.52	11	3.0	1.8	0.060	78	70	30	9.0
26th Ward	0.49	0.038	5.1	0.32	4.0	0.28	5.5	0.92	0.60	0.014	41	10		
Coney Island	2.0	0.11	3.8	0.58	8.0	0.15	10.0	1.98	1.2	0.035	40.0	19.8		
Owls Head	0.70	< 0.043	22	0.64	9.0	1.1	19	1.5	4.3	0.23	78	31	38	11
Newtown Creek	3.5	0.30	33	2.0	41	1.3	50	7.1	35	0.20	225	55.0	160	21.6
Red Hook	0.40	0.028	2.0	0.16	3.6	0.097	2.6	0.42	0.81	0.0054	30.0	5.04	6.0	1.2
Jamaica	0.60	< 0.039	5.8	0.47	10.2	0.387	4.1	1.4	2.4	0.048	75	11		
Tallman Island	0.45	0.034	2.7	0.34	3.4	0.17	5.6	1.1	2.7	0.048	56	15	17	4.0
Bowery Bay	1.3	< 0.053	8.0	0.73	11	0.64	39	3.3	6.5	0.076	111	26.6	32	10
Rockaway	0.15	0.014	1.5	0.23	1.5	0.075	1.5	0.67	0.30	0.014	15	6.3		
Oakwood Beach	0.13	< 0.016	1.3	0.19	1.3	0.082	5.3	2.1	0.50	0.025	15	6.2	7.0	2.6
Port Richmond	0.21	0.013	2.0	0.28	4.3	0.11	4.4	0.90	1.3	0.032	33	6.8	15	2.5

COP	PER (Cu)	MER	RCURY (Hg)	CYA	NIE	DE (CN)	TETRAC	HLOROETHYLENE
P/L	Effluent	P/L	Effluent	P/L		Effluent	P/L	Effluent
		1.8	0.11	Monitor	<	12.3	37	0.82
		1.1	< 0.018	85	<	7.1		
		1.3	0.020	100	<	7.81		
11	3.0	0.57	0.0082	42.5	<	3.27	0.71	0.13
14.1	4.70	0.73	0.016	55	٧	5.3		
		0.80	0.041	60	٧	5.3		
		2.07	0.134	155	٧	13.9		
		0.40	0.0066	30	٧	1.7		
21.5	7.36	0.67	< 0.010	50	٧	4.9	5.8	0.34
		0.53	< 0.0092	40	٧	3.3	2.7	0.71
		1.0	0.020	75	٧	6.7	12.5	< 0.166
2.5	2.9	0.30	0.011	22.5	٧	1.60		
		0.27	< 0.0045	20.0	٧	1.96		
		0.40	0.019	30	<	1.4		
	11 14.1 21.5	11 3.0 14.1 4.70 21.5 7.36	P/L Effluent P/L 1.8 1.1 1.3 1.3 1.4 3.0 0.57 14.1 4.70 0.73 0.80 2.07 0.40 2.1.5 7.36 0.67 0.53 1.0 0.53 2.5 2.9 0.30 0.27 0.27 0.27	P/L Effluent P/L Effluent 1.8 0.11 1.1 0.018 1.3 0.020 11 3.0 0.57 0.0082 14.1 4.70 0.73 0.016 2.07 0.134 0.006 0.041 2.07 0.134 0.40 0.0066 21.5 7.36 0.67 < 0.010 0.53 0.0092 1.0 0.020 2.5 2.9 0.30 0.0111 0.27 < 0.0045	P/L Effluent P/L Effluent P/L 1.8 0.11 Monitor 1.1 < 0.018 85 1.3 0.020 100 10 10 11 3.0 0.07 0.0082 42.5 42.5 5 14.1 4.70 0.73 0.016 55 5 0.041 60 2.07 0.134 155 0.041 60 30 30 155 0.0066 30 30 2.15 7.36 0.67 < 0.010 50 30 40 0.0066 30 30 0.011 2.5 30 0.011 2.5 2.5 2.9 0.30 0.011 2.5 2.5 0.0045 2.00 50 2.00 2.00 50 2.00 2.5 2.5 2.5 2.7 0.0045 2.00 30 0.011 2.25 2.5 2.25 2.00 2.00 2.00 2.00 2.00 3.00 3.00 3.00 3.00 3.00 3.00	P/L Effluent P/L Effluent P/L P/L D/L <	P/L Effluent P/L Effluent P/L Effluent 1.8 0.11 Monitor < 12.3 12.3 1.1 < 7.1 1.1 < 7.1 7.1 1.1 < 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.2 7.1 7.2 7.2 7.2 </th <th>P/L Effluent P/L Effluent P/L Effluent P/L Effluent P/L P/L</th>	P/L Effluent P/L Effluent P/L Effluent P/L Effluent P/L P/L

Table 51

ORGANICS/VOLATILES ACTION LEVELS (lbs/day)

June-10

Type II Action Levels

	Chloro	form	Tetrachic	proethyle	ne	1,4-Dichlo	orobenzene	Tol	uene	1,1,1-Tric	hloroethane	Carbon	Tetrachloride	Pi	nenol	1,2,4-Tri	chlorobenzene
PLANT	A/L	Effluent	A/L	Efflu	ient	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	11	5.6				4.6	1.7										
North River	12	2.6	10	<	0.19	2.8	0.31	2.8	0.21	5.0	< 0.15						
Hunts Point	5.0	2.1	4.0	<	0.19	6.0	0.59										
26th Ward	2.7	0.84				1.4	0.21	2.6	1.7								
Coney Island	5.6	1.6	4.0	<).22	2.1	0.47										
Owls Head	11	2.3	14	-	0.28	2.0	0.32							2.5	< 0.92	5.0	< 2.1
Newtown Creek	18	3.9	21	< 1	0.35	9.4	0.62	18	0.44	7.1	< 0.29						
Red Hook*	1.7	0.61	3.2	_	0.11	Monitor	0.063			Monitor	< 0.00017						
Jamaica	3.4	1.1				4.0	0.43										
Tallman Island	2.7	1.0				2.3	< 0.13										
Bowery Bay	3.8	1.4				2.5	0.27										
Rockaway	1.0	0.27	1.2	< 0.	044	Monitor	0.092					0.75	< 0.042				
Oakwood Beach	2.0	0.69	0.67	0.	054	1.9	0.078	2.6	0.14								
Port Richmond	3.7	0.48	1.0	< 0.	035	1.3	0.053										

Note: New limts as per DEP/DEC correspence for VOC limits for WI, NR, OH, RK, OB modified $^{+}$ 1,1,1-Trichloroethane for RH is reported as mg/L

Table 5m

METALS REPORT ACTION LEVELS/PERMIT LEVELS (Ibs/day)

July-2010 Type II Action Levels

Type II Action Levels				
	TO	DLUENE	1,4-DICHLO	DROBENZENE
PLANT	A/L	Effluent	A/L	Effluent
Wards Island			4.6	1.2
North River			2.8	0.52
Hunts Point			6.0	0.72
26th Ward			1.4	0.18
Coney Island			2.1	0.54
Owls Head			2.0	0.28
Newtown Creek			9.4	0.77
Red Hook			Monitor	0.079
Jamaica			4.0	0.25
Tallman Island			2.3	0.18
Bowery Bay			2.5	0.37
Rockaway			Monitor	0.097
Oakwood Beach	2.6	0.06	1.9	< 0.055
Port Richmond			1.3	0.064

Type II Action Levels

Type II Action Levels														
	CADI	MIUM (Cd)	CHR	OMIUM (Cr)	LE	AD (Pb)	NI	CKEL (Ni)	SILV	ER (Ag)	ZIN	C (Zn)	COPF	ER (Cu)
PLANT	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	0.90	0.48	10.0	2.45	27	4.9	22	5.6	4.3	0.28	155	72.7	75	30
North River	1.3	0.14	12	1.79	11	1.24	14	3.2	14	0.46	115	31.3	60	11
Hunts Point	0.90	< 0.058	7.0	1.05	29	0.88	11	3.9	1.8	0.066	78	27	30	9.5
26th Ward	0.49	< 0.022	5.1	0.27	4.0	0.21	5.5	1.13	0.60	0.011	41	8		
Coney Island	2.0	0.16	3.8	1.54	8.0	3.94	10.0	4.05	1.2	0.181	40.0	33.2		
Owls Head	0.70	< 0.059	22	1.48	9.0	3.1	19	3.5	4.3	0.16	78	44	38	14
Newtown Creek	3.5	0.31	33	4.0	41	1.9	50	9.0	35	0.48	225	42.8	160	29.9
Red Hook	0.40	0.016	2.0	0.20	3.6	0.095	2.6	0.63	0.81	0.0085	30.0	4.07	6.0	0.8
Jamaica	0.60	< 0.035	5.8	0.56	10.2	0.433	4.1	1.6	2.4	0.051	75	14		
Tallman Island	0.45	0.156	2.7	1.24	3.4	2.04	5.6	2.3	2.7	0.112	56	26	17	9.9
Bowery Bay	1.3	< 0.052	8.0	1.03	11	0.55	39	3.0	6.5	0.087	111	19.7	32	8
Rockaway	0.15	< 0.014	1.5	0.34	1.5	0.055	1.5	1.23	0.30	0.012	15	4.9		
Oakwood Beach	0.13	< 0.014	1.3	0.18	1.3	0.051	5.3	1.8	0.50	0.009	15	4.2	7.0	1.3
Port Richmond	0.21	0.011	2.0	0.31	4.3	0.10	4.4	1.02	1.3	0.026	33	5.7	15	2.2

I CITILL LITTILS									
	COP	PER (Cu)	MER	RCURY (Hg)	CYA	NIE	DE (CN)	TETRAC	HLOROETHYLENE
PLANT	P/L	Effluent	P/L	Effluent	P/L		Effluent	P/L	Effluent
Wards Island			1.8	0.08	Monitor	<	14.6	37	0.94
North River			1.1	< 0.019	85	٧	8.0		
Hunts Point			1.3	0.036	100	٧	7.74		
26th Ward	11	2.7	0.57	< 0.0067	42.5	٧	2.87	0.71	0.11
Coney Island	14.1	12.28	0.73	0.022	55	٧	7.7		
Owls Head			0.80	0.028	60	٧	7.8		
Newtown Creek			2.07	0.126	155	٧	14.9		
Red Hook			0.40	0.0051	30	<	1.7		
Jamaica	21.5	8.52	0.67	0.012	50	٧	4.7		
Tallman Island			0.53	0.0196	40	<	4.7	2.7	0.63
Bowery Bay			1.0	< 0.016	75	<	6.8	12.5	0.180
Rockaway	2.5	1.6	0.30	0.011	22.5	٧	1.87		
Oakwood Beach			0.27	0.0069	20.0	<	1.80		
Port Richmond			0.40	0.004	30	<	1.4		

Table 5n

ORGANICS/VOLATILES ACTION LEVELS (lbs/day)

July-10 Type II Action Levels

	Chloro	form	Totrachic	roethylene	1.4-Dichl	orobenzene	Tol	uene	1 1 1 Te	ichloroethane	Carbon	Tetrachloride		henol	1 2 4-Trick	nlorobenzene
PLANT		Effluent														
PLANT	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	11				4.6	1.2										
North River	12		10		2.8	0.52	2.8		5.0							
Hunts Point	5.0		4.0		6.0	0.72										
26th Ward	2.7				1.4	0.18	2.6									
Coney Island	5.6		4.0		2.1	0.54										
Owls Head	11		14		2.0	0.28							2.5		5.0	
Newtown Creek	18		21		9.4	0.77	18		7.1							
Red Hook*	1.7		3.2		Monitor	0.079			Monitor							
Jamaica	3.4				4.0	0.25										
Tallman Island	2.7				2.3	0.18										
Bowery Bay	3.8				2.5	0.37										
Rockaway	1.0		1.2		Monitor	0.097					0.75					
Oakwood Beach	2.0		0.67		1.9	< 0.055	2.6	0.06								
Port Richmond	3.7		1.0		1.3	0.064										

Note: New limts as per DEP/DEC correspence for VOC limits for WI, NR, OH, RK, OB modified $^{+1}, 1, 1$ -Trichloroethane for RH is reported as mg/L

Table 50

METALS REPORT ACTION LEVELS/PERMIT LEVELS (lbs/day)

August-2010 Type II Action Levels

	TO	DLUENE	1,4-DICHLO	DROBENZENE
PLANT	A/L	Effluent	A/L	Effluent
Wards Island			4.6	0.69
North River			2.8	0.31
Hunts Point			6.0	0.35
26th Ward			1.4	0.13
Coney Island			2.1	0.21
Owls Head			2.0	< 0.15
Newtown Creek			9.4	< 0.41
Red Hook			Monitor	0.077
Jamaica			4.0	0.19
Tallman Island			2.3	< 0.084
Bowery Bay			2.5	0.22
Rockaway			Monitor	< 0.033
Oakwood Beach	2.6	0.059	1.9	< 0.046
Port Richmond			1.3	< 0.033

Type II Action Levels

Type II Action Levels														
	CADI	MIUM (Cd)	CHR	OMIUM (Cr)	LE	AD (Pb)	NI	CKEL (Ni)	SILV	ER (Ag)	ZIN	IC (Zn)	COPF	ER (Cu)
PLANT	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	0.90	< 0.11	10.0	2.15	27	2.8	22	4.1	4.3	0.34	155	40.6	75	21
North River	1.3	0.12	12	0.93	11	0.97	14	2.9	14	0.42	115	24.0	60	7.1
Hunts Point	0.90	< 0.058	7.0	0.65	29	0.37	11	3.9	1.8	0.041	78	23	30	6.0
26th Ward	0.49	0.046	5.1	0.27	4.0	0.15	5.5	1.3	0.60	0.0075	41	6.5		
Coney Island	2.0	< 0.042	3.8	0.78	8.0	0.33	10.0	2.28	1.2	0.059	40.0	13.2		
Owls Head	0.70	< 0.045	22	0.56	9.0	0.64	19	1.8	4.3	0.17	78	19	38	8.5
Newtown Creek	3.5	0.34	33	18	41	2.2	50	18	35	0.48	225	59.3	160	20.5
Red Hook	0.40	< 0.014	2.0	0.17	3.6	0.079	2.6	1.2	0.81	0.0079	30.0	4.00	6.0	1.7
Jamaica	0.60	< 0.039	5.8	0.44	10.2	0.519	4.1	1.5	2.4	0.038	75	13		
Tallman Island	0.45	< 0.027	2.7	0.34	3.4	0.25	5.6	1.5	2.7	0.044	56	12	17	4.9
Bowery Bay	1.3	< 0.054	8.0	1.0	11	0.80	39	2.8	6.5	0.11	111	28.0	32	8.8
Rockaway	0.15	0.050	1.5	0.15	1.5	0.042	1.5	0.60	0.30	0.0080	15	3.9		
Oakwood Beach	0.13	< 0.014	1.3	0.15	1.3	0.050	5.3	1.5	0.50	0.0092	15	6.0	7.0	1.2
Port Richmond	0.21	0.034	2.0	0.29	4.3	0.047	4.4	0.76	1.3	0.011	33	5.9	15	1.5

COP	PER (Cu)	MER	RCURY (Hg)	CYA	NIE	DE (CN)	TETRAC	HLOROETHYLENE
P/L	Effluent	P/L	Effluent	P/L		Effluent	P/L	Effluent
		1.8	0.11	Monitor	<	13.5	37	0.48
		1.1	0.036	85	<	8.2		
		1.3	0.045	100	<	7.27		
11	3.9	0.57	< 0.012	42.5	٧	3.00	0.71	< 0.079
14.1	4.55	0.73	< 0.016	55	٧	5.2		
		0.80	0.016	60	٧	5.6		
		2.07	0.115	155	٧	15.2		
		0.40	0.0077	30	٧	1.8		
21.5	6.29	0.67	< 0.014	50	٧	4.9		
		0.53	0.011	40	٧	3.3	2.7	0.36
		1.0	0.036	75	٧	6.7	12.5	< 0.180
2.5	1.7	0.30	0.0036	22.5	٧	1.20		
	_	0.27	< 0.0044	20.0	<	1.76		
		0.40	< 0.0038	30	<	1.3		
	11 14.1 21.5	11 3.9 14.1 4.55 21.5 6.29	P/L Effluent P/L 1.8 1.1 1.3 1.3 1.4 3.9 0.57 14.1 4.55 0.73 0.80 2.07 0.40 2.1.5 6.29 0.67 0.53 1.0 0.53 2.5 1.7 0.30 0.27 0.27 0.27	P/L Effluent P/L Effluent 1.8 0.11 1.1 0.036 1.3 0.045 11 3.9 0.57 < 0.012 14.1 4.55 0.73 < 0.016 2.07 0.115 0.40 0.007 21.5 6.29 0.67 < 0.014 0.53 0.011 1.0 0.036 2.5 1.7 0.30 0.0036 2.5 1.7 0.30 0.0036 0.27 < 0.004 0.007 < 0.004	P/L Effluent P/L Effluent P/L 1.8 0.11 Monitor 1.1 0.036 85 1.3 0.045 100 11 3.9 0.57 < 0.012 42.5 14.1 4.55 0.73 < 0.016 55 0.80 0.016 60 2.07 0.115 155 0.40 0.0077 30 0.0077 30 21.5 6.29 0.67 < 0.014 50 0.53 0.011 40 0.036 75 2.5 1.7 0.30 0.0036 22.5 0.27 < 0.0044 20.0 20.0 20.0	P/L Effluent P/L Effluent Nomitor P/L 1.8 0.11 Monitor 4.11 0.036 85 5.13 0.045 100 100 1.1 3.9 0.57 < 0.012 42.5 6.00 5.5 6.00 5.5 6.2 0.016 60 5.5 6.2 0.016 60 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 7.0 0.0 6.0	P/L Effluent P/L Effluent P/L Effluent 1.8 0.11 Monitor < 13.5 1.1 0.036 85 < 8.2 1.3 0.045 100 < 7.27 11 3.9 0.57 < 0.012 42.5 < 3.00 14.1 4.55 0.73 < 0.016 55 < 5.2 0.80 0.016 60 < 5.6 2.07 0.115 155 < 15.2 0.40 0.0077 30 < 1.8 2.1,5 6.29 0.67 < 0.014 50 < 4.9 0.53 0.011 40 < 3.3 1.0 0.036 2.5 < 1.20 2.5 1.7 0.30 0.036 2.5 < 1.20 0.27 < 0.0044 20.0 < 1.76	P/L Effluent P/L Effluent P/L Effluent P/L P/L

Table 5p

ORGANICS/VOLATILES ACTION LEVELS (lbs/day)

August-10

Type II Action Levels

ı																
	Chloro	form	Tetrachic	roethylene	1,4-Dichle	orobenzene	Tol	uene	1,1,1-Tr	ichloroethane	Carbon 1	Tetrachloride	PI	henol	1,2,4-Tricl	hlorobenzene
PLANT	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	11				4.6	0.7										
North River	12		10		2.8	0.31	2.8		5.0							
Hunts Point	5.0		4.0		6.0	0.35										
26th Ward	2.7				1.4	0.13	2.6									
Coney Island	5.6		4.0		2.1	0.21										
Owls Head	11		14		2.0	< 0.15							2.5		5.0	
Newtown Creek	18		21		9.4	< 0.41	18		7.1							
Red Hook*	1.7		3.2		Monitor	0.077			Monitor							
Jamaica	3.4				4.0	0.19										
Tallman Island	2.7				2.3	< 0.08										
Bowery Bay	3.8				2.5	0.22										
Rockaway	1.0		1.2		Monitor	< 0.033					0.75					
Oakwood Beach	2.0	Ì	0.67		1.9	< 0.046	2.6	0.06								
Port Richmond	3.7	1	1.0		1.3	< 0.033										

Note: New limts as per DEP/DEC correspence for VOC limits for WI, NR, OH, RK, OB modified *1,1,1-Trichloroethane for RH is reported as mg/L

Table 5q

METALS REPORT ACTION LEVELS/PERMIT LEVELS (Ibs/day)

September-2010 Type II Action Levels

| Toluble | 1,4-010HJCroBenzene | Toluble | 1,4-010HJCroBenzene | Toluble | 1,4-010HJCroBenzene | Toluble | Toluble | 1,4-010HJCroBenzene | Toluble | Tolubl

Type II Action I evels

Type II Action Levels														
	CADI	MIUM (Cd)	CHR	OMIUM (Cr)	LE	AD (Pb)	NI	CKEL (Ni)	SILV	ER (Ag)	ZIN	IC (Zn)	COPF	PER (Cu)
PLANT	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	0.90	< 0.10	10.0	1.79	27	0.92	22	3.1	4.3	0.12	155	25.5	75	11
North River	1.3	0.23	12	1.1	11	1.1	14	3.2	14	0.67	115	42.7	60	13
Hunts Point	0.90	< 0.058	7.0	0.81	29	0.63	11	2.3	1.8	0.040	78	23	30	6.5
26th Ward	0.49	< 0.027	5.1	0.43	4.0	0.62	5.5	1.6	0.60	0.017	41	9.3		
Coney Island	2.0	< 0.041	3.8	0.59	8.0	0.30	10.0	1.76	1.2	0.043	40.0	13.1		
Owls Head	0.70	< 0.045	22	0.70	9.0	1.3	19	2.2	4.3	0.24	78	33	38	13
Newtown Creek	3.5	1.4	33	4.6	41	4.1	50	10	35	0.79	225	74.1	160	29.6
Red Hook	0.40	< 0.016	2.0	0.24	3.6	0.11	2.6	0.59	0.81	0.0065	30.0	6.41	6.0	1.0
Jamaica	0.60	< 0.042	5.8	0.61	10.2	0.433	4.1	1.6	2.4	0.048	75	18		
Tallman Island	0.45	0.035	2.7	0.31	3.4	0.19	5.6	1.0	2.7	0.063	56	11	17	3.6
Bowery Bay	1.3	0.34	8.0	2.0	11	1.1	39	6.3	6.5	0.16	111	37.7	32	9.6
Rockaway	0.15	0.017	1.5	0.16	1.5	0.072	1.5	0.49	0.30	0.012	15	3.5		
Oakwood Beach	0.13	< 0.015	1.3	0.17	1.3	0.060	5.3	1.5	0.50	0.0067	15	4.8	7.0	1.4
Port Richmond	0.21	0.023	2.0	0.35	4.3	0.18	4.4	1.0	1.3	0.028	33	8.4	15	2.1

i Cillin Lilling									
	COP	PER (Cu)	ME	RCURY (Hg)	CYA	NID	E (CN)	TETRAC	HLOROETHYLENE
PLANT	P/L	Effluent	P/L	Effluent	P/L		Effluent	P/L	Effluent
Wards Island			1.8	< 0.027	Monitor	<	12.8	37	< 0.36
North River			1.1	0.036	85	٧	8.6		
Hunts Point			1.3	< 0.016	100	٧	7.27		
26th Ward	11	3.8	0.57	< 0.0072	42.5	٧	3.40	0.71	0.11
Coney Island	14.1	14.1	0.73	0.044	55	٧	5.1		
Owls Head			0.80	0.059	60	٧	5.6		
Newtown Creek			2.07	0.0836	155	٧	17.3		
Red Hook			0.40	< 0.0043	30	٧	2.0		
Jamaica	21.5	8.26	0.67	0.015	50	٧	5.2	5.8	0.17
Tallman Island			0.53	< 0.0092	40	٧	3.1	2.7	0.33
Bowery Bay			1.0	0.018	75	٧	8.3	12.5	< 0.205
Rockaway	2.5	0.67	0.30	0.0034	22.5	<	1.33		
Oakwood Beach			0.27	< 0.0042	20.0	<	1.86		
Port Richmond			0.40	< 0.0057	30	<	1.9		

Table 5r

ORGANICS/VOLATILES ACTION LEVELS (lbs/day)

September-10

Type II Action Levels

	Chloro	form	Tetrachic	roethylene	1,4-Dichl	orobenzene	Tol	luene	1,1,1-T	richlor	oethane	Carbon	Tetrachloride	P	henol	1,2,4-Trich	lorobenzene
PLANT	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L		Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	11	4.5			4.6	0.67											
North River	12	3.9	10	< 0.21	2.8	< 0.21	2.8	< 0.18	5.0	<	0.17						
Hunts Point	5.0	3.8	4.0	< 0.23	6.0	0.36	,										
26th Ward	2.7	1.0			1.4	0.15	2.6	0.34									
Coney Island	5.6	1.4	4.0	< 0.13	2.1	0.15											
Owls Head	11	1.5	14	< 0.15	2.0	< 0.15								2.5	< 0.62	5.0	< 1.4
Newtown Creek	18	4.1	21	< 0.39	9.4	0.43	18	< 0.33	7.1	<	0.31						
Red Hook*	1.7	0.52	3.2	0.10	Monitor	< 0.053	,		Monitor	<	0.00017						
Jamaica	3.4	1.2			4.0	0.16											
Tallman Island	2.7	0.48			2.3	< 0.081											
Bowery Bay	3.8	1.7			2.5	< 0.20											
Rockaway	1.0	0.13	1.2	< 0.033	Monitor	< 0.033						0.75	< 0.032				
Oakwood Beach	2.0	0.39	0.67	< 0.043	1.9	< 0.043	2.6	0.072									
Port Richmond	3.7	0.42	1.0	< 0.040	1.3	< 0.040											

Note: New limts as per DEP/DEC correspence for VOC limits for WI, NR, OH, RK, OB modified $^{+}$ 1,1,1-Trichloroethane for RH is reported as mg/L

Table 5s

METALS REPORT ACTION LEVELS/PERMIT LEVELS (lbs/day)

October-2010 Type II Action Levels

71				
	TO	DLUENE	1,4-DICHLO	DROBENZENE
PLANT	A/L	Effluent	A/L	Effluent
Wards Island			4.6	0.86
North River			2.8	0.35
Hunts Point	1		6.0	0.43
26th Ward	1		1.4	0.19
Coney Island	1		2.1	0.16
Owls Head	1		2.0	0.19
Newtown Creek	1		9.4	0.56
Red Hook	1		Monitor	< 0.067
Jamaica	1		4.0	0.27
Tallman Island	1		2.3	< 0.095
Bowery Bay	7		2.5	0.40
Rockaway	1		Monitor	< 0.032
Oakwood Beach	2.6	0.19	1.9	< 0.049
Port Richmond			1.3	< 0.051

Type II Action Levels

Type II Action Levels														
	CADI	MIUM (Cd)	CHR	OMIUM (Cr)	LE	AD (Pb)	NI	CKEL (Ni)	SILV	ER (Ag)	ZIN	IC (Zn)	COPF	PER (Cu)
PLANT	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	0.90	0.55	10.0	1.07	27	0.73	22	7.0	4.3	0.054	155	41.5	75	10
North River	1.3	0.11	12	0.63	11	1.0	14	3.9	14	0.63	115	40.3	60	9.1
Hunts Point	0.90	0.18	7.0	0.28	29	1.4	11	11	1.8	0.074	78	34	30	9.8
26th Ward	0.49	< 0.031	5.1	0.40	4.0	0.89	5.5	1.7	0.60	0.026	41	9.3		
Coney Island	2.0	< 0.046	3.8	0.34	8.0	0.25	10.0	3.35	1.2	0.036	40.0	19.1		
Owls Head	0.70	< 0.048	22	0.43	9.0	0.97	19	2.6	4.3	0.15	78	34	38	12
Newtown Creek	3.5	0.53	33	18	41	2.7	50	20	35	0.66	225	86.9	160	23.2
Red Hook	0.40	0.018	2.0	0.14	3.6	0.12	2.6	0.77	0.81	0.0038	30.0	8.82	6.0	0.91
Jamaica	0.60	< 0.042	5.8	0.29	10.2	0.512	4.1	1.7	2.4	0.088	75	14		
Tallman Island	0.45	0.11	2.7	0.12	3.4	0.14	5.6	1.4	2.7	0.043	56	17	17	8.0
Bowery Bay	1.3	0.097	8.0	3.1	11	2.3	39	8.5	6.5	0.42	111	62.5	32	14
Rockaway	0.15	< 0.016	1.5	0.24	1.5	0.044	1.5	0.98	0.30	0.0075	15	4.7		
Oakwood Beach	0.13	< 0.016	1.3	0.090	1.3	0.041	5.3	2.4	0.50	0.0080	15	5.1	7.0	1.3
Port Richmond	0.21	< 0.015	2.0	0.19	4.3	0.12	4.4	1.4	1.3	0.023	33	7.5	15	1.3

I CITILL LITTING								
	COP	PER (Cu)	ME	RCURY (Hg)	CYA	NIDE (CN)	TETRAC	HLOROETHYLENE
PLANT	P/L	Effluent	P/L	Effluent	P/L	Effluent	P/L	Effluent
Wards Island			1.8	< 0.027	Monitor	12.8	37	1.6
North River			1.1	0.025	85	8.2	· ·	
Hunts Point			1.3	< 0.021	100	13.0		
26th Ward	11	3.3	0.57	0.012	42.5	3.94	0.71	0.15
Coney Island	14.1	8.29	0.73	0.016	55	7.7		
Owls Head			0.80	0.027	60	8.1		
Newtown Creek			2.07	0.0638	155	14.5		
Red Hook			0.40	< 0.0038	30	1.8		
Jamaica	21.5	8.52	0.67	< 0.014	50	5.3		
Tallman Island			0.53	< 0.010	40	4.5	2.7	0.34
Bowery Bay			1.0	< 0.024	75	11	12.5	0.442
Rockaway	2.5	2.3	0.30	< 0.0043	22.5	1.67		
Oakwood Beach			0.27	< 0.0044	20.0	2.01		
Port Richmond			0.40	< 0.0050	30	2.1		

Table 5t

ORGANICS/VOLATILES ACTION LEVELS (lbs/day)

October-10

Type II Action Levels

	Chloro	form	Tetrachlo	roethylene	1,4-Dichle	orobenzene	Tol	uene	1,1,1-Tı	richloroethane	Carbon 1	Tetrachloride	P	henol	1,2,4-Trich	nlorobenzene
PLANT	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	11				4.6	0.86										
North River	12		10		2.8	0.35	2.8		5.0							
Hunts Point	5.0		4.0		6.0	0.43										
26th Ward	2.7				1.4	0.19	2.6									
Coney Island	5.6		4.0		2.1	0.16										
Owls Head	11		14		2.0	0.19							2.5		5.0	
Newtown Creek	18		21		9.4	0.56	18		7.1							
Red Hook*	1.7		3.2		Monitor	< 0.067			Monitor							
Jamaica	3.4				4.0	0.27										
Tallman Island	2.7				2.3	< 0.095										
Bowery Bay	3.8				2.5	0.40										
Rockaway	1.0		1.2		Monitor	< 0.032					0.75					
Oakwood Beach	2.0		0.67		1.9	< 0.049	2.6	0.186								
Port Richmond	3.7		1.0		1.3	< 0.051										

Note: New limts as per DEP/DEC correspence for VOC limits for WI, NR, OH, RK, OB modified *1,1,1-Trichloroethane for RH is reported as mg/L

Table 5u

METALS REPORT ACTION LEVELS/PERMIT LEVELS (lbs/day)

November-2010 Type II Action Levels

	TO	DLUENE	1,4-DICHLO	DROBENZENE
PLANT	A/L	Effluent	A/L	Effluent
Wards Island			4.6	4.2
North River			2.8	< 0.20
Hunts Point			6.0	0.28
26th Ward			1.4	< 0.077
Coney Island			2.1	< 0.13
Owls Head			2.0	< 0.15
Newtown Creek			9.4	< 0.36
Red Hook			Monitor	< 0.046
Jamaica			4.0	0.12
Tallman Island			2.3	< 0.084
Bowery Bay			2.5	< 0.17
Rockaway			Monitor	0.041
Oakwood Beach	2.6	0.41	1.9	< 0.041
Port Richmond			1.3	< 0.037

Type II Action Levels

Type II Action Levels														
	CADI	MIUM (Cd)	CHR	OMIUM (Cr)	LE	AD (Pb)	NI	CKEL (Ni)	SILV	ER (Ag)	ZIN	IC (Zn)	COPF	PER (Cu)
PLANT	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	0.90	< 0.10	10.0	1.31	27	1.3	22	3.4	4.3	0.12	155	43.1	75	15
North River	1.3	< 0.062	12	1.2	11	1.0	14	2.9	14	0.63	115	37.4	60	20
Hunts Point	0.90	< 0.055	7.0	0.87	29	0.43	11	5.0	1.8	0.046	78	30	30	5.4
26th Ward	0.49	< 0.022	5.1	0.27	4.0	0.25	5.5	1.0	0.60	0.0082	41	8.8		
Coney Island	2.0	< 0.039	3.8	0.48	8.0	0.32	10.0	1.80	1.2	0.057	40.0	18.0		
Owls Head	0.70	< 0.048	22	0.71	9.0	0.55	19	1.6	4.3	0.16	78	24	38	10
Newtown Creek	3.5	< 0.11	33	14	41	2.4	50	15	35	0.70	225	58.2	160	35.9
Red Hook	0.40	< 0.013	2.0	0.18	3.6	0.10	2.6	0.49	0.81	0.0063	30.0	6.53	6.0	1.2
Jamaica	0.60	< 0.039	5.8	0.44	10.2	0.178	4.1	1.3	2.4	0.016	75	14		
Tallman Island	0.45	< 0.023	2.7	0.37	3.4	0.30	5.6	1.5	2.7	0.052	56	10	17	6.3
Bowery Bay	1.3	< 0.052	8.0	0.89	11	0.67	39	2.4	6.5	0.11	111	26.8	32	8.5
Rockaway	0.15	< 0.0091	1.5	0.11	1.5	0.032	1.5	0.54	0.30	0.0043	15	2.9		
Oakwood Beach	0.13	< 0.014	1.3	0.15	1.3	0.047	5.3	1.5	0.50	0.0089	15	4.1	7.0	1.0
Port Richmond	0.21	< 0.011	2.0	0.20	4.3	0.059	4.4	0.66	1.3	0.0088	33	4.7	15	1.3

i Cillii Liilii								
	COP	PER (Cu)	MER	RCURY (Hg)	CYA	NIDE (CN)	TETRAC	CHLOROETHYLENE
PLANT	P/L	Effluent	P/L	Effluent	P/L	Effluent	P/L	Effluent
Wards Island			1.8	0.030	Monitor	< 12.	3 37	< 0.32
North River			1.1	< 0.017	85	< 7.	В	
Hunts Point			1.3	< 0.015	100	< 6.8	7	
26th Ward	11	1.8	0.57	0.0064	42.5	< 2.7	4 0.71	< 0.077
Coney Island	14.1	4.49	0.73	< 0.014	55	< 4.	9	
Owls Head			0.80	0.023	60	6.	В	
Newtown Creek			2.07	0.0541	155	22.	3	
Red Hook			0.40	< 0.0035	30	< 1.	7	
Jamaica	21.5	12.7	0.67	0.023	50	< 4.	9	
Tallman Island			0.53	< 0.010	40	< 2.	9 2.7	< 0.31
Bowery Bay			1.0	0.015	75	< 6.	12.5	< 0.168
Rockaway	2.5	0.56	0.30	< 0.0028	22.5	< 1.1	3	
Oakwood Beach		_	0.27	< 0.0036	20.0	< 1.6	9	
Port Richmond			0.40	< 0.0030	30	< 1.	4	

Table 5v

ORGANICS/VOLATILES ACTION LEVELS (lbs/day)

November-10

Type II Action Levels

1							_									
	Chloro	form	Tetrachlo	roethylene	1,4-Dichle	orobenzene	Toluene		1,1,1-Tı	richloroethane	Carbon	Tetrachloride	P	henol	1,2,4-Tricl	hlorobenzene
PLANT	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	11				4.6	4.17										
North River	12		10		2.8	< 0.20	2.8		5.0							
Hunts Point	5.0		4.0		6.0	0.28										
26th Ward	2.7				1.4	< 0.08	2.6									
Coney Island	5.6		4.0		2.1	< 0.13										
Owls Head	11		14		2.0	< 0.15							2.5]	5.0	
Newtown Creek	18		21		9.4	< 0.36	18		7.1							
Red Hook*	1.7		3.2		Monitor	< 0.046			Monitor							
Jamaica	3.4				4.0	0.12										
Tallman Island	2.7				2.3	< 0.084										
Bowery Bay	3.8				2.5	< 0.17						_				
Rockaway	1.0		1.2		Monitor	0.041					0.75					
Oakwood Beach	2.0		0.67		1.9	< 0.041	2.6	0.410				-				
Port Richmond	3.7		1.0		1.3	< 0.037										

Note: New limts as per DEP/DEC correspence for VOC limits for WI, NR, OH, RK, OB modified $^{+1}, 1, 1$ -Trichloroethane for RH is reported as mg/L

Table 5w

METALS REPORT ACTION LEVELS/PERMIT LEVELS (lbs/day)

December-2010 Type II Action Levels

	TO	DLUENE	1,4-DICHLOROBENZENE			
PLANT	A/L	Effluent	A/L	Effluent		
Wards Island			4.6	0.53		
North River			2.8	< 0.20		
Hunts Point			6.0	0.37		
26th Ward			1.4	0.092		
Coney Island			2.1	0.15		
Owls Head			2.0	< 0.14		
Newtown Creek			9.4	0.39		
Red Hook			Monitor	< 0.042		
Jamaica			4.0	< 0.13		
Tallman Island			2.3	< 0.077		
Bowery Bay			2.5	0.17		
Rockaway			Monitor	0.028		
Oakwood Beach	2.6	0.13	1.9	< 0.044		
Port Richmond			1.3	< 0.035		

Type II Action Levels

Type II Action Levels														
	CADI	MIUM (Cd)	CHR	OMIUM (Cr)	LE	AD (Pb)	NI	CKEL (Ni)	SILV	ER (Ag)	ZIN	C (Zn)	COPE	PER (Cu)
PLANT	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	0.90	< 0.10	10.0	1.18	27	1.3	22	3.2	4.3	0.19	155	35.9	75	25
North River	1.3	0.074	12	0.65	11	0.80	14	2.6	14	0.88	115	36.3	60	22
Hunts Point	0.90	< 0.059	7.0	0.83	29	0.50	11	4.7	1.8	0.053	78	33	30	8.5
26th Ward	0.49	< 0.022	5.1	0.27	4.0	0.11	5.5	0.94	0.60	0.0063	41	6.5		
Coney Island	2.0	< 0.038	3.8	0.26	8.0	0.20	10.0	1.73	1.2	0.046	40.0	16.0		
Owls Head	0.70	< 0.043	22	0.30	9.0	0.31	19	1.4	4.3	0.10	78	19	38	6.6
Newtown Creek	3.5	0.24	33	16	41	2.4	50	14	35	0.82	225	54.4	160	38.5
Red Hook	0.40	< 0.013	2.0	0.15	3.6	0.089	2.6	0.58	0.81	0.0060	30.0	6.75	6.0	2.4
Jamaica	0.60	0.056	5.8	0.46	10.2	0.368	4.1	1.4	2.4	0.048	75	14		
Tallman Island	0.45	< 0.025	2.7	0.69	3.4	0.10	5.6	1.0	2.7	0.040	56	12	17	3.7
Bowery Bay	1.3	< 0.052	8.0	0.57	11	0.73	39	2.2	6.5	0.14	111	29.6	32	13
Rockaway	0.15	0.023	1.5	0.012	1.5	0.023	1.5	0.42	0.30	0.0028	15	2.9		
Oakwood Beach	0.13	< 0.014	1.3	0.065	1.3	0.025	5.3	1.6	0.50	0.0051	15	4.4	7.0	1.9
Port Richmond	0.21	0.014	2.0	0.30	4.3	0.11	4.4	0.87	1.3	0.033	33	7.2	15	3.2

I CITIIL LIIIILS										
	COP	PER (Cu)	ME	RCURY (Hg)	CYA	NID	E (CN)	TETRAC	HLOROETH	HYLENE
PLANT	P/L	Effluent	P/L	Effluent	P/L	P/L Ef		P/L	Effl	uent
Wards Island			1.8	< 0.046	Monitor	<	12.0	37	<	0.32
North River			1.1	0.068	85	٧	8.0			
Hunts Point			1.3	< 0.033	100	٧	7.34			
26th Ward	11	15	0.57	0.014	42.5	٧	2.80	0.71	<	0.072
Coney Island	14.1	7.24	0.73	< 0.011	55	٧	4.7			
Owls Head			0.80	< 0.012	60	٧	5.3			
Newtown Creek			2.07	0.0758	155	٧	13.6			
Red Hook			0.40	< 0.0089	30	٧	1.6			
Jamaica	21.5	7.78	0.67	0.013	50	٧	4.8	5.8	<	0.13
Tallman Island			0.53	< 0.0074	40	٧	3.1	2.7		0.20
Bowery Bay			1.0	< 0.028	75	٧	6.5	12.5	<	0.166
Rockaway	2.5	1.4	0.30	0.0028	22.5	٧	1.00			
Oakwood Beach		_	0.27	0.0048	20.0	<	1.70			
Port Richmond			0.40	< 0.0035	30	<	1.4			

Table 5x

ORGANICS/VOLATILES ACTION LEVELS (lbs/day)

December-10

Type II Action Levels

	Chloro	form	Tetrachic	proethylene	1,4-Dichl	orobenzene	To	luene	1,1,1-T	richlor	roethane	Carbon	Tetrachloride	P	henol	1,2,4-Trich	lorobenzene
PLANT	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent	A/L		Effluent	A/L	Effluent	A/L	Effluent	A/L	Effluent
Wards Island	11	4.4			4.6	0.53											
North River	12	2.5	10	< 0.20	2.8	< 0.20	2.8	< 0.17	5.0	<	0.16						
Hunts Point	5.0	2.0	4.0	< 0.19	6.0	0.37											
26th Ward	2.7	0.51			1.4	0.092	2.6	< 0.062									
Coney Island	5.6	0.93	4.0	< 0.13	2.1	0.15											
Owls Head	11	1.5	14	< 0.14	2.0	< 0.14								2.5	< 0.59	5.0	< 1.3
Newtown Creek	18	4.3	21	< 0.35	9.4	0.39	18	0.62	7.1	<	0.29						
Red Hook*	1.7	0.39	3.2	< 0.042	Monitor	< 0.042			Monitor	<	0.00017						
Jamaica	3.4	0.77			4.0	< 0.13											
Tallman Island	2.7	0.53			2.3	< 0.077											
Bowery Bay	3.8	1.6			2.5	0.17											
Rockaway	1.0	0.13	1.2	< 0.026	Monitor	0.028						0.75	< 0.025				
Oakwood Beach	2.0	0.42	0.67	< 0.044	1.9	< 0.044	2.6	0.13									
Port Richmond	3.7	0.40	1.0	< 0.035	1.3	< 0.035											

Note: New limts as per DEP/DEC correspence for VOC limits for WI, NR, OH, RK, OB modified $^{+}$ 1,1,1-Trichloroethane for RH is reported as mg/L

Table 5y

High Intensity Monitoring at NYC Wastewater Treatment Plants in 2010

		% ABOVE ACTION	
MONTH	POTW	LEVELS	POLLUTANT
January	Owls Head	108%	Zinc
February	Wards Island	2310%	Cadmium*

High intensity monitoring is triggered if any metal exceeds their respective action level:

- 1. for four of six consecutive samples, or
- 2. for two of six consecutive samples by 20% or more, or
- 3. for any 1 sample by 50% or more.

High intensity monitoring is triggered if any VOC exceeds their respective action level.

High intensity monitoring requires taking samples on 3 consecutive days, and submitting the results in both concentration and mass, "no later than the end of the third month following the month when any of the criteria listed above was met."

Note: In 2010, all conducted High Intensity Monitoring results were in compliance with the action levels.

^{*} The excursion was found to be due to sampling equipment contamination. One of the automatic sampling equipment parts was found to be corroded and leaching cadmium into one of the sampling bottles. The equipment has since been modified to avoid similar problems in the future.

Table 6 NEW YORK CITY INDUSTRIAL PRETREATMENT PROGRAM List of SIUs Issued Permits in 2010 12/31/2010

<u>DA</u>	<u>P-NO</u>	NAME	EFFECTIVE DATE
26	569	S & N CHEMICAL CO., INC.	12/22/2010
26	2757	HALMARK ARCHITECTURAL FINISHING CORP.	6/14/2010
26	3072	GLEEM INDUSTRIES INC.	12/27/2010
26	3093	L & M OPTICAL DISC LLC	7/17/2010
26	3145	NYCDEP, BUREAU OF WASTEWATER TREATMENT,	7/30/2010
BB	5	PROGRAMATIC PLATERS, INC.	2/19/2010
BB	615	AMERICAN WAX COMPANY, INC.	11/11/2010
BB	632	THE METRO GROUP, INC.	10/5/2010
BB	641	MODERN ART FOUNDRY, INC.	1/25/2010
BB	2682	COCA-COLA ENTERPRISES INC.	5/12/2010
BB	2826	KERNS MANUFACTURING CORP.	4/12/2010
BB	3081	ALLSTAR CASTING CORP.	6/12/2010
BB	3203	G.P.I. DIAMOND, CORP.	6/12/2010
HP	12	VICTORIA PLATING CO., INC.	5/4/2010
HP	3139	PLASTODENT, INC.	6/23/2010
JA	987	CHEMCLEAN CORPORATION	11/2/2010
JA	2760	BOUNDARY FENCE & RAILING SYSTEMS, INC.	5/17/2010
NC	48	WILCO FINISHING CORPORATION	11/15/2010
NC	626	JOS. H. LOWENSTEIN AND SONS, INC.	12/12/2010
NC	635	M. SCHNEIDER SOAP AND CHEMICAL COMPANY, INC.	12/22/2010
NC	1402	WING GONG LAUNDRY, INC.	9/29/2010
NC	2355A	REGAL EMBLEM CO., INC.	4/26/2010
NC	2960	HONORA INDUSTRIES, INC.	11/22/2010
NC	3029	ARCHITECTURAL COATINGS, INC.	5/4/2010
NC	3044	589 JEWELRY DESIGN, INC.	8/18/2010
NC	3045	ANTONINO GAGLIARDO NICOLO D'ANGELO	7/16/2010
NC	3122	TASLEEM A. SHERWANI	4/29/2010
NC	3215	G CREATIONS INC.	12/13/2010
NR	144	KARBRA COMPANY	11/30/2010
NR	2009F	M & A JEWELRY POLISHING CORP.	11/30/2010
NR	2020	GEMKRAFT JEWELERS.COM CORP.	4/23/2010

Table 6 NEW YORK CITY INDUSTRIAL PRETREATMENT PROGRAM List of SIUs Issued Permits in 2010 12/31/2010

<u>DA</u>	<u>P-NO</u>	<u>NAME</u>	EFFECTIVE DATE
NR	2026B	ABRAHAM BARBER	4/21/2010
NR	2031	L.A.B JEWELRY CO., INC.	6/2/2010
NR	2074B	FOUR STAR JEWELRY, INC.	4/25/2010
NR	2505	FAM CREATIONS, INC.	10/4/2010
NR	2512	BRILLIANT JEWELERS/MJJ INC.	8/25/2010
NR	2516	JUPITER JEWELRY CO., INC.	11/30/2010
NR	2748	DIRAN AYKAZ D/B/A EUROPEAN JEWELRY POLISHERS	8/23/2010
NR	2797	YACOUBIAN BROTHERS, INC.	6/7/2010
NR	2802	TIMELESS DESIGNS BY JACOB BRYAN, LTD.	11/22/2010
NR	2954	ALMOD DIAMONDS LTD.	7/12/2010
NR	2964	JEAN & ALEX JEWELRY MANUFACTURING &	4/19/2010
NR	3035	AVON PRODUCTS, INC.	7/2/2010
NR	3042	BEA WOO LEE D/B/A LEE JEWELRY TRADING	3/21/2010
NR	3083	PREMIERE POLISHING & CONTRACTING USA,INC.	12/8/2010
NR	3092	MILANO FINE JEWELRY, INC.	2/19/2010
NR	3101	BIG EYE CORP.	10/4/2010
NR	3109	J.S.A. JEWELRY, INC.	7/17/2010
NR	3137	AP GOLDMAN JEWELERS, INC.	5/30/2010
NR	3154	EUGENE BIRO CORP	8/13/2010
NR	3192	48 JEWELRY CORP.	6/29/2010
NR	3206	G & I ARTISANS LLC.	10/8/2010
NR	3209	EXCLUSIVE JEWELRY CASTING & CONTRACTING, INC.	9/28/2010
NR	3212	C & P POLISHING	10/8/2010
OB	3149	NYCDEP, BUREAU OF ENGINEERING DESIGN & CONSTRUCTI	12/13/2010
ОН	2863	BRET JEWELRY MFG.CORP. DBA	12/14/2010
ОН	3009	GLISSEN CHEMICAL CO., INC.	12/17/2010
PR	2305	TECH PRODUCTS, INC.	7/12/2010
PR	2828	VISY PAPER (NY), INC.	9/17/2010
RH	1146	ULANO CORPORATION	4/5/2010
RH	3000	PETROLEUM TANK CLEANERS LTD.	1/2/2011
TI	2486	COR-RBD LLC	9/30/2010

NEW YORK CITY INDUSTRIAL PRETREATMENT PROGRAM Table 6 12/31/2010 **List of SIUs Issued Permits in 2010** EFFECTIVE DATE <u>DA</u> P-NO <u>NAME</u> ΤI 2599 PEPSI-COLA BOTTLING COMPANY OF NY, INC. 4/16/2010 WI 540X PERRIGO NEW YORK, INC. 12/4/2010 WI 540Y PERRIGO NEW YORK, INC. 12/4/2010 WI 3197 CONSOLIDATED EDISON COMPANY OF NY, INC. 6/8/2010

Table 7. SIU P-Cases Without Permits at the End of 2010

P-Case	Permit Status 2010
3213	Facility not yet built

Table 8 NEW YORK CITY INDUSTRIAL PRETREATMENT PROGRAM 12/31/2010 List of Non-SIUs Issued Directives in 2010

<u>DA</u>	P-NO	<u>NAME</u>	EFFECTIVE DATE
26	3218	MAC ARTSPRAY FINISHING CORP.	12/27/2010
BB	2381	JACMEL JEWELRY, INC.	7/30/2010
BB	2591	SO ACCURATE GROUP INC.	12/14/2010
HP	568	TWI-LAQ INDUSTRIES, INC.	12/17/2010
NC	1346	FLUSHMETAL PARTITION, LLC	9/27/2010
NC	2948	FINE JEWELRY ASSOCIATES CORP.	12/22/2010
NC	3199	WASTE MANAGEMENT OF NEW YORK, L.L.C.	12/20/2010
NC	3207	COOPER TANK & WELDING CORP.	12/7/2010
NR	2435A	BRANDT & OPIS, INC.	1/7/2010
NR	3214	CORE JEWELRY INC.	7/30/2010
ОН	1419	BATTERY PARK INDUSTRIES CORP.	12/17/2010
TI	2598	LOVE UNLIMITED NY INC.	12/17/2010
WI	610	S&S SOAP COMPANY, INC.	10/27/2010

Table 9a. Estimated Average Contributions of Significant Industrial Users (12/31/2010)*

Drainage Area: 26

P-No	Foot- note		Ag (lb/day)	As (lb/day)	Cd (lb/day)	Cr (lb/day)	Cu (lb/day)	Hg ~ (lb/day)	Ni (lb/day)	Pb (lb/day)	Zn (lb/day)	Mo (lb/day)
569		1,331	5.55E-05		7.34E-05	4.11E-04	3.62E-03	3.36E-07	9.31E-04	1.09E-03	2.06E-02	1.11E-05
2680		136,925	4.20E-03		8.86E-04	4.45E-03	3.54E-01	6.06E-05	8.02E-03	1.43E-02	3.66E-01	0.005766
2757		3,512	1.48E-04		9.66E-05	7.22E-03	4.12E-04	7.21E-07	6.45E-04	2.14E-04	1.26E-03	0.000921
3072		1,391	5.80E-05		1.16E-05	3.87E-05	8.83E-04	2.90E-07	4.44E-05	5.80E-05	1.89E-03	5.80E-05
3093		1,451	1.63E-04		8.73E-05	1.48E-04	1.10E-03	8.76E-07	1.88E-03	9.16E-05	1.93E-03	4.37E-05
3145		21,976	9.16E-04		9.04E-04	1.14E-03	1.82E-03	5.68E-07	2.43E-03	9.16E-04	6.21E-03	0.000937
Total		166,586	0.0055		0.0021	0.0134	0.3621	6E-05	0.014	0.0166	0.3976	0.00774

^{*} Includes the contributions from establishments that were SIUs as of the end of 2010, except for establishments that have suspended operations, gone out of business, or ceased process wastewater discharge.

 $[\]sim$ To prevent an overestimate, only data from samples analyzed by DEP is included, since DEP has a lower minimum detection limit.

[@] Establishment has suspended operations, gone out of business, or moved out of NYC, and will be made a Z-case.

[#] Establishment shares sampling location with P-3081.

[!] Establishment has not commenced operational discharge.

[&]amp; Establishment did not discharge any process wastewater duing 2010.

Table 9a. Estimated Average Contributions of Significant Industrial Users (12/31/2010)*

Drainage Area: BB

P-No	Foot- note	Avg Flow (GPD)	0					0	Ni (lb/day)		Zn (lb/day)	Mo (lb/day)
2		4,069	2.01E-03		5.65E-04	7.66E-04	2.93E-02	3.57E-06	1.82E-02	9.11E-04	9.78E-03	0.00063
5		4,619	3.94E-04		2.86E-04	5.18E-03	5.44E-03	1.60E-06	1.14E-02	4.54E-04	9.73E-03	0.000535
56		4,375	7.30E-04		6.59E-04	1.58E-03	1.39E-02	2.17E-06	1.22E-02	1.33E-03	5.43E-03	0.000990
57Y		9,263	9.42E-04		9.67E-04	8.53E-02	2.70E-02	1.87E-06	2.74E-02	1.99E-03	1.20E-02	0.004626
108Y		7,954	1.43E-03	3.01E-05	1.23E-03	1.55E-02	9.21E-03	7.19E-06	2.98E-02	1.48E-03	1.31E-02	0.001515
615		6,115	9.39E-04		4.62E-04	4.61E-04	1.81E-03	8.26E-07	4.87E-04	7.53E-04	7.97E-02	0.001067
632		508	1.09E-04		9.75E-05	2.06E-04	6.52E-04	8.70E-07	1.97E-04	1.50E-04	1.85E-02	0.032121
641		356	1.20E-04		1.19E-04	1.20E-04	9.30E-04	1.01E-07	2.40E-04	1.08E-04	1.02E-03	0.000133
1403		45,514	4.29E-03		2.85E-03	3.42E-03	1.17E-02	1.60E-05	5.56E-03	3.66E-03	2.60E-02	0.004293
2530		38	1.57E-05		5.45E-06	2.01E-05	3.46E-04		2.52E-05	5.58E-06	5.87E-05	
2603		16,664	7.23E-03	3.08E-05	7.15E-05	2.07E-04	2.02E-03	3.60E-06	1.85E-04	7.04E-04	6.00E-03	0.001026
2682		186,829	1.30E-02		9.54E-03	2.18E-02	5.32E-01	1.12E-04	2.50E-02	1.61E-02	5.41E-01	0.013236
2826		7,960	1.01E-03		5.47E-04	2.29E-03	4.50E-03	4.21E-06	2.34E-02	1.33E-03	7.20E-03	0.001025
2894		184	1.40E-04		2.91E-05	3.67E-05	5.53E-04		8.84E-05	4.47E-05	2.46E-04	6.26E-05
2941		773	3.70E-04		5.97E-05	8.57E-05	2.97E-03		1.75E-04	9.88E-05	1.97E-03	
2990		57	1.51E-04		4.48E-06	2.82E-05	6.20E-04		6.12E-05	5.94E-06	1.53E-04	
3069		59,589	1.88E-03		7.53E-04	1.14E-02	1.22E-01	9.26E-05	8.69E-03	2.83E-02	9.93E-02	0.007087
3081		91	8.82E-05		7.57E-06	3.02E-05	3.29E-04		4.43E-05	9.23E-06	1.18E-04	
3140		53,237	3.42E-03		1.01E-03	3.14E-03	1.92E-02	3.17E-05	3.20E-03	1.60E-03	5.54E-02	0.012833
3141		1,340	3.10E-05		6.27E-06	1.54E-05	4.89E-04	5.21E-07	1.59E-05	3.85E-05	4.48E-04	2.67E-05
3185		32	4.15E-05		4.31E-06	5.19E-06	8.41E-05		1.16E-05	4.68E-06	2.91E-05	
3203	#											
Total		409,566	0.0384	6E-05	0.0193	0.1515	0.7858	0.0003	0.1663	0.0590	0.8874	0.08121

^{*} Includes the contributions from establishments that were SIUs as of the end of 2010, except for establishments that have suspended operations, gone out of business, or ceased process wastewater discharge.

 $[\]sim$ To prevent an overestimate, only data from samples analyzed by DEP is included, since DEP has a lower minimum detection limit.

[@] Establishment has suspended operations, gone out of business, or moved out of NYC, and will be made a Z-case.

[#] Establishment shares sampling location with P-3081.

[!] Establishment has not commenced operational discharge.

[&]amp; Establishment did not discharge any process wastewater duing 2010.

Table 9a. Estimated Average Contributions of Significant Industrial Users (12/31/2010)*

Drainage Area: CI

P-No	Foot- note	Avg Flow (GPD)	Ag (lb/day)	As (lb/day)		Cr (lb/day)	Cu (lb/day)	Hg ~ (lb/day)	Ni (lb/day)	Pb (lb/day)	Zn (lb/day)	Mo (lb/day)
190		2,086	2.64E-04		1.75E-04	1.31E-02	1.86E-02	5.63E-07	1.05E-02	1.14E-03	6.80E-03	0.000938
2601		33,606	5.30E-04		2.67E-04	2.61E-04	1.27E-02	7.87E-06	2.73E-04	1.04E-03	2.26E-02	0.001998
Total		35,692	0.0008		0.0004	0.0133	0.0313	8E-06	0.0108	0.0022	0.0294	0.00294

^{*} Includes the contributions from establishments that were SIUs as of the end of 2010, except for establishments that have suspended operations, gone out of business, or ceased process wastewater discharge.

 $[\]sim$ To prevent an overestimate, only data from samples analyzed by DEP is included, since DEP has a lower minimum detection limit.

[@] Establishment has suspended operations, gone out of business, or moved out of NYC, and will be made a Z-case.

[#] Establishment shares sampling location with P-3081.

[!] Establishment has not commenced operational discharge.

[&]amp; Establishment did not discharge any process wastewater duing 2010.

Table 9a. Estimated Average Contributions of Significant Industrial Users (12/31/2010)*

Drainage Area: HP

P-No	Foot- note	Avg Flow (GPD)	Ag (lb/day)	As (lb/day)	Cd (lb/day)	Cr (lb/day)	Cu (lb/day)	Hg ~ (lb/day)	Ni (lb/day)	Pb (lb/day)	Zn (lb/day)	Mo (lb/day)
12		7,980	5.53E-04		4.75E-04	1.18E-01	3.82E-02	2.03E-06	1.39E+00	1.73E-03	1.92E-02	0.001628
110		6,836	1.02E-03		1.02E-03	1.80E-03	3.12E-03	1.48E-04	8.76E-03	1.90E-03	2.57E-02	0.002593
2830		90,336	2.02E-03		1.41E-02	1.26E-02	8.35E-02	9.78E-02	9.64E-02	2.84E-02	2.15E-01	0.01517
3139	@											
3179		32,279	1.35E-03	1.43E-03	8.33E-04	1.78E-03	2.76E-03	3.92E-05	3.66E-03	1.35E-03	7.51E-03	0.00136
Total		137,431	0.0049	0.0014	0.0164	0.1345	0.1276	0.0980	1.5011	0.0334	0.2670	0.02075

^{*} Includes the contributions from establishments that were SIUs as of the end of 2010, except for establishments that have suspended operations, gone out of business, or ceased process wastewater discharge.

 $[\]sim$ To prevent an overestimate, only data from samples analyzed by DEP is included, since DEP has a lower minimum detection limit.

[@] Establishment has suspended operations, gone out of business, or moved out of NYC, and will be made a Z-case.

[#] Establishment shares sampling location with P-3081.

[!] Establishment has not commenced operational discharge.

[&]amp; Establishment did not discharge any process wastewater duing 2010.

Table 9a. Estimated Average Contributions of Significant Industrial Users (12/31/2010)*

Drainage Area: JA

P-No	Foot- note	Avg Flow (GPD)	Ag (lb/day)	As (lb/day)	Cd (lb/day)	Cr (lb/day)	Cu (lb/day)	Hg ~ (lb/day)	Ni (lb/day)	Pb (lb/day)	Zn (lb/day)	Mo (lb/day)
85		258	3.70E-05		6.93E-05	4.15E-05	2.30E-04	3.64E-08	1.40E-04	7.41E-05	1.98E-04	9.19E-05
556		11,935	1.63E-03		1.38E-03	1.40E-03	1.37E-02	1.58E-05	1.41E-03	2.84E-03	7.76E-03	0.004496
987		1,800			7.51E-05	3.00E-04	8.01E-04		1.50E-04	1.12E-03	6.26E-04	
2760		1,879	2.33E-04		2.22E-04	2.23E-04	5.25E-04	4.54E-07	2.40E-04	4.56E-04	3.58E-03	0.00965
2812		55,329	1.42E-02		1.91E-02	6.39E-02	4.29E-02	5.76E-05	6.39E-02	3.29E-02	2.42E-01	0.173557
3213	!											
Total		71,200	0.0161		0.0209	0.0658	0.0582	7E-05	0.0658	0.0374	0.2543	0.18779

^{*} Includes the contributions from establishments that were SIUs as of the end of 2010, except for establishments that have suspended operations, gone out of business, or ceased process wastewater discharge.

[~] To prevent an overestimate, only data from samples analyzed by DEP is included, since DEP has a lower minimum detection limit.

[@] Establishment has suspended operations, gone out of business, or moved out of NYC, and will be made a Z-case.

[#] Establishment shares sampling location with P-3081.

[!] Establishment has not commenced operational discharge.

[&]amp; Establishment did not discharge any process wastewater duing 2010.

Table 9a. Estimated Average Contributions of Significant Industrial Users (12/31/2010)*

Drainage Area: NC

P-No	Foot- note	Avg Flow (GPD)	Ag (lb/day)	As (lb/day)	Cd (lb/day)	Cr (lb/day)	Cu (lb/day)	Hg ~ (lb/day)	Ni (lb/day)	Pb (lb/day)	Zn (lb/day)	Mo (lb/day)
48		5,961	3.43E-04		3.01E-04	1.54E-02	1.75E-02	3.68E-06	6.43E-02	6.88E-03	2.52E-02	0.000539
49		7,294	9.99E-04		9.73E-04	2.40E-02	5.92E-03	2.78E-06	8.87E-03	6.57E-03	2.21E-03	0.002183
80		20,088	2.17E-03		2.02E-03	2.04E-01	3.83E-02	5.24E-06	7.03E-02	4.16E-03	2.69E-02	0.008625
299	&											
300		2,936	4.19E-04		8.25E-04	4.38E-04	2.44E-03		8.42E-04	4.25E-04	6.97E-03	
626		14,436	8.23E-04		7.48E-04	1.58E-02	1.92E-02	5.81E-06	2.07E-03	1.28E-03	4.32E-02	0.000815
635		7,031	2.93E-04		7.56E-05	1.49E-03	5.77E-03	9.91E-06	1.26E-03	1.17E-02	8.62E-02	0.000502
1402		20,201	5.14E-04		1.24E-04	6.77E-04	1.73E-02	1.59E-05	4.53E-04	1.32E-03	1.75E-02	0.000653
2052		83	2.77E-05		4.03E-06	4.27E-06	7.63E-04		1.41E-05	9.54E-06	1.73E-04	
2057I		7	5.06E-07		3.73E-07	4.48E-07	1.87E-06		4.44E-07	8.56E-07	1.65E-06	
2355A		16	1.22E-05		4.58E-07	1.17E-05	1.15E-04		4.65E-06	1.89E-05	9.23E-06	3.75E-06
2689		1,173	1.47E-05		1.47E-05	1.46E-04	2.75E-03	1.68E-06	4.50E-04	1.05E-04	8.88E-03	
2764		42	1.71E-05		6.33E-06	6.96E-06	1.53E-05	1.72E-06	1.26E-05	7.67E-06	2.42E-05	9.54E-06
2849		59	3.60E-05		1.78E-06	1.17E-05	3.80E-04		1.43E-05	3.25E-06	1.76E-04	
2850		25	5.65E-06		3.37E-06	4.19E-06	5.98E-05		1.20E-05	1.95E-05	1.85E-04	
2884		11	5.37E-06		6.22E-07	5.09E-06	7.22E-05		6.86E-06	3.45E-06	5.92E-05	
2906		88	8.44E-05		3.97E-06	3.52E-05	3.36E-04		2.81E-05	1.31E-05	1.13E-03	1.02E-06
2960		88	5.43E-05		1.08E-06	9.33E-06	1.50E-04		9.04E-06	4.15E-06	4.52E-04	
2984		2,867	3.72E-04		3.28E-04	7.48E-03	8.12E-03	1.21E-06	3.69E-03	7.80E-04	5.86E-03	0.000881
3005		93	3.44E-05		3.31E-06	9.83E-06	2.35E-04		4.69E-05	8.90E-06	6.07E-05	
3029		908	3.80E-05		3.12E-05	6.00E-04	1.61E-04	7.80E-08	3.21E-03	6.86E-05	3.35E-03	7.66E-05
3033		24	2.46E-05		5.30E-07	2.02E-05	8.05E-05		1.13E-05	1.27E-06	2.88E-05	
3044		19	1.25E-05		1.26E-06	5.36E-06	6.75E-05		3.79E-06	2.25E-06	5.31E-05	
3045		17	1.80E-05		1.01E-06	1.46E-06	4.81E-05		7.07E-06	2.32E-06	5.22E-05	2.00E-06
3116		48	1.24E-05		2.64E-06	5.08E-06	1.36E-04		2.62E-05	3.38E-04	3.68E-05	
3117		20	2.01E-05		1.41E-06	1.06E-05	1.55E-04		1.45E-05	2.88E-06	7.41E-05	
3122	@											
3127		34,887	1.50E-01		1.50E-02	4.98E-02	6.65E-02	1.21E-05	4.98E-02	2.51E-02	3.05E-02	0.124505
3130		6	2.35E-06		6.26E-08	8.84E-08	1.27E-05		1.03E-07	8.41E-06	3.39E-06	
3146		1,870	3.45E-03		5.10E-05	6.17E-05	8.78E-04	4.88E-07	1.04E-04	8.70E-05	1.57E-03	6.35E-05
3156		418	5.85E-04		4.10E-06	1.73E-05	6.75E-04		4.56E-05	2.56E-05	5.08E-04	
3195		5	9.55E-07		5.13E-07	5.57E-07	1.29E-05		7.45E-07	1.25E-06	4.36E-06	

^{*} Includes the contributions from establishments that were SIUs as of the end of 2010, except for establishments that have suspended operations, gone out of business, or ceased process wastewater discharge.

 $[\]sim$ To prevent an overestimate, only data from samples analyzed by DEP is included, since DEP has a lower minimum detection limit.

[@] Establishment has suspended operations, gone out of business, or moved out of NYC, and will be made a Z-case.

[#] Establishment shares sampling location with P-3081.

[!] Establishment has not commenced operational discharge.

[&]amp; Establishment did not discharge any process wastewater duing 2010.

Table 9a. Estimated Average Contributions of Significant Industrial Users (12/31/2010)*

Drainage Area: NC

P-No	Foot- note	Avg Flow (GPD)	Ag (lb/day)	Cd (lb/day)	Cr (lb/day)	Cu (lb/day)	Hg ~ (lb/day)	Ni (lb/day)	Pb (lb/day)	Zn (lb/day)	Mo (lb/day)
3215		100	2.26E-05	1.08E-05	1.80E-05	2.09E-04		2.95E-05	1.25E-05	9.19E-05	1.56E-05
Total		120,821	0.1604	0.0205	0.3204	0.1884	6E-05	0.2056	0.059	0.2614	0.13887

^{*} Includes the contributions from establishments that were SIUs as of the end of 2010, except for establishments that have suspended operations, gone out of business, or ceased process wastewater discharge.

[~] To prevent an overestimate, only data from samples analyzed by DEP is included, since DEP has a lower minimum detection limit.

[@] Establishment has suspended operations, gone out of business, or moved out of NYC, and will be made a Z-case.

[#] Establishment shares sampling location with P-3081.

[!] Establishment has not commenced operational discharge.

[&]amp; Establishment did not discharge any process wastewater duing 2010.

Table 9a. Estimated Average Contributions of Significant Industrial Users (12/31/2010)*

Drainage Area: NR

Drai	mage Ai	rea: NK										
P-No	Foot- note	Avg Flow (GPD)	Ag (lb/day)	As (lb/day)	Cd (lb/day)	Cr (lb/day)	Cu (lb/day)	Hg ~ (lb/day)	Ni (lb/day)	Pb (lb/day)	Zn (lb/day)	Mo (lb/day)
35A		1,473	8.21E-04		2.91E-04	3.70E-04	5.54E-03		3.02E-03	3.05E-04	9.70E-04	
38		2,896	4.30E-04		4.13E-04	4.30E-04	5.24E-03	2.97E-06	4.26E-03	4.67E-04	1.34E-02	0.000492
124		3,100	4.90E-04		4.74E-04	4.74E-04	8.84E-03		7.33E-03	1.59E-03	2.70E-03	
125		3,250	1.19E-04		7.97E-05	7.95E-05	5.04E-03	6.42E-07	1.27E-03	2.32E-04	3.60E-03	0.000124
144		2,147	1.21E-03		3.90E-04	3.92E-04	8.98E-03		3.84E-03	3.95E-04	3.18E-03	
183		20	2.93E-06		8.73E-06	3.57E-06	7.95E-05		2.24E-05	1.12E-05	2.79E-05	
2006Н		183	1.21E-05		9.62E-07	6.89E-05	1.31E-03		7.87E-05	1.51E-05	3.43E-04	1.50E-06
2006I	&											
2009C		164	2.25E-04		1.09E-05	9.66E-05	1.84E-03		3.53E-04	1.64E-05	6.39E-04	
2009F		36	2.29E-05		1.58E-06	3.49E-06	1.64E-04		2.41E-05	1.22E-05	1.04E-04	
2011D		50	1.83E-05		3.68E-06	2.22E-05	1.06E-04		2.00E-05	4.66E-06	3.23E-05	
2018		38	1.71E-05		1.58E-06	1.63E-05	9.01E-05		1.14E-05	4.18E-06	3.64E-05	
2020		13	6.40E-06		3.72E-07	6.54E-06	8.29E-05		1.63E-05	1.33E-06	7.99E-05	
2023		90	6.40E-05		6.59E-06	3.50E-05	1.30E-04		1.41E-05	7.94E-06	4.10E-05	
2026B		34	3.80E-06		2.14E-06	5.51E-06	5.91E-05		4.18E-06	4.67E-06	2.77E-05	
2031		12	7.76E-06		1.37E-07	2.92E-06	5.89E-05		8.88E-06	1.20E-06	3.61E-05	1.00E-07
2034F		27	1.93E-05		1.24E-06	7.14E-06	5.03E-05		7.81E-06	3.20E-06	1.53E-05	
2034I		27	9.23E-06		1.32E-06	1.41E-06	4.73E-05		3.36E-06	3.23E-06	2.42E-05	
2057A		167	4.19E-05		7.78E-06	1.10E-05	5.37E-04		3.34E-05	1.38E-05	2.34E-04	
2057B		25	1.82E-05		5.21E-06	7.82E-06	5.11E-05		1.04E-05	5.21E-06	3.44E-05	
2058C		127	2.09E-05		6.29E-06	3.71E-05	1.51E-04		3.11E-05	9.13E-06	9.64E-05	
2058N		181	8.86E-05		2.10E-05	2.65E-04	8.81E-04		3.63E-04	2.27E-05	5.17E-04	
2071		37	3.28E-06		2.37E-06	2.29E-06	2.89E-05		5.97E-06	3.16E-06	7.11E-05	
2074B		37	1.93E-05		1.10E-06	6.31E-06	1.20E-04		3.79E-05	5.27E-06	8.80E-05	
2080F		623	4.63E-04		8.70E-05	1.22E-04	1.39E-03		2.46E-04	9.84E-05	7.80E-04	
2083A		1,160	9.38E-04		2.10E-04	1.05E-03	1.03E-02		1.17E-03	2.18E-04	4.41E-03	
2086B		52	2.21E-05		3.59E-06	3.99E-06	1.12E-04		1.47E-05	4.67E-06	4.64E-05	
2096		43	5.11E-05		2.39E-06	4.85E-06	2.74E-04		2.75E-05	3.67E-06	6.48E-05	
2347		19	3.51E-05		1.19E-06	1.53E-06	9.02E-05		1.07E-05	2.56E-06	2.80E-05	
2434		6	1.31E-05		5.26E-07	1.12E-06	6.62E-05		1.58E-06	1.09E-06	1.39E-05	
2440A		108	5.21E-05		6.68E-06	6.73E-06	2.70E-04		5.96E-05	1.08E-05	1.95E-04	
2448		233	1.02E-04		1.53E-05	1.79E-05	4.56E-04		6.71E-05	2.52E-05	3.07E-04	

^{*} Includes the contributions from establishments that were SIUs as of the end of 2010, except for establishments that have suspended operations, gone out of business, or ceased process wastewater discharge.

 $[\]sim$ To prevent an overestimate, only data from samples analyzed by DEP is included, since DEP has a lower minimum detection limit.

[@] Establishment has suspended operations, gone out of business, or moved out of NYC, and will be made a Z-case.

[#] Establishment shares sampling location with P-3081.

[!] Establishment has not commenced operational discharge.

[&]amp; Establishment did not discharge any process wastewater duing 2010.

Table 9a. Estimated Average Contributions of Significant Industrial Users (12/31/2010)*

Drainage Area: NR

P-No	Foot- note	Avg Flow (GPD)	Ag (lb/day)	As (lb/day)	Cd (lb/day)	Cr (lb/day)	Cu (lb/day)	Hg ~ (lb/day)	Ni (lb/day)	Pb (lb/day)	Zn (lb/day)	Mo (lb/day)
2505		181	8.09E-05		5.20E-06	1.07E-05	6.42E-04		1.41E-04	1.46E-05	2.70E-04	
2509A	&											
2509C		133	1.86E-05		7.68E-06	2.40E-05	4.50E-04		6.57E-05	1.15E-05	3.67E-04	
2512		37	2.93E-05		7.33E-06	2.45E-05	1.10E-04		2.82E-05	1.28E-05	4.36E-05	
2516		109	3.66E-05		1.18E-05	4.50E-05	4.50E-04		8.79E-05	1.26E-05	2.35E-04	
2519		43	1.09E-04		8.01E-06	3.62E-06	2.54E-04		9.94E-06	3.86E-06	8.01E-05	
2527		108	1.79E-05		4.66E-06	1.68E-05	7.17E-04		3.04E-05	1.17E-05	5.18E-04	
2579		26	1.59E-05		3.42E-06	9.46E-05	2.44E-04	2.74E-08	8.77E-05	3.87E-06	8.86E-05	
2748		121	4.76E-05		6.72E-06	8.23E-06	1.88E-04		2.93E-05	9.67E-06	1.84E-04	
2774		6,957	2.90E-04		2.72E-04	2.72E-04	1.23E-03	1.45E-06	7.70E-04	3.36E-04	9.38E-03	0.000464
2797		31	2.31E-05		2.42E-06	6.15E-06	5.24E-04		1.30E-05	1.49E-05	7.68E-05	
2802		75	5.89E-05		3.93E-06	3.08E-05	4.53E-04		5.57E-05	1.52E-05	3.17E-04	
2817		75	1.51E-05		5.53E-06	8.14E-06	2.86E-04		3.95E-05	6.92E-06	1.04E-04	
2860		57	3.48E-05		2.48E-06	6.23E-06	1.83E-04		1.10E-05	5.52E-06	3.61E-05	
2865		56	4.45E-05		5.41E-06	1.04E-05	1.19E-04		1.84E-05	6.56E-06	6.41E-05	
2883		120	9.54E-06		9.45E-06	9.45E-06	9.31E-05		1.02E-05	2.13E-05	1.48E-05	
2886		197	8.78E-05		1.13E-05	3.06E-05	8.14E-04		1.28E-04	2.53E-05	2.31E-04	
2908		49	2.29E-05		4.99E-06	3.59E-06	1.53E-04		2.11E-05	8.77E-06	2.24E-04	
2936		58	6.86E-06		4.07E-06	6.01E-06	8.45E-05		2.19E-05	5.12E-06	1.13E-04	
2947		78	6.13E-05		8.98E-06	1.65E-05	3.98E-04		4.76E-05	1.01E-05	1.19E-04	
2954		221	2.34E-04		1.36E-05	3.25E-05	1.71E-03		1.20E-04	2.03E-05	4.32E-04	
2955		8	1.33E-05		1.09E-06	3.49E-06	2.98E-05		4.12E-06	1.18E-06	1.23E-05	
2957		17	1.69E-05		8.30E-07	1.71E-06	5.90E-05		1.97E-06	4.05E-05	3.99E-05	
2961		137	1.09E-05		8.37E-06	8.39E-06	4.43E-05		1.67E-05	1.12E-05	4.97E-05	
2963		38	3.30E-05		2.91E-06	2.23E-05	1.53E-04		3.13E-05	7.25E-06	5.21E-05	
2964		174	4.35E-05		8.01E-06	4.32E-05	2.95E-04		5.88E-05	1.89E-05	1.89E-04	
2967		288	5.68E-05		1.36E-05	5.64E-05	2.44E-03		3.35E-04	3.21E-05	5.52E-04	
2975		55	3.09E-05		2.06E-06	3.88E-06	6.79E-05		4.15E-06	5.19E-06	3.72E-05	
3003		1	3.24E-07		3.49E-08	8.13E-08	6.95E-06		1.34E-07	3.70E-07	1.70E-06	
3007		73	2.52E-05		6.15E-06	8.13E-06	2.43E-04		1.61E-05	1.09E-05	4.80E-04	
3030		9,923	3.07E-02		2.60E-03	2.69E-03	1.46E-02	2.22E-06	2.85E-03	4.43E-03	6.24E-03	0.006772
3031		86	9.57E-06		4.01E-06	5.99E-05	7.59E-04		3.44E-05	1.04E-05	1.21E-04	

^{*} Includes the contributions from establishments that were SIUs as of the end of 2010, except for establishments that have suspended operations, gone out of business, or ceased process wastewater discharge.

 $[\]sim$ To prevent an overestimate, only data from samples analyzed by DEP is included, since DEP has a lower minimum detection limit.

[@] Establishment has suspended operations, gone out of business, or moved out of NYC, and will be made a Z-case.

[#] Establishment shares sampling location with P-3081.

[!] Establishment has not commenced operational discharge.

[&]amp; Establishment did not discharge any process wastewater duing 2010.

Table 9a. Estimated Average Contributions of Significant Industrial Users (12/31/2010)*

Drainage Area: NR

P-No	Foot- note	Avg Flow (GPD)	Ag (lb/day)	As (lb/day)	Cd (lb/day)	Cr (lb/day)	Cu (lb/day)	Hg ~ (lb/day)	Ni (lb/day)	Pb (lb/day)	Zn (lb/day)	Mo (lb/day)
3034		53	2.01E-05		1.02E-05	1.25E-05	3.10E-04		2.56E-05	1.19E-05	1.75E-04	
3035		83	5.30E-06		4.96E-06	4.88E-06	1.30E-04		6.13E-06	1.27E-05	3.62E-05	
3042		47	1.32E-05		6.35E-06	6.59E-06	7.40E-05		1.30E-05	6.58E-06	3.06E-05	
3043		10	8.46E-06		1.96E-07	1.72E-06	5.26E-05		4.66E-06	1.13E-06	1.64E-05	
3053		131	4.82E-05		2.60E-06	3.89E-05	1.38E-03		7.23E-05	1.48E-05	7.94E-05	
3063		41	2.39E-05		1.77E-06	8.00E-06	7.98E-05		7.74E-06	3.39E-06	1.38E-04	
3067		21	4.05E-07		3.13E-07	8.10E-07	2.30E-05	5.75E-09	1.13E-06	1.54E-06	1.21E-05	3.00E-07
3068		20	6.74E-06		1.97E-06	1.73E-05	7.32E-05		2.08E-05	2.54E-06	4.58E-05	
3070		200	2.28E-04		4.66E-05	9.52E-05	1.44E-03		1.43E-04	3.46E-05	8.48E-04	
3071		25	4.59E-06		1.88E-06	1.90E-06	3.20E-05		4.31E-06	2.43E-06	2.96E-05	
3074		161	1.06E-04		1.87E-05	1.96E-05	1.45E-04		3.91E-05	2.03E-05	8.20E-05	
3083		60	5.43E-05		1.53E-05	1.40E-05	4.18E-04		4.56E-05	2.17E-05	1.57E-04	1.04E-05
3092		60	5.50E-06		1.29E-06	1.73E-06	9.03E-05		7.23E-06	2.86E-06	3.83E-05	
3096		30	4.29E-06		3.66E-06	3.79E-06	8.99E-05		6.93E-06	4.01E-06	1.99E-05	
3101		116	1.93E-05		7.70E-06	9.25E-06	1.92E-04		2.15E-05	1.49E-05	5.28E-05	2.48E-05
3106		13	7.66E-06		8.76E-07	1.15E-05	6.80E-05		1.78E-05	2.13E-06	1.07E-04	
3109		67	7.42E-05		1.25E-05	9.58E-05	5.78E-04		9.97E-05	1.45E-05	2.17E-04	1.56E-05
3112		1	1.89E-07		2.40E-08	2.90E-07	3.04E-06		1.30E-07	4.96E-07	2.17E-06	
3113		15	3.13E-06		3.13E-06	3.13E-06	4.75E-05		1.00E-05	3.13E-06	1.63E-05	
3114	&											
3118		13	3.01E-06		7.17E-07	7.67E-07	2.70E-05		5.26E-06	1.58E-06	1.05E-05	
3121		14	6.41E-06		1.38E-06	5.11E-06	3.49E-04		1.51E-05	1.39E-05	2.08E-04	
3123		120	6.26E-05		9.09E-06	1.28E-05	3.54E-04		2.96E-05	8.82E-06	4.37E-04	
3126		55	1.97E-05		1.04E-05	5.01E-06	1.47E-04		7.03E-06	7.21E-06	4.57E-05	
3129		45,574	1.90E-02		1.90E-02	1.90E-02	1.90E-02		1.90E-02	1.90E-02	7.37E-02	0.019004
3135		13	8.17E-06		9.15E-07	1.35E-06	2.63E-05		3.03E-06	1.46E-06	1.55E-05	
3137		65	4.92E-06		5.36E-06	4.45E-06	8.90E-05		8.93E-06	5.86E-06	8.84E-05	
3150		65	5.62E-06		4.48E-06	4.53E-06	3.72E-05		1.12E-05	5.80E-06	1.86E-05	
3154		15	2.36E-06		1.89E-06	2.07E-06	6.89E-05		1.52E-05	3.83E-06	7.31E-05	6.76E-06
3157		200	1.23E-04		4.00E-05	5.37E-05	2.53E-03		4.44E-04	6.54E-05	1.72E-03	
3158		19	1.16E-05		1.89E-06	2.28E-06	2.14E-05		4.75E-06	1.98E-06	1.27E-05	
3161		13	4.41E-06		5.74E-07	2.38E-06	3.65E-05		9.35E-06	1.47E-06	2.91E-05	

^{*} Includes the contributions from establishments that were SIUs as of the end of 2010, except for establishments that have suspended operations, gone out of business, or ceased process wastewater discharge.

 $[\]sim$ To prevent an overestimate, only data from samples analyzed by DEP is included, since DEP has a lower minimum detection limit.

[@] Establishment has suspended operations, gone out of business, or moved out of NYC, and will be made a Z-case.

[#] Establishment shares sampling location with P-3081.

[!] Establishment has not commenced operational discharge.

[&]amp; Establishment did not discharge any process wastewater duing 2010.

Table 9a. Estimated Average Contributions of Significant Industrial Users (12/31/2010)*

Drainage Area: NR

P-No	Foot- note	Avg Flow (GPD)	U	Cd (lb/day)		Cu (lb/day)	0	Ni (lb/day)		Zn (lb/day)	Mo (lb/day)
3163		14	6.44E-06	1.73E-06	2.17E-06	2.44E-05		4.01E-06	1.88E-06	1.77E-05	
3166		45	2.72E-06	1.13E-06	1.27E-06	9.78E-05		5.23E-06	2.93E-06	2.99E-05	
3170		21	9.19E-06	9.90E-07	1.26E-05	2.57E-04		5.67E-05	9.21E-06	7.14E-05	
3184		80	6.11E-05	8.64E-07	1.13E-05	3.60E-04		4.98E-05	4.55E-06	8.19E-05	
3188		69	4.40E-05	7.45E-07	1.97E-06	4.57E-04		1.18E-05	5.93E-06	7.15E-05	
3192		27	4.02E-06	7.42E-07	1.20E-06	1.02E-04		1.42E-05	1.68E-06	4.40E-05	
3194		17	2.02E-06	1.12E-06	4.20E-06	3.42E-05		1.33E-06	1.84E-06	3.36E-05	
3196		20	2.57E-06	1.47E-06	4.26E-06	1.09E-04		1.57E-05	1.87E-06	2.68E-05	
3200		25	1.49E-05	1.97E-06	2.35E-06	7.36E-05		1.09E-05	4.04E-06	6.00E-05	
3201	!										
3202		5	1.02E-06	3.68E-07	3.60E-07	7.43E-06		4.21E-07	7.67E-07	2.97E-06	
3204		34	1.24E-05	3.43E-06	3.74E-06	6.07E-05		1.41E-05	3.77E-06	4.41E-05	
3206		125	6.67E-05	1.11E-05	6.22E-05	2.20E-04		2.41E-05	1.36E-05	5.97E-05	
3209		38	1.98E-05	6.23E-06	8.38E-06	2.80E-04		2.05E-05	1.10E-05	1.39E-04	
3212		25	4.68E-05	4.21E-06	1.90E-05	8.84E-05		1.23E-05	4.49E-06	3.18E-05	5.21E-06
Total		83,775	0.0577	0.0244	0.0267	0.1102	7E-06	0.0478	0.028	0.1321	0.02692

^{*} Includes the contributions from establishments that were SIUs as of the end of 2010, except for establishments that have suspended operations, gone out of business, or ceased process wastewater discharge.

 $[\]sim$ To prevent an overestimate, only data from samples analyzed by DEP is included, since DEP has a lower minimum detection limit.

[@] Establishment has suspended operations, gone out of business, or moved out of NYC, and will be made a Z-case.

[#] Establishment shares sampling location with P-3081.

[!] Establishment has not commenced operational discharge.

[&]amp; Establishment did not discharge any process wastewater duing 2010.

Table 9a. Estimated Average Contributions of Significant Industrial Users (12/31/2010)*

Drainage Area: OB

P-No	Foot- note	Avg Flow (GPD)	0			Hg ~ (lb/day)	Pb (lb/day)	Zn (lb/day)	Mo (lb/day)
3149	!								

Total

^{*} Includes the contributions from establishments that were SIUs as of the end of 2010, except for establishments that have suspended operations, gone out of business, or ceased process wastewater discharge.

[~] To prevent an overestimate, only data from samples analyzed by DEP is included, since DEP has a lower minimum detection limit.

[@] Establishment has suspended operations, gone out of business, or moved out of NYC, and will be made a Z-case.

[#] Establishment shares sampling location with P-3081.

[!] Establishment has not commenced operational discharge.

[&]amp; Establishment did not discharge any process wastewater duing 2010.

Table 9a. Estimated Average Contributions of Significant Industrial Users (12/31/2010)*

Drainage Area: OH

P-No	Foot- note	0	Ag (lb/day)	As (lb/day)	Cd (lb/day)	Cr (lb/day)	Cu (lb/day)	Hg ~ (lb/day)	Ni (lb/day)	Pb (lb/day)	Zn (lb/day)	Mo (lb/day)
148		2,999	6.96E-06	1.30E-06	2.59E-06	3.63E-05	3.61E-02	9.16E-08	1.48E-05	5.13E-04	7.84E-04	1.13E-05
1397		165,985	4.41E-02		5.96E-02	2.09E-01	1.52E-01	8.23E-05	1.99E-01	1.01E-01	2.75E-01	0.540668
2725		117,817	1.50E-02		1.32E-02	1.75E-02	7.46E-02	4.10E-05	1.62E-02	3.04E-02	2.94E-01	0.030296
2773		7,506	3.16E-04		2.83E-04	2.84E-04	3.18E-03	1.40E-06	1.34E-03	6.63E-04	2.26E-02	0.000488
2863		11	2.05E-06		1.29E-06	1.37E-06	4.61E-05		4.74E-06	1.72E-06	1.53E-05	
3009		1,040	4.34E-05		8.67E-06	8.67E-06	6.38E-04	2.17E-07	2.17E-05	7.65E-05	1.52E-03	4.34E-05
Total		295,358	0.0594	1E-06	0.0732	0.2272	0.2666	0.0001	0.2162	0.1330	0.5939	0.57151

^{*} Includes the contributions from establishments that were SIUs as of the end of 2010, except for establishments that have suspended operations, gone out of business, or ceased process wastewater discharge.

[~] To prevent an overestimate, only data from samples analyzed by DEP is included, since DEP has a lower minimum detection limit.

[@] Establishment has suspended operations, gone out of business, or moved out of NYC, and will be made a Z-case.

[#] Establishment shares sampling location with P-3081.

[!] Establishment has not commenced operational discharge.

[&]amp; Establishment did not discharge any process wastewater duing 2010.

Table 9a. Estimated Average Contributions of Significant Industrial Users (12/31/2010)*

Drainage Area: PR

P-No	Foot- note	Avg Flow (GPD)	0		Cd (lb/day)	_		Hg ~ (lb/day)	Ni (lb/day)	Pb (lb/day)	Zn (lb/day)	Mo (lb/day)
2305		975	2.80E-04		4.10E-04	1.38E-03	3.39E-03	7.20E-07	1.37E-03	7.28E-04	1.80E-03	0.005237
2828		627,728	1.09E-02	6.92E-02	9.35E-03	1.95E-01	2.78E-01	2.70E-03	2.81E-01	1.46E-01	4.92E+00	0.250857
Total		628,703	0.0111	0.0692	0.0098	0.1963	0.2817	0.0027	0.2826	0.1472	4.9244	0.25609

^{*} Includes the contributions from establishments that were SIUs as of the end of 2010, except for establishments that have suspended operations, gone out of business, or ceased process wastewater discharge.

[~] To prevent an overestimate, only data from samples analyzed by DEP is included, since DEP has a lower minimum detection limit.

[@] Establishment has suspended operations, gone out of business, or moved out of NYC, and will be made a Z-case.

[#] Establishment shares sampling location with P-3081.

[!] Establishment has not commenced operational discharge.

[&]amp; Establishment did not discharge any process wastewater duing 2010.

Table 9a. Estimated Average Contributions of Significant Industrial Users (12/31/2010)*

Drainage Area: RH

P-No	Foot- note	Avg Flow (GPD)	Ag (lb/day)	As (lb/day)		_		Hg ~ (lb/day)	Ni (lb/day)	Pb (lb/day)	Zn (lb/day)	Mo (lb/day)
1146		8,710	9.65E-04		8.33E-04	8.50E-04	1.62E-02	1.43E-05	9.31E-04	1.79E-03	1.92E-02	0.002019
2796		664,168	2.54E-02		5.54E-03	6.65E-03	1.48E-01	3.19E-04	6.43E-02	2.68E-02	2.88E-01	0.179825
Total		672,878	0.0264		0.0064	0.0075	0.1644	0.0003	0.0652	0.0286	0.3076	0.18184

^{*} Includes the contributions from establishments that were SIUs as of the end of 2010, except for establishments that have suspended operations, gone out of business, or ceased process wastewater discharge.

 $[\]sim$ To prevent an overestimate, only data from samples analyzed by DEP is included, since DEP has a lower minimum detection limit.

[@] Establishment has suspended operations, gone out of business, or moved out of NYC, and will be made a Z-case.

[#] Establishment shares sampling location with P-3081.

[!] Establishment has not commenced operational discharge.

[&]amp; Establishment did not discharge any process wastewater duing 2010.

Table 9a. Estimated Average Contributions of Significant Industrial Users (12/31/2010)*

Drainage Area: TI

P-No	Foot- note	0	Ag (lb/day)	As (lb/day)	Cd (lb/day)	Cr (lb/day)	Cu (lb/day)	Hg ~ (lb/day)	Ni (lb/day)	Pb (lb/day)	Zn (lb/day)	Mo (lb/day)
6		5,777	9.97E-04		1.01E-03	4.15E-03	2.91E-03	3.66E-06	2.51E-03	9.99E-04	2.03E-02	0.00122
1363	&											
2486		191	5.48E-05		1.22E-05	2.17E-05	4.21E-04	1.32E-07	6.91E-05	3.13E-05	2.33E-04	6.24E-05
2599		179,220	4.06E-03		1.23E-03	1.00E-02	1.27E-01	3.23E-04	7.92E-03	3.76E-02	2.65E-01	0.003505
2776		13,007	5.42E-04	1.75E-04	4.94E-04	4.97E-04	2.23E-03	2.21E-06	1.61E-03	8.26E-04	2.66E-03	0.000774
Total		198,195	0.0057	0.0002	0.0027	0.0147	0.1325	0.0003	0.0121	0.0395	0.2883	0.00556

^{*} Includes the contributions from establishments that were SIUs as of the end of 2010, except for establishments that have suspended operations, gone out of business, or ceased process wastewater discharge.

[~] To prevent an overestimate, only data from samples analyzed by DEP is included, since DEP has a lower minimum detection limit.

[@] Establishment has suspended operations, gone out of business, or moved out of NYC, and will be made a Z-case.

[#] Establishment shares sampling location with P-3081.

[!] Establishment has not commenced operational discharge.

[&]amp; Establishment did not discharge any process wastewater duing 2010.

Table 9a. Estimated Average Contributions of Significant Industrial Users (12/31/2010)*

Drainage Area: WI

P-No	Foot- note		Ag (lb/day)	As (lb/day)	Cd (lb/day)	Cr (lb/day)	Cu (lb/day)	Hg ~ (lb/day)	Ni (lb/day)	Pb (lb/day)	Zn (lb/day)	Mo (lb/day)
163		1,580	4.54E-04		1.61E-04	1.66E-04	1.97E-04	6.58E-07	8.25E-03	3.40E-04	4.52E-04	0.000413
540X		131	1.57E-05		2.50E-05	1.73E-05	1.70E-04	9.83E-08	1.78E-05	3.47E-05	7.65E-04	2.75E-05
540Y		18,845	1.61E-03		1.47E-03	1.73E-03	1.27E-02	8.79E-06	1.61E-03	3.10E-03	7.94E-02	0.003170
3197		33,193	1.65E-02		6.21E-04	2.10E-03	8.39E-03	9.31E-06	8.71E-03	1.38E-03	3.86E-02	0.012644
Total		53,749	0.0186		0.0023	0.0040	0.0215	2E-05	0.0186	0.0049	0.1193	0.01626

^{*} Includes the contributions from establishments that were SIUs as of the end of 2010, except for establishments that have suspended operations, gone out of business, or ceased process wastewater discharge.

[~] To prevent an overestimate, only data from samples analyzed by DEP is included, since DEP has a lower minimum detection limit.

[@] Establishment has suspended operations, gone out of business, or moved out of NYC, and will be made a Z-case.

[#] Establishment shares sampling location with P-3081.

[!] Establishment has not commenced operational discharge.

[&]amp; Establishment did not discharge any process wastewater duing 2010.

Table 9b. Summary of Estimated Average Metal Loading Contributions (lbs/day) from **SIUs in 2010**

WWTP	# of Cases	Flow (GPD)	Ag	As	Cd	Cr	Cu	Hg	Ni	Pb	Zn	Total
26	6	166,586	0.01		0.00	0.01	0.36	0.0001	0.01	0.02	0.40	8.0
ВВ	22	409,566	0.04	0.00	0.02	0.15	0.79	0.0003	0.17	0.06	0.89	2.1
CI	2	35,692	0.00		0.00	0.01	0.03	0.0000	0.01	0.00	0.03	0.1
НР	5	137,431	0.00	0.00	0.02	0.13	0.13	0.0980	1.50	0.03	0.27	2.2
JA	6	71,200	0.02		0.02	0.07	0.06	0.0001	0.07	0.04	0.25	0.5
NC	33	120,821	0.16		0.02	0.32	0.19	0.0001	0.21	0.06	0.26	1.2
NR	111	83,775	0.06		0.02	0.03	0.11	0.0000	0.05	0.03	0.13	0.4
OB*	1											
ОН	6	295,358	0.06	0.00	0.07	0.23	0.27	0.0001	0.22	0.13	0.59	1.6
PR	2	628,703	0.01	0.07	0.01	0.20	0.28	0.0027	0.28	0.15	4.92	5.9
RH	2	672,878	0.03		0.01	0.01	0.16	0.0003	0.07	0.03	0.31	0.6
TI	5	198,195	0.01	0.00	0.00	0.01	0.13	0.0003	0.01	0.04	0.29	0.5
WI	4	53,749	0.02		0.00	0.00	0.02	0.0000	0.02	0.00	0.12	0.2
Total	205	2,873,954	0.40	0.07	0.20	1.18	2.53	0.102	2.61	0.59	8.46	16.1

^{*}Some SIUs did not have applicable sampling data: see footnotes in Table 9a for detail(s). ^Rockaway WWTP had no SIUs in 2010

Table 10 NEW YORK CITY INDUSTRIAL PRETREATMENT PROGRAM Non-SIUS That Were Reclassified to SIUs in 2010			12/31/2010
<u>DA</u>	<u>P-NO</u>	<u>NAME</u>	
26	569	S & N CHEMICALS CO., INC.	
26	3072	GLEEM INDUSTRIES INC.	
BB	632	THE METRO GROUP, INC.	
JA	987	CHEMCLEAN CORP.	
NC	635	M.SCHNEIDER SOAP & CHEMICAL CO	MPANY,INC
ОН	3009	GLISSEN CHEMICAL CO., INC.	

Table 11	able 11 NEW YORK CITY INDUSTRIAL PRETREATMENT PROGRAM SIUS That Were Reclassified to Non-SIUs in 2010		
<u>DA</u>	P-NO	NAME	
BB	2591	SO ACCURATE GROUP INC.	
NC	2948	FINE JEWELRY ASSOCIATES CORP.	

Table 12 NEW YORK CITY INDUSTRIAL PRETREATMENT PROGRAM 12/31/2010 P-Cases That Were Made Z-Cases in 2010 <u>DA</u> P-NO **TYPE** <u>NAME</u> $\mathbf{B}\mathbf{B}$ SIU 2935 CHANNEL JEWELRY CREATIONS CO., INC. BB 3193 SIU OVERNIGHT MOUNTINGS, INC. SAM'S AUTO MECHANIC AND REDIATORS I BB 3026 Non-SIU HP 978 Non-SIU RUSSALL PRODUCTS CO., INC. GENERAL LINEN SUPPLY & LAUNDRY CO., NC 1398 SIU SIU LILIYA FINE JEWELRY, LLC NC 3115 NC 3128 SIU THE NEW YORK AND PRESBYTERIAN HOSPI NC 3143 SIU APPLIED POLYMER SYSTEMS, INC. DBA A DELTA METAL PRODUCTS CO. INC. NC 701

NC	701	Non-SIU	DELTA METAL PRODUCTS CO., INC.
NC	856	Non-SIU	FYN PAINT & LACQUER CO., INC.
NC	2404	Non-SIU	COX & CO., INC.
NR	2009Н	SIU	ALFRED BUTLER, INC.
NR	2492	SIU	SANDBERG & SIKORSKI DIAMOND CORP1
NR	3013	SIU	EROL JEWELRY, INC.
NR	3076	SIU	EBBIES JEWELRY CONTRACTING, INC.
NR	3084	SIU	FANTASIA BY DESERIO, INC.
NR	3119	SIU	YARY'S CORP.
NR	3155	SIU	ERIDAN JEWELRY, CORP.
NR	3171	SIU	JC'S JEWELRY INC.
ОН	2985	Non-SIU	KARAT GOLD FABRICATIONS, INC.
WI	944	Non-SIU	MAS SALES CORP.
WI	995	Non-SIU	SAFEGUARD CHEMICAL CORP.
WI	2809	Non-SIU	POWER CHEMICAL COMPANY INC.

Table 13. Summary of NOVs Issued in 2010 to SIUs for Exceedances (Violators of Regulations 19-03(a), 19-04(a) & 19-04(c))

Including Default Penalties

Drainage Area: 26th Ward	P-Case	Number of NOVs	Total Penalty
	2680	1	\$250
	3093	2	\$1,000
Total:	2	3	\$1,250

Drainage Area: Bowery Bay	P-Case	Number of NOVs	Total Penalty
	2	1	\$400
	56	3	\$20,000
	632	1	\$250
	641	2	NR
	2682	2	\$1,250
	2826	1	\$250
	2990	2	NR
Total:	7	12	\$22,150

Drainage Area: Hunt's Point	P-Case	Number of NOVs	Total Penalty
	12	6	NR
Total:	1	6	\$0

Drainage Area: Newtown Creek	P-Case	Number of NOVs	Total Penalty
	48	1	\$250
	49	1	\$400
	300	1	\$1,000
	626	2	\$1,000
	2906	1	NR
	2984	3	\$2,400
	3029	3	\$20,000
Total:	7	12	\$25,050

NR NOV(s) not yet resolved; ECB hearing is scheduled in 2011, see Table 15 for details.

^{*} Some NOV(s) not yet resolved, see Table 15 for details. Penalties are for the resolved NOV(s) only.

Table 13. Summary of NOVs Issued in 2010 to SIUs for Exceedances (Violators of Regulations 19-03(a), 19-04(a) & 19-04(c))

Including Default Penalties

Drainage Area: North River	P-Case	Number of NOVs	Total Penalty
	35A	2	\$650
	144	2	\$1,400
	2058N	1	\$800
	2086B	1	\$250
	2347	1	NR
	2434	1	NR
	2519	1	\$250
	2774	1	\$1,000
	2797	2	\$400
	2860	1	\$400
	2947	1	\$400
	2954	2	\$1,800
	2955	1	\$250
	3031	1	\$400
	3053	3	\$750
	3101	1	\$250
	3109	1	NR
	3121	2	NR
	3157	3	\$2,400
	3204	1	\$250
	3212	1	NR
Total:	21	30	\$11,650

Drainage Area: Owls Head	P-Case	Number of NOVs	Total Penalty
	148	4	\$21,800
	2725	1	\$250
Total:	2	5	\$22,050

Drainage Area: Red Hook	P-Case	Number of NOVs	Total Penalty
	1146	1	\$250
Total:	1	1	\$250

Drainage Area: Tallman Island	P-Case	Number of NOVs	Total Penalty
	6	5	\$1,600
Total:	1	5	\$1,600

NR NOV(s) not yet resolved; ECB hearing is scheduled in 2011, see Table 15 for details.

^{*} Some NOV(s) not yet resolved, see Table 15 for details. Penalties are for the resolved NOV(s) only.

Table 14. Summary of NOVs issued in 2010 to SIUs for Late Reporting or Violating Commissioner's Orders (Violators of Regulations 24-524(f))

Including Default Penalties

Drainage Area: 26 Ward	P-Case	Number of NOVs	Total Penalty
	3093	1	\$500
Total:	1	1	\$500
Drainage Area: Bowery Bay	P-Case	Number of NOVs	Total Penalty
	56	6	\$60,000
	2682	2	\$800
	2990	3	\$20,250
	3081	2	\$1,000
Total:	4	13	\$82,050

Drainage Area: Jamaica	P-Case	Number of NOVs	Total Penalty
	2760	1	\$125
Total:	1	1	\$125

Drainage Area: Newtown Creek	P-Case	Number of NOVs	Total Penalty
	49	1	\$250
	2849	1	NR
	2960	1	NR
Total:	3	3	\$250

Drainage Area: North River	P-Case	Number of NOVs	Total Penalty
	2020	1	\$10,000
	2023	1	D
	2908	1	\$500
	3071	2	\$650
	3113	1	NR
	3204	1	\$600
Total:	6	7	\$11,750

Drainage Area: Port Richmond	P-Case	Number of NOVs	Total Penalty
	2828	4	\$5,100
Total:	1	4	\$5,100

Drainage Area: Wards Island	P-Case	Number of NOVs	Total Penalty
	3197	1	\$250
Total:	1	1	\$250

D NOV(s) dismissed.

NR NOV(s) not yet resolved; ECB hearing is scheduled in 2011.

st Some NOV(s) not yet resolved. Penalties are for the resolved NOV(s) only.

Table 15. SIUs with Unresolved NOVs for Exceedances as of 12/31/2010

Drainage Area	P_NO	Reasons for NOV(s)	ECB Hearing Date
26	3093	pH Exceedance	2/17/2011
BB	56	Cyanide Exceedance	1/20/2011
BB	641	Copper Exceedance	1/20/2011
BB	641	Zinc Exceedance	1/20/2011
BB	2990	Silver Exceedance	2/3/2011
BB	2990	Copper Exceedance	2/3/2011
HP	12	Nickel Exceedance	2/24/2011
HP	12	pH Exceedance	2/24/2011
HP	12	Cyanide(A) Exceedance	2/24/2011
HP	12	Nickel Exceedance	2/24/2011
HP	12	Nickel Exceedance	2/24/2011
HP	12	Nickel Exceedance	2/24/2011
NC	2906	Zinc Exceedance	1/20/2011
NC	3029	Zinc Exceedance	1/13/2011
NR	2347	Silver Exceedance	2/3/0011
NR	2434	Silver Exceedance	2/17/2011
NR	2797	Copper Exceedance	2/10/2011
NR	3109	Silver Exceedance	2/24/2011

Table 15. SIUs with Unresolved NOVs for Exceedances as of 12/31/2010

Drainage Area	P_NO	Reasons for NOV(s)	ECB Hearing Date
NR	3121	Copper Exceedance	2/3/2011
NR	3121	Zinc Exceedance	2/3/2011
NR	3212	Silver Exceedance	1/20/2011
TI	6	Cyanide Exceedance	1/20/2011
TI	6	Cyanide(A) Exceedance	1/20/2011

Table 16a. Summary of NOVs issued in 2010 to Non-SIUs for Exceedances (Violators of Regulations 19-03(a), 19-04(a) & 19-04(c))

Including Default Penalties

Drainage Area: Bowery Bay	P-Case	Number of NOVs	Total Penalty
	2591	1	NR
Total:	1	1	\$0

Drainage Area: Wards Island	P-Case	Number of NOVs	Total Penalty
	1346	1	NR
Total:	1	1	\$0

NR NOV not yet resolved; ECB hearing is scheduled in 2011.

^{*} Some NOVs not yet resolved, penalties are for the resolved NOVs only.

Table 16b. Summary of NOVs issued in 2010 to Non-SIUs for Late Reporting or Violating Commissioner's Orders (Violators of Regulations 24-524(f))

Including Default Penalties

Drainage Area: Bowery Bay	P-Case	Number of NOVs	Total Penalty
	2591	1	NR
Total:	1	1	\$0

Drainage Area: Newtown Creek	P-Case	Number of NOVs	Total Penalty
	1346	1	\$250
	3207	5	\$2,500
Total:	2	6	\$2,750

Drainage Area: Wards Island	P-Case	Number of NOVs	Total Penalty
	726Y	1	NR
Total:	1	1	\$0

NR NOV not yet resolved; ECB hearing is scheduled in 2011.

^{*} Some NOVs not yet resolved, penalties are for the resolved NOVs only.

Table 17. Summary of Notices of Violations Issued to P-cases from 1/1/10 to 12/31/10.

Not Including Default Penalties

Month	Total Number of NOVs Issued	Number of NOVs Dismissed*	Total Amount of Penalties Assessed*
January	6	1	\$5,450
February	18	0	\$1,500
March	11	1	\$3,700
April	11	0	\$6,950
May	10	0	\$3,650
June	6	0	\$2,000
July	10	0	\$4,050
August	7	0	\$4,550
September	7	0	\$5,250
October	8	0	\$6,275
November	15	0	\$1,250
December	13	0	\$900
TOTAL	122	2	\$45,525

 $[\]boldsymbol{*}$ Based on the decisions of an Administrative Law Judge at the Environmental Control Board.

ATTACHMENT 1

CITY OF NEW YORK DEPARTMENT OF ENVIRONMENTAL PROTECTION

Bureau Of Wastewater Treatment Division Of Pollution Control And Monitoring

In accordance with Title 40 Part 403.8(f) (2) (viii) of the Code of Federal Regulations and Title 15, Section 19-10 (g) of the Rules of the City of New York, the Department of Environmental Protection is required to publish a list of establishments in New York City that were in significant noncompliance with applicable pretreatment standards and other requirements during the previous 12 months. Significant noncompliance is defined in 40 CFR 403.8 (f) (2) (viii). Below is an alphabetical listing of these establishments, arranged by borough, for the period of July 1, 2009 to June 30, 2010.

BOROUGH - BRONX

NYC DEPARTMENT OF EDUCATION

BOROUGH - BROOKLYN

ARCHITECTURAL COATINGS, INC. CONTROL ELECTROPOLISHING CORP. NYC DEPARTMENT OF EDUCATION

BOROUGH - MANHATTAN

ALMOD DIAMONDS LTD.

ARMAN'S JEWELRY POLISHING CORP.
ATLANTIS JEWELRY CONTRACTORS, INC.

ATR JEWELRY, INC.

CHAINDOM ENTERPRISES INC.

CONSOLIDATED EDISON COMPANY OF NY, INC.

DAN KANE PLATING INC.

ESSENCE JEWELRY CORP.

F. BLANCATO, LLC

G & LARTISANS LLC

HAROLD HOWARD SCOTT

HONORA INDUSTRIES, INC.

KARBRA COMPANY

MARCO DELANO

MARTIN FLYER JEWELRY LLC

MR. YONG J. PARK

NYC DEPARTMENT OF EDUCATION

PERMA-GLOW, LTD.

REGAL EMBLEM CO., INC

RICHEMONT NORTH AMERICA, INC.

TANAGRO JEWELRY CORP.

TAVIT SEPETCI

UNITED BROS. CONTRACTORS, INC.

YACOUBIAN BROTHERS, INC.

ZAVEN SARAFYAN DBA VICTORIA JEWELRY MFG.

BOROUGH - QUEENS

ELDORADO FINISHING INC.

EMPIRE METAL FINISHING, INC.

HYGRADE POLISHING & PLATING CO., INC.

KENT ELECTRO PLATING CORP.

NYC DEPARTMENT OF EDUCATION

BOROUGH - STATEN ISLAND

NYC DEPARTMENT OF EDUCATION

VISY PAPER (NY), INC.

ATTACHMENT 2

small, inspectors will order the owner or operator to install the proper unit, based For information about the City's Sewer properly. the correctly sized unit and maintain it To avoid the expense of such fines, install is currently \$10,000 per day, per violation Sewer Use Regulations. The maximum penalty for not complying with the rules on New York City's Building Code and on-line at www.nyc.gov/dep.

a business has an interceptor that is too

maintained, and operating effectively. If interceptors and make sure they are

correctly sized, properly installed,

sends inspectors to businesses to check are not in compliance. DEP routinely regulations and may fine businesses that DEP enforces the City's sewer use

ENFORCING REGULATIONS

the back of this brochure, or contact us Use Regulations write to the address on To report sever back-ups or to get

noise problems, call 311: assistance with sewer, water, air or

SI1

Government Information and Services for NYC

www.nyc.gov/dep or contact us on-line at:

> THE HOUMENTAL PROTECTION AEN YORK CITY DEPARIMENT

Department of Environmental Protection Bureau of Wastewater Treatment 59-17 Junction Boulevard Flushing, New York 11373-5108 www.nyc.gov/dep New York City

> Should Know About What You

PREVENTING GREASE DISCHARGES NTO SEWERS

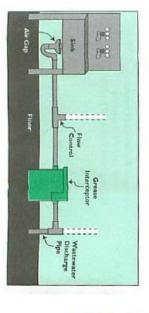
New York City Businesses Guidelines for

vital to New York City and its neighborhoods. A healthy economy benefits every New Yorker. But when businesses disregard sewer use regulations and improperly dispose of fats, oil, and grease (FOG), sewer lines can become clogged, causing sewage to back up into basements of homes and commercial establishments. When that bappens, the entire community suffers.

responsible for maintaining the City's Environmental Protection (DEP) is The New York City Department of helping businesses comply with the City's frequently caused by FOG clogging the local public health. In some areas, back-ups are problem that damages property and affects about 1.3 billion gallons of sewage per day. sewage system - 6,000 miles of sewers and to keep FOG, chemical and other materials nursing homes, fruit and vegetable stands, only restaurant owners but also operators of sewer use regulations. DEP is educating not Sewer back-ups are a major sewer system out of the sewer system. laundries, and dry cleaners, among others, 14 wastewater treatment plants that process To address this problem, DEP is

To work effectively, sewer systems need to be properly maintained, from the drain to the treatment plant. If wastes are disposed of correctly, the City's sewer system can handle them without any problem. FOG is an example of a waste that the sewer system cannot handle, and therefore should not be put down the drain. The City needs businesses and individuals to do their part to maintain the system because repeated repairs are disruptive to residences and businesses alike. Furthermore, proper disposal by commercial establishments is required by law.

SEWER REGULATIONS CONCERNING GREASE


thriving business community is

To ensure the proper disposal of FOG, and to prevent sewage back-ups, the City requires grease-generating establishments to correctly install, operate and maintain properly sized and designed grease interceptors. These grease interceptors must be routinely cleaned to ensure proper operation. (For more information see NYCDEP Sewer Use Regulations, 15 RCNY Chapter 19.)

On November 9, 1998, the City amended the Sewer Use Regulations. These amendments clarify existing requirements and provide for self-certification of grease interceptors by a NYS licensed Professional Engineer or Registered Architect. Self-certification relieves regulated establishments from a lengthy departmental review process.

HOW GREASE INTERCEPTORS

Every business that disposes of FOG (e.g. restaurants, food handling operations, hospitals, day care and senior centers), should have a grease interceptor to prevent these materials from entering and clogging sewer lines.

This equipment works by separating the grease and oils from wastewater. Greasy wastewater entering the interceptor passes through a vented flow control fitting that regulates the flow of the wastewater. The wastewater then passes over a series of separator baffles, or regulating devices within the interceptor, that separates FOG. The FOG then floats to the top of the interceptor and accumulates until manually removed. The wastewater continues to flow through the interceptor, into a discharge pipe, and then to the City's sewer system.

YOUR GREASE INTERCEPTOR

If a grease interceptor is not properly installed or maintained it will not do its job! For your own assurance, DEP requires that only licensed plumbers install grease interceptors. These interceptors must be the proper size to work correctly. A licensed plumber can determine the correct size. Plumbers and business owners may also write to DEP's Bureau of Wastewater Treatment, Pollution Prevention Section, at the address listed on the back of this brochure for technical assistance.

Every interceptor should be cleaned as frequently as necessary to avoid exceeding its rated capacity. To clean, remove the cover of the interceptor and scoop out any grease and/or oil that has collected on top. Grease and oil can be recycled, and should be collected by a fat renderer or other grease recycling company. Check the phone book under "Grease Traps" for such companies.