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1. Introduction 
 
This status report describes work completed for DEP’s Multi-Tiered Water Quality Modeling 
Program during October 2010 – September 2011.  The report presents progress on activities 
discussed in Section 2.4.2 of the New York City’s Long-Term Watershed Program (DEP, 
2006a).  The following activities are reported herein: 

 • Application of DEP’s reservoir, watershed and system models to inform operational 
decisions during the reporting period (Section 2); 

 • Application of DEP’s watershed and reservoir models to evaluate watershed management 
programs (Section 3); 

 • Progress on the Climate Change Integrated Modeling Project including studies related to: 
strategies to improve and refine future climate scenarios; understanding potential changes 
in sediment sources under future climate change; regime shifts in hydrologic streamflow 
statistics, changes in stream ecological indicators under potential climate change; effects 
of climate change on reservoir thermal structure; and assessment of climate change 
related vulnerability and risk management on the water system operations (Section 4); 

 • Studies related to model development including: development of empirical rating curves 
for turbidity load estimation in Esopus Creek; studies on sediment fingerprinting; 
calibration of the SWAT-WB watershed model; modeling studies on relation of channel 
processes to phosphorus export; development of regression models for  individual 
reservoir inflow for EOH reservoirs; and further calibration of 1D reservoir models 
(Section 5); 

 • Model data acquisition, development and organization (Section 6); 

 • Collaboration of the modeling section with other projects and organizations including 
cooperative arrangements, contracts and proposals. (Section 7); and 

 • Summary of scientific journal papers and presentations at scientific conferences that the 
modeling section has given over the last year (Section8). 
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2. Use of Models for Support of Operational Decisions 
 
During the period from October 2010 – September 2011 there were a number of major storm 
events that led to turbidity related issues for the Ashokan Reservoir.  Figure 2.1 shows the time 
series of flows, based on provisional data collected by USGS for the Esopus Creek at Coldbrook, 
the major tributary input to the Ashokan Reservoir.  The water year was characterized by five 
major events: a large rain event in early October 2010, another large rain event at the beginning 
of December 2010, the spring snowmelt event in March 2011, Hurricane Irene at the end of 
August 2011 and the remnants of Tropical Storm Lee in early September 2011.  During and for a 
period after these events, the Water Quality Modeling Section performed a number of model 
simulations to better guide the operations of the Catskill System to ensure the delivery of high 
quality water while minimizing the use of alum.  This section describes a few examples of these 
model simulations. 
 
Simulation Descriptions 
 
Three types of models - reservoir, watershed, and system - were used for the simulations during 
the reporting period.  For all of the simulations, LinkRes and its component model 2D reservoir 
model CEQUAL W2 (DEP 2004, Cole and Buchak 1995) were used to simulate turbidity values 
within the reservoir and aqueduct withdrawals.  The model has been set up and tested for the 
Ashokan West Basin, the Ashokan East Basin and the Kensico Reservoir.  In addition a number 
of simulations utilized the OASIS system model (HydroLogics, Inc., 2007; Gannett Flemming 
and Hazen and Sawyer, 2007) as set up for the New York City supply to simulate aqueduct 
flows.   
 
 
 
 

 
Figure 2.1.  Provisional streamflow time series as measured at USGS gage #01365000, Esopus 
Creek at Coldbrook for September 1, 2010 – September 30, 2011.  
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During the October 2010 – September 2011 reporting period, 23 separate modeling analyses 
were performed.  The dates and the reservoirs included in each analysis are listed in Table 2.1.  
For each of the simulations, a number of scenarios of different Catskill and Delaware system 
turbidity and flow inputs were modeled to predict their effects on Kensico effluent turbidity 
levels.  In general, model runs were used to guide reservoir operations so that simulated turbidity 
levels at both the CATLEFF and DEL18 effluents would not exceed safe turbidity levels.  Model 
results helped determine Catskill and Delaware Aqueduct flow rates that would allow DEP to 
continue to deliver Catskill water into Kensico Reservoir, while at the same time allowing an 
acceptably small increase in turbidity at the effluents. 
 
A “positional analysis” strategy was followed for these model runs.  Under this strategy, the 
initial conditions of the reservoir are used as the starting point for the model simulations.  Then 
the model is run for a forecast period which ranges from 1 to 6 months into the future, depending 
on the simulation goals.  For the forecast period, inputs of meteorology and aqueduct water 
temperature are based on each year in the historical record (1948-2004 for Ashokan model runs 
and 1987-2004 for Kensico model runs), while initial conditions are set to most recently 
measured values based on a combination of limnological survey data and in-lake automated buoy 
measurements.  For simulations of Kensico Reservoir, flows and derived turbidity loads are set at 
fixed values associated with the forecast conditions.  With this method, each year represents a 
separate realization (or trace) of the simulated model outcome and variability in the traces will 
result from year-to-year changes in weather conditions only.  For Ashokan and combined 
Ashokan-Kensico simulations, the input flow and turbidity load to Ashokan Reservoir is based 
on the historical record and a series of different fixed operational strategies are employed.  In 
these cases, each trace represents a simulated outcome that incorporates both climatic and flow 
variability in the historical record, when comparing the outcomes of different operational 
strategies. In both cases, the complete set of positional analysis traces, taken in total, can then be 
used to develop a statistical probability of potential simulated reservoir storage levels and 
effluent turbidity.   
 
The example model runs described in this section relate to decisions made for inflows to the 
Kensico Reservoir.  The major focus of these simulations is to help determine the ratios of 
Catskill versus Delaware inputs to the Reservoir, given turbidity levels in each system, to ensure 
that effluent turbidity will not exceed the 5 NTU regulatory limit. 
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Table 2.1.  List of modeling analyses performed during the reporting period including the 
reservoirs simulated in each analysis. 
 

Turbidity Modeling Runs October 2010-September 2011 
Date Ashokan West Ashokan East Kensico 

10/01/2010   X 
10/04/2010   X 
10/06/2010   X 
10/15/2010   X 
10/19/2010 X   
11/03/2010   X 
12/03/2010   X 
12/06/2010 X   
12/09/2010 X X  
12/15/2010   X 
12/23/2010 X X  
01/03/2011   X 
01/12/2011 X X X 
01/18/2011 X X X 
01/21/2011   X 
01/27/2011 X X X 
02/17/2011   X 
08/30/2011   X 
08/31/2011   X 
09/02/2011   X 
09/07/2011   X 
09/23/2011   X 
09/30/2011   X 
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Example Simulations 
 
Simulations October 4, 2010 
 
This first example set of simulations was initiated after the effects of a large storm at the 
beginning of October filled the Ashokan Reservoir and elevated turbidity in the entire reservoir.  
It was expected that Ashokan effluent turbidity levels would go above 10 NTU and that stop 
shutters would be required to reduce the Ashokan diversion to the Catskill Aqueduct to below 
300 MGD in order to maintain acceptable water quality at Kensico Reservoir. 
 
To help determine the necessity for stop shutter installation and to ascertain a recommended flow 
level, sensitivity simulations for Kensico Reservoir were performed.  The positional analysis 
framework was used with meteorological forcings and aqueduct input water temperatures for the 
years 1987-2004 (18 traces) to represent historical variability in the model forcings.  The 
simulations were run for a 30 day forecast period from October 1 – October 31.  Initial 
conditions in the reservoir were based on robotic monitoring information collected on October 1, 
which indicated isothermal conditions with a water temperature of 18oC and turbidity of 1.5 
NTU throughout water column.  Aqueduct flow outputs from Kensico were set to 400 MGD and 
800 MGD via Catskill and Delaware aqueducts, respectively.  For all runs the input turbidity 
from the Delaware Aqueduct was set to 1.5 NTU based on conditions at the time.  To test various 
inflow and turbidity input combinations from Catskill Aqueduct to Kensico Reservoir, flows 
were set to 50, 150, 250 MGD and input turbidities were set to 20 and 40 NTU.   Delaware 
Aqueduct inflows were set to balance the Catskill Aqueduct flows so total inflow of the two 
aqueducts equaled 1200 MGD.  Each of the simulations assumes that these inputs and outputs 
are constant for the 30 day forecast period. 
 
Figure 2.2 shows the results for the scenarios.  These runs indicated that if Catskill influent 
turbidity was above 20 NTU flow rate should be reduced to 150 MGD.  If Catskill influent 
turbidity rises to about 40 NTU for an extended period, then flow should be reduced to about 50 
MGD. 
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(a) Catskill inflow 50 MGD, 20 NTU: (b) Catskill inflow 50 MGD, 40 NTU: 

     
 
(c) Catskill inflow 150 MGD, 20 NTU: (d) Catskill inflow 150 MGD, 40 NTU: 

     
 
(e) Catskill inflow 250 MGD, 20 NTU: (f) Catskill inflow 250 MGD, 40 NTU: 

     
 
Figure 2.2.  Results of CEQUAL-W2 simulations from October 4, 2010 for effluent turbidity 
from Kensico Reservoir with Catskill Aqueduct inflow of 50, 150 and 250 MGD and influent 
Catskill turbidity of 20 and 40 NTU.  Vertical bars show the range of variability associated with 
the 18 positional analysis traces. 
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(a) Delaware inflow 800 MGD, 4 NTU: (b) Delaware inflow 500 MGD, 4 NTU: 

     
 
(c) Delaware inflow 800 MGD, 6 NTU: (d) Delaware inflow 500 MGD, 6 NTU: 

     
(e) Delaware inflow 800 MGD, 8 NTU: (f) Delaware inflow 500 MGD, 8 NTU: 

     
Figure 2.3.  Results of CEQUAL-W2 simulations from September 2, 2010 for effluent turbidity 
from Kensico Reservoir with Delaware Aqueduct inflow of 800 and 500 MGD and influent 
Delaware turbidity of 4,6 and 8 NTU.  Vertical bars show the range of variability associated with 
the 18 positional analysis traces. 
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Simulations September 2, 2011 
 
Hurricane Irene occurred at the end of August 2011, and resulted in record flows at many stream 
gages throughout the watershed.  This event greatly affected turbidity in all the WOH reservoirs 
including the Rondout Reservoir.  Under most storm event conditions, the Rondout Reservoir 
turbidity remains low and this source of low turbidity water can be used to reduce the risk of 
high turbidity at Kensico Reservoir.  At the time of these simulations, however, turbidity in 
Rondout Reservoir diversion was about 15 NTU and profiles from a Rondout limnological 
survey indicated a plume of high turbidity in the upper layers of the reservoir near the intake and 
a plume of about 100 NTU in the upstream area of the reservoir.  Meanwhile, Ashokan Reservoir 
diversion turbidity was about 100 NTU.  Alum was used to reduce turbidity in the Catskill 
Aqueduct influent to Kensico Reservoir.  Under these conditions the treated Catskill effluent was 
of lower turbidity than the untreated Delaware System water. 
 
A set of Kensico Reservoir sensitivity simulations were run to provide refined guidance for the 
levels of turbidity from the Delaware Aqueduct that could be tolerated as inputs to Kensico 
Reservoir with varying inflow rates from the Catskill and Delaware Aqueducts.  As with the 
previous example, the positional analysis framework was used with meteorological forcings and 
aqueduct input water temperatures for the years 1987-2004 (18 traces) to represent historical 
variability in the model forcings.  The simulations were run for a 30 day forecast period from 
August 31 – September 30.  Initial conditions in the reservoir were based on limnological survey 
measurements collected on August 31, 2011  Aqueduct flow outputs from Kensico were set to 
350 MGD and 750 MGD via Catskill and Delaware aqueducts, respectively.  For all runs the 
input turbidity from the Catskill Aqueduct was assumed to be 100 NTU which when treated with 
alum is assumed to be reduced by 95% to yield an effective input of 5 NTU. (Later runs during 
this event use data from the limnological surveys to better ascertain the correct effective turbidity 
to use for alum treated Catskill influent.)  To test various inflow and turbidity combinations input 
from the Delaware Aqueduct to Kensico Reservoir, flows were set to 800, 700, 500 MGD and 
input turbidities were set between 2.5 and8 NTU.  Catskill Aqueduct inflows were set to balance 
the Delaware Aqueduct flows so total inflow of the two aqueducts equaled 1100 MGD.  Each of 
the simulations assumes that these inputs and outputs are constant for the 30 day forecast period. 
 
Figure 2.3 illustrates the results for the scenarios.  At Delaware influent turbidity less that 6 NTU 
(figure 2.3a-b), simulated Kensico effluent is improved by increasing Delaware Aqueduct 
inflow.  At Delaware influent turbidity greater than 6 NTU (figure 2.3e-f) simulated Kensico 
effluent is improved by increasing Catskill Aqueduct inflow.  At Delaware influent turbidity 
equal to 6 NTU (figure 2.3c-d) simulated Kensico effluent turbidity is insensitive to varying 
Delaware and Catskill inflow rates.   
 
 
Conclusions 
 
The set of events during October 2010 – September 2011 represented a combination of many 
extreme events, some of which created record streamflows.  The modeling activities performed 
during this period were used to inform operational decisions and, in turn, helped to minimize 
alum use while maintaining high quality source water during these turbidity events.  
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3. Use of Modeling System to Evaluate Watershed Management Programs 
 
 
As part of the 2011 FAD evaluation process (DEP 2011), the effects of non-point source 
management, point source upgrades, and land use change on eutrophication in the Cannonsville 
and Pepacton Reservoirs were evaluated using DEP’s Eutrophication Modeling System (Figure 
3.1). Output from the GWLF watershed model provided loading estimates to evaluate watershed 
programs implemented as part of the MOA.  Four watershed management programs were 
evaluated:  Watershed Agricultural Program; Urban Stormwater Retrofit Program; Septic 
Rehabilitation and Replacement Program and WWTP Upgrade Program.  In addition, a 
significant decline in agricultural land use and agricultural activity that occurred from the early 
1990s to the late 2000s independent of deliberate watershed management was evaluated. 
 
 
 
 
 
 
 
 

 
Figure 3.1.  DEP’s Eutrophication Modeling System. 
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Calibrated and validated GWLF models for Cannonsville and Pepacton were used to estimate 
nutrient loads for a series of scenarios, each of which represents a combination of land use, non-
point source management and point source conditions. A BASELINE scenario represents 
conditions existing in the 1990s prior to implementation of FAD programs. Two FAD evaluation 
scenarios represent conditions of the early 2000s (FADPERIOD1) and late 2000s 
(FADPERIOD2), before and during which substantial implementation of FAD programs 
occurred.  Nutrient reduction factors due to watershed management programs based BMP 
nutrient removal and implementation data were applied to represent watershed management 
effects in each FADPERIOD scenario. 
 
Changes in nutrient loading due to the combined effects of land use change and FAD programs 
were examined by comparing the FADPERIOD scenarios to the BASELINE.  There was a ~49% 
reduction in dissolved P (P) loads from Cannonsville watershed from the BASELINE to 
FADPERIOD1 and an additional ~7% reduction from FADPERIOD1 to FADPERIOD2. For 
Pepacton watershed dissolved P export was reduced by ~23% from BASELINE to FADPERIOD1 
and an additional ~3% from FADPERIOD1 to FADPERIOD2.  The large reductions seen 
between the BASELINE and FADPERIOD1 correspond to a combination of high rates of new 
program implementation and substantial reduction in agricultural activity during that period. 
Continued but slower declines in P loads from FADPERIOD1 to FADPERIOD2 occurred as 
FAD programs became more focused on maintenance and improvement than on new program 
development, and the reduction in agricultural activity continued. 
 
The relative effects of land use change vs. watershed management on load reductions were 
examined by comparison of the BASELINE to FADPERIOD2.  Land use change (decline in 
agriculture) and watershed management both produced substantial reductions in P loading.  
Loading reductions due to land use change alone were ~18% for dissolved P in Cannonsville, 
and ~10% for dissolved P in Pepacton.  The combination of land use change and watershed 
management produced reductions of ~55% for dissolved P in Cannonsville, and ~26% for 
dissolved P in Pepacton.  WWTP upgrades and the implementation of agricultural BMPs by the 
Watershed Agricultural Program provided most of the loading reductions, with minor reductions 
from septic system remediation and urban stormwater management. 
 
The effects of land use change, non-point BMPs, and point source management on the trophic 
status of the Cannonsville and Pepacton Reservoirs were evaluated by driving reservoir water 
quality models with the different nutrient loading scenarios simulated using GWLF. Simulated 
loading reductions due to combined land use change and watershed management between 
BASELINE and FADPERIOD1 resulted in a  ~34% reduction in the May – October epilimnetic 
chlorophyll concentrations, and a ~30% reduction in the May – October epilimnetic total P 
concentrations in Cannonsville Reservoir.  For Pepacton Reservoir the same reductions in 
concentration were  ~15% and ~9% for chlorophyll and Total P respectively.  As was the case 
for the input loads simulated with GWLF, reductions in reservoir concentrations during 
FADPERIOD2 were lower.   Between FADPERIOD1 and FADPERIOD2 there was a further 
reduction of ~5% in May – Oct epilimnetic chlorophyll concentrations and a ~3% further 
reduction in May – Oct epilimnetic total P concentrations.  For Pepacton Reservoir the additional 
reductions in concentration simulated as occurring between FADPERIOD1 and FADPERIOD2 
were ~3% and ~2% for chlorophyll and total P. 
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Landuse and FAD program specific effects on reservoir trophic status were examined by 
comparison of BASELINE with FADPERIOD2.  For Cannonsville Reservoir, lower watershed 
loads due to land use change only (decline in farming) resulted in reductions of ~9% for in-lake 
growing season chlorophyll a and ~8% for total P.  Greater reductions were predicted when the 
FAD programs were considered in addition to land use change (~39% for chlorophyll a and 
~32% for total P).  The response of Pepacton Reservoir (which exhibited less eutrophication 
under BASELINE conditions) was similar, but the magnitudes of the reductions were less, 
suggesting that reservoirs with higher eutrophic condition tend to benefit proportionately more 
from watershed load reductions. 
 
Examination of daily, as well as long term mean reservoir chlorophyll levels, suggests that the 
occurrence of extreme “bloom-like” epilimnetic chlorophyll concentrations are also affected by 
differing nutrient loading scenarios, and that the implementation of watershed management 
programs had an even greater impact on reducing the frequency of extreme epilimnetic 
chlorophyll concentrations than in reducing long term mean concentrations. 
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4. Climate Change Integrated Modeling Project 
 
4.1. Project Overview 
 
DEP has undertaken a long-term effort to evaluate the effects of future climate change on the 
quantity and quality of water in the NYC water supply, and to also evaluate how such effects 
could influence the use and operation of the water supply. This project designated the “Climate 
Change Integrated Modeling Project for Water Quantity and Quality” (CCIMP), was an 
outgrowth of the DEP climate change task force. Project planning took place during 2006-2007. 
A series of meetings which included members of the DEP Bureau of Water Supply Water 
Quality Modeling Program, the Strategic Services Unit, the Bureau of Environmental Planning 
and Assessment, and the Columbia University Center for Climate Systems Research were used 
to develop an overall project strategy and plan (Major et al. 2007), which was evaluated by a 
leading group of climate change, and water science experts. The work specified by this plan 
became an integral part of the task to “Quantify the Potential Climate Change Impacts on NYC 
Water Systems” in the DEP Climate Change Program Assessment and Action Plan (DEP 2008a). 
 
An overview of the CCIMP is presented in the 2007 Modeling Program status report (DEP 
2007), and subsequent results were presented in the 2008-2010 Modeling Program status reports 
(DEP 2008b; 2009; 2010). The project continues, and during the last year we have developed an 
improved and expanded series of future climate scenarios that are used to drive watershed and 
reservoir model simulations; have made new simulations and analyses that examine the potential 
effects of climate change on watershed erosion, streamflow and ecological indices related to 
streamflow;  and have made a series of simulations that examined potential future changes in the  
thermal structure of the reservoirs.  DEP is also a participating utility in a number of climate 
change related projects (See Section 4.7) and during 2011 contributed significantly to WRF 
project 4262 which has the goal of identifying vulnerabilities and risks in the operation of the 
NYC water supply system, and which will also try to identify adaptation strategies to mitigate 
the potential risks.  In this section of the report we briefly describe these CCIMP research 
activities that were accomplished during 2010. 
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4.2. Refining Climate Change Scenarios 
 
Previous model simulations used to evaluate future climate impacts on the NYC water supply 
(DEP 2008b, 2009, 2010) have been made using three to four GCM models that were 
downscaled using a single monthly additive or multiplicative change factor (CF), an approach 
that is widely used for climate impact analysis (e.g. Hay et al 2000 Anandhi et al. 2011), During 
the past year we have created a number of additional scenarios (Table 4.1) using all available 
daily data from the World Climate Research Program Coupled Model Intercomparison Project 3 
(CMIP3) climate data archive (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php).  Furthermore, 
when creating the expanded set of scenarios, two different variant of change factor methodology 
(CFM) were used: the original version based on single monthly CF; and a new version 
(described below) using 25 additive CFs for each month.  Below the 25 bin CFM methodology is 
described and the characteristics of the derived scenarios are discussed. 
 
In an earlier study by Anandhi et al. (2011) for the region, several types of CFMs categorized by 
temporal scale, temporal resolution, mathematical formulation, or number of change factors 
analyzed. Based on the results from this study, DEP decided to employ a method using 25 
change factors applied additively for each month when creating scenarios based on GCM runs in 
Table 1. In this method, separate cumulative distribution functions (CDFs) of the simulated 
baseline (GCMb) and future (GCMf) climates are estimated for each month. Each CDF is divided 
into 25 equal parts (bins) with each bin having 4 percentile (=100/25) as its resolution. The mean 
monthly values of GCMb and GCMf climates are estimated for each bin using equations 4.1 and 
4.2. 
 

 
 

1
, NbGCMbGCMb

Nb

i
nin ∑

=
=  (4.1) 

 

 
  

1
, NfGCMfGCMf

Nf

i
nin ∑

=
=  (4.2) 

 
where Nb and Nf  represent the number of days in a month during the baseline and future time 
periods, and n  equals the change factor bin  (1 to 25). 
 
For each climate variable (i.e. precipitation air temperature etc.) the 25 additive change factors 
(CFadd,n,j) are calculated for each month (j) by taking the arithmetic difference between the 
corresponding bins (n) derived from a current climate simulation and those derived from a future 
climate scenario taken at the same GCM grid location (equation 4.3). The resulting CFs are then 
added to the corresponding bins associated with a given month in the time series of local 
historical data ( jnLOb , ) to obtain future scaled climate scenarios (LSfadd,n,j ) (equation 4.4).  
 
 jnjnjnadd GCMbGCMfCF ,,,, −=   (4.3) 
 
 jnaddjnjnadd CFLObLSf ,,,,, +=  (4.4) 
 

http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php
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where jnaddLSf ,, is a daily value of the locally downscaled daily data series that has a parameter 
magnitude in bin n and occurs in month j; jnLOb ,  is a daily observed historical data value 
occurring in bin n associated with month j; jnaddCF ,,  is an additive CF associated with bin n in 
month j. 
 
Thus, for each month, 25 CFs are calculated for each meteorological variable of interest for the 
future scenarios (A1B, A2, B1), time periods (2045-2065, 2081-2100) and GCMs (listed in 
Table 4.1). Future scenarios are created by adding CFs to the historical daily time series.  These 
CFs are dependent on the month (j) and the magnitude (n) of the daily observed value during that 
month.  
 
As a first step in the use of these scenarios we evaluated the monthly climatology of the 
scenarios of precipitation, air temperature and streamflow.  Data are plotted in figures 4.1-4.4. 
The precipitation scenarios are also analyzed using an index of the intensity of the wet day 
(IWD).  IWD is calculated using pooled monthly data for a given scenario so that for example, 
January values of IWD are calculated using the combined data from 20 January months.  IWD 
for any month is calculated by summing the rainfall on all days that exceed a specific threshold 
of 1mm (Benestad, 2010) and divided that by the total number of days exceeding the same 
threshold condition  
 
Boxplots of the monthly scenarios of precipitation and temperatures for each of the six 
watersheds were obtained by applying the 25 CFs to the observed data for the combination of 
GCMs, scenarios and time periods (figures 4.1 and 4.2). Most scenarios show an increase in 
precipitation for all the 12 months, with the variability in the predicted precipitation between 
GCM scenarios being ~10mm/month (figure 4.1). Very few scenarios showed a decrease in 
mean monthly precipitation (mostly in B1 and A2 scenarios). All the derived temperature 
scenarios consistently show an increase in temperature of 2 to 4° C in the study region (figure 
4.2). The variability in the predicted temperature among GCMs is ~2 to 6°/month. 
 
In general the IWD (figure 4.3) is highest for the Ashokan, Neversink and Rondout watersheds 
(range 8 to 13mm), followed by the Pepacton and Schoharie watersheds (range 7 to 11 mm) and 
with the Cannonsville watershed having the lowest IWD (range 6 to 8mm). Compared to values 
calculated using historical data, most future scenarios predict an increase in IWD during January, 
February, April, May, August, October and November months and a decrease in IWD during the 
rest of the year. 
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Table 4.1.  GCM scenarios downloaded from the Lawrence Livermore National Laboratory’s 
Program for Coupled Model Diagnosis and Inter-comparison (PCMDI) data archive.  Numbers 
identify the different realizations of each GCM scenario that were obtained  
 

  Daily Precipitation Daily Average Air Temperature 

 GCM Acronym 20C3M A1B A2 B1 20C3M A1B A2 B1 
1 BCCR 1 1* 1 1 1 1 1 1 
2 CCSM3 1,3,5,6,7

,8,9 
3,5,6,7,8 1,3,5 6,7,8 1,3,5,6,7

,8,9 
3,5,6 1,3,5 6,7,8 

3 CGCM3.1(T47) 1,2,3,4,5 1,2,3 1,2,3 1,2,3 1,2,3,4,5 1,2,3 1,2,3 1,2,3 

4 CGCM3.1(T63) 1 1  1 1 1  1 

5 CNRM-CM3 1 1 1 1 1 1 1 1 

6 CSIRO-Mk3.0 1,2,3 1 1 1 1,2,3 1 1 1 

7 CSIRO-Mk3.5 1 1   1,2,3 1   

8 ECHAM5/MPI-
OM 

1,4 4 1 1 1,4 4 1 1 

9 ECHO-G 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 

10 FGOALS-g1.0 1,2,3 1,2,3  1,2,3 1,2,3 1  1,3 

11 GFDL-CM2.0 1 1 1 1 1 1 1 1 

12 GFDL-CM2.1 2    2    

13 GISS-AOM 1 1  1** 1 1  1 

14 GISS-ER 1 1 1 1 1 1 1 1 

15 INGV-SXG  1 1 1  1 1 1  

16 INM-CM3.0 1 1 1 1 -    

17 IPSL-CM4 1,2 1 1 1 1,2 1 1 1 

18 MIROC3.2-hires 1 1  1 1 1  1 

19 MIROC3.- medres 1,2 1,2 1,2 1,2 1,2,3 1,2,3 1,2,3 1,2,3 

20 MRI-CGCM2.3.2 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5 

  Total no. scenarios 43 34 25 30 44 30 25 29 
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Figure 4.1. Boxplot of mean monthly precipitation input to each reservoir watershed obtained by 
applying the 25 bin CFs from GCMs listed in table 4.1 for combinations of scenarios B1 (black), 
A1B (green), and A2 (red), and for the time period 2046-2065 (light shade), 2081-2100 (dark 
shade). The whiskers in the boxplot extend from the 10 to 90th percentile values. The outliers of 
the 10-90 percentile range are shown as dots in the figures. The blue bar is the median of 
historical observations. 

 
 

 
Figure 4.2. Boxplot of mean monthly average temperature over the entire WOH region obtained 
by applying the 25 bin CFM to the GCM scenarios listed in table 4.1.  The blue bar is the median 
of historical observations. 
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Figure 4.3. Boxplot of mean monthly intensity of wet days (IWD) obtained by applying the 25 
bin CFM to the GCM scenarios listed in table 4.1.  The blue bar is the median of historical 
observations. 

 
 

 
Figure 4.4. Boxplot of mean monthly streamflow simulated using the GWLF model and input 
data of air temperature and precipitation derived by applying the 25 bin CFM to the GCM 
scenarios listed in table 4.1.  The blue bar is the median of historical observations. 
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A preliminary evaluation of variations in streamflow that could be expected to occur under the 
expanded set of climate scenarios was also made.  Scenarios of daily streamflow were simulated 
using Generalized Watershed Loading Function - Variable Source Area (GWLF –VSA) 
watershed model. More details of the model may be found in Haith et al. (1992), Schneiderman 
et al.  (2002), Matonse et al. (2011) and Zion et al. (2011). The scenarios of precipitation and 
temperatures created using the GCM data in table 4.1 and CFM described by equations 4.1-4.4 
were input to the calibration GWLF model to create scenarios of streamflow for the six West of 
Hudson reservoir watersheds, three scenarios, two time periods. 

 
For most scenarios the late fall to winter period (November - March) had higher streamflow 
compared to the streamflow simulated using the observed historical precipitation and air 
temperature data, while April showed reduction in streamflow (figure 4.4).  For the remainder of 
the year there was no clear future trend. Approximately 50 percent of the GCMs showed an 
increase and the rest showed a decrease compared to simulation based on contemporary 
conditions.  Similar results were observed in Zion et al. (2011). 
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4.3. Modeling Sediment Source Areas and Future Climate Impact on Erosion and 
Sediment Yield in Cannonsville Watershed 
 
Introduction 
 
Recent studies have focused on the potential effects of climate change on water resources 
including water quality, hydrology, water demand, and socio-economic changes (Aber et al., 
1995; Christensen et al., 2004; Parry et al., 2004; Bates et al., 2008). However, little research has 
been undertaken on the potential impact of climate change on sediment loads of streams and 
rivers (IPCC, 2007a). Quantifying spatial and temporal patterns in sediment loads under present 
and future conditions will be valuable in both understanding and predicting sediment transport 
processes as well as watershed-scale management of sediment for maintaining high water 
quality. 
 
In this section we apply the Soil Water Assessment Tool-Water Balance (SWAT-WB) model 
(White et al., 2011) to simulate sediment transport and quantify the potential impact of climate 
change on soil erosion and sediment yield in the Cannonsville watershed. The watershed drains 
into the Cannonsville Reservoir, one of the drinking water supply reservoirs for New York City 
(NYC). An examination of historical data and results of model simulations for this region have 
both shown an increasing trend in precipitation and streamflow over the past fifty years (Burns et 
al., 2007; Zion et al., 2011). Our goal in this study is to examine how changes in precipitation 
and streamflow translate into changes in soil erosion and sediment transport in the Cannonsville 
watershed using a physically based semi-distributed model. Our study assumes stationary land 
use/cover for the study region. The specific objectives of this study are: 
 
(1) To identify the major sediment source areas within the Cannonsville watershed; and 
(2) To quantify the impact of future climate on long-term sediment loads at the watershed 

outlet 
 
 
Methods 
 
SWAT-water balance model 
 
The SWAT-WB is a modified version of the SWAT-2005 model (Neitsch et al., 2005). The 
original SWAT model uses Hydrologic Response Units (HRU) to define the scale at which 
precipitation is partitioned into runoff and infiltration.  Each HRU is defined based on land use 
and soil, while the runoff curve number method is used to partition precipitation into runoff and 
infiltration.  In SWAT-WB each HRU is defined based on land use and topographic location 
which defines  soil moisture pattern, and the partitioning of precipitation into runoff and 
infiltration is calculated based on daily soil water balance for the HRU. The modified version 
(SWAT-WB) has been found to perform well in simulating streamflow and sediment yield in 
watersheds where saturation excess runoff process is the dominant runoff generation mechanism 
(Easton et al., 2010a; White et al., 2011).  
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Sediment transport in SWAT  
 
The SWAT model simulates soil erosion and sediment export from hillslopes as well as in-
stream channel processes (Nietsch et al., 2005). Erosion caused by rainfall and runoff is 
calculated with the Modified Universal Soil Loss Equation (MUSLE) as: 
 

 sed = 11.8 . (Qsurf  
. qpeak 

. areahru)0.56 . K 
. C 

. P 
. LS 

.CFRG (4.5) 
 

where sed is the sediment exported from a HRU to the channel on a given day (metric tons), Qsurf is the surface runoff volume (mm ha-1), qpeak 
is the peak surface runoff rate (m3 s-1), areahru 

is the 
area of the HRU (ha), K

 
is the USLE soil erodibility factor (T h MJ-1 mm−1), C

 
is the USLE 

cover and management factor (dimensionless), P
 

is the USLE support practice factor 
(dimensionless), LS

 
is the USLE topographic factor (dimensionless) and CFRG is the coarse 

fragment factor (dimensionless). The use of a runoff term in the equation avoids the use of a 
sediment delivery ratio. Deposition and degradation are the dominant channel processes 
influencing sediment yield at the basin outlet. These channel processes are determined by the 
upland sediment loads and also the transport capacity of the channel network. The transport 
capacity of the channel segment is determined by the simplified Bagnold’s equation (Bagnold, 
1977): 
 

 
b

ch vaT ⋅=  (4.6) 
 
where Tch (T m-3) is the transport capacity of a channel segment, a and b are user defined 
coefficients, and v (m s-1) is the peak channel velocity. Parameters related to channel cover and 
channel erodibility that have a linear influence on channel contribution of sediment can be 
adjusted in SWAT. 
 
SWAT model calibration 
 
The model was calibrated for streamflow and sediment yield at the watershed outlet for the 
1991-1995 water years and validated for the 2000-2002 water years. Measured daily streamflow 
data was obtained from the USGS gauging station (#01423000) located at the watershed outlet 
near Walton. Daily time series of total suspended solids (TSS) collected near the Walton stream 
monitoring station using a sampling protocol that allowed accurate estimation of both baseflow 
and storm event sediment loads (Longabucco and Rafferty, 1998). The calibrated streamflow and 
sediment models were used to simulate a historical baseline scenario (1965-2008) of sediment 
yield using measured meteorological forcing.  
 
Future climate scenarios 
 
The potential effect of climate change on soil erosion and sediment yield was evaluated using 
scenarios derived from a suite of nine Global Climate Model (GCMs) that represent a range of 
future climate conditions, for the 2081-2100 future period. In this study, the A1B scenario from 
the Special Report on Emission Scenarios (SRES) in the IPCC Fourth Assessment Report (AR4) 
was used. Climate scenarios were downscaled using change factor methodology described in 
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Anandhi et al., (2011). Monthly change factors (CFs) were calculated from the difference 
between baseline (20C3M) and future GCM simulations. These monthly CFs were used to adjust 
the same local meteorological data used for the baseline simulation to represent the future 
climate conditions associated with a given GCM. Use of long term observed data in generating 
future climate scenarios ensured that the scenarios were representative of the observed climate 
patterns in the region.  
 
 
Results and Discussion 
 
Model calibration for hydrology and sediment 
 
Both hydrology and sediment calibration used the goal of maximizing the coefficient of 
determination (R2), maximizing Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), and 
minimizing percent bias. In addition, hydrology calibration was optimized so that the runoff and 
baseflow components of streamflow were simulated reasonably well compared to values derived 
from measured data using standard baseflow separation techniques (Arnold and Allen, 1999).  
The calibrated model simulated streamflow reasonably well as evident from the monthly 
statistics for the calibration (R2 = 0.76 and NSE= 0.76) and validation period (R2 = 0.71 and 
NSE= 0.68). The calibrated model simulated monthly suspended sediment load at the watershed 
outlet with acceptable model performance (R2 = 0.62 and NSE= 0.61 during calibration and 
R2 = 0.70 and NSE= 0.70 during validation).  
 
 
 

 
 
Figure 4.5.  Map showing spatial variability in average annual sediment export from sub-basins 
(inset) and HRUs expressed as sediment yield to stream channels from the dominant sediment 
generating region 
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Spatial variability in sediment source areas 
 
Figure 4.5 shows the spatial variability in sediment generating areas across the watershed. The 
model computes the sediment generated from each HRU and thereby enabling identification of 
the actual location of erosion within a sub-basin. The high sediment generating areas would be a 
combination of relatively high surface runoff and erosive land cover (e.g. agricultural field). The 
HRU maps of the highest sediment generating sub-basins were visualized to locate the sites of 
maximum erosion.  
 
Model evaluation of future climate impact on soil erosion and sediment yield 
 
Simulated future changes in watershed water balance that may influence soil erosion and 
sediment yield are presented in figure 4.6.  Our analysis of future climate impact on sediment 
included changes in basin wide average annual sediment export from HRUs as well as changes 
in average annual sediment yield (sediment exiting the watershed outlet). Future sediment export 
from HRUs based on the wide range of future climate conditions represented by the GCMs 
showed wide variability. The ensemble mean showed a net increase in future sediment export by 
49% from average historical values indicating the possibility of higher rates of soil erosion in the 
future (2081-2100). In comparison, the sediment yield from the watershed outlet showed only a 
3.9 % increase in the ensemble mean compared to average historical values.  
 
Analysis of seasonal changes in basin wide sediment export from HRUs showed increases in the 
winter and in the early spring and decreases in the summer and in early fall season (figure 4.7). 
The increase was much higher in magnitude compared to the decrease. This increase is due to the 
combined effect of increase in precipitation and also the decrease in precipitation falling as 
snow. The SWAT model predicts less erosion in the presence of snow. A comparison of the 
cumulative annual proportion of precipitation received as snow predicted by the model between 
the historical and future scenarios showed a sharp decline by 46% in the ensemble mean with a 
range of 38-62% decline predicted by the nine GCMs (figure 4.6, panel 1).  Decrease in erosion 
during summer and early fall period is related to the changes in antecedent soil water content 
during rainfall events under future conditions. Although an increase in summer rainfall was 
predicted by the GCMs (figure 4.6, panel 2) increases in evapotranspiration (figure 4.6, panel 4) 
cause reduction in soil water content which result in increased saturation deficit. This means that 
more rainfall is required to bring the soil to saturation and generate equal amount of runoff as the 
current conditions. The importance of antecedent soil moisture on erosion from saturation excess 
dominated landscapes has been previously reported (Fitzjohn et al., 1998). Analysis of one of the 
HRUs under agricultural land use revealed an increase in crop biomass productivity during the 
months July and August by 19% and 29% respectively suggesting an earlier onset of growing 
season due to warmer climate. Such phenological changes are expected to affect the amount and 
timing of residue going back to the soil and thus soil erosion. These results are consistent with 
the finding of Nunes et al (2011) using a SWAT model application for climate change 
assessment of soil erosion in two Mediterranean watersheds.  
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Figure 4.6.  Monthly simulated components of the watershed water balance, Historical (1965-
2008) in dark dotted lines versus Future (2081-2100) in gray lines. 
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Figure 4.7.  Boxplot of average monthly basin wide sediment export from HRUs expressed as 
sediment load to stream channels. Boxes represent the 25th and the 75th percentile and whiskers 
represent the 5th and 95th percentile values. 
 
 

 
Figure 4.8.  Boxplot of average monthly sediment yield from watershed outlet. Boxes represent 
the 25th and the 75th percentile and whiskers represent the 5th and 95th percentile values 
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Future trends in sediment yield at the watershed outlet followed the soil erosion trends for most 
months except for March and April (figure 4.8). These two months transported the maximum 
amount of sediment through the watershed outlet as seen in the historical scenario. Decline in 
sediment yield in these months during future periods explains to a certain extent the relatively 
small increase in average annual sediment yield at the watershed outlet. The decrease in 
sediment yield is related to the decrease in basin wide surface runoff and streamflow during this 
period. The decrease in April streamflow results from early snowmelt being observed in the 
region (Burns et al., 2007; Zion et al., 2011; Matonse et. al., 2011). Although summer 
precipitation appeared to increase in the future scenarios, a decrease in water yield resulting from 
an increase in saturation deficit predicted by the model coupled with a decrease in erosion 
resulted in less sediment yield at the watershed outlet in the summer. 

 
 

Summary and Conclusions 
 
A physically based watershed model was used to identify the location of major sediment 
generating areas in a NYC water supply watershed. To evaluate the effect of future climate on 
soil erosion and sediment yield, the model output was compared using historical (1965-2008) 
and future (2081-2100) climate scenarios. The predictions presented here should be viewed as 
qualitative trends, rather than as absolute numerical predictions, given the uncertainty in future 
climate predictions, particularly since potential changes in extreme events are not completely 
captured by GCMs and the downscaling method used in this study. Results indicate a sharp 
increase in the annual rates of soil erosion although a similar result in sediment yield at the 
watershed outlet was not evident. Analysis of seasonal changes in basin wide soil erosion and 
sediment export from HRUs showed an increase in the winter and in the early spring and a 
decrease in the summer and early fall seasons. Future simulated sediment yield at the watershed 
outlet followed the soil erosion results for most months except for March and April. Future 
climate related changes in soil erosion and sediment yield were more significant in the winter 
due to a shift in the timing of snowmelt and also due to a decrease in the proportion of 
precipitation received as snow. Although an increase in future summer precipitation was 
predicted, soil erosion and sediment yield appeared to decrease owing to an increase in soil 
moisture deficit and a decrease in water yield due to increased evapotranspiration. 
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4.4. Regime Shift Detection in Streamflow and selected NYC Water Supply Indicators 
 
Introduction 
 
Analysis of abrupt shifts in both historical and current streamflow, reservoir status, and system 
performance is an important component of water supply system operational support and 
planning. An increasingly useful statistical method for evaluating abrupt shifts is regime 
analysis. One method of regime analysis entails applying a moving window to data and 
statistically analyzing changing in the windows properties as time progresses, whereby statistical 
discontinuities represent regime shifts.  By adjusting the size of the moving window patterns of 
historical trends at differing time scales can be detected and potentially inform future trends.  In 
this preliminary study a single 7-year window regime analysis is presented. For the NYC water 
supply the importance of regime shift analysis of regional hydrology is associated with the 
possibility of early shift detection and the subsequent use of the information gained in the 
analysis to improve operation and management of the water supply. 
 
Complex systems including financial markets, ecosystem and climate are susceptible to a sudden 
shift from one regime (or state) to a contrasting dynamical regime. Examples in global finance 
include the occurrence of systematic market crashes, in medicine asthma attacks or epileptic 
seizures, in the Earth System this may include abrupt shifts in ocean circulation or climate, 
regime shifts in rangelands, fish or wildlife populations (Scheffer et al. 2009). Regime shift 
involves the notion of multiple stable states in a system and a fast reorganization (or transition) 
from one state to another (Rodionov, 2006; Rodionov and Overland, 2005).  
 
There is a diversity of regime shift studies in the literature. Scheffer et al. (2009) discussed the 
use of catastrophe theory as a conceptual framework for understanding gradual and abrupt 
behavior in both, terrestrial and aquatic ecosystems. Lockwood and Lockwood (2008) applied a 
catastrophe theory and self-organized method to describe and explain the pattern and process of 
grasshopper population outbreaks in the western United States (Washington-Allen et al., 2010). 
Garmestani et al. (2009) evaluate evidence of discontinuous distributions within complex 
systems to study the occurrence of emergent properties, including resilience. They analyzed the 
regime shift study in the context of the panarchy theory which indicates that complex systems 
exhibit multiple dynamic regimes nested within larger systems, each of which operate at unique 
spatial scales. The authors used analysis of discontinuities to reveal panarchy and interpret 
patterns in ecological as well as urban and social systems to further explain how resilience is 
generated. Allen and Holling (2010) describe the concept of novelty within complex systems that 
emphasizes changes in key drivers and self-organizing interactions to maintain, establish, or re-
establish resilience. They hypothesize that novelty will most likely be expressed near shifts or 
breaks in scale where large fluctuations in resource variability increase the success of random 
events to affect system reorganization. Ernstson et al. (2010) discusses the issue of urban 
resilience as a particular case of the resilience of human-dominated ecosystems in a world of 
uncertainty. He proposes a transition in city planning to account for aspects of global 
multidimensionality of contemporary urbanization and increasing uncertainty due to climate 
change, migration of people, and changes in the capacity of ecosystems to generate goods and 
services. The goal of the new approach as he describes is to ‘enable cities to navigate change, 
build capacity to withstand shocks, and locate sources of experimentation and innovation in face 
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of uncertainty’. Rodionov and Overland (2005) applied a sequential t-test analysis of regime shift 
(STARS) method to detect shifts in the Bering Sea ecosystem at their earlier stage. This 
approach has the ability to process data in real time making it possible to early detect emerging 
regime shifts as new data become available.  
 
The following section presents initial results of an ongoing study of regime shift detection on 
NYC water supply region and system. The study is based on various historical data analysis to 
learn more about long term patterns, variability and other characteristics in regional climate, 
hydrologic data and reservoir system indicators and how these can relate and accounted for in the 
NYC water supply management process. The results here presented cover both streamflows and 
selected reservoir system indicators. 
 
 
Regime shift detection methodology 
 
Various methods have been applied in the literature to address regime shift detection of mean, 
variance, frequency structure, or a system shift. Methods applied to detect a shift in mean (which 
is the focus of this initial study) include a sequential t-test analysis regime shift (STARS) by 
Rodionov (2004), Bayesian analysis (Perreaut et al., 2000), Mann-Whitney U-test (Mauget, 
2003), Wilcoxon rank sum (Ducre-Robitaille et al., 2003), and a two-phase regression model 
(Lund and Reeves, 2002), just to refer to few examples. Some of the techniques can only detect a 
single change-point, others can be applied for multiple shifts and some are sensitive to the 
presence of trends in the data set.  
 
The present study is based on applying the STARS methodology (Radionov, 2004) with pre-
whitening (Radionov 2006). This methodology is based on a sequential algorithm and the 
Student’s t-test. Three parameters are required when applying this method; (i) a significance 
level for the t-test, (ii) a cut-off length for the regime, and (iii) the Huber’s weight which sets the 
weight to be assigned to outliers in the variable time series. 
 
Pre-whitening is a procedure used to eliminate serial correlation and to reduce the impact of red 
noise in time series. Red noise is characterized by observations remaining relatively long 
intervals above or below the overall variable mean value. Red noise is often modeled by the first 
order autoregressive (AR1) model. It occurs when the autoregressive parameter ρ is positive and 
must be <1.  Because red noise can be misinterpreted as climatic regime it needs to be removed 
from time series prior to regime shift detection.  The removal of red noise using pre-whitening 
consists of using the first order difference  
 
 (Xt – ρXt-1) (4.7) 
 
 instead of the variable Xt, where Xt is the variable at time t and Xt-1 is the variable at a previous 
time step in the time series. 
 



 

28 
 

Results 
 
Figures 4.9 and 4.10 show the results of regime shift detection for the mean on Schoharie Creek 
at Prattsville, NY streamflow (figure 4.9) and on selected reservoir indicators (figure 4.10).   
 
For the regime shift detection analysis we applied the methodology by Radionov (2006, 2004) 
based on a sequential Student’s t-test with pre-whitening. The level of significance for the t-test 
was set to 0.1, the cutoff length for the regime was set to 7 years and the Huber parameter which 
controls the weights assigned to outliers was set to 2. In order to estimate the parameter ρ a 
subsample technique associated with the Inverse Proportionality with 4 corrections (IP4) was 
applied. IP4 has shown to work well with relatively small (<10) subsample sizes. In this study a 
subsample size of 4 was selected. Estimating ρ based on sampling is preferred than using the 
entire time series when the data has both regime shift and red noise (Rodionov, 2006). 
 
Streamflow records from four USGS gauges covering the period from 1929 to 2010 were 
analyzed for the presence of regime shift on an annual and seasonal basis. In figure 4.9, a 
summer period includes June, July and August (JJA), while a winter period expands through 
December, January to February (DJF). 
 
The results from figure 4.9 indicate that: 
 

1. There are multiple regime shifts for the mean annual streamflow including increased 
flows during the 1970s and in recent years since 2000. 
 

2. At a 0.1 confidence level there is a seasonal behavior in regime shift occurrence in 
Schoharie Creek at Prattsville streamflow. For the winter period multiple shifts are 
present including a shift to a drier period around early 60’s followed by a wetter period in 
earlier 1970s and another wet period in early 2000s. 
 

3. For the summer period only one up-shift to a wetter regime is observed during the early 
2000s. 

 
Figure 4.10 shows results of regime shift detection for three reservoir system indicators: (i) the 
Julian Day the reservoir storage is above 90% of its capacity (JDRSANC), (ii) the volume of 
spill before March 1st (VSBM1), and (iii) the number of drought days per year (NDDPY). Using 
a similar methodology and parameters as with the streamflow the top graph in figure 4.10a 
shows three dry regimes in the 1940s, 1960s and 1980s for the JDRSANC (reservoir storage 
reaches 90% later in the year). For the VSBM1 (figure 4.10b) one regime of high spills before 
March 1 is observed in the mid-1970s but the regime following the shift has returned to slightly 
higher spills than during the earlier starting regime. The only period with a different regime 
detected by the NDDPY analysis is the 1960s drought.  
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(a) 

 

 

(b) 

 

 

(c) 

 

 

   
 
Figure 4.9. Regime shift detection for Schoharie Creek at Prattsville, NY (USGS gauge 
1350000). From top down the figures show the (a) mean annual, (b) winter (December, January, 
February) and (c) summer (June, July, August) flows. 
  

Shifts in the mean Annual flow USGS-1350000, 1929-2010
Probability = 0.1, cutoff length = 7, Huber parameter = 2

AR(1) = 0.00 (IPN4), subsample size = 4
Shift detection: After prewhitening, Plot: Original data
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Shifts in the mean Winter flow USGS-1350000, 1929-2010
Probability = 0.1, cutoff length = 7, Huber parameter = 2

AR(1) = 0.00 (IPN4), subsample size = 4
Shift detection: After prewhitening, Plot: Original data
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Shifts in the mean Summer flow USGS-1350000, 1929-2010
Probability = 0.1, cutoff length = 7, Huber parameter = 2

AR(1) = 0.00 (IPN4), subsample size = 4
Shift detection: After prewhitening, Plot: Original data
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(a) 

 

 

(b) 

 

 

(c) 

 

 

Figure 4.10. Regime shift detection for (a) the Julian Day the reservoir storage is above 90% of 
its capacity (JDRSANC), (b) the volume of spill before March 1st (VSBM1), and (c) the number 
of drought days per year (NDDPY). 
 
  

Shifts in the mean JDay Sto > 90% Capacity, 1929-2004
Probability = 0.1, cutoff length = 7, Huber parameter = 2

AR(1) = 0.49 (IPN4), subsample size = 4
Shift detection: After prewhitening, Plot: Original data
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Shifts in the mean for Vol Spill before Mar 1st, 1929-2004
Probability = 0.1, cutoff length = 7, Huber parameter = 2

AR(1) = 0.00 (IPN4), subsample size = 4
Shift detection: After prewhitening, Plot: Original data
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During the most recent years in the early 2000s results in reservoir system indicators indicate 
emerging shifts i.e. the right end of the regime line either points upwards or downwards. This is 
consistent with increased flow regime in regional streamflow as indicated in figure 4.9, 
following the early 2000s. Since streamflow time series end in 2010 and for reservoir indicators 
in 2004 more years of analysis are necessary to see how the emerging shifts will sustain. 
Reservoirs filling later and increased number of drought days in figure 4.10 are consistent with 
the historical drought in the mid-1960s.  
 
 
Conclusions 
 
A regime shift detection methodology with sequential analysis and pre-whitening by Rodionov 
(2006) was applied to the annual and seasonal Schoharie Creek at Prattsville streamflow and for 
three New York City reservoir system indicators. Based on data from 1929 to 2010, historical 
streamflow in the region exhibit multiple regime shifts with more shifts occurring during winter 
(DJF) than during summer (JJA). This is not new; Matonse et al. (2011) have found that regional 
changes in climate are most likely to have a greater effect on winter hydrology rather than 
summer hydrology in the study region. Also, regime shift detection for selected reservoir 
indicators shows at least one regime change and an emerging shift (in the early 2000s) during the 
analysis period. The results are consistent with the mid 1960s drought period and higher 
streamflow in the early 2000s. These results are part of an ongoing study that will help to better 
understand the relationship between regional climate and water supply. Of importance is the 
potential of using regime adjusted rules and forecast to improve water supply management and 
reservoir system reliability. However, for such an adjustment option to be possible further 
investigation is needed that addresses the issue of earlier regime shift detection and the 
relationship between trends, regime shift and climate change.  
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4.5. Streamflow responses and ecological implication of climate change 
 
Introduction 
  
Streamflow and its components represent a good proxy of the combined impact of climate 
change because of the spatially integrated hydrologic response that they provide. Small 
perturbations in precipitation frequency and/or quantity can impact mean annual streamflow 
(Risbey and Entekhabi, 1996). An examination of historical data and results of model 
simulations in the northeastern US have shown an increasing trend in precipitation and 
streamflow during the last fifty years (Burns et al., 2007; Zion et al., 2011). Changes in 
precipitation levels and even temporal shifts in the water balance are expected to bring changes 
in hydrologic regimes, which will affect stream habitat, ecosystem diversity, and water resource 
management (Gibson et al., 2005; Pradhanang et al., 2011) and is deemed important for New 
York City water supply watersheds. The characteristics related to amount and variability of 
discharge are considered to be the most fundamental variables defining the stream ecosystem 
(Bunn and Arthington, 2002; Poff and Ward, 1990) and the alteration of flow regimes is 
identified as a potentially serious threat to the ecological sustainability of rivers (Richter et al., 
1996). Ecologists have consistently identified flow magnitude, duration, frequency, timing, and 
rate of change (Poff and Ward, 1990; Poff et al., 1997)  as the most influential responses to 
consider in ecological studies. The goals of this study are:  
 

1.  To examine how changes in precipitation and air temperature translate into changes in 
streamflow responses in the Cannonsville Reservoir Watershed (CRW) using a physically 
based semi-distributed SWAT-WB model (Easton et al., 2010b; White et al., 2011). 
 

2. To analyze baseline and future streamflow scenarios using the Indicators of Hydrologic 
Alterations (IHA) tool (Richter et al., 1996)  to gain an overall indication of the extent of 
hydrological change from reference conditions.  

 
The potential effect of climate change on streamflow was assessed using scenarios derived from 
a suite of nine Global Climate Model (GCMs) that represent a range of future (2081-2100) 
climate conditions (Table 4.2) for A1B scenario (representing rapid economic growth with 
balanced emphasis on all energy sources) (IPCC, 2007b). Climate scenarios were downscaled 
using change factor methodology described in (Anandhi et al., 2011).  
 
 
Table 4.2. Global Climate Models (GCMs) used in this study 
 

GCM ID* Acronym used 
CGCM3.1(T47) CC4 
CGCM3.1 (T63) CC6 
CSIRO-MK 3.0 CS0 
GISS-AOM GAO 
GFDL-CM 2.0 GF0 
IPSL-CM4 IPS 
MIROC3.2 (HIRES) MIH 
ECHAM5/MPI-OM MPI 
MRI-CGCM 2.3.2 MRI 
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Methods 
 
Hydrologic Assessment 
 
The general approach for hydrologic assessment consisted of defining a series of 33 hydrologic 
attributes that characterize intra-annual variability in streamflow conditions and then analyzing 
these variations as a foundation to compare baseline streamflow versus the impact of climate 
change on streamflow. The hydrologic attributes are based upon five characteristics of 
hydrologic regimes, known as Indicators of Hydrologic Alterations (IHA). Details on IHA tool 
can be obtained from IHA Manual (Richter et al., 1996). A summary of the parameters, and their 
characteristics, used in the IHA is provided in table 4.3. The IHA analysis statistically 
characterizes inter-annual variation in flow regimes and, because the methodology uses median 
daily streamflow rates, it is suitable for detecting the hydrological characteristics relevant to 
sustaining aquatic ecosystems. Eighteen of the 33 IHA parameters (Groups 2, 3 and 4 in table 
4.3) focus on the magnitude, duration, timing and frequency of extreme events, whereas the other 
fifteen parameters (Groups 1 and 5 in table 4.3) are measures of the median of the magnitude of 
flows or the rate of change of water conditions.  The steps used in hydrologic assessment are as 
follows: 

 
1. The streamflow time series for baseline simulation (1964-2008) and nine climate change 

scenarios were defined. During the data set up, baseline simulation is treated as pre-
impact scenario and each climate change scenario as post-impact scenarios. 
 

2. The values for ecologically relevant 33 parameters (table 4.3) for each year in each time 
series were calculated. 
 

3. Inter-annual statistics such as measures of central tendency and dispersion were 
calculated for each time series for 33 parameters.  
 

4. The median and coefficient of variations for each parameter was then compared between 
simulated streamflow and streamflow as a result of climate change 
 

Changes in daily streamflow metrics were analyzed to identify changes in dynamics of 
streamflow in the CRW between the baseline simulation period and the various climate change 
scenarios (table 4.2). When examining the hydrologic effects of climate change scenarios, the 
change in the hydrologic responses were calculated relative to the results from the calibrated 
baseline simulation, rather than the historic observations. 
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Table 4.3. Indicators of Hydrologic Assessment (Richter et al., 1996) 
 

IHA group Hydrologic parameters Ecosystem Influences 

Magnitude of 
monthly water 
conditions 

Median value for each calendar year 
(12 parameters) 

1. Availability of habitat for aquatic organisms 
2. Availability of soil moisture for plants 
3. Availability of water 
4. Reliability of water supplies for wildlife 
5. Effects of water temperature and dissolved 

oxygen 

Magnitude and 
duration of 
annual extreme 
water 
conditions(medi
an daily flow) 

1. Annual 1-day minima 
2. Annual 3-day minima 
3. Annual 7-day minima 
4. Annual 30-day minima 
5. Annual 90-day minima 
6. Annual 1-day maxima 
7. Annual 1-day maxima 
8. Annual 1-day maxima 
9. Annual 1-day maxima 
10. Annual 1-day maxima 
11. Number of zero flow days 
12. 7-day minima/median for year 

1. Balance of competitive and stress tolerant 
organisms 

2. Creation of sites for plant colonization 
3. Structure of river channel morphology and 

physical habitat conditions 
4. Soil moisture stress in plants 
5. Dehydration of wildlife 
6. Duration of stressful conditions 
7. Distribution of plant communities 

Timing of 
annual extreme 
of high and low 
pulses 

1. Julian date of each annual 1-day 
maxima 

2. Julian date of each annual 1-day 
minima 

1. Predictability and avoidability of stress for 
organisms 

2. Spawning cues for migratory fish 

Frequency and 
duration of high 
and low pulses 

1. Number of low pulses within 
each year 

2. Median duration of low pulses 
each year 

3. Number of high pulses within 
each year 

4. Median duration of high pulses 
each year 

1. Frequency and magnitude of soil moisture 
stress for plants 

2. Availability of floodplain habitat for aquatic 
organisms 

3. Effects of bedload transport and channel 
sediment distribution, and duration of 
substrate disturbance 

 
Rate and 
frequency of 
water condition 
changes 

1. Medians of all positive 
difference between consecutive 
daily values  

2. Medians of all negative 
difference between consecutive 
daily values 

3. Number of hydrologic reversals 

1. Drought stress on plants 
2. Desiccation stress on low-mobility stream-

edge organisms 
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Results and Discussions 
 
Hydrologic Assessment of Indicators 
 
We used median as an estimate of central tendency and the variance as an estimate of dispersion. 
For each 33 hydrologic parameters the differences between the baseline and climate change 
ensemble scenario is expressed as both a magnitude of difference and a deviation percentage 
(table 4.4).  
 
Magnitude of the monthly median of daily flows 
 
The hydrologic assessment showed increase in median monthly streamflow for winter months 
(figure 4.11). The highest increase in median daily flow was observed for during January (379%) 
month. Such large increase in winter flow can affect not only habitat suitable for winter flora and 
fauna, but can increase stream bank erosion and mass flux of pollutants due to high flow. The 
streamflow decreased from April through September. The reduced flow during April and 
summer months can have adverse impacts on fish habitats and spawning. A study specific to the 
Catskill Mountain region of NYS  (Burns et al., 2007) reported that there was notable shift in 
peak snowmelt from early April at the beginning of the historic record to late March by the end 
of the record and an increase in runoff from June to October. Annual mean streamflow increased 
for all the climate change scenarios. (Gan, 1998), in a study of the Canadian Prairies, found that 
over the last 40-50 years many stream and river gauging stations observed an increase  in 
streamflow during March, attributed to earlier snowmelt, followed by reduced flow in May and 
June. 
 
Magnitude and duration of extreme annual conditions 
 
The percent change values are less for the annual maximum daily streamflow compared to the 
annual minimum and median daily streamflow for non-winter months similar to the observations 
made by McCabe and Wolock (2002) for the conterminous United States. Our study indicates 
that streamflow will become much more extreme with increases in both consecutive 7-day low 
flow (124% increase from baseline) (figure 4.12a) and in 7-day high flow (3.5% increase from 
baseline) (figure 4.12b) under different climate scenarios. The magnitude of increase however is 
higher for annual daily minimum flow. A study in Monroe County, NY (Coon, 2005) assessing 
trends from 1965 to 2005 noted an increase in temperature, precipitation, and 7-day low-flows in 
rural streams, consistent with trends observed elsewhere in the U.S. Because the amount of water 
available in a river system defines the suitability of a habitat to aquatic organisms, flow 
alteration, especially at low flows, create unfavorable conditions for native species (Poff et al., 
1997). Lower summer flows can lead to increase in water temperatures and reduced dissolved 
oxygen. Lower flows also indicate a reduced wetted perimeter, which would decrease habitat 
availability and impact lateral exchanges between the riparian zone and the stream. 
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Table 4.4.  Results of indicators of hydrologic alteration analysis for stream at Walton, NY 

 

 
Medians  Dispersion  

 
Streamflowa (m3/s)  

 

Baseline 
Condition 

(1964-2008) 

Ensemble 
scenario 
(2081-
2100) 

Deviationb/ 
Magnitude% 

Baseline 
Condition 

(1964-
2008) 

Ensemble 
scenario 
(2081-
2100) 

Deviation/ 
Magnitude% 

Parameter Group #1: Monthly magnitude 
January 4.07 19.50 15.40/379.0 2.10 1.02 -1.08/ -51.4 
February 4.99 22.20 17.20/ 344.0 2.44 0.81 -1.63/ -66.9 
March 25.5 31.60 6.10/ 23.9 0.98 0.47 -0.51/ -52.0 
April 40.80 24.70 -16.10/ -39.5 0.40 0.52 0.12/ 29.2 
May 19.90 12.90 -7.03/ -35.3 0.47 0.67 0.20/ 41.5 
June 9.69 8.06 -1.63/ -16.8 0.81 1.01 0.20/ 24.6 
July 7.00 6.58 -0.42/ -6.0 0.84 0.83 -0.01/ -1.20 
August 4.71 4.44 -0.27/ -5.8 0.68 0.65 -0.03/ -5.00 
September 4.61 4.11 -0.50/ -10.9 0.88 0.91 0.02/ 2.80 
October 7.12 7.59 0.47/ 6.6 1.63 1.74 0.11/ 6.80 
November 12.5 20.20 7.68/ 61.2 0.99 0.98 -0.02/ -1.50 
December 8.73 19.20 10.50/ 120.0 0.82 0.82 0.00/ -0.20 
Group averages   68.4% 

   -6.11% 
 Parameter Group #2: Magnitude and duration of annual extremes 

1-day minimum 0.21 0.50 0.29/ 140.0 2.81 1.38 -1.43/ -50.8 
3-day minimum 0.27 0.65 0.38/ 144.0 2.55 1.27 -1.28/ -50.4 
7-day minimum 0.47 1.04 0.58/ 124.0 2.16 0.89 -1.27/ -58.9 
30-day minimum 2.44 2.73 0.29/ 12.0 0.95 0.70 -0.24/ -25.5 
90-day minimum 5.20 5.11 -0.09/ -1.8 0.46 0.49 0.03/ 6.0 
1-day maximum 130.00 137.40 7.40/ 5.7 0.59 0.57 -0.10/ -2.30 
3-day maximum 98.30 105.00 6.57/ 6.7 0.54 0.49 -0.05/ -9.30 
7-day maximum 80.20 82.40 2.17/ 2.7 0.54 0.39 -0.15/ -28.0 
30-day maximum 51.70 53.50 1.80/ 3.5 0.49 0.37 -0.12/ -24.0 
90-day maximum 36.50 35.30 -1.14/ -3.1 0.30 0.35 0.50/ 17.0 
Base flow index 0.02 0.07 0.05/ 222.0 2.41 0.80 -1.61/ -66.7 
Group averages 

  
54.6% 

  
-24.4% 

Parameter Group #3: Timing of annual extremes 
Date of minimum 50.00 253.50 202.50/397.0 0.14 0.11 -0.03/ -23.6 
Date of maximum 84.00 79.80 -4.22/ -5.0 0.14 0.19 0.04/ 29.2 
Group averages   196%   2.80% 

Parameter Group #4: Frequency and duration of high and low pulses 
Low pulse count 11.00 9.11 -1.89/ -17.2 0.55 0.56 0.02/ 3.30 
Low pulse 

 
5.00 4.67 -0.33/ -6.7 0.60 0.68 0.08/ 13.9 

High pulse count 12.00 14.20 2.22/ 18.5 0.42 0.44 0.027/ 5.1 
High pulse 

 
4.00 3.94 -0.66/ -1.4 0.50 0.58 0.08/ 16.9 

Group averages 
  

-1.70% 
  

9.80% 

Parameter Group #5: Rate and frequency of change in conditions 
Rise rate 2.16 2.33 0.17/ 8.1 0.61 0.42 -0.19/ -31.5 
Fall rate -1.12 -1.37 -0.25/ 22.5 -0.28 -0.35 -0.07/ 24.3 
Number of 

 
116.00 126.20 10.22/ 8.8 0.15 0.11 -0.04/ -24.5 

Group averages 
  

13.1% 
  

10.6% 
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Figure 4.11. Boxplot of median daily streamflow by month.  White boxes show baseline, grey 
boxes show climate change ensemble. 
 
 
 
 
 
 
 (a) (b) 

 
Figure 4.12.  Boxplots of magnitude and duration of extreme annual conditions: (a) annual 1, 3, 
7, 30 and 90 day minimum streamflow and (b) annual 1, 3, 7, 30 and 90 day maximum 
streamflow. White boxes show baseline, grey boxes show climate change ensemble. 
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Timing of the annual extreme conditions 
 
The timing of the maximum 1-day flow shifted back from March 25 to March 19 (by 
approximately 6-days), while there was a forward shift in the timing of minimum flow as it 
shifted  from early February to late October (figure 4.13a). This degree of shift would likely 
adversely affect the fall spawners such as brook trout due to reduced habitat availability resulting 
from extended low flow conditions. A shift in the timing of peak flow can alter the retention time 
of organic matter (Mulholland et al., 1997), disrupt the recruitment of riparian species that rely 
on appropriately-timed high flows to disperse seeds on the flood plain (Auble et al., 1994; Rood 
et al., 1995), and impact the survival of certain fish species whose larval emergence is timed to 
avoid high spring flows (Hauer et al., 1997). 
 
 
 (a) (b) 

  
(c) (d) 

 
Figure 4.13.  Boxplots of (a) Julian day annual 1-day minima and maxima showing timing of the 
annual extreme conditions; (b) Length of pulses in days showing rate and frequency of change in 
conditions; (c) number of flow pulses within each year; and (d) rate of hydrograph fall and rise 
for each year.  White boxes show baseline, grey boxes show climate change ensemble. 
  



 

39 
 

Frequency, Rate and frequency of change in conditions 
 
The pulsing behavior of the stream at the USGS gauge in Walton NY shows a reduced (17.2%) 
number of low pulse events but increase of 18.5% in high pulse events compared to the baseline 
scenario (figure 4.13b,c,d). Changes in flow pulses will lead to changes in channel geometry 
depending on the channel substrate. Increase in high flow pulses also lead to shift towards weedy 
invertebrate species and loss of species with poor re-colonization ability. Our results showed an 
increase in both rise and fall rate of the hydrograph (e.g., steeper rising and receding limbs) 
resulting in increase in number of reversals.  
 
Table 4.4 shows the temporal variability in streamflow for baseline and climate change 
scenarios. The variability has been reduced for the summer monthly median flows, the 90-day 
minimum and maximum flow, the timing of annual highs, the frequency and duration of low 
pulses, and the duration of high pulses. Temporal variance increased for April through June and 
during fall months, specifically the 90-days minimum and maximum, timing of annual extremes 
and hydrograph rise rate. These results of IHA analysis for Walton, NY reflect the effect that 
climate change may have on stream flow conditions. This higher variability in rise and fall rate 
of hydrograph may affect aquatic invertebrates inhabiting the littoral zone along the river’s edge 
(Richter et al., 1996; Richter et al., 2003).  
 
 
Conclusions 
 
This study used SWAT-WB model to simulate streamflow and evaluate effects of climate 
change on streamflow, and flow regime, including metrics calculated using the IHA tool. These 
indicators are important for understanding how river flow dynamics will impact the health of the 
aquatic environment as well as water supply and other infrastructure. The indicator analysis 
showed that watershed water yield is expected to increase at an annual scale. Winter and spring 
streamflow will increase but summers will be drier in future. Lower flows indicate a reduced 
wetted perimeter, which would decrease habitat availability and impact lateral exchanges 
between the riparian zone and the stream. The magnitude and duration of annual extremes are 
also expected to increase due to climate change. Baseflow index increase, i.e., decrease in 
baseflow may result due to the change in projected climate effecting soil moisture and soil water 
storage. The timing of annual extremes will be shifted for maximum flow by approximately 6 
days backward and minimum flow from early winter to late October. Such shifts can affect 
impact the survival of certain fish species whose larval emergence is timed to avoid high spring 
flows. Both the rise and fall rates of the hydrograph will increase indicating the increase in 
flashiness. Changes in land surface hydrology due to changing climate, such as changes in the 
discharge of large rivers, have potentially far reaching implications both for human populations 
and for regional-scale physical and ecological processes.  
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4.6. Impact of Climate Change on the Thermal Structure of Cannonsville and Pepacton 
Reservoirs 
 
An investigation has been initiated to study the potential impact of climate change on the thermal 
structure and mixing regimes of the Cannonsville and Pepacton Reservoirs, which are part of the 
Delaware system of the NYC water supply. This study used climate scenarios representative of 
current conditions (1980-2000) and two future time periods (2045-2065, 2080-2100). Future 
climate scenarios were derived by examining the differences between simulations of baseline and 
future time periods associated with three GCM models (Canadian Center for Climate Modeling 
and Analysis (CGCM3), European Center Hamburg Model (ECHAM) and Goddard Institute of 
Space Studies (GISS)) available from the World Climate Research Programme's Coupled Model 
Intercomparison Project phase 3 (CMIP3) dataset. Based on these differences, single monthly 
change factors were developed (DEP, 2009) and applied to local records of meteorological data 
to produce future scenarios of air temperature, precipitation, humidity, solar radiation and wind 
speed. These data are used to drive the Generalised Watershed Loading Functions-Variable 
Source Area (GWLF-VSA) watershed model to simulate the future reservoir inflows. A one 
dimensional hydrothermal model is applied to simulate the vertical water temperature over 
historical data sets and future scenarios for each reservoir (figure 4.14). Stratification and mixing 
indices are derived from the simulated water temperature and the  wind speed under the different 
climate scenarios (A1B, A2 & B1) using the lake analyzer program (Read et al. 2011) developed 
by GLEON network (http://www.gleon.org/). 
 
 
 
 

 
 
Figure 4.14.  Schematic diagram of model connections and dataflow used to simulate reservoir 
thermal structure 
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Modeling Water Temperature 
 
The water temperature of lakes and reservoirs is one of  the most important factors regulating 
limnological processes within a system, since temperature affects the rate of biological 
processses, and density stratification influnces the availability of nutrients and light. Other 
studies have used a variety of one dimensional models to explore the potential impact of climate 
change on lakes and reservoirs, including studies undertaken by Arvola et al. (2009), Jones et al. 
(2009), MacKay, et al. (2009), Borowiak et al. (2008), Markensten and Pierson (2007), Hondzo 
and Stefan (1991). These studies mainly involved sensitivity analyses run over long time scales. 
 
This report examines the output of the hydrothermal sub-model of the DEP one-dimensional 
Protbas model.  Hydrothermal output includes the vertical dynamics of reservoir thermal 
stratification and related transport regimes, based on changes in such critical (state) variables as 
meteorological, hydrological and operational conditions. Comparisons between simulations 
based on present day climate data (baseline conditions) and future simulations (change factor 
adjusted baseline conditions) are used to evaluate the development and breakdown of thermal 
stratification, as well as a number of metrics that describe reservoir thermal structure, stability 
and mixing. As a first step the hydrothermal model was verified by comparison of simulated and 
measured temperature profiles under current conditions (figures 4.15-4.16).  These data clearly 
demonstrate that the hydrothermal component of the Protbas model is able to simulate vertical 
and temporal variations in the water temperature of both reservoirs. 
 
 
Results of Simulated Water Temperature 
 
In figures 4.17-4.18 general features of the simulated changes in thermal structure for the later 
time period (2080-2100) are presented in the form of temperature isopleths diagrams.  These are 
constructed for each future scenario from a yearly matrix (day 1-365) of mean daily temperature 
profiles. These temperature isopleths, based on average scenario conditions, suggest that in the 
future the onset of stratification will begin earlier and end later resulting in a longer period of 
stratification, particularly under the A1B and A2 emission scenarios that predict greater increases 
in atmospheric CO2. The vertical extent of stratification is deeper, and epilimnetic temperatures 
are also warmer during the future scenarios and again these changes are more pronounced for the 
A1B and A2 scenarios. Comparing all climate scenarios shows that between 32%-80% of a year 
undergoes stronger and deeper stratification, as defined by the temperature difference between 
surface and bottom (ΔT=Ts-Tb) that ranged between 9 to 22 0C.  
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Figure 4.15.  Simulated and measured temperature Profiles in Cannonsville reservoir  
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Figure 4.16.  Simulated and measured temperature Profiles in Pepacton reservoir 
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Figure 4.17.  Temperature isopleth diagrams for Cannonsville reservoir under simulated baseline 
and future climate conditions. These represent the average conditions over the 20 year 
simulations periods. 
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Figure 4.18.  Temperature isopleth diagrams for Pepacton reservoir under simulated baseline and 
future climate conditions. These represent the average conditions over the 20 year simulations 
periods.  
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(a) Cannonsville – Onset of Stratification (b) Pepacton – Onset of Stratification 

   
 
(c) Cannonsville – Loss of Stratification (d) Pepacton – Loss of Stratification 

   
Figure 4.19.  Boxplot showing range of Julian day for (a,b) onset and (c,d) loss of stratification 
for (a,c) Cannonsville and (b,d) Pepacton Reservoirs for Baseline and Future climate scenarios.  
Future scenarios represent time slice 2080-2100. 
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(a) Cannonsville – Schmidt stability (J∙m-2) (b) Pepacton – Schmidt stability (J∙m-2) 

  
 
(c) Cannonsville – Buoyancy Frequency (s-1) (d) Pepacton – Buoyancy Frequency (s-1) 

  
 
(e) Cannonsville – Lake Number (f) Pepacton – Lake Number 

  
 
(g) Cannonsville – Wedderburn Number (h) Pepacton – Wedderburn Number 

   
Figure 4.20.  Boxplot showing range (a,b) Schmidt stability (J∙m-2), (c,d) buoyancy frequency  
(s-1), (e,f) lake number and (g,h) Wedderburn number for (a,c,e,g) Cannonsville and (b,d,f,h) 
Pepacton Reservoirs.  Hydrologic indices were calculated using the Lake Analyzer program.  
Future scenarios represent time slice 2080-2100.  
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On average the length of stratification in Cannonsville reservoir is projected to increase by 7 
days and 12 days in the case of the A1B and A2 emission scenarios. Water temperature under 
these different climate scenarios will increase, with the mean surface water temperature is 
increasing by 10.62% and 12.08% while the mean bottom water temperature is increased by 
11.78% and 13.96%. There is a substantial projected increase in both surface and bottom 
temperatures under different future climate scenarios.  For Pepacton reservoir similar results 
suggest that the length of stratification will increase but by a greater extent of 16 and 21 days in 
the case of the A1B and A2 emission scenarios. Water temperature under these different climate 
scenarios will increase, with the mean surface water temperature increasing by 8.07% and 9.8% 
and the mean bottom water temperature increasing by 5.06% and 6.5%. The statistics of the 
stratification characteristics in both reservoirs are displayed in figure 4.19. 
 
Results of Reservoir Indices 
 
The daily vertical temperature profiles output from the model and the daily wind speed over the 
simulation time period was further processed using the Lake Analyzer program (described and 
developed by Read et al. (2011) to calculate Schmidt stability, lake number and buoyancy 
frequency on a daily basis. The Schmidt stability (St), which is the resistance to mechanical 
mixing due to the potential energy in the stratification of the water column was first defined by 
Schmidt (1928) and later modified by Hutchinson (1957), describes the strength of density 
stratification. As the stability increases due to gradual warming of the surface waters, and the so 
called center of gravity of the system moves deeper into the water column as a result of vertical 
differences in density. The Lake number (Ln), defined by Imberger and Patterson (1990) is a 
quantitative index of the dynamical stability of the water column and shows the extent of deep 
turbulent mixing. A higher lake number indicates that the deep turbulent mixing is minimal. The 
buoyancy frequency (N2), which represents the local stability of the water column based on the 
density gradient is given by N2= (g/ρ) (𝜕𝜌/𝜕𝑧). The comparisons of results of different indices 
for both reservoirs are displayed in figure 4.20. 
 
 
 
Table 4.5.  Increases in thermal stratification and the reservoir indices between present and future 
(2080-2100) conditions. 
 

Reservoir Cannonsville Reservoir Pepacton Reservoir 
Climate scenario A1B A2 A1B A2 
Length of stratification (days) 07 12 16 21 
Surface temperature (%) 10.62 12.08 8.07 9.8 
Bottom temperature (%) 11.78 13.96 5.06 6.5 
Reservoir indices   
Schmidt stability (%) 24.5 24.5 24.29 29.4 
Buoyancy frequency (%) 23.89 23.89 24.00 25.84 
Thermocline depth (%) 8.2 8.2 7.3 13.02 
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The extent of deep turbulent mixing is reduced during A1B and A2 scenarios as compared with 
present climate conditions, which is in agreement with the higher Schmidt stability during these 
periods (Figure 4.20), since stronger stratification dominates the forces introduced by the surface 
wind energy. The schmidt stability calculated over the multiple years of baseline and future 
scenarisos was found to increase in Cannonsville by 24.5 % (A1B Scenario and A2 Scenario) 
whereas the buoyancy frequency showed an increase of 23.9% (A1B scenario and A2 Scenario). 
In the Pepacton reservoir, the Schmidt stability was found to increase by 24.3 % (A1B Scenario) 
and 29.4% (A2 Scenario) and buoyancy frequency showed a similar increase of 24.0%  (A1B 
Scenario) and 25.8% (A2 Scenario) in the future scenarios. The Wedderburn number and Lake 
number, both of which are dimensionless indices explaining the potential for diapycnal 
(convective) mixing events during periods of thermal stratification, displayed a high amount of 
variability in Cannonsville and Pepacton reservoirs. Despite this, both indices increased in value 
under the future climate scenarios suggesting that the reservoirs will experience stronger and 
longer period of stratification with reduced likelihood of substantial diapycnal mixing during the 
stable stratification period. The median depth of the thermocline is projected to increase by 8.2% 
in both the A1B and A2 scenarios in Cannonsville Reservoir, whereas, the projected thermocline 
depth in Pepacton Reservoir will increase by 7.3% in case of the A1B scenario and 13.0% in 
case of the A2 scenario.  The stable and the stronger stratification for the A1B and A2 scenarios 
could potentially reduce the extent vertical mixing. The projections of warmer water temperature 
and longer duration of stratification under future conditions, as indicated by the metrics in figure 
4.19 and in Table 4.5, could potentially result in an increase in the net heat flux to the 
hypolimnion and reduced levels of hypolimnetic dissolved oxygen.  
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4.7. Vulnerability Assessment and Risk Management Tools for Climate Change: Assessing 
Potential Impacts and Identifying Adaptation Options 
 
DEP Water Quality Modeling Section is a collaborator in the WRF Project 4262 – Vulnerability 
Assessment and Risk Management Tools for Climate Change.  The goals of the project are to: a) 
develop a risk assessment and management framework including methods for downscaling GCM 
data, watershed and water system planning tools to assimilate climate information, and a 
decision analysis framework to identify climate risk management strategies; and b) pilot test the 
framework for New York City and Colorado Springs. The collaborators include researchers from 
Stockholm Environment Institute, Rand Corporation, Hydrologics, Hazen and Sawyer, DEP, and 
National Center for Atmospheric Research (NCAR).  
 
The NYC pilot test is guided by the “XLRM” organizational framework (Lempert et al., 2003).  
The XLRM framework structures the analysis of future vulnerability into four main components: 
 
 1. Exogenous uncertainties (“X”) are factors deemed to be beyond human control (e.g. 

future climate, population, land use, and economic change), 
 
 2. Levers (“L”) are actions or strategies for reducing vulnerability (e.g. operational 

modifications, capital investments, water conservation programs), 
 
 3. Relationships (“R”) are cause-effect mechanisms (e.g. effect of operational changes on 

water quality, effect of climate change on reservoir release requirements, effect of water 
rates on demand, etc.) typically reflected through computer models, and 

 
 4. Measures (“M”) are performance standards used for ranking the desirability of various 

scenarios (e.g. percent of days under a drought condition, probability of refill by June 1, 
frequency of alum treatment events, etc.) 

 
Application of the XLRM framework entails developing future scenarios that combine 
uncertainties (X) with alternative actions/strategies for reducing vulnerability (L); running these 
scenarios thru a suite of watershed and reservoir system models that embody key cause-effect 
relationships (R) between driving (X,L) factors and system performance; and applying system 
performance metrics (M) as criteria for evaluating effects of uncertain factors and effectiveness 
of adaptation strategies. Subsequent statistical analyses to formally evaluate adaptation strategies 
utilize the Robust Decision Making (RDM) decision analysis framework (Groves and Lempert, 
2007). 
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An initial analysis was set up with the following XLRM components: 
 

• Uncertainties (X) 
- Climate (precipitation and air temperature) under 20th century (20C3M) vs. future 

periods 2046-2065 and 2081-2100 as projected by 9 GCM models selected based on 
skill of estimating historical climate, for the A1B SRES scenario. GCM output 
downscaled using the 25 bin statistical delta method (see elsewhere in report). The 9 
GCMs are: 

(1) CGCM3.1(T47) 
(2) CGCM3.1 (T63) 
(3) CSIRO-MK 3.0 
(4) GISS-AOM 
(5) GFDL-CM 2.0 
(6) IPSL-CM4 
(7) MIROC3.2 (HIRES) 
(8) ECHAM5/MPI-OM 
(9) MRI-CGCM 2.3.2 

 
- Input turbidity levels used to trigger changes in reservoir operations. : Three 

variations are tested: (1) default levels presently embedded in the DEP OASIS model, 
(2) 10% lower than default, and (3) 10% higher than default. These are used to 
account for uncertainty in rating curves that translate watershed modeled streamflow 
into turbidity load estimates. 

- Average annual daily demand: 3 variations – 1250, 1450, and 1650 MGD. 
- Monthly demand multipliers: 3 variations – flatter, average, sharper, to account for 

uncertainty in seasonal variation in demand. 
 

• Levers (L) 
- System with planned near-term improvements 

 
• Relationships (R) 

- GWLF Hydrology Models simulate inflows to NYC Catskill, Delaware, and Croton 
systems. Statistical regression model used to partition Croton system inflows amongst 
individual East-of-Hudson reservoirs (see Section 5.5) 

- Statistical regression model estimates lower Delaware River inflows 
- Empirical sediment rating curves used to translate simulated inflows to turbidity 

inputs to reservoirs. 
- NYC OASIS Reservoir system model routes inflows thru system and to simulate 

reservoir operations. 
- Turbidity surrogates in OASIS model used to simulate operational responses to 

turbidity events.  
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• Performance Metrics (M) 

- Volume of water pumped in the system (cost metric) 
- Catskill turbidity events 

o Total number of turbidity event days and alum usage surrogate 
- NYC and upstate shortages 

o Total number of days, average shortage, and maximum year 
- NYCSS drought conditions 

o Total number of days for three drought levels 
- DEL/CAT/CRO and total system usable storage 

o Median levels, refill probability, and probability of drawdown < 50% 
- NYC Delaware Reservoir releases 

o 20th and 95th percentiles 
- Trenton flows 

o Days below 2500 cfs, 2700 cfs, and 3000 cfs levels 
 
In addition to participating in the planning and development of the initial analysis, the DEP 
Water Quality Modeling Section performed the following tasks to support the project: 
 

• downloaded, regridded, and downscaled GCM output for the 9 GCMs listed above, for 
20th century and two future time slices (2046-2065 and 2081-2100), using 25 bin 
statistical change factor method (see Section 4.2). 
 

• Ran downscaled GCM data thru GWLF watershed models, producing simulated inflow 
daily time series for each Catskill and Delaware System reservoir and for the Croton 
System. Croton System inflows were further partitioned to individual East of Hudson 
reservoirs by statistical regression analysis (see Section 5.5). These were transmitted to 
Hazen and Sawyer collaborators for further processing. 

Initial analysis is underway and results will be forthcoming. 
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5. Model Development 
 
5.1. Analysis of Turbidity Transport Dynamics in the Esopus Creek Watershed and New 
Developments in Turbidity Prediction 
 
Introduction 
 
Sediment loads can exert an important control on the use of rivers for water supply and other 
designated uses (Walling, 2009). High river sediment loads and the resulting sedimentation of 
water resources is a major water quality issue in the United States (USEPA, 2009). The 
economic impact of sedimentation in the United States is estimated to be billions of dollars 
annually (Pimentel et al., 1995). The vast majority of the suspended sediments are transported 
during high flow events (Wolman and Miller, 1960) and therefore it is important to quantify the 
sediment flux during these events. Improved capability to quantify such events may help in 
developing predictive models that can support management of water resources. 
 
Differences between turbidity or suspended sediment loads estimated using discharge rating 
curves and loads based on actual measurements may be caused by missing explanatory variables 
in addition to discharge (Colby 1956; Thomas 1988; Syviski et al. 2000), which may also result 
in inter-event variability in the sediment rating relationship (Asselman, 1999; Lenzi and Marchi, 
2000; Seeger et al., 2004; Zabaleta et al., 2007). Recent studies have considered additional 
predictors of suspended sediment which include antecedent soil moisture conditions and event 
variables such as maximum stream discharge and precipitation (Seeger et al., 2004; Zabaleta et 
al., 2007). Hicks et al (1996) observed spatial variability in sediment yield due to variations in 
rainfall and geology. The underlying assumption is that sediment yield at the watershed outlet is 
controlled by factors related to sediment supply rather than just transport capacity represented by 
stream discharge at the outlet. Therefore, inclusion of predictors of sediment supply in addition 
to measurements of stream discharge may improve the predictive models for event mean 
turbidity/suspended sediment loads.   
 
A case study from the Catskill region of New York State is presented in this paper, using data 
collected from the Esopus Creek watershed that is part of the NYC drinking water supply 
system. The focus of this paper is on the estimation of stream water turbidity and estimates of 
turbidity loads entering the Ashokan reservoir. Being an optical measurement, turbidity can be 
measured in situ and at higher sampling frequency than are possible from manual sampling and 
laboratory analysis of suspended particulate matter (SPM). Automated high frequency 
monitoring of turbidity (Tn, NTU) can therefore be used to provide high frequency estimates of 
suspended sediment loads and can also be used to accurately estimate Tn loads that are an 
important input to predictive models (Gelda and Effler 2007) used to guide reservoir operations 
and minimize the impact of turbid inputs on water delivered to New York City consumers.  
 
We hypothesize that the event mean turbidity load is determined by a combination of factors 
such as spatial distribution of precipitation, geologic sources of sediment, antecedent soil 
moisture condition of the watershed, stream power generated during the event, flow regime, and 
season.  The purpose of this study is to identify the factors that cause variability in the discharge-
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turbidity relationship in the Esopus Creek watershed and to develop improved turbidity 
predictions that include factors in addition to stream discharge.  
 
 
Methods 
 
Turbidity monitoring 
 
An automated Tn monitoring system was installed on the main tributary entering the Ashokan 
Reservoir near the confluence of the creek and with the reservoir. Water is pumped into a 
riverside hut where measurements of Tn, specific conductivity and water temperature are made 
using a YSI water quality sonde. Water samples are also periodically collected and analyzed for 
Tn and TSS in the laboratory. These data are then used to correct the automated data to account 
for drift in the measurements. A nearby U. S. Geological Survey (USGS) gauging station 
provides discharge data at a daily and 15 min interval. Turbidity measurements are made at 
intervals between 15 min. and 1 hr. and flow-weighted to provide daily average values, 
comparable in frequency to the most widely available daily USGS discharge data, and are also 
the time step used by New York City Department of Environmental Protection (DEP) reservoir 
water quality models. In this study turbidity events are defined in two time scales; daily (the flow 
weighted mean daily turbidity for the day that accounted for the greatest proportion of the load 
during an event) and events (based on the entire hydrograph) whose start times were determined 
graphically by rise in hydrograph above baseflow and end time determined by the inflection 
point in the falling limb of the hydrograph similar to the method used by Stuntebeck et al. 
(2008). Event peak daily turbidity (EPDT) and event mean turbidity (EMT) are calculated by 
summing the 15 minute turbidity loads derived from measurements of discharge and turbidity 
collected at a 15 minute frequency (equations 5.1 and 5.2).    
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where NTU i is the instantaneous turbidity, Qi is the instantaneous discharge and n is the number 
of 15 minute intervals during an event 
 
Loads were calculated for 30 event days (where mean daily turbidity could be calculated) and 27 
events (where event mean turbidity could be calculated) between 11/19/2003 and 04/17/2011 
where both stream flow and turbidity data were available. Although many events were 
characterized at both time scales, some events were not captured over the entire hydrograph due 
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to storm related damage and fouling of turbidity sensors. Turbidity versus stream discharge 
relationships were developed using data from days when the flow diversion from Schoharie 
Reservoir was less than 20 % of the total Esopus Creek daily discharge. In all cases turbidity 
inputs to Esopus Creek from the Schoharie watershed were a very small component (<1%) of the 
event loads.  

 
Analysis of turbidity events 
 
A suite of variables used as possible predictors of event day turbidity include the number of days 
between events or antecedent dry days (ADD), time of the year (SEASON), mean daily flow at 
Coldbrook during the previous event (CB_PE), mean daily flow and turbidity at Coldbrook 
during the day prior to the event (CB_MIN and TURB_MIN). These predictors were used to 
represent the effect of soil moisture, flow regime, sediment supply and seasonal effect on stream 
turbidity. In the absence of rain gauges, mean daily stream discharge at the tributaries was used 
to represent the spatial variability of rainfall and in the contributions of water and sediment from 
different parts of the watershed, where differences in geologic sources of sediment, and the 
processes regulating stream channel erosion could occur. For each event day, the mean daily 
stream discharge at the tributaries (m3 d-1) was divided by the corresponding sub-basin area (m2) 
to get the mean water yield for the day (m d-1). Relative water yield (dimensionless) for a 
tributary was calculated by dividing the tributary water yield with the whole watershed water 
yield. 
 
Development of Predictive Models 
 
A step-wise regression approach was implemented on the potential predictor variables to 
determine the optimum combination of variables capable of predicting mean daily turbidity 
during the 30 identified event days. Separate multiple regression models were developed with the 
two classes of predictors, and a seasonal term was included in the analysis (0 for May-October 
and 1 for November-April). This multivariate approach has been used to analyze variations in 
sediment yield (Restrepo et al., 2006; Tamene et al., 2006). A similar approach was used for 
predicting the event mean turbidity for the 27 events. To judge the predictive power of the 
relationship, we compare estimated event turbidity loads with measured event loads derived from 
a long term (between 2003 and 2011) high frequency (15min. – 1 hr.) data set of stream turbidity 
and discharge.  Direct estimation of the turbidity loads from these high frequency data provide a 
standard against which the predicted turbidity loads can be judged, and also provide data from 
which inferences about the processes affecting stream turbidity can be obtained. 
 
Stream discharge-Tn rating curve 

Tn loads were estimated based on a relationship between discharge and Tn derived from 415 
paired observations of mean daily discharge and flow weighted mean turbidity (Equation 5.3), 
which allowed Tn to be estimated, and Tn loads to be calculated as the product of discharge and 
Tn. In the absence of automated Tn monitoring, a common approach to account for intra- and 
inter-storm variations in Tn (Crawford 1991, Horowitz 2003) expresses mean daily turbidity 
(NTU) as a function of discharge (Q).  
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 Log NTU = 1.17LogQ – 0.575 (R2 =0.66) (5.3) 
 
A rating curve in the form of an ordinary least square (OLS) regression (Equation 5.3 and Figure 
5.1) on log-transformed mean daily stream discharge (Q, m3 s-1) and log-transformed flow-
weighted mean daily turbidity (NTU) was used. A bias correction factor (β) (Ferguson, 1986) 
estimated based on the variance in the regression equation in the form β = exp (2.65 σ2), was 
multiplied by the OLS estimated turbidity value to reduce the expected under prediction in loads 
due to retransformation bias.  
 
 
Results and Discussion 
 
Hysteresis in discharge-turbidity relationship 
 
Analysis of discharge-turbidity relationship using 15-min high frequency measurements of Tn 
and stream discharge during each of the individual storm events shows a hysteretic behavior with 
the rising and falling limbs of the hydrograph transporting turbidity at different rates, and also 
showed that the pattern of hysteresis varied between events. The most common type of 
hysteresis, the clockwise hysteresis was observed during most events, indicating that the rate of 
turbidity transport in the falling limb is lower than the rising limb due to sediment source 
depletion.  
 
 
 
 
 

  
 
Figure 5.1.  Discharge-turbidity relationship at Coldbrook outlet 
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Figure 5.2.  Predicted vs. measured event mean turbidity (EMT) using Eq. 6 (left) and Eq. 7 
(right) 
 
 
Table 5.1.  Predicted vs. measured event mean turbidity loads for the 27 events and percent 
deviation from measured 

Event # Date 

Event 
mean 

discharge 

Event 
mean 

turbidity 
Turbidity 

load 
Turbidity 

load 
Turbidity 

load 
Turbidity 

load 
Turbidity 

load 

  (m3s-1) (NTU) (NTU∙ 
m3s-1) 

(NTU∙ 
m3s-1)  (NTU∙ 

m3s-1)  

  Measured Measured Measured Eq.6 
 

Eq.6 
% 

deviation 

Eq.7 
 

Eq.7 
% 

deviation 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

11/19/2003 
9/17/2004 

11/28/2004 
4/22/2006 
5/12/2006 
2/4/2006 

6/28/2006 
10/19/2006 
10/28/2006 
11/8/2006 

11/16/2006 
3/14/2007 
3/27/2007 
4/15/2007 
6/2/2007 

11/15/2007 
1/7/2008 
2/5/2008 

2/18/2008 
3/4/2008 
3/9/2009 

1/25/2010 
3/14/2010 
3/26/2010 
12/1/2010 
3/11/2011 
4/17/2011 

106 
248 
167 
76 

141 
67 

307 
52 

174 
86 

125 
57 
72 

220 
67 
59 
43 
57 
69 

127 
56 

334 
101 
275 
306 
350 
118 

145 
306 
188 
178 
149 
33 

436 
19 
85 
24 
70 
82 
52 

222 
49 
20 
15 
52 
29 

101 
27 

912 
149 
549 
819 
725 
216 

15354 
76018 
31369 
13564 
21085 
2252 

133668 
988 

14792 
2067 
8758 
4705 
3722 
48685 
3325 
1193 
643 

2935 
2013 
12800 
1482 

304759 
14958 

151123 
250572 
253790 
25576 

9662 
94280 
32495 
3989 
20913 
2888 

165534 
1418 
36308 
5491 
15007 
1853 
3407 
67907 
2883 
1983 
887 

1804 
3081 
15721 
1724 

208542 
8393 

124129 
164906 
236122 
13009 

-37.1 
24.0 
3.6 

-70.6 
-0.8 
28.3 
23.8 
43.6 

145.5 
165.7 
71.4 
-60.6 
-8.5 
39.5 
-13.3 
66.3 
38.0 
-38.5 
53.1 
22.8 
16.3 
-31.6 
-43.9 
-17.9 
-34.2 
-7.0 
-49.1 

8416 
81888 
54801 
7762 
18647 
2258 

138644 
1281 
30116 
4110 
11661 
4561 
2507 
65026 
3167 
1533 
623 

1541 
2227 
13300 
2902 

240371 
9953 

109625 
272866 
204453 
13923 

-45.2 
7.7 

74.7 
-42.8 
-11.6 
0.3 
3.7 

29.7 
103.6 
98.9 
33.2 
-3.1 

-32.7 
33.6 
-4.7 
28.6 
-3.1 

-47.5 
10.6 
3.9 

95.8 
-21.1 
-33.5 
-27.5 
8.9 

-19.4 
-45.6 
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Step-wise multiple regression 
 
Use of additional variables improved the explanatory power of the stream discharge-based 
turbidity model. The average daily stream discharge, QD, (m3 s-1) alone as a predictor could 
explain only 39% of the variance in EPDT prediction for the 30 event days (Equation 5.4). A 
multiple regression model (Equation 5.5) that included the variables SEASON and ADD in 
addition to stream flow could explain 67% of the variance in turbidity prediction during event 
days.  
 
 Log(EPDT) = 1.26 Log(QD) – 0.694 (R2 = 0.39, P<0.0001) (5.4) 
 
 Log(EPDT) = 1.43 Log(QD) – 0.272 SEASON + 0.0029 ADD – 1.06  (5.5) 
 (R2 = 0.67, P<0.0001)  
 
In comparison to turbidity predictions based on stream discharge alone, multiple regression 
models were able to better capture the variability in stream discharge-turbidity relationship 
within a given range of flow. This analysis illustrates the multiple factors that may influence 
stream turbidity during an event, which make predictions using a single explanatory variable 
inaccurate. However, unlike a stream discharge based rating curve this approach for predicting 
event turbidity cannot be used for generating a continuous time series of turbidity values over a 
complete time series of event and inter-event discharges.  
While the above analyses explains the importance of multiple factors that may influence daily 
stream turbidity, event to event variability in total event turbidity load is important in the Esopus 
Creek watershed, as the magnitude of turbidity loading can impact reservoir operations.  We 
predicted the event mean turbidity (EMT) for 27 events using multiple regressions and compared 
the results with the measured EMT (Figure 5.2). A predictive relationship of EMT based on 
event mean stream discharge (QE, derived from 15-min data) alone led to a strong predictive 
relationship (r2 =0.81), but also a 10% underestimation of the cumulative measured event mean 
turbidity load calculated as the product of EMT and event mean stream discharge. Using the 
same relationship, the deviation in predicted event mean turbidity loads ranged from -71% to 
166% when compared to the measured loads (Table 5.1). Inclusion of information on the time 
between events improved the regression equation (r2=0.89), reducing the cumulative 
underestimation to 7%, and also reducing the uncertainty in predicted event mean turbidity loads 
to -48% to 104%. Other variables that were significant at the daily scale did not improve the 
regression model at the event scale. 
 
 Log(EMT) = 1.67 Log(QE) – 1.43 (R2 = 0.81, P<0.0001) (5.6) 
 
 Log(EMT) = 1.84 Log(QE) + 0.0051ADD – 1.92 (R2 = 0.89, P<0.0001) (5.7) 
 
Comparison of rating curve estimates with automated monitoring 
 
The OLS regression (Equation 5.3) rating curve under-estimated the total measured turbidity 
loads by 30% for the study period. Use of a retransformation bias correction factor (β=1.22) 
reduced the under prediction to 16%. Most of the under-prediction was due to the two data points 
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that had the highest turbidity values whose corresponding stream discharge values were not the 
highest. Without those two points the bias corrected rating curve was able to predict the actual 
total load with high accuracy whereas the OLS regression rating curve under-estimated the 
measured load by 18%.  A turbidity load duration curve derived from rating curve (Equation 5.3) 
estimate of daily turbidity showed that as much as 80% of the total turbidity load during the 8 
year study period was transported in a short period of the total time (4%) when the stream 
discharge was >100 m3 s-1. Therefore, accurate turbidity estimation at high stream discharges is 
critical as high levels of turbidity inputs lead to water quality problems. Automated turbidity 
monitoring clearly provides a better estimate of the turbidity inputs to the reservoir under periods 
of high discharge.  
 
Conclusions 
 
Analysis of factors responsible for the variability in stream discharge-turbidity relationship in the 
Esopus Creek watershed show that this relationship can be influenced by multiple factors related 
to turbidity supply and transport. This was illustrated by multiple regression models that showed 
improved predictions when using variables in addition to only stream discharge. These additional 
variables, to a certain extent, explain the episodic nature of erosion and its variability in space 
and time which makes prediction using a single explanatory variable inaccurate. In this study, the 
period of days between events was the only variable that improved event mean turbidity 
prediction.  With more sampling data from future events we may be able to identify other 
variables to further improve EMT prediction. 

 
 



 

60 
 

5.2. Sediment Fingerprinting in the Esopus Creek Watershed- Results from a Pilot Study 
 
As part of the Research Experience for Undergraduates (REU) program at SUNY New Paltz, 
DEP Water Quality Modeling Section was involved in a research project initiated by one of the 
interns to characterize suspended sediment sources in the Esopus Creek watershed. Potential 
sediment sources to the creek include glacial and non-glacial fluvial sediments which are subject 
to channel erosion, and upland sediments that could be mobilized due to surface erosion. In this 
study a fingerprinting approach was used to track sediment movement within the watershed from 
the various sources to the stream. The objective was to determine the relative contribution of 
sources to the total fine sediment load. The underlying principle is the difference in physical or 
chemical properties among the potential source materials that will be reflected in sediment 
samples collected from the watershed outlet (Mukundan, et. al. 2010). 
 
Potential sediment sources were characterized for physical and chemical properties. Physical 
properties included the particle size distribution and the bulk density of each sediment source. 
Chemical properties included total C and stable isotopes of carbon and nitrogen (δ13C and δ15N) 
in each sediment source. Stream sediment from the outlet of Esopus Creek at Coldbrook was 
collected along the rising limb of a storm hydrograph during an event on October 1, 2010 (figure 
x.1). Interestingly, this event recorded the maximum event mean turbidity (1402 NTU) based on 
the analysis of event by event turbidity loads between 2003 and 2011. For the preliminary 
analysis of sources total C and δ15N were found to be the useful tracers based on their 
composition in sources and stream sediment. The total C values in source samples were 
corrected for particle size and expressed in terms of clay content. This ensured that source and 
stream sediments were comparable. 
 
 
 

 
 
Figure 5.3.  Event hydrograph and suspended sediment sampling point for the October 1, 2010 
storm event (Coldbrook) 
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Figure 5.4.  Plot of  vs. total C for 3-end member mixing analysis 
 
 
 
A mixing model approach (figure x.2) was used to derive the proportion of stream sediment 
derived from each of the three potential sources. A set of three simple linear equations were 
solved as follows:  

 
Sst = Sa + Sg + Sh (5.8) 
 
U1stSst = U1aSa + U1gSg + U1hSh (5.9) 
 
U2stSst = U2aSa + U2gSg + U2hSh (5.10) 

 
where, S represents sediment, and U1 and U2 are the total C and values; the subscripts st, 
a, g, and h represents stream, alluvial, glaciolacustrine, and hillslope respectively. 
 
Results of mixing model indicate glacial sediment from stream channels as the most dominant 
source contributing about 91% of the stream sediment. Hillslope erosion contributed about 7% 
and non-glacial channel sediment contributed only about 2% of the total stream sediment. These 
results are consistent with previous reports of stream channel processes contributing up to 87% 
of total stream sediment loads in this watershed (DEP, 2008c). Although these finding are 
sufficient to confirm our hypothesis, in order to derive a more comprehensive conclusion, 
additional event sampling (3-5) may be required. Moreover, the source samples (hillslope and 
channel) in the preliminary study were collected primarily from the Stony Clove tributary and 
used as representative of the watershed. A more rigorous turbidity source sampling from 
spatially distributed sites within the bigger Esopus Creek watershed combined with more event 
sampling of suspended sediment from the outlet should comprehend these results. 
  

N15δ

N15δ
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5.3. Streamflow calibration in Cannonsville Watershed: Application of SWAT-WB 
Introduction 
 
DEP uses watershed models in conjunction with climate, reservoir, and water supply system 
models to evaluate the effects of changing conditions of climate, land use/cover, and watershed 
management on water supply quantity and quality; and is engaged in an ongoing effort to 
enhance its modeling capabilities to better simulate critical watershed processes that control 
watershed hydrology and the generation and transport of nutrients and sediment.  The USDA 
Soil and Watershed Assessment Tool (SWAT) (Neitsch et al., 2005) is a widely accepted 
watershed hydrology and water quality model that is particularly strong in its representation of 
soil nutrient and plant growth processes, especially in agricultural watersheds. SWAT-WB 
(Easton et al. 2010a, White et al. 2011) is a version of SWAT that simulates runoff from variable 
source areas (VSAs) by a process of saturation excess runoff, which is considered the dominant 
runoff mechanism in the NYC watersheds (Lyon et al., 2004). SWAT-WB thus potentially has a 
reasonable hydrologic framework for use in NYC water supply modeling. Here we report on 
work to calibrate the SWAT-WB hydrology model applied to the Cannonsville watershed. 
 
Methods 
 
SWAT-Water Balance model 
 
SWAT-WB is a modified version of the SWAT-2005 model (Neitsch et al., 2005) that 
incorporates a daily water balance for each Hydrologic Response Unit (HRU) to predict the 
partitioning of precipitation into runoff and percolation. Once the moisture is portioned, SWATs 
existing soil moisture routines are used by SWAT-WB to determine the degree of saturation-
deficit for each soil profile for each day of simulation. To include the landscape features most 
important in runoff generation (e.g., upslope contributing area, soil depth, and slope) a 
topographic index was integrated with existing soils data to create a soil topographic index (STI), 
which is then used in the SWAT-WB HRU definition process (Easton et al., 2008). This 
saturation-deficit (in mm of water) is termed the available soil storage, τi and is a function of soil 
properties and watershed soil moisture status (White et al., 2011).  The detailed documentation 
of SWAT model can be obtained from (Neitsch et al., 2005) and SWAT-WB can be obtained 
from(White et al., 2011) . 
 
HRU definition 
 
The HRUs are defined in SWAT as unique combinations of soil type, land cover, and slope 
class. However, in basins dominated by variable source area (VSA) hydrology this HRU 
definition has been insufficient for describing the spatial variations in runoff generating areas 
(Easton et al., 2008; Schneiderman et al., 2007). To include upslope contributing area while 
defining HRUs, a topographic index was integrated with existing SSURGO  soils data (USDA-
NRCS., 2000) to create a soil topographic index (STI), which is then used in the SWAT-WB 
HRU definition process (Easton et al., 2008). Values of STI are used to create wetness classes 
and are used to represent a location’s likelihood to saturate. This wetness class map is then 
substituted for the soils map in the HRU definition process.  
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SWAT model set up  
 
The model input parameters were developed using a digital elevation model (DEM) of the basin 
and a land use map which were obtained from DEP. The 19 sub-basins were delineated and 
further discretized into 554 HRUs based on spatial variations in land use and wetness class. In 
the baseline simulation the SWAT-WB model was forced with observed temperature and 
precipitation data obtained from cooperator stations (NCDC, NRCC). The remaining 
meteorological forcing (solar radiation, and wind speed) are calculated by the SWAT model 
based on daily temperature and precipitation (Neitsch et al., 2005). The model was calibrated for 
streamflow at the watershed outlet for the 1991-2000 years. Measured daily streamflow data was 
obtained from the USGS gauging station (#01423000) located at the watershed outlet near 
Walton, NY. The calibrated streamflow was used to simulate a historical baseline scenario 
(1964-2008) of streamflow using measured meteorological data.  
 
 
Results and Discussions 
 
Model calibration and baseline simulation 
 
In addition to the effective depth coefficient (EDC), twenty parameters (listed in table 5.2) were 
calibrated which controls the hydrologic processes involved in streamflow generation including 
partitioning precipitation into infiltration and runoff, baseflow recession, and the rates of 
snowpack development and depletion. The parameters that were adjusted include a number of 
factors that account for controls the hydrologic processes involved in streamflow generation. 
Streamflow parameters such as Manning’s n value for main channel (Ch_N2),  baseflow alpha 
factor (Alpha-bf), and snowpack temperature lag factor (TIMP), the parameters surface runoff 
lag time  (SURLAG), threshold depth of water in the shallow aquifer required for return flow to 
occur (GWQMN), threshold depth of water in the shallow aquifer for revaporization to occur 
(REVAPMN),  soil evaporation compensation factor (ESCO) and other groundwater, channel 
and basin related parameters were also adjusted. The EDC values ranged from 0.1 to 1.0. 
The calibrated model simulated streamflow reasonably well as evident from the daily and 
monthly statistics for the calibration period (figure 5.5). Predicted and measured monthly 
streamflow for the calibration and baseline periods are presented in figure 5.5. Although the 
model was able to capture most peaks, it underestimated the measured streamflow during certain 
periods. The baseline simulation represents observed conditions under current climate scenario. 
The overall objective of the calibration was to maximize the coefficient of determination (R2) 
and Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), and minimizing the percent 
bias. In addition, hydrology calibration was optimized so that the runoff and baseflow 
components of streamflow were simulated reasonably well compared to values derived from 
measured data using standard baseflow separation techniques(Arnold and Allen, 1999). The final 
calibrated streamflow for the Cannonsville watershed had a mean absolute bias in the annual 
flow volume of 8.0%, NSE of 0.63 and R2 of 0.64 for daily streamflow and NSE of 0.75 and R2 
of 0.77 for monthly streamflow. The mean monthly hydrographs of observed and simulated flow 
are shown in figure 5.5.  SWAT-WB has been found to perform well in simulating streamflow in 
Cannonsville watershed.  The saturation excess runoff process is dominant runoff generation 
mechanism. Figure 5.6 shows the spatial variability of runoff generated in two sub-basins on 
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Cannonsville watershed. It is apparent from the figure that the areas with the wettest class with 
agricultural land uses were the ones that generated the highest runoff.  
 
 
Conclusions 
 
The SWAT-WB watershed model was calibrated for streamflow in Cannonsville watershed. The 
model is found to perform well in simulating streamflow in Cannonsville watershed where 
saturation excess runoff process is dominant runoff generation mechanism. The runoff 
generating areas were dominant for the wettest class with agricultural land use whereas, the 
driest class showed the least runoff generation.  
 
 
Table 5.2.  Calibration parameters and their best parameter ranges for SWAT model simulations  

SWAT input 
variables Description 

Parameter 
Range 

Actual Calibrated 
Parameter Values 

ALPHA_BF Baseflow alpha factor [days] 0.01-0.056 0.054 

GW_DELAY Groundwater delay [days] 0.01-8.0 5.920 

GW_REVAP Groundwater revaporization coefficient 0.01-0.2 0.193 

GWQMN Threshold depth of water in the shallow aquifer 
required for  return flow to occur [mm] 

0.01-0.01 0.008 

REVAPMN Threshold depth of water in the shallow aquifer 
for  revaporization to occur [mm] 

0-1000 499.7 

RCHRG_DP Deep aquifer percolation fraction 0.15 0.145 

GW_SPYLD Specific yield of shallow aquifer [m3/m3] 0-0.3 0.271 

DEEPST Initial depth of water in the deep aquifer [mm 
H2O] 

0-2700 2681.0 

SHALLST Initial depth of water in the shallow aquifer 
[mm H2O] 

0-600 580.1 

SMTMP Snow melt base temperature [ºC] -5.0-0.08 0.081 

SFTMP Snowfall temperature [ºC] -5.0-0.4 0.343 

SMFMX Melt factor for snow on June 21 [mm H2O/ºC-
day] 

0.01-0.5 0.492 

TIMP Snow pack temperature lag factor 0.01-0.5 0.431 

SURLAG Surface runoff lag time [days] 0-1.0 1.0 

LAT_TTIME Lateral flow travel time [days] 0-0.5 0.015 

CH_N2 Manning's n value for main channel 0.01-0.031 0.203 

CH_K2 Effective hydraulic conductivity in main 
channel alluvium [mm/hr] 

0.01-85.2 85.13 

ESCO soil evaporation compensation factor 0.01-0.17 0.029 

EPCO plant water uptake compensation factor 0.01-0.815 0.264 
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Figure 5.5.  Predicted vs. measured monthly streamflow 
 
 
 

 

 
 

 
Figure 5.6.  Map showing spatial distribution of runoff generating areas at selected sub-basins 
(inset) and HRUs from the dominant runoff generating region. Values indicated are average 
annual estimates.  

Calibration 
Period 

R2     = 0.77 
NSE=0.75 
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5.4. Influences of Channel Processes on Phosphorus Export 
 
Introduction 
 
Sources of phosphorus (P) in surface waters include agriculture, municipal sewage treatment 
plants, individual septic treatment systems, decaying plant material, runoff from urban areas and 
construction sites, stream bank erosion, and wildlife. In Cannonsville watershed, NY, agriculture 
is known to be a major source of the P entering the streams and reservoir (DEP, 2011). The 
downstream ecological impacts of P inputs are heavily dependent on the extent to which they are 
physically retained and/or chemically and biologically processed; but processing of P are often 
ignored in watershed management studies (Edwards and Withers 2008, Withers and Jarvie 
2008). In-stream processing of P may account for the apparent disconnect between measures 
implemented to reduce P inputs and improvements in water quality and ecology at watershed 
scale (Sharpley et al. 2009). The understanding of net effects of P release and retention processes 
in watersheds is important for managing stream water quality and for targeting remediation and 
restoration measures most effectively. Such knowledge may also be incorporated in water quality 
models in order to improve nutrient prediction abilities. The goals of this study are to analyze 
channel P processes at different flow regimes and at different events. This analysis can also be 
used to examine the scale and variability of p retention and release, as an aid to watershed 
management and to improvise in-stream processing in existing water quality models.  
 
 
Methods 
 
Mixing model analysis 
 
In this study, we present a simple empirical approach for quantifying P delivery by using 
Extended-End Member Mixing Analysis (E-EMMA; (Neal et al. 2010, Jarvie et al. 2010) to 
explore P net retention and release at the watershed outlet. This approach enables us to utilize 
water quality monitoring data, and point source data to quantify the impacts of in-stream and 
watershed P processing on P delivery at the watershed scale. The point source data we used for 
this study include effluent nutrients data from waste water treatment plants (WWTPs) and 
nutrients added in-stream by cattle before and after the implementation of watershed 
management programs in Cannonsville Watershed. For this study, 5 years of data (1997, 2001, 
2003, 2005 and 2008) were chosen to evaluate effects of P retention and release on delivery at 
the watershed outlet.  
 
With E-EMMA, the load of the pollutant (P) is plotted against flow for two end-member 
component mixing series. The underlying assumption is that there are two dominant and distinct 
sources of water (both with different P concentrations) contributing to P loads at the watershed 
outlet: (i) a baseflow end-member source composed largely of effluent and/or groundwater, and 
(ii) an eventflow end-member source composed of an integrated watershed-wide nonpoint source 
that, under the highest flows, is delivered directly to the watershed outlet. When the two water 
sources mix, a linear relationship between baseflow and eventflow P load end-members would 
indicate that P was behaving conservatively, that is, that P was not undergoing significant net 
uptake or release as a result of deposition of particulate P, remobilization of P, sorption to 
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sediments, or interaction with biota. In contrast, a nonlinear mixing series would indicate that P 
was behaving non-conservatively. Nonlinear behavior under low-flow conditions is assumed to 
result from within-stream processes, whereas nonlinear behavior under intermediate and higher 
flows represents the net effects of in-stream and watershed retention/ mobilization. By 
comparing an observed nonlinear relationship between stream P load and stream flow 
measurements, with a theoretical linear conservative mixing series between the Baseflow and 
eventflow end-member P loads, the net effects of P retention and release can be directly 
quantified.  
 
Phosphorus release and retention calculation 
 
Dissolved and particulate P for USGS gage#01423000 (Walton) were used to illustrate how E-
EMMA can be used to estimate net losses and gains of P at the watershed outlet. The baseflow 
end-member P load (PloadBaseflow) represents the sources of P to the stream that contribute under 
dry weather flow conditions. These loads include wastewater treatment plant effluent 
(PloadEffluent), direct contributions from cattle in stream (PloadCattle), and any background 
groundwater sources of P, which in this analysis is considered none. The P loads for each 
upstream wastewater treatment plant were obtained from DEP and P loads for cattle in stream 
were calculated using the method described in James et al. (2007). 
 

 𝑃𝑙𝑜𝑎𝑑𝐵𝑎𝑠𝑒𝑓𝑙𝑜𝑤 =  𝑃𝑙𝑜𝑎𝑑𝐸𝑓𝑓𝑙𝑢𝑒𝑛𝑡 + 𝑃𝑙𝑜𝑎𝑑𝐶𝑎𝑡𝑡𝑙𝑒  (5.11) 
 
The eventflow end-member (PLoadEventflow) is an integration of all the watershed-wide sources of 
P including non-point and point source and P mobilized from within the stream channel network.  
For Eventflow Conditions: 
 
 𝑃𝑙𝑜𝑎𝑑𝑅𝑖𝑣𝑒𝑟 =  𝑃𝑂𝑢𝑡𝑙𝑒𝑡 �𝑄𝑅𝑖𝑣𝑒𝑟 − 𝑄𝐵𝑎𝑠𝑒𝑓𝑙𝑜𝑤� + 𝑃𝐵𝑎𝑠𝑒𝑓𝑙𝑜𝑤 𝑄𝐵𝑎𝑠𝑒𝑓𝑙𝑜𝑤 (5.12) 

 
Rearranging above equation: 
 
 𝑃𝑙𝑜𝑎𝑑𝑅𝑖𝑣𝑒𝑟 =  𝑃𝑂𝑢𝑡𝑙𝑒𝑡 𝑄𝑅𝑖𝑣𝑒𝑟 + (𝑃𝐵𝑎𝑠𝑒𝑓𝑙𝑜𝑤 − 𝑃𝑂𝑢𝑡𝑙𝑒𝑡 )𝑄𝐵𝑎𝑠𝑒𝑓𝑙𝑜𝑤  (5.13) 
 
where, PloadRiver is the stream water P load, QRiver is the stream flow, PBaseflow is the P 
concentration at baseflow, and POutlet is the concentration of P mobilized from an integration of 
the upstream watershed. Therefore, for the situation where there is conservative mixing of 
nutrients, the relationship between PloadRiver and QRiver should be linear with the gradient equal 
to POutletd.  PloadEventflow is estimated from the relationship between PloadRiver and stream flow 
(QRiver) by applying a LOESS fit to the PloadRiver vs. QRiver relationship.  
 
Given the low water residence times and greatest efficiency of P delivery under highest flows, 
the impact of P retention on PloadEventflow is likely to be relatively low. Therefore, the 
PloadEventflow is taken as the reference point for the integrated watershed eventflow end-member, 
at which there is no net P retention. The gradient (POutlet) and intercept (PloadIntercept) of the 
conservative mixing series were then applied to the observed flow data to derive corresponding 
PloadLinear values.  
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 𝑃𝑙𝑜𝑎𝑑𝐿𝑖𝑛𝑒𝑎𝑟 =   𝑄𝑅𝑖𝑣𝑒𝑟 𝑃𝑂𝑢𝑡𝑙𝑒𝑡 + 𝑃𝐿𝑜𝑎𝑑𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  (5.14) 
 
To estimate the net P retention or release, PloadRiver was then compared with the corresponding 
P load derived from the conservative mixing model (PloadLinear).The P load retained or released 
(PProcess) is calculated as the difference between PloadRiver and the P load from the conservative 
mixing series (PloadLinear) predicted PloadRiver on the LOESS curve at the 99th percentile of the 
stream flow distribution for the period of investigation.  
 
  𝑃𝑃𝑟𝑜𝑐𝑒𝑠𝑠 =  𝑃𝐿𝑜𝑎𝑑𝑅𝑖𝑣𝑒𝑟 −   𝑃𝐿𝑜𝑎𝑑𝐿𝑖𝑛𝑒𝑎𝑟  (5.15) 
 
In this study, we examined differences in average daily PProcess under low-flow conditions (the 
lowest 10% of flows), high-flow conditions (highest 10% of flows), and the intermediate flow 
conditions, i.e., for moist conditions (10-40%), one covering mid-range flows (40-60%), another 
for dry conditions (60-90%). These flow conditions were derived from a flow duration curve.  A 
flow duration curve relates flow values to the percent of time those values have been met or 
exceeded. The analysis at flow regime scale provide a simple differentiation between P 
retention/release as a result of (i) processes that occur under low flows (within the stream or in 
near-stream environments) and (ii) wider P processes along the watershed–stream continuum, 
under intermediate to higher flows.  
 
 
Results and Discussions 
 
In order to understand the P processes in stream, the net retention and release process was 
analyzed at different flow components for five years. For all the five studied years, the 
relationships between stream P load (PloadRiver) and streamflow (QRiver) were nonlinear, with 
none approximating to a conservative mixing series. Such nonlinear relationships indicate that P 
process in stream is non-conservative. Net P retention or release processes were quantified by 
comparing the observed curvilinear PloadRiver versus QRiver relationships with corresponding P 
loads calculated using the corresponding linear mixing model, for each flow regime i.e., low, 
dry, mid-range, moist and high flows.  
 
 
 
 
Table 5.3.  Annual net P retention and release at USGS gage 01423000. 
 

Year Annual Net P Retention/Release 
 Dissolved P Particulate P 
1997 31% 19%* 
2001 39% 47% 
2003 36% 44% 
2005 62% >400%* 
2008 20%* 21* 
* Net P release 
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Dissolved Phosphorus Processes 
 
At annual scale, there was dissolved P retention with net annual retention (all flow regimes 
included) ranging from 31% in 1997 to 62% in 2005 (table 5.3). However, there was net release 
of 20% in 2008 for dissolved P.  In considering different flow regimes, there was net retention of 
dissolved P in low, dry, mid-range and moist flow regimes for all the five years. The high flow 
regime however showed release of dissolved P in most of the years (figure 5.7). These release 
processes occurring under high flows will be increasingly dominated by processes linked to flow 
dynamics, incorporating watershed runoff processes/mobilization/retention effects as well as in-
stream sediment storage and remobilization. Dissolved P is subject to intensive biogeochemical 
processing under low flows and is also affected by stream temperature. Dissolved P retention 
was greatest under the lowest and intermediate flows, which is strongly indicative of biological 
processing of P, particularly uptake by algae and/or sorption to sediments. There is also potential 
for P retention as a result of an increased proportion of total flow being stored in hyporheic 
sediments under baseflow conditions. There was no evidence of significant net release or 
remobilization dissolved P loads under low and intermediate flows relative to the linear 
conservative mixing. This indicates that remobilization of transient in-channel and watershed 
stores of P was small relative to P load retention under low and intermediate flows. Low flows 
correspond with highest water residence times (Jarvie et al. 2002) allowing greater interaction 
with sediments and biota and thus greatest potential for biogeochemical cycling (Jarvie et al., 
2010). In-stream processes under low and intermediate flows may regulate delivery of nutrients 
and modify the timing of delivery in a way that may help to reduce ecological impacts to 
downstream stream reaches at times of greatest stream eutrophication risk. 
 
Particulate Phosphorus Processes 
 
Particulate P processing in stream showed varied results. At annual scale (all flow regimes 
included), there was particulate P retention for three studied years with net annual retention 
ranging from 21% for 2008 to 47% in 2001. There was net release of 19% particulate P in 1997 
and greater than 400% release in 2005. The release of particulate P may be attributed to 
extremely high P load that was observed during certain high flow events during 2005. Particulate 
P stream processing analysis at different flow regimes showed that during 1997, there was net 
release of at all the flow regimes and net release at high flow regimes during 2005 and 2008. At 
low and intermediate flow conditions, there was net retention of particulate P during all the years 
except 1997 (figure 5.8). The variability can be attributed to many factors such as source 
availability and mobilization, antecedent conditions, rainfall intensity, and land-use management. 
Net release of particulate P during 1997at all flow regimes may be due to activities that might 
have directly contributed sediment laden P from the stream, and high concentration of effluent 
and cattle P in the stream. The greatest release of particulate P observed during 2005 may be 
attributed to few high flow events during spring runoff that produced extremely high P loads to 
the watershed outlet. The greatest net particulate P retention under low to intermediate flow 
conditions for 2001, 2003, 2005 and 2008 are likely the result of net deposition of particulate P 
along the watershed–stream continuum. The watershed management activities, such as stream 
bank restoration, stream fencing, filter strips and riparian vegetation that were implemented in 
late 1990s may also have helped in trapping sediment and sediment laden nutrients resulting in 
net particulate P retention. The release of P during high flow may be attributed to stream bank 
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erosions following high flow events, that contribute to sediment laden P.  P that becomes stored 
along the stream–watershed continuum (either through physical deposition or by biogeochemical 
processes such as sorption to sediments or uptake by biota) will subsequently be available for 
remobilization and thus contribute to the nonpoint-source load (and to the eventflow end-
member load) as flows rise (Jarvie et al., 2010). 
 
 
Conclusions 
 
The relationships between observed P load and discharge exhibited strong non-conservative 
behavior under the lowest and intermediate flows for both dissolved and particulate P. Given the 
well-defined baseflow and integrated watershed eventflow end-members derived from the 
Cannonsville P load–stream flow scatter plot, the interpretation here is that the curvilinear 
relationship reflects net P retention along the stream–watershed continuum during mixing of the 
eventflow and baseflow end members. Further study is needed to gain fuller understanding of the 
balance of processes that determine the eventflow end-member load at intermediate to high flow 
conditions, especially in watersheds dominated by nonpoint export, such as differential erosion 
associated with events of different magnitudes, intensities, seasons, and pre-existing conditions; 
re-deposition and other processing active during overland flow; and in-stream processing. 
 
 

 
Figure 5.7.  Dissolved phosphorus processes for different flow conditions 
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Figure 5.8.  Particulate phosphorus processes for different flow conditions 
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5.5. Developing a Hybrid Approach to Simulate Future East of Hudson Reservoir Inflows 
 
Introduction 

 
Inflows from basins draining to East of Hudson (EOH) reservoirs are required to run simulations 
with the NYC OASIS reservoir system model. This is also true when performing simulations to 
study possible impact of climate change on the NYC water supply. During phase I of the DEP 
“Climate Change Integrated Modeling Project for Water Quantity and Quality” (CCIMP) the 
assumption was made to maintain EOH inflows during future simulations similar to historical. 
Though this assumption was fairly acceptable considering that historically the EOH system 
contributes with less than 10% of total water yield, a more comprehensive study, as planned for 
CCIMP phase II, will require simulated future EOH inflow as these may affect water routing in 
the system. A major difficulty with EOH inflows is that no models have been developed or are 
readily available to simulate future individual EOH inflows. Also, modeling EOH inflows is not 
an easy task because the area is urbanized with most streamflows being regulated. 
 
This section describes a two-step hybrid approach that was applied to simulate future inflows for 
each individual EOH reservoir. The methodology combines linear regression models between 
each individual reservoir inflow and an aggregated inflow for the entire region and the use of the 
GWLF watershed model to simulate a regional daily inflow time series. 
 
 
Methodology 
 
Measured streamflow data at each OASIS EOH basin are not available to help develop a model 
for each basin. A preliminary analysis of historical streamflow from individual EOH basins 
revealed high correlation coefficient among them. Under this scenario, our option was to apply a 
hybrid approach that combines a stochastic regression model and GWLF watershed model. This 
approach can be summarized as following: 
 

1. An aggregate time series was developed consisting of an arithmetic sum of the individual 
OASIS EOH basins historical inflows. These historical inflow time series were 
previously estimated and embedded in the OASIS model. 

 
2. Individual regression models were developed for each OASIS EOH basin using the 

aggregate flow as (the only) explanatory variable. 
 
3. Historical air temperature and precipitation time series representative for the region was 

used to calibrate the GWLF watershed model to the historical aggregate inflow. Soil 
radiation and relative humidity that are also required to run GWLF hydrology in addition 
to air temperature and precipitation were simulated internally in GWLF based on the 
latitude and longitude of the EOH watershed centroid and the inputs of air temperature 
and precipitation days. 
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Linear regression model for each individual OASIS EOH basin  
 
A simple linear regression model is a probabilistic model that relates two variables, an expected 
dependent variable Y and an independent variable x. The expected value of Y is a linear function 
of x, but for each fixed x, the variable Y differs from its expected value by a random amount 
(Devore 2000). The linear relationship between the two variables can be described by the 
following model equation 
 
 εββ ++= xY 10  (5.16) 
 
where the intercept β0 and slope β1 are model parameters to be determined and ε represents a 
random error. One important assumption in a linear regression model is that ε does not depend 
on x, is normally distributed with its mean E(ε) = 0 and has a constant variance V(ε) = σ2. A test 
statistic when developing a linear regression is based on a null hypothesis Ho:  β = 0, against Ha: 
β ≠ 0. During the process of model development plotting model residuals against predicted 
values helps evaluate possible presence of non-linear relationship and heteroscedastic (change in 
variance) behavior (Devore 2000, Hirsh et al. 1993). The OLS regression approach was applied 
to develop inflow models for each individual EOH inflow. It is assumed that each individual 
inflow is linearly related to a total aggregate inflow of the entire OASIS EOH region. When 
heteroscedasticy is observed weighted least square (WLS) regression can be applied. For WLS  
β0 and β1 are estimated by minimizing  
 
 [ ]21010 )(),( ∑ +−= xbbywbbfw  (5.17) 
 
where the weights w should decrease with increasing x. For the WLS models developed for some 
of the EOH sites, we selected weights in the form w=1/x which have shown to improve our 
model results. 
 
Analysis Method 
 
A standard regression analysis technique was employed to determine the parameters for each 
individual EOH-Inflow basin. The data processing was performed using the Statistics Analysis 
System (SAS) software. The procedure included following steps.  First, PROC UNIVARIATE 
was used for data description and developing histogram plots. Second, the PROC REG command 
was used to apply Ordinary Least-Squares (OLS) regression to estimate the coefficients for each 
individual linear regression model and perform influence diagnostics. Third, a residual analysis 
and test of normality assumption were conducted by applying PROC UNIVARIATE procedure. 
 
Data 
 
The data available for model development include historical inflows time series for each 
individual EOH basins. These time series in the current NYC OASIS model covers the period 
from 1927 to 2008. Time series from 1927 to 2000 were used for model development while the 
remaining data from 2001 to 2008 was used for model verification.  
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Regression Models Development 
 
Histogram plots using historical data for each individual EOH site reveal positive skewness. 
Also, high correlation is observed among individual inflows. Table 5.4 shows the description of 
the historical inflow for each individual OASIS EOH basin. The numbers in the variable 
represent ID numbers in the NYC OASIS model associated with inflow nodes where 670 is 
Boyd Corners, 675 (West Branch), 700 (Kensico), 710 (Middle Branch), 715 (East Branch 
BogBr), 720 (Croton Div), 725 (Croton Fall), 735 (Titicus), 745 (Amawalk), 750 (Cross River), 
755 (Muscoot), and 760 (New Croton). 
 
In table 5.5 we present a summary of model parameters for the OLS regression models for each 
individual OASIS EOH basin.  The models were developed using inflow data from Oct 1927 to 
Dec 2000 (N = 27029). Except for the intercept for East Branch BogBr (715) and Cross River 
(750) basins, all parameters in table 5.5 are statistically significant at a 95% confidence level. 
The R squares and adjusted R squares suggest that model in table 5.5 can explain almost 100% 
of the data variance. 
 
 
 
 
Table 5.4.  Description of individual historical inflow (1927-2008) in current NYC OASIS 
model. Total-EOH represents the sum of all individual inflows in the EOH region.  Units are cfs. 
 

Variable N Mean StDev Minimum Median Maximum 
Infl-670 29859 38.17 49.82 0.00 23.98 1326.21 
Infl-675 29859 34.35 44.84 0.00 21.55 1193.59 
Infl-710 29859 36.26 47.33 0.00 22.74 1259.90 
Infl-715 29859 136.3 177.92 0.00 85.55 4752.25 
Infl-720 29859 12.09 15.78 0.00 7.580 419.97 
Infl-725 29859 28.63 37.36 0.00 17.95 994.66 
Infl-735 29859 39.44 51.48 0.00 24.75 1370.42 
Infl-745 29859 33.08 43.18 0.00 20.73 1149.38 
Infl-750 29859 50.26 65.59 0.00 31.56 1746.18 
Infl-755 29859 126.59 165.23 0.00 79.43 4398.60 
Infl-760 29859 100.50 131.19 0.00 63.12 3492.35 
Total-EOH 29859 635.70 829.70 0.00 399.10 22103.50 
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Table 5.5.  Model parameters for OLS regression models for each individual OASIS EOH basin 
where TEOH represents the total EOH inflow and R-Std the residual standard deviation. The 
level of significance for all models is judged using t0.025,n-1 = 1.96, where n is the sample size and 
equals 29859. We reject the null hypothesis (Ho: β = 0) in favor of Ha : β ≠ 0 when the absolute 
value of the t statistic is greater than 1.96. These models are based on inflow in cu. ft./sec units. 
 

Site Name 
(OASIS ID 
number) 

Predictor Parameter Parameter 
Value t-statistic 

Significance 
@95%C.I.? 
(Pr>|t|) 

Boyd Corners 
(670) 

Intercept 
TEOH 
R-Std 

α670 
βTotal_EOH 
σ670 

0.00139 
0.06005 
0.05045 

3.60 
155516 

Yes (0.0003) 
Yes (<.0001) 
 

West Branch 
(675) 

Intercept 
TEOH 
R-Std 

α675 
βTotal_EOH 
σ675 

0.00250 
0.05405 
0.05027 

6.52 
140458 

Yes (<.0001) 
Yes (<.0001) 

Middle Branch 
(710) 

Intercept 
TEOH 
R-Std 

α710 
βTotal_EOH 
σ710 

0.00199 
0.05705 
0.04982 

5.24 
149586 

Yes (<.0001) 
Yes (<.0001) 

East Branch 
BogBr (715) 

Intercept 
TEOH 
R-Std 

α715 
βTotal_EOH 
σ715 

-0.00188 
0.21432 
0.27688 

-0.89 
101123 

No (0.3719) 
Yes (<.0001) 

Croton Div (720) Intercept 
TEOH 
R-Std 

α720 
βTotal_EOH 
σ720 

0.00452 
0.01902 
0.04724 

12.56 
52587.2 

Yes (<.0001) 
Yes (<.0001) 

Croton Fall (725) Intercept 
TEOH 
R-Std 

α725 
βTotal_EOH 
σ725 

0.00276 
0.04504 
0.04962 

7.30 
118580 

Yes (<.0001) 
Yes (<.0001) 

Titicus (735) Intercept 
TEOH 
R-Std 

α735 
βTotal_EOH 
σ735 

0.00234 
0.06205 
0.05075 

6.05 
159735 

Yes (<.0001) 
Yes (<.0001) 

Amawalk (745) Intercept 
TEOH 
R-Std 

α745 
βTotal_EOH 
σ745 

0.00221 
0.05205 
0.05007 

5.81 
135782 

Yes (<.0001) 
Yes (<.0001) 

Cross River  
(750) 

Intercept 
TEOH 
R-Std 

α750 
βTotal_EOH 
σ750 

0.00119 
0.07907 
0.05352 

2.91 
193021 

Yes (0.0036) 
Yes (<.0001) 

Muscoot  (755) Intercept 
TEOH 
R-Std 

α755 
βTotal_EOH 
σ755 

-0.00828 
0.19917 
0.08204 

-13.26 
317185 

Yes (<.0001) 
Yes (<.0001) 

New Croton  
(760) 

Intercept 
TEOH 
R-Std 

α760 
βTotal_EOH 
σ760 

-0.00451 
0.15814 
0.07146 

-8.28 
289101 

Yes (<.0001) 
Yes (<.0001) 
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An important assumption in OLS regression is that residuals are normally distributed with a 
mean equals to zero and constant variance. Residual results show that although a linear 
relationship may be reasonable (as shown in the fit plot) there is some presence of increasing 
variance with x. This may also reflect a presence of unusually large values in the time series. The 
ordinary residual analysis for most of the models reveals distributions with a long tail pointing to 
the lower values (negative skewness), except sites 715, 720, and 745. Kurtosis values are 
positive except for site 720. The range of positive kurtosis values is diversified but it is an 
evidence of a lower and wider peak around the mean than expected for a normally distributed 
random variable. Most normal probability plots fit a large portion of the normal distribution. Site 
720 shows short tails, an indication of less variance than expected from a normal distribution. 
However, most normal probability plots reveal a long tail in the lower 1 percentile. The 
Kolmogorov-Smirnov statistic indicate Pr>D less than 0.01 and the Anderson-Darling statistic 
indicate Pr>A-Sq less than 0.005. These results of residual fit diagnostics and test of normality 
may be signs of lack of normality in residuals but they are also influenced by extreme values 
present in our large sample size. Our major concern is with residuals showing a long tails in both 
lower and upper percentile in sites 715, 755 and 760, suggesting a higher variance in the sample 
data than expected in a normal distribution. For these reasons we developed weighted least 
square regression models for these sites. The results are presented in table 5.6. 
 
During regression models application residuals were generated using a polar form of the Box-
Muller transformation algorithm and assuming ( )2,0 εσε N= . 
 
 
 
 
 
Table 5.6.  Model parameters for WLS regression models where TEOH represents the total EOH 
inflow and R-Std the residual standard deviation. The inverse of TEOH (1/xi) was applied as 
weighting factor. 
 
Site Name 
(OASIS ID 
number) 

Predictor Parameter Parameter 
Value t-statistic 

Significance 
@95%C.I.? 
(Pr>|t|) 

East Branch 
BogBr (715) 

Intercept 
TEOH 
R-Std 

α715 
βTotal_EOH 
σ715 

-1.1078E-12 
0.21432 
0.27690 

-0.00 
94494.8 

No (0.9999) 
Yes (<.0001) 

Muscoot  (755) Intercept 
TEOH 
R-Std 

α755 
βTotal_EOH 
σ755 

-7.6779E-13 
0.19916 
0.08279 

-0.00 
134797 

No (0.9999) 
Yes (<.0001) 

New Croton  
(760) 

Intercept 
TEOH 
R-Std 

α760 
βTotal_EOH 
σ760 

7.00393E-14 
0.15813 
0.071718 

0.00 
115134 

No (1.0000) 
Yes (<.0001) 
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Final regression model for each individual EOH basin 
 
OLS and WLS were applied to develop regression models for each of the NYC OASIS EOH 
inflow nodes as a function of the total EOH inflow. The model development was based on 
historical inflow data from January 1927 to December 2000. Table 5.7 presents the final models 
for each of 11 (out of 13 total) EOH inflow nodes. The other 2 nodes are Kensico (700) and BQ 
Aquifer (780) which historical inflows are set to zero. 
 
 
GWLF model development 
 
The Generalized Watershed Loading Functions (QWLF) model (Schneiderman et al. 2002, 
2007) was calibrated to simulate historical total EOH inflow using air temperature and 
precipitation from Yorktown Heights 1W (NCDC ID# 309670). Solar radiation and relative 
humidity were simulated internally in the GWLF model. The calibration period started from 
1/1/1966 to 12/31/2000. Data from 2001 to 2008 were used for model verification.  Delta change 
factors resulting from applying the 25-bin methodology were applied to historical time series to 
simulate future regional inflow. 
 
 
 
 
 
 
Table 5.7.  Final regression models for each of eleven OASIS EOH individual inflow nodes. The 
model parameters for models marked with *) were estimated using WLS regression. All 
parameters for remaining models were estimated using OLS regression. For the WLS the inverse 
of TEOH (1/xi) was applied as weighting factor. 
 
1.  Boyd Corners (670) = 0.00139 + 0.06005 TEOH + ε ; σε = 0.05045 

2.  West Branch (675) = 0.00250 + 0.05405 TEOH + ε ; σε = 0.05027 
3.  Middle Branch (710) = 0.00199 + 0.05705 TEOH + ε ; σε = 0.04982 
4.  East Branch BogBr (715) = -1.1078E-12 + 0.21432 TEOH + ε ; σε = 0.27690 ; ω = 1 / TEOH         *) 

5.  Croton Div (720) = 0.00452 + 0.01902 TEOH + ε ; σε = 0.04724 
6.  Croton Fall (725) = 0.00276 + 0.04504 TEOH + ε ; σε = 0.04962 
7.  Titicus (735) = 0.00234 + 0.06205 TEOH + ε ; σε = 0.05075 
8.  Amawalk (745) = 0.00221 + 0.05205 TEOH + ε ; σε = 0.05007 
9.  Cross River  (750) = 0.00119 + 0.07907 TEOH + ε ; σε = 0.05352 
10. Muscoot  (755) = 7.6779E-13 + 0.19916 TEOH + ε ; σε = 0.08279 ; ω = 1 / TEOH                          *) 
11. New Croton  (760) = 7.00393E-14 + 0.15813 TEOH + ε ; σε = 0.071718 ; ω = 1 / TEOH                *) 
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5.6. One-dimensional Reservoir Model Calibration 
 
Introduction 
 
Located in Delaware County, New York, Cannonsville Reservoir was constructed to provide 
water supply for New York City. The Cannonsville watershed has a relatively high portion of 
agricultural land use, and there are also a number of small sewage works and other point sources 
contributing to the rivers entering the reservoir. These factors in the past led to high point and 
non-point nutrient loading to the reservoir, high average chlorophyll concentrations and frequent 
phytoplankton blooms. Starting in 1992, the implementation of sewage treatment upgrades, and 
an aggressive program of agricultural, storm water and other best management practices (BMPs), 
have reduced nutrient inputs, improved trophic status and reduced the occurrence of 
phytoplankton blooms (DEP, 2006b). 
 
A one-dimensional hydrothermal and water quality model has been set up to simulate the thermal 
stratification, nutrients and phytoplankton in the reservoir (Owens 1998; Doerr, 1998; UFI, 
2001). The objective of the study is to improve the performance of the reservoir model by 
automated calibration using long-term measurement data. 
 
 
Study Area 
 
The Cannonsville watershed has a drainage area of 1178 km2. Before the occurrence of land use 
change and the implementation of watershed management programs, the land use was composed 
of agriculture (14%), urban areas (3%), non-agricultural grass areas (7%), undeveloped forested 
and brushland areas (73%), and water and wetland areas (3%) (DEP, 2006b). 
 
The reservoir’s capacity is 362 million m³. The surface area of the reservoir is 19.2 km2, about 
24 kilometers long and 0.8 kilometers wide on average (figure 5.9). Its maximum depth is about 
42.7 meters with an average depth of 18.6 meters. 
 
 

  
Figure 5.9.  Cannonsville reservoir and sampling stations 1-6. 
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Reservoir Model 
 
A one dimensional reservoir model has been developed to simulate the hydrothermal and water 
quality conditions in Cannonsville reservoir. The model consists of three components: (1) a 
hydrothermal sub-model, (2) nutrient sub-models, and (3) a phytoplankton sub-model. 
 
The hydrothermal sub-model simulates the vertical dynamics of reservoir thermal stratification 
and related transport regimes, based on changes in such critical (state) variables as 
meteorological, hydrological and operational conditions. 
 
The nutrient sub model describes the transformation and fate of the nutrient loads in the 
reservoir. The reservoir model distributes nutrients vertically through the water column based on 
vertical mixing coefficients derived from the hydrothermal sub-model, and the nutrient inputs are 
partitioned into different forms based on model coefficients. 
 
The PROTBAS (PROtech Based Algal Simulations) (Markensten and Pierson, 2007) model 
which is based on PROTECH (Reynolds et al., 2001) is used to simulate phytoplankton biomass. 
In the model, phytoplankton biomass is predicted in terms of algal carbon and is a balance 
between growth (photosynthesis), and losses due to respiration, grazing, sedimentation and 
outflow. Chlorophyll a is calculated from the algal carbon based on system-specific 
stoichiometric relationships. 
 
Reservoir model configuration and parameters 
 
To set up the one-dimensional model to simulate the hydrothermal and water quality conditions, 
the reservoir is discretized vertically into 35 layers with an average thickness of 1.5 meters per 
layer. The model is fed with daily meteorological data (such as air temperature) and data related 
to the water balance (water elevation, discharge, dam spill and tunnel outflow). The time series 
data, such as dissolved phosphorus and nitrogen from non-point and point sources, (which are 
generated by a watershed model) are taken as input of the model. The model can be configured 
to output daily simulated values for a large number of variables, such as dissolved oxygen in the 
epilimnion and hypolimnion layers. 
 
According to the model description (UFI, 2001), 116 hydrothermal and kinetic parameters (also 
called coefficients) are used in the model. Among them, 52 can be adjusted during model 
calibration. The Morris method (Morris, 1991; Saltelli et al., 2004) is employed to identify the 
sensitive parameters in the model. See Huang and Liu (2008) for a detailed description of the 
method. It was found that 18 parameters were of great importance in determining in the 
simulated values of the variables including temperature (Temp), dissolved oxygen (DO), total 
phosphorus (TP) and chlorophyll a (Chla). These parameters were the focus in model calibration 
and only their values were adjusted in model calibration. The names and definitions of the 18 
parameters, as well as their lower and upper bounds are presented in table 5.8. These bounds 
were determined according to the recommendations provided by the model developer (UFI, 
2001), and adjustments were made to ensure the numerical stability of the model. 
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Table 5.8.  Reservoir model parameters 
 

 Name Calibrated 
value 

Lower 
Bound 

Upper 
Bound 

Definition 

1 aC2CHL 53.000 50.600 100.000 Ratio carbon to chlorophyll (ugC/ugChl) 
2 aC2P 150.00 80.00 150.00 Ratio carbon to phosphorus (ugC/ugP) 
3 betaw 0.3570 0.3500 0.5000 Surface adsorption fraction 
4 emisi 0.9413 0.9000 0.9900 Ice emissivity 
5 eta 1.3655 1.0000 1.5000 Wind mixing 
6 fardl 0.9923 0.5000 0.9950 Fraction of algal respiration as dissolved labile 
7 farpl 0.0077 0.0045 0.0100 Fraction of algal respiration as particle labile 
8 htcwi 0.0609 0.0100 0.1000 Ice transfer 
9 kc 0.0500 0.0100 0.0500 Chlorophyll multiplier (L/ugChl/m) 
10 kldoc 0.0116 0.0100 0.0150 Oxidation of labile DOC (1/d) 
11 kldop 0.0173 0.0100 0.1000 Decay of labile DOP (1/d) 
12 klpop 0.0600 0.0500 0.0900 Hydrolysis of labile POP (1/d) 
13 phir 0.1500 0.0100 0.1500 Respiration multiplier - growth 
14 PPvel 1.1589 0.2640 1.4960 Settling organic PP (m/d) 
15 rz 0.2973 0.2000 0.6000 Diffusion exponent 
16 sod 0.4800 0.3200 0.4800 Sediment oxygen demand (g/m2/d) 
17 trncon 0.0022 0.0020 0.0030 Evaporation multiplier 
18 turb 2.2963 2.0000 2.5000 Atmospheric turbidity 

 
 

 
 
Figure 5.10.  Model calibration: Simulated and measured daily Temp and concentrations of DO, 
TP and Chla in the epilimnion layer, 1986-1999. 
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Figure 5.11.  Model validation: Simulated and measured daily Temp and concentrations of DO, 
TP and Chla in the epilimnion layer, 2000-2004. 
 
 
 
 
 
Reservoir model calibration and validation 
 
In this study, a hybrid genetic algorithm (HGA) consisting of a real-encoded genetic algorithm (a 
global search method) (Haupt and Haupt, 2004) and the Nelder-Mead simplex (NMS) algorithm 
(a local search method) (Nelder and Mead, 1965) is used as an optimization algorithm to vary the 
values of the 18 sensitive parameters. An overall objective function is designed to measure the 
degree of fitness between the measurements and the predicted values of the selected variables 
including Temp, DO, TP and Chla. A more detailed description of the HGA and the overall 
objective function is given by Huang and Liu (2010). 
 
The model was calibrated against the measured data over the time period of 1986-1999, while 
model validation was performed using 2000-2004 data. The calibrated parameter values are 
presented in table 5.8. Figure 5.10 depicts (for example) the time series of simulated daily Temp, 
DO, TP and Chla in the epilimnion layer. It can be observed that the simulated values match the 
measurements reasonably well for the calibration period. 
 
Figure 5.11 shows the validation results, i.e. simulated and measured Temp, DO, TP and Chla in 
epilimnion and hypolimnion layers over the validation period. It can also be observed that the 
simulated values match the measurements reasonably well. 
 
Summary and Conclusions 
 
In this study, an automated procedure is implemented to calibrate a one-dimensional reservoir 
model which is set up to simulate the hydrothermal structure and water quality of Cannonsville 
reservoir. The calibrated model produces simulated values that match the observed data 
reasonably well for calibration and validation time periods. 
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6. Model Data Acquisition and Organization 
 
6.1. GIS Data Development for Modeling 
 
Water Quality Monitoring Sites   
 
Additional locations were added throughout the reporting period to the ArcSDE feature class of 
DEP water quality monitoring sites (“aqua.ARCLIB.wq_monitor_site”).  The dataset is 
comprised of DEP stream, reservoir, and keypoint monitoring sites, active and inactive, that are 
included in the Laboratory Information Management System (LIMS).  A spatial view in the 
geodatabase joins each record of the feature class to attribute data found in LIMS and in the Site 
Assessment and Management Inventory (SAMI) database.  These non-spatial attribute databases 
are stored in SQL Server.  The largest numbers of sites added to the dataset were those indicating 
East of Hudson WWTP locations and new sampling sites on the lower Esopus Creek 
downstream of Ashokan Reservoir. 
 
DEP Meteorological Stations 
 
The ArcSDE feature class of DEP meteorological stations was updated to reflect installation of 
an additional site. 
 
SSURGO2 Soil Data 
 
SSURGO2 soil data were used in conjunction with the Soil Data Viewer extension for ArcGIS to 
derive additional soil property layers for the West of Hudson watershed.  These layers included 
soil porosity, field capacity, wilting point, and root zone depth.  Additionally, these soil property 
layers were overlaid on a raster of wetness index classes for Hollowtree Brook and Biscuit Brook 
in order to obtain mean values of each soil property per wetness index class. 
 
Hydrologic Buffer Analyses  
 
The GIS was used for an analysis of agricultural lands within buffers of hydrographic features in 
the Cannonsville basin.  Similarly, an analysis of remediated septic systems was performed 
within buffers of hydrographic features in the Cannonsville and Pepacton basins.  
 
GWLF Constants Input (CIN) Tool 
 
The GWLF CIN tool implemented in ArcView 3 to derive model input parameters for a user-
selected drainage area was used to derive CIN files for the drainage areas of USGS stream gages 
at Hollowtree Brook, Biscuit Brook, and Richardsville.  
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Stream Power 
 
Preliminary work began on using ArcGIS ModelBuilder to derive values of stream power, a 
function of stream gradient and stream discharge, for each cell of raster representations of select 
tributaries to Esopus Creek in the Ashokan basin.  The work continues into the next reporting 
period.  
 
Additional Support to Staff 
 
Data development efforts of lesser significance and mapping support were provided throughout 
the reporting period to various members of the DEP modeling unit and other staff of the 
Watershed Water Quality Science and Research Division.  A majority of this support was related 
to preparation of DEP reports, peer-reviewed publications, conference posters, and conference 
presentations.  Such events included the annual Watershed Science Technical Conference, the 
Catskill Environmental Monitoring Conference, and the annual meeting of the American 
Geophysical Union, among others.                  
 
 
6.2. Time Series Data Development 
 
An inventory of time series data used for watershed and reservoir model input and calibration is 
presented in Tables 6.1 and 6.2, respectively.  The time series data includes meteorology, 
streamflow, water quality, and point source loads for watershed models.  For reservoir models 
the data includes meteorology, streamflow, stream, reservoir and key point water quality and 
reservoir operations.  Data sets are updated as new data become available. Lag times between the 
current date and the dataset end dates are the result of QA/QC processes at the data source and/or 
procurement timelines driving the acquisition of any purchased data.   
 
For this reporting period, the following dataset updates have been added to the inventory: 
Northeast Regional Climate Center Meteorology, USGS Streamflow, DEP Stream and 
Limnology Water Quality, DEP Key Point and NYSDEC Water Quality through calendar year 
2010.   
 
The NYSDEC Water Quality data has provided the Modeling Section with a robust dataset from 
baseline and storm event sampling of the West Branch of the Delaware River at Beerston from 
1992 to the present.  Historically the DEC has collected the samples and calculated the nutrient 
loads.  DEP now calculates the nutrient loads and has done so through WY 2010.  This dataset 
has provided the Modeling Section with valuable nutrient load estimates used as inputs into the 
Cannonsville Reservoir model. 
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Table 6.1. Inventory of data used for watershed modeling. 
 

Data Type Data Source Data Description Dates* Modeling Needs 
Meteorology Northeast Regional 

Climate Center 
Daily Precipitation 
and Max/Min 
Temperature 

Pre 1960-2010 Model Input 

Wastewater 
Treatment 
Plants 

DEP Monthly WWTP 
Nutrient Loads 

1990-2009 Model Input 

Streamflow USGS Daily and 
Instantaneous 
Streamflow 

Pre 1960-2010** Hydrology Module 
Calibration / 
Nutrient and Sediment 
Loads 

Water Quality DEP Routine and Storm 
Stream Monitoring 

1987-2010 Nutrient and Sediment 
Loads for Water Quality 
Calibration 

 DEC Stream Monitoring 
at West Branch 
Delaware River 

1992-2010 Nutrient and Sediment 
Loads for Water Quality 
Calibration 

*Dates represent total span for all data sets combined.  Individual station records vary. 
** Calendar year 2010 stream flow data is provisional from November to December and will be replaced once 

the    USGS has finalized their water year 2011 dataset. 
 
 
 
 
Table 6.2. Inventory of data used for reservoir modeling. 
 

Data Type Data 
Source 

Data Description Dates* Modeling Needs 

Meteorology DEP Air Temp., Relative 
Humidity, Solar 
Radiation., PAR, Wind 
Speed, Wind Direction, 
and Precipitation 

1994-June, 2010 Model Input 

Key Point and 
Reservoir 
Operations 

DEP Tunnel Water Quality, 
Flow and Temp.; 
Reservoir Storage, Spill, 
Withdrawal, and 
Elevation  

1987-2010 Model Input 

Streamflow USGS Daily and Instantaneous 
Streamflow 

Pre 1960-2010** Model Input 

Stream Hydrology   DEP Stream Water Quality, 
Flow and Temperature 

1987-2010 Model Input 

Limnology  DEP Reservoir Water Quality, 
and Temperature Profiles 

1992-2010 Model Input 

*Dates represent total span for all data sets combined.  Individual station records vary. 
** Calendar year 2010 stream flow data is provisional from November to December and will be replaced once 

the    USGS has finalized their water year 2011 dataset. 
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7. Modeling Program Collaboration 
 
7.1. Participation in Ongoing External Research Projects 
 
In the last year the Water Quality Modeling Section has participated in several projects related to 
the Sections’ work on climate change as outlined in DEP’s Climate Change Integrated 
Monitoring Project (CCIMP). 
 
Water Research Foundation Project 4262 - Vulnerability Assessment and Risk Management 
Tools for Climate Change: Assessing Potential Impacts and Identifying Adaptation Options 
 
The main focus of the CCIMP is to identify potential climate change impacts on the water supply 
using the structured quantitative framework of water quality models.  Project 4262 compliments 
the CCIMP by going one step further.  Once climate change impacts have been identified this 
project seeks to develop risk management approaches that will help managers prioritize risks and 
decide on a course of action. During the past year DEP has contributed significantly to this 
project and a more detailed description of our contribution is given in section 4.7 of this report. 
 
Water Research Foundation Project 4306 – Analysis of Reservoir operations under Climate 
Change 
 
The OASIS system operation model is being used by the Water Quality Modeling Section to 
investigate the effects of climate change on water supply storage and reservoir operations.  
Project 4306 will compliment CCIMP use of the OASIS model.  Key to the prediction of system 
operations is knowledge of the constraints, demands and operating rules which are used by 
OASIS to predict operations. Analyzing future reservoir operations, and how they differ from 
those used under current conditions will clearly benefit the CCIMP and allow us to better tailor 
OASIS to simulation of future conditions,.  Project 4306 will also strive to develop adaptive 
strategies in response to climate change.  The modeling section will be well positioned to support 
this goal due to our past experience in simulating reservoir turbidity to support operational 
decisions, our support of OST development, and our work with climate change. Hydrologics, the 
developer of the OASIS model and Hazen and Sawyer the contractor responsible for 
development of the reservoir operation support tool (OST) will also be participants in project 
4306.  This insures that DEP will obtain assistance with modeling issues related to CCIMP use 
of OASIS and the OST, and that project deliverables have direct relevance to DEP’s modeling 
efforts.  Work on this project has not yet started, but we expect that the modeling section will 
participate in this project during 2012. 
 
Water Utility Climate Alliance (WUCA) Piloting Utility Modeling Applications (PUMA) 
 
WUCA is a group of ten of the nation’s largest water utilities, whose mission is to improve 
research on the effects of climates change on drinking water supplies, and to help water supplies 
to develop strategies to cope with the potential impact of climate change 
(http://www.wucaonline.org).  The purpose of the PUMA project is: (1) to identify climate 
modeling tools and techniques that are appropriate for analysis of  climate change impacts on 
water supplies; (2) develop guidelines for the use of climate data and model simulation data 

http://www.wucaonline.org/
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including methodologies for describing uncertainty; (3) to suggest how these data can be used to 
support water supply planning and decision making;  (4) to build and enhance collaboration 
between water utilities and NOAA Regional Integrated Sciences and Assessment (RISA) 
centers; and (5) to identify future research investments that would serve the water utility 
community. The Water Quality Modeling Section has participated in the WUCA/PUMA project 
by attending the project kickoff meeting in December 2010, and by participating in regular 
phone conferences and planning meetings since then.   The NYC water supply and the work 
undertaken as part of the CCIMP will be highlighted as a case study in a white paper that will be 
product of the PUMA project.   
 
 
7.2. Modeling Program Contract Management 
 
Presently the Water Quality Modeling Section is managing three contracts which provide data 
that are used for testing, calibrating and verifying models used by the group.  In some cases these 
contracts also provide support for the development and testing of models used by the group.  The 
modeling section is also managing a contract with the research foundation of the City University 
of New York (CUNY-RF), which provides technical support for model and data development.   
These contacts are listed below. 
 
Contractor:  Upstate Freshwater Institute.  
Contract Title: Integrated Program of Measurement, Process Studies and Modeling for the 

Turbidity Problem as Schoharie Creek and Esopus Creek.  
This contract involves data collection, process studies and the development and testing of 
turbidity models in Schoharie, Ashokan and Kensico Reservoirs.  Models developed by this 
project are routinely used by the Water Quality Modeling Section to predict turbidity levels in 
the above reservoirs, and these models have also been incorporated in to the DEP Operation 
Support Tool (OST).  This contract is scheduled to end in December of 2012.   
 
Contractor:  Upstate Freshwater Institute.  
Contract Title: Robotic Monitoring of Selected New York City Reservoirs and Major 

Tributaries 
This contract involves setting up a network of automated reservoir monitoring buoys and stream 
water quality monitoring stations through the Catskill reservoir system (Schoharie and Ashokan 
Reservoirs), Kensico Reservoir and Rondout Reservoir.  The emphasis is on turbidity 
measurements. Near real time turbidity data is collected from three stream monitoring sites and 
eight reservoir monitoring buoys.  Data from this system is used by DEP to monitor reservoir 
turbidity levels as an aid to operational decisions (particularly at times of elevated turbidity), and 
to provide data to initialize and verify DEP reservoir turbidity transport models.  It is planned 
that data from the monitoring network will be input to the OST.  The contract will end in 
December of 2011, after which operation of the network will transition to DEP. 
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Contractor:  United States Geological Survey.  
Contract Title: Turbidity and Suspended Sediment Monitoring in the Upper Esopus Creek 

Watershed, Ulster County, NY 
This contract involved involves retrofitting the five existing USGS flow gauges in the Esopus 
Creek watershed to automatically monitor turbidity at high (15 min) frequency.  These five 
stations will provide a high frequency record of flow and turbidity that will allow the Water 
Quality Modeling Section to evaluate temporal and spatial variations in turbidity transport within 
the Esopus creek watershed; develop improved turbidity vs. discharge rating relationships; and 
collect high quality data that can be used to develop and test watershed sediment erosion and 
transport models.   This project is scheduled to end in 2013.  
 

 
Contractor:  Research Foundation City University of New York.  
Contract Title: Scientific Modeling Support 
This contract provides CUNY with the funding needed to hire seven post-doctoral research 
associates (post-docs) who are jointly advised by CUNY faculty and DEP scientists.  The post 
docs are stationed in Kingston, New York working with the Water Quality Modeling Section on 
a day-to-day basis.  The positions are for an initial two year period, with the possibility of an 
additional two year extension. This project is scheduled to end in 2013.  
The present post-doc positions are for 

• Climate Data Analysis 
• Reservoir system modeling 
• Reservoir  turbidity modeling 
• Reservoir eutrophication modeling 
• Watershed nutrient modeling 
• Watershed sediment erosion and transport modeling 
• Forest ecosystem modeling 
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7.3. Applications for External Research Funding 
 
During the last year the Water Quality Modeling Section has worked with universities and 
government agencies to prepare three funding proposals that would support research initiatives 
that would improve the Water Quality Modeling Section’s modeling capability and modeling 
database.  The Water Quality Modeling Section took an active role in planning and formulating 
these projects and also thoroughly reviewed these projects before they were submitted to the 
funding agencies.  All of these projects are currently under review.  If funded the modeling 
section will participate in the projects and the New York City water supply will be used as a case 
study region.  
 
Project Proposal : How do Changing Climate Extremes Influence Natural Organic Matter and 

Turbidity in Drinking Water Systems? Modeling, Experiments, and Insight 
from New York City, a Representative Unfiltered System 

Principle Investigator: Upmanu Lall, Columbia University 
Funding Agency : US EPA 
There is increasing evidence that the intensity and frequency of extreme precipitation events are 
increasing, and many future climate scenarios also predict increases in extreme events.  The 
purpose of this project is to develop tools that will better estimate changes in frequency and 
intensity of extreme events, and also the likelihood of multiple extreme events occurring together 
in time.  The project proposes to examine the effects of the timing and intensity of extreme 
events on watershed loss (loading) of natural organic matter and turbidity, which will affect 
reservoir drinking water quality. 
 
Project Proposal: Use of Satellite Data to Improve Model Simulations of Snow, Streamflow, 

and Water Supply for the NYC Water Supply System 
Principle Investigator: Dorothy K. Hall, NASA / Goddard Space Flight Center (GSFC) 
Funding Agency: NASA 
Snow makes up about 15% of the annual precipitation entering the New York City West of 
Hudson (WOH) water supply region.  Although not a major proportion of the annual 
precipitation, snow plays and important role in defining reservoir operating policies, and changes 
in snow accumulation, melt and winter stream flow are some of the major expected effects of 
climate change on the WOH watersheds.  The purpose of this project is to provide DEP with 
more spatially resolute estimates of snow cover and snow water equivalent (SWE) by using and 
merging microwave and optical remote sensing products.  If successful the data obtained will be 
used to better refine estimates of watershed snow accumulation and to test and improve modeling 
algorithms that simulate snow accumulation and melt. 
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Project Proposal: Application of evapotranspiration and soil moisture remote sensing products 
to enhance hydrological modeling for decision support in the New York 
City water supply 

Principle Investigator: Nir Y. Krakauer, The City College of New York Center for Remote    
Sensing of the Earth Science and Technology 

Funding Agency: NASA 
Soil moisture is a key hydrologic state variable, and evapotranspiration is a key process that 
affects summer streamflow.  Correctly specifying these in our watershed models is important to 
ensure accurate hydrologic simulations.  Furthermore, since soil moisture and evapotranspiration 
are expected to be influenced by future climate change, correctly representing them in our 
watersheds models will be critical for simulating the future changes in watershed hydrology, 
especially during summer periods when low flows and drought conditions could occur.  The 
purpose of this project is to evaluate shortwave, thermal, and microwave remote sensing 
products that could provide DEP with independent and spatially variable estimates of soil 
moisture and evapotranspiration.  If these products can be obtained, they will be used to test, 
calibrate and verify watershed hydrologic models in the WOH region under present climate 
conditions.  It is expected that this will lead to more accurate estimate of contemporary summer 
streamflow and decease the uncertainty in simulations of future streamflow. 
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8. Modeling Program Scientific Papers and Presentations 
 
8.1. Published Work 
Below is a listing of journal articles in which Water Quality Modeling Section members have 
been authors during the previous year.  Copies of the articles are included in Appendix A of this 
report. 
 
Anandhi, A., A. Frei, S.M. Pradhanang, M.S. Zion, D.C. Pierson and E.M. Schneiderman.  2011.  
AR4 climate model performance in simulating snow water equivalent over Catskill Mountain 
watersheds, New York, USA.  Hydrological Processes, published online. 
 
Anandhi, A., A. Frei, D.C. Pierson, E.M. Schneiderman, M.S. Zion, D. Lounsbury and A.H. 
Matonse.  2011.  Examination of change factor methodologies for climate change impact 
assessment.  Water Resources Research, 47: W03501 
 
Matonse, A.H., D.C. Pierson, A. Frei, M.S. Zion, E.M. Schneiderman, A. Anandhi, R. 
Mukundan and S.M. Pradhanang.  2011.  Effects of changes in snow pattern and the timing of 
runoff on NYC water supply system.  Hydrological Processes, 25: 3278-3288. 
 
O’Donnell, S.M., R.K. Gelda, S.W. Effler and D.C. Pierson.  2011.  Testing and Application of a 
Transport Model for Runoff Event Inputs for a Water Supply Reservoir.  Journal of 
Environmental Engineering, 137(8): 678-688. 
 
Owens, E.M., R.K. Gelda, S.W. Effler, P.J. Rusello, E.C. Cowen and D.C. Pierson.  2011.  
Modeling Resuspension in a Dynamic Water Supply Reservoir.  Journal of Environmental 
Engineering, 137(7): 585-595. 
 
Pierson, D.C., G.A. Weyhenmeyer, L. Arvola, B. Benson, T. Blenckner, T. Kratz, D.M. 
Livingstone, H. Markensten, G. Marzec, K. Petterson and K. Weathers.  2011.  An automated 
method to monitor lake ice phenology.  Limnology and Oceanography: Methods, 9: 74-83. 
 
Pradhanang, S.M., A. Anandhi, R. Mukundan, M.S. Zion, D.C. Pierson, E.M. Schneiderman, A. 
Matonse and A. Frei.  2011.  Application of SWAT model to assess snowpack development and 
streamflow in the Cannonsville watershed, New York, USA.  Hydrological Processes, 25: 3268-
3277. 
 
Tilahun, S.A., R. Mukundan, B.A. Demisse, C. Guzman, B.C. Tarakegn, T.A. Engda, Z.M. 
Easton, A.S. Collick, A.D. Zegeye, E.M. Schneiderman, J-Y. Parlange and T.S. Steenhuis.  2011.  
A Saturation Excess Erosion Model.  International Symposium on Erosion and Landscape 
Evolution CD-Rom Proceedings, (18-21 September 2011, Hilton Anchorage, Anchorage Alaska) 
St. Joseph, Michigan ASABE. 
 
Zion, M.S., S.M. Pradhanang, D.C. Pierson, A. Anandhi, D.G. Lounsbury, A.H. Matonse and 
E.M. Schneiderman.  2011.  Investigation and Modeling of winter streamflow timing and 
magnitude under changing climate conditions for the Catskill Mountain region, New York, USA.  
Hydrological Processes, 25: 3289-3301.  
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8.2. Conference Presentations 
 
During this reporting period members of the Water Quality Modeling Section have made 
presentations regarding our modeling activities at a number of scientific meetings.  Below the 
presentations and associated abstracts are listed for each of the meetings  
 
Catskill Environmental Monitoring and Research Conference.  November 2010.  Pine Hill, 
New York. 

 
Pierson, D.C., E. Schneiderman, M. Zion, A. Anandhi, A. Matonse 2010. Evaluating the 

Impacts of Climate Change on New York City Reservoir Watersheds: Program 
Development and Ongoing Challenges. 

 
Abstract: 

The New York City Department of Environmental Protection (DEP) has developed a 
suite of computer models that simulate watershed hydrology, sediment and nutrient 
transport; reservoir eutrophication, turbidity transport; and reservoir system operation.  
These models when coupled together have been successfully used to evaluate watershed 
management effects on reservoir water quality.  In 2008, DEP adapted its modeling 
system to evaluate the additional potential effects of climate change on the NYC water 
supply.  The program involved continued testing and improvement to the modeling 
system, as well as developing expertise in climate data analysis, and forest modeling.  
The purpose of this talk is to describe the rationale behind the development of our climate 
change research program, to give some initial results describing potential impacts of 
climate change on the water supply, and to identify uncertainty in our predictions.  Future 
research challenges are also identified. 

 
Zion, M., E. Schneiderman, D. Pierson and A. Matonse 2010. Simulation Modeling for NYC 

Water Supply Operations to Control Turbidity – Spring 2010 Case Study. 
Abstract: 

Turbidity is a primary factor that potentially limits use of the NYC Catskill System Water 
Supply. The impacts of turbidity to the reservoir system can be mitigated by operating the 
system to minimize turbidity inputs to the terminal Kensico Reservoir while maximizing 
the storage and settling capacity of the up-basin Catskill System reservoirs. During 
turbidity events daily decisions are carefully taken to optimize system operations for 
turbidity control. To support these decisions, simulation models are used to evaluate 
alternative operational scenarios within a probabilistic framework. 
In the spring 2010 a series of storms and accumulation of a deep snowpack lead to 
elevated levels of turbidity in Catskill System reservoirs, and raised concerns that future 
runoff could lead to even greater levels of turbidity. Model simulations were performed 
to analyze the use of the Ashokan waste channel and the blending of Catskill and 
Delaware System waters to minimize turbidity inputs to Kensico reservoir, and examine 
the implications of the large snowpack in further increasing turbidity inputs during the 
snowmelt season.  Model results provided guidance for system operations through the 
spring 2010 season. 
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American Geophysical Union Meeting.  December 2010.  San Francisco, California. 
 

Anandhi, A., S.M. Pradhanang, A. Frei, D.C. Pierson, R. Mukundan, A.H. Matonse, E.M. 
Schneiderman, M.S. Zion and D. Lounsbury 2010. Uncertainties In Future Climate 
Over NYC Watersheds In AR4 Model Projections. 

 
Abstract: 

The uncertainties in the future climate from a suite of Global climate models (GCMs), are 
studied for the west of Hudson (WOH) watersheds of the New York City (NYC) water 
supply for special report of emission scenarios (SRES A1B, A2 and B1). These WOH 
watersheds supply 90% of the water consumed by NYC. The uncertainties are studied 
seasonally for daily timescale for various combinations of meteorological variables. As 
the confidence in a GCMs future climate scenario depends on its ability or skill to 
simulate the present day 20th Century climate conditions (20C3M). The objective of this 
study is to bring out the uncertainties in future climate in relation to GCMs skill in 
simulating the 20C3M climate.  We believe that the uncertainties in future climate of the 
region would be less for GCMs with high skill score when compared to GCMs with low 
skill score. 

 
 
Matonse, A.H., D.C. Pierson, A. Frei, M.S. Zion and R. Mukundan,. 2010. Effects of changes in 

seasonal precipitation in Catskill Mountain region on NYC water supply system 
management. 

 
Abstract: 

Simulated future air temperature and precipitation derived from General Circulation 
Models (GCMs) are used as input to the Generalized Watershed Loading Functions – 
Variable Source Area (GWLF-VSA) watershed model to simulate future inflows to 
reservoirs that are part of the New York City Water Supply System (NYCWSS). This 
ongoing study focuses on the effect of projected changes in temperature and rainfall in 
the Catskill Mountain region and consequent changes in snow accumulation, snowmelt 
and the timing of runoff on NYC water supply system storage and operation as simulated 
by the NYC reservoir system OASIS model. Future scenarios that use current system 
operation rules and demands, but changed reservoir inflows, suggest that changes in 
precipitation and snowmelt in this region will affect water availability on a seasonal 
basis.  Despite increased evapotranspiration during non-winter periods, greater runoff 
earlier in the winter period leads to a reduction in the number of days the system is under 
drought conditions, and earlier reservoir refill in the spring. Since reservoir storage levels 
fill up earlier in winter, total volume of water releases and spills also appear to increase 
during the winter. Of importance is how much (if any) indication of this possible future 
trend is already captured in current observations and at what level these changes will 
require operation rules to be adjusted in order to continue to achieve the management 
objectives of the system. 
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Mukundan, R., D.C. Pierson, E.M. Schneiderman, D. O’Donnell, A.H. Matonse and M.S. Zion,. 
2010. Suspended Sediment Transport Dynamics in the Esopus Creek Watershed, New 
York.  

 
Abstract: 

Sediment loads of rivers can exert an important control on the use of a river for water 
supply and other designated uses. The vast majority of the suspended sediments (SS) are 
transported during high flow events and therefore it is important to quantify the sediment 
flux during these events. A case study for estimating SS loads in streams from the 
Catskill region of New York State is presented. Transport of suspended sediment is of 
concern in the streams of the Esopus Creek Watershed that drains into the Ashokan 
reservoir, one of the drinking water reservoirs in the New York City water supply system. 
During and following high stream discharge events, turbidity increased in streams 
entering the reservoir causing impacts to the reservoir water quality. Turbidity estimation 
based on a rating curve as a function of stream flow alone tends to show a high level of 
uncertainty in turbidity load prediction in this watershed. The objective of this study was 
to understand the underlying factors controlling the uncertainty in the turbidity rating 
curve at the watershed outlet. Our results clearly indicate that use of additional variables 
in a stream flow based turbidity rating curve can improve turbidity predictions. These 
predictor variables relate to spatial variability in runoff and geology, soil moisture 
condition, and season. Improved capability to quantify turbidity during such events may 
help in developing predictive models that can support management of water resources. 

 
 
Pradhanang, S.M., Z.M. Easton, E. Schneiderman, M.S. Zion, T.S. Steenhuis, 2010  

Intercomparison of SWAT models in simulating hydrology of Cannonsville Reservoir 
Watershed.  

 
Abstract: 

The Soil and Water Assessment Tool (SWAT) model is a watershed scale hydrologic 
model created to simulate long term runoff and nutrient losses in rural, agriculturally 
dominated watersheds. The important model inputs are climate, soil, elevation and land 
use information. In this study, three versions of SWAT models namely SWAT2005, 
SWAT2009 and SWAT-WB (water balance) are used to simulate hydrology of the 
Cannonsville Watershed. The SWAT-2005 and 2009 model hydrologic response units 
(HRU’s) are grouped according to soil type and plant cover while in SWAT-WB a soil 
topographic index is used to delineate the HRUs. Runoff for each HRU is calculated with 
the SCS curve number method in SWAT 2005 and 2009. In SWAT-WB the curve 
number routine is replaced by saturation excess runoff mechanisms where surface runoff 
occurs when the soils become saturated. These models are calibrated using Dynamically 
Dimensioned Search and Shuffled Complex Evolutionary & Uncertainty Analysis with 
10 years of data for the Cannonsville Watershed and then used to predict an additional 
eight years of data. The models are evaluated by comparison to the discharge at the 
watershed outlet as well as the spatial distribution of runoff source area in selected parts 
of the watershed where the spatial information is available. 
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American Water Resources Association, Spring Specialty Conference.  April 2011.  
Baltimore, Maryland. 
 
Anandhi, A., M.S. Zion, A. Frei, D.C. Pierson, E.M. Schneiderman, S.M. Pradhanang, D. 

Lounsbury, R. Mukundan, A.H. Matonse, Y. Huang, N. Samal and G. Tang.  2011. 
Estimating the impact of climate change on precipitation, temperature and streamflow 
over watershed in Catskill Mountain region of New York, USA. 

 
Abstract: 

Understanding the effects of climate change on a water supply involves developing 
plausible future climate scenarios which can then be used in a hydrologic model to 
determine water supply specific concerns.   
A number of methods are available to derive plausible future scenarios of precipitation 
and temperatures from Global Climate Models (GCM). For this study two methods based 
on GCM simulations are explored for the Catskill Mountain region of New York State. 
The methods are: (1) variant of Change Factor Methodology (CFM), sometimes referred 
to as “delta change methodology” and (2) bias correction of GCM. The scenarios of daily 
time series of precipitation and temperature from these two methods are input to 
Generalized Watershed Loading Function (GWLF) model to estimate future scenarios of 
streamflow. 
The objective of this study is to analyze the future scenarios of daily precipitation, 
temperatures and streamflow to evaluate the potential effects of climate change on the 
NYC water supply. This work is part of a program to evaluate the impact of climate 
change on New York City (NYC) water supply. The Catskill region includes the 
watersheds for the New York City (NYC) water supply. Analyses are performed for 
fifteen GCMs contributing to the Fourth Assessment Report of the Intergovernmental 
Panel on Climate Change (IPCC-AR4) for three emissions scenarios (SRES A1B, A2 and 
B1).  The results demonstrate that climate change impact assessment is dependent on the 
method that is used to develop future climate scenarios. 

 
 
Pradhanang, S.M., E.M. Schneiderman, R. Mukundan, A. Anandhi, M. Zion, D. Pierson, A. 

Matonse, Y. Huang, N.R. Samal, G. Tang and T. Steenhuis,  2011. The effect of climate 
change on nitrogen and phosphorus loadings in New York City water supply 
watersheds. 

 
Abstract: 

Streams transport many biologically important nutrients, of which, nitrogen (N) and 
phosphorus (P) are known to limit productivity in streams. Studies indicate that higher 
annual temperatures, increased growing season length, and increased dormant season 
precipitation are likely to occur across the northeastern United States in response to 
changing climate. Such changes can have pronounced effect on the hydrologic behavior 
of the watersheds. Since water movement into the soil profile and across the landscape is 
the primary mechanism of sediment and nutrient transport, it follows that changes in 
temperature and precipitation patterns would affect nutrient loadings to streams and 
reservoirs. This study assesses the potential impacts of climate change on nutrient 
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loadings in New York City water supply watersheds. Using a Soil and Watershed 
Assessment (SWAT) model, a baseline scenario with an “as is” distribution of 
meteorological forcing and current management practices was simulated. The model was 
then used to simulate changes in nutrient loading under projected climate scenarios and 
land use managements. The differences in nitrogen and phosphorus loads from future 
simulations analysis indicate the relative effects that might be expected due changing 
climate and/or management practices or combination of both. 

 
 
15th Workshop on Physical Processes in Natural Waters.  July 2011.  Burlington, Ontario, 
Canada. 
 
Samal, N.R., D.C. Pierson, Y. Huang, J.S. Read, A. Anandhi, E.M. Owens.  2011. Impact of 

climate change on Cannonsville reservoir thermal structure in the New York City 
Water Supply. 

 
Abstract: 

The thermal structure of lakes and reservoirs is an important regulator of biogeochemical 
processes, and a property that is well simulated using mechanistic hydrodynamic models. 
A one-dimensional reservoir model is applied to examine the thermal structure in two 
deep reservoirs: the Cannonsville and Pepacton reservoirs that are located in Delaware 
County, approximately more than 100 miles northwest of New York City, and are an 
important part of the New York City water supply. The impact of climate change on the 
thermal structure of these reservoirs is investigated as part of a larger study of the effects 
of climate change on the physical processes occurring within the reservoir system. Future 
climate data obtained from GCMs is used to produce local (downscaled) scenarios to 
drive the reservoir models. Comparisons between simulations based on present day 
climate data and future simulations are used to evaluate a number of metrics that describe 
reservoir thermal structure, stability and mixing. The development and break down of 
thermal structure in these systems during various withdrawal scenarios has been 
considered and possible effects of climate change on the New York City’s drinking water 
supply system are discussed. 

 
 
Huang, Y.T., D. Pierson, A. Frei, N. Samal, E. Schneiderman, M. Zion, S.M. Pradhanang, A.H. 

Matonse, E. Owens, 2011.  Hydrothermal and water quality model calibration and 
application to the evaluation of land use change and watershed management 
programs. 

 
Abstract: 

Located in Delaware County, New York, Cannonsville Reservoir was constructed to 
provide water supply for New York City. A one-dimensional hydrothermal and water 
quality model has been set up to simulate the thermal stratification, nutrient levels and 
phytoplankton biomass in the reservoir. This study aims to improve the model 
performance through automated calibration using a long-term record of measured 
reservoir water quality data and apply the model to the evaluation of the effects of land 
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use change and watershed management programs on the water quality in the reservoir. To 
implement automated model calibration, a hybrid genetic algorithm (HGA) consisting of 
a real-encoded genetic algorithm and the Nelder-Mead simplex (NMS) algorithm is 
developed as an optimization algorithm, and an overall objective function is designed to 
measure the degree of fitness between the measurements and the predicted values of the 
selected variables including temperature, dissolved oxygen, total phosphorus and 
chlorophyll a. The HGA and the objective function are used to calibrate the hydrothermal 
and water quality model by comparison with long-term measured reservoir water quality 
data. The output of the calibrated model matches the measured values reasonably well. 
The calibrated model is then used in conjunction with a watershed model to evaluate the 
effects of land use change and watershed management programs. The watershed model is 
used to simulate the changes in nutrient loading caused by land use change and watershed 
management programs. The calibrated reservoir model is used to evaluate the effects of 
the changes in nutrient loading on reservoir water quality and it predicts the significant 
improvement of reservoir water quality. 

 
 
Watershed Science and Technical Conference.  September 2011.  West Point, New York. 
 
Matonse, A.H., A. Frei, D.C. Pierson, E. Schneiderman.  2011.  Simulated effects of climate 

change on NYC reservoir system versus historical trends – What can we learn? 
 
Abstract: 

A recent study of the possible effects of climate change on New York City water supply 
indicates that projected future changes in air temperature and precipitation are likely to 
have an impact on the streamflow regime in the Catskill region of New York and on 
NYC reservoir system operations (Matonse et al. 2011). Scenarios that use current system 
operation rules and water demands together with future simulated Catskill reservoir 
inflows, suggest that in the future , greater runoff will occur earlier in the winter period, 
causing the  reservoirs to refill earlier in the year. Since reservoir storage levels fill up 
earlier, total volume of water releases and spills also appear to increase during the winter. 
Despite increased evapotranspiration during non-winter periods, future simulations 
suggest that increased precipitation will lead to a reduction in the number of days the 
system is under drought conditions. Based on these results the NYC water supply will 
continue to show high resilience, high annual reliability and relatively low vulnerability. 
This presentation focuses on analyzing the future simulated results in conjunction with 
statistics and trends developed from local historical data. The central question is how 
much indication (if any) of the simulated future states of the system can be detected from 
trends in current observations and if other insights can be obtained from this analysis to 
improve our modeling methodology and better address the effects of climate change on 
NYC water supply. 
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Mukundan, R., D. Pierson, E. Schneiderman and M. Zion.  2011.  Catskill Stream Turbidity 
Sources and the Effect of Extreme Events. 

 
Abstract: 

Elevated turbidity associated with high stream discharges in the Esopus Creek watershed 
in the Catskill region of New York State can sometimes limit the use of a part of the 
drinking water supply from the Ashokan reservoir. Previous analysis indicates that the 
Esopus Creek watershed contributes over 90% of the annual turbidity load to Ashokan 
Reservoir, and that as much as 93% of the stream turbidity in the Esopus Creek originates 
from within the stream channels during large events. The focus of this talk is on methods 
of quantifying turbidity sources and evaluating the persistence of effects related to 
extreme events on stream turbidity levels during the low flow periods between events. 
Low flow periods account for only a small portion of the annual turbidity load, but do 
account for a large portion of DEP’s turbidity monitoring data.  Ambient stream turbidity 
monitoring data from six monitoring stations in the Catskill region were statistically 
evaluated before and after two extreme events that occurred in 1996 and 2005-2006 
period.  
After the 1996 event elevated turbidity levels in the Schoharie reservoir and the transport 
of this turbid water via the Shandaken tunnel resulted in an extended period of elevated 
low flow turbidity in the Esopus Creek. Tributaries to the Schoharie reservoir also 
showed significant increases in turbidity during this period. The 2005-2006 events did 
not result in a prolonged increase in Esopus Creek low flow turbidity. In fact, there was a 
significant decrease in low flow turbidity that can be attributed to a significant decrease 
during recent years in the turbidity of the main tributary to Schoharie Reservoir. 
Tributaries to the Esopus Creek did not show any significant change in turbidity after 
either event. Such varying watershed responses to extreme events are suggestive of the 
existence of a geomorphic threshold that could be either intrinsic and related to the 
geomorphic structure of the system, or extrinsic and related to climate forcing. 

 
 
Pradhanang, S., E. Schneiderman, D. Pierson and M. Zion.  2011.  Effects of land use and 

management on dissolved nutrient loads and eutrophication in Cannonsville Reservoir 
under NYC Filtration Avoidance. 

 
Abstract: 

Since the first NYC Filtration Avoidance Determination (FAD) granted by the USEPA in 
1993 NYC has funded an aggressive campaign to reduce nutrient loads and 
eutrophication in Cannonsville Reservoir. Waste Water Treatment Plants (WWTPs) have 
been upgraded to reduce point source of nutrients, and watershed management programs 
have implemented best management practices (BMPs) to control nutrients from 
agriculture, urban runoff, and septic systems. At the same time a shift in land use towards 
reduced agriculture and farm livestock has also occurred independently of deliberate land 
use management. Considerable reductions in nutrient loads and eutrophication in 
Cannonsville Reservoir have been observed in stream and reservoir water quality 
monitoring data collected between 1992 and 2009.  
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Watershed and reservoir simulation models were used to evaluate the factors responsible 
for the observed changes in Cannonsville water quality. Reductions in dissolved 
phosphorus (P) loads to the reservoir were mainly attributable to Waste Water Treatment 
Plant (WWTPs) upgrades, implementation of agricultural BMPs by the Watershed 
Agricultural Program, and decline in farm livestock. Loading reductions produce 
improvements in reservoir water quality by not only reducing the long term mean values 
of epilimnetic chlorophyll, but by also dramatically reducing the frequency of extreme 
chlorophyll values; which is important since it is extreme events rather than long term 
averages which actually influence the usability of the reservoirs as sources of drinking 
water. 

 
 
M. Zion, A. Matonse, D. Pierson and E. Schneiderman, 2011.  Simulation Modeling for NYC 

Water Supply Operations to Control Turbidity – 2010 Case Study. 
 
Abstract: 

The New York City Water Supply obtains the majority of its water from the Catskill and 
Delaware subsystems, and water from these subsystems mix at Kensico Reservoir prior 
to entering the water supply distribution system. Turbidity is a primary factor that 
potentially limits use of the Catskill System water. The impacts of this turbidity to the 
water supply as a whole can be mitigated by operating the system to minimize turbidity 
inputs to the terminal Kensico Reservoir while maximizing the storage and settling 
capacity of upstream Catskill System reservoirs. During turbidity events daily decisions 
are carefully taken to optimize system operations for turbidity control, while ensuring 
adequate water storage levels. To support these decisions, a combination of watershed, 
reservoir water quality and water system simulation models are used to evaluate 
alternative operational scenarios within a probabilistic framework. These simulation 
models form the basis for the Operational Support Tool currently under development by 
DEP.   
During the fall and winter of 2010 a number of storms caused elevated levels of turbidity 
in Catskill System reservoirs. As these storm events occurred, various model simulations 
were performed to analyze the effects of alternative operational strategies on Kensico 
Reservoir effluent water quality. Operational strategies investigated included use of the 
Ashokan Reservoir waste channel, implementation of stop shutters in the Catskill 
Aqueduct to limit flow of turbid water into Kensico Reservoir and the blending of 
Catskill and Delaware System waters to maintain adequate water quality in Kensico 
effluents. This presentation describes model simulation results which helped to inform 
system operation decisions during these periods of elevated Catskill System turbidity. 
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American Water Work Association – New York Section Edwin C. Tifft, Jr. Water Supply 
Symposium.  September 2011. Liverpool, New York 
 
Zion, M.S. D.C. Pierson, E.M. Schneiderman, A. Anandhi, A.H. Matonse, S.M. Pradhanang, R. 

Mukundan, Y. Huang, N. Samal, A. Frei and L. Janus, 2011.  Evaluation of Potential 
Effects of Climate Change on the New York City Water Supply 

 
Abstract: 

The New York City Department of Environmental Protection (DEP) has developed a 
Climate Change Assessment and Action Plan (CCAP) that outlines the strategies that 
DEP is undertaking to address potential climate change effects on the drinking water, 
stormwater and wastewater systems of New York City. 
One element of the CCAP has been expanding the development of an integrated 
modeling system to further understand the implications of potential future climate 
changes on the quantity and quality of the New York City (NYC) Water Supply.  This 
modeling project utilizes climate change projections as input to an integrated suite of 
models including watershed hydrology and water quality models, a water system 
operations model, and reservoir hydrothermal and water quality models.   
Recent predictions of future climate for the northeast U.S. generally indicate greater 
annual precipitation and increased temperatures compared to current climate conditions.  
These climate changes could potentially produce longer growing seasons, increased 
evapotranspiration, earlier snowpack melting, changes in the magnitude of streamflow 
events, differences in proportion of streamflow due to overland flow, shifts in the timing 
of sediment and nutrient delivery to the reservoirs, and changes in the timing and 
intensity of reservoir thermal stratification.   
The integrated modeling system can be used to better understand how the interplay of 
these potential changes will affect the NYC Water Supply System.  Utilizing watershed, 
reservoir, and water system models together provides a framework for evaluating 
feedback between flows and loads entering the reservoir, reservoir water quality, water 
demand, and water system operations.  Scenarios incorporated within the integrated 
modeling framework provide a greater understanding of the combined impacts of climate 
change on the water supply quantity and quality. 
Preliminary model simulations are presented that demonstrate how the integrated models 
are used to investigate climate change effects.  Various statistical measures of water 
system quantity and quality including drought indicators, frequency of occurrence of 
turbidity limits and frequency of exceeding threshold chlorophyll and phosphorus 
concentrations are examined in order to place the results in the context of DEP’s water 
supply concerns. 
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Abstract:

In this study, we evaluate the ability of GCMs participating in the Intergovernmental Panel for Climate Change’s (IPCC)
Fourth Assessment Report (AR4) to simulate variability in the snow water equivalent (SWE) in New York City Water Supply
watersheds located northwest of NYC in the Catskill Mountains. SWE is estimated using an empirical temperature-based
degree day model. Inputs to this model are either measured with historical meteorological (1961–2000) data or a GCM model
output for the same historical period. The evaluation of the GCMs is based on a skill score developed using probability
distribution functions derived from the time series of simulated snowpack. From the skill scores (SS) calculated, the GCMs
are ranked based on their ability to simulate the snowpack. These results have implications for selecting a subset of GCM
simulations for climate change impact assessments in New York City’s water supply.

Results show that the GFDL 2Ð0 (gf001) model has the highest SS (0Ð93) and CCSM (ncc09) model has the lowest SS
(0Ð26). On the basis of the SS, the GCM ensemble members are classified into three categories: high, medium and low
performance. The probability density functions for the three performance classes show the largest between-model variability
for models in low performance class. Differences between the means and medians of observation-based model simulation and
GCM-based simulation were greatest in the low-performance class. Copyright  2011 John Wiley & Sons, Ltd.

KEY WORDS snow water equivalent; evaluation AR4 models; global climate models; probability-based skill score;
temperature-based snowmelt algorithm; GWLF
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INTRODUCTION

Snowmelt runoff is an important source of water in the
watersheds of the New York City water supply that
provide about ninety percent of the New York City’s
(NYC) daily water demand. One hydrologic change that
has been observed in this region during the period of
1952–2005 is a shift in the timing of snowmelt runoff to
earlier in the year (Burns et al., 2007; Zion et al., 2010).
As climate continues to change, the contribution of spring
snowmelt to streamflow will also change. Given the fact
that changes in snowmelt runoff in Catskill Mountain
(West of Hudson (WOH)) watersheds have potentially
important implications for the water supply of New York
City, there is a need to study the potential impacts of
climate change on the quantity of snowmelt runoff in
these watersheds. For this purpose, data derived from a
suite of Global Climate Models (GCMs) are being used
to drive watershed models to study snowmelt runoff in
the absence of observed snow data.

* Correspondence to: Aavudai Anandhi, CUNY Institute for Sustainable
cities, City University of New York, New York, NY, 10065.
E-mail: aavudaia@dep.nyc.gov

Presently, the output from GCMs related to snow and
snowmelt are only available at monthly timescales. Snow
cover fraction (SCF), a GCM output is diagnostically
derived from prognostic variables: snow water equivalent
(SWE) or snow depth (SD). The details of the studies that
have examined GCMs with respect to snow are given
in Table I. From the table it can be observed that snow
simulations (SWE, surface albedo, SD, SCF, snow mass,
snow cover area) from GCMs are evaluated at monthly,
seasonal and annual timescales using measures such
as annual cycle, frequency distribution, mean, median,
decadal scale variability (Foster et al., 1996; Yang et al.,
1999; Frei et al., 2003, 2005; Frei and Gong, 2005;
Roesch, 2006; Roesch and Roeckner, 2006).

The watershed models used to study the hydrology in
the NYC WOH region are run at daily timescales. Higher
temporal resolution snow data can be obtained indirectly
by modelling SWE at daily timescales using daily sim-
ulations derived from GCMs. Different approaches of
varying complexity are possible, ranging from simple
regression equations, blackbox approaches based only
on temperature measurements to physics-based models
containing equations for all the processes involved, or
complete multilayer models based on an energy balance

Copyright  2011 John Wiley & Sons, Ltd.
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Table I. Literature review

S.N Variable
name

Region of
study

Time scale Evaluation
metric

GCMs References

1 Snow cover, Snow
mass

North
America,
Eurasia

Mean monthly Climatology plots Hadley centre,
CGCM,
GENESIS,
ECHAM, GISS,
GLA, ARIES

(Foster et al.,
1996)

2 Snow mass, extent Mid-latitude
Grasslands
in Russia,
California

Month Monthly time series
plots

CCSM (BATS) (Yang et al.,
1999)

3 Snow cover area
(SCA)

North
America,
Eurasia

Month Interannual variability 18 GCMs
participating in
AMIP-1

(Frei et al.,
2003)

4 SCA North
America

Annual,
decadal

mean, Decadal scale
variability (DSV)

21 GCMs
participating in
IPCC-AR4

(Frei and Gong,
2005)

5 SWE North
America

Month,
seasonal,

Box and whisker
plots, monthly mean
and standard
deviation, Pearson
correlation
coefficient

18 GCMs
participating in
AMIP-1

(Frei et al.,
2005)

6 SWE, Snow cover
fraction (SCF),
surface albedo

North
America,
Eurasia

Month,
seasonal

Annual cycle, biases,
frequency
distribution

Most GCMs
participating in
IPCC-AR4

(Roesch, 2006)

7 SCF, SD Eurasia Month Annual cycle,
frequency
distribution

ECHAM4,
ECHAM5

(Roesch and
Roeckner,
2006)

(Stewart, 2009; Zeinivand and Smedt, 2009; Debele
et al., 2010) have been used to estimate snowmelt. In this
study, daily snowmelt is estimated using the temperature-
based approach used in the Generalized Watershed Load-
ing Function (GWLF; (Haith et al., 1992) watershed
model).

Owing to the relatively large number of GCMs from
which output is presently available to researchers, there
is a need for GCM evaluations to identify the best mod-
els for different applications. For regional applications,
there are three general methods by which GCMs can be
used. (1) Using all available GCMs for achieving bet-
ter representation of uncertainty. This may result in an
unreasonable number of watershed model simulations.
(2) Using a multi-model ensemble mean from a group
of climate models. Using this approach, only one ‘likely’
outcome is produced, without information regarding a
range of possible outcomes. (3) Choosing a subset of
GCMs which are judged as being ‘best’ for a particular
application. For this third option, an evaluation method
must be chosen. Testing the GCM’s ability to simulate
‘present climate’ (including variability and extremes) is
considered an important part of model evaluation. How-
ever, it should be noted that neither good performance
across an arbitrary suite of measures of observed cli-
mate, nor agreement in output across a collection of
models, provides a rigorous basis for assessing the accu-
racy of a future prediction. Another evaluation method is
to identify groups of models which agree on future cli-
mate changes (convergence). However, there are inherent

problems with this last approach as well. These issues and
approaches are discussed in Gleckler et al. (2008); Knutti
et al. (2010); Weigel et al. (2010).

In this study, GCMs are evaluated by examining the
skill of models in simulating present-day climate (Raisa-
nen, 2007; Johnson and Sharma, 2009). A number of
studies have used SS and other criteria statistics for
evaluating the different meteorological variables avail-
able from GCMs simulations (Taylor, 2001; Giorgi and
Mearns, 2003; Tebaldi et al., 2004; Murphy et al., 2007;
Perkins et al., 2007; Randall et al., 2007; Gleckler et al.,
2008; Maxino et al., 2008; Pierce et al., 2009; Errasti
et al., 2011). A good review of some of these methods
available to evaluate the performance of GCMs is found
in Johnson and Sharma (2009).

The objective of this study is to evaluate the ability of
daily GCM-derived SWE to simulate daily observation-
based model SWE using a probability-based skill score.
Daily snow accumulation or snowmelt is estimated using
the temperature-based snow algorithm in GWLF water-
shed model.

STUDY REGION AND DATA USED

The study area encompasses a watershed area of about
4100 km2. It consists of six reservoir watersheds namely
Cannonsville, Ashokan, Nerversink, Schoharie, Rondout
and Pepacton (Figure 1). These watersheds are part of
the Eastern Plateau Climate Region of New York. The
regional climate is characterized as humid continental
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Figure 1. Study region. The six reservoir watersheds provide approximately 90% of NYC’s drinking water needs

with cool summers (with average minimum, maximum
and mean temperatures of 12, 22 and 18 °C), cold winters
(with average minimum, maximum and mean tempera-
tures of �10, 0 and �5 °C), abundant precipitation and
snowfall (Figure 2). This region experiences a uniform
distribution of precipitation throughout the year. Typ-
ically, total precipitation is about 1000–1200 mm per
year, with snowfall accounting for approximately 20%
of total precipitation. Snow survey data collected by the
New York City Department of Environmental Protection
(NYCDEP) was used in Table III.

In addition, orography influences the spatial distribu-
tions of precipitation and temperature (Frei et al., 2002;
Burns et al., 2007).

For each of the 6 WOH watersheds, daily observed
data for precipitation from 18 National Climate Data Cen-
ter cooperative stations were obtained from the North-
east Regional Climate Center (NRCC) (Figure 1). Each
watershed was broken into Theissen polygons based on
the location of the nearest precipitation stations. Weights
were calculated for each station by dividing the area
within each polygon representing a precipitation station
to the total watershed area. Then, for each station, the
product of precipitation data and its weight were calcu-
lated. The average precipitation of each watershed was
calculated by the summation of the products for all sta-
tions. Using this method the watershed average precipi-
tation is calculated. Average air temperatures are derived
from four stations measuring this variable, Cooperstown,

Liberty, Slide Mountain and Walton (Figure 1). Each of
these stations has been active since 1960 or earlier. The
averaging method includes the application of an envi-
ronmental lapse rate (6 °C/km) to correct for elevation
differences between the station and the mean watershed
elevation and use of inverse distance squared weighting
averaging of the four stations (NYCDEP, 2004). After
processing the observed daily precipitation and average
temperatures, a single time series for a variable and
watershed is obtained and used in this study. The period
of observed data used in this study is 1960–2000.

GCM simulations are obtained from the World Cli-
mate Research Programme’s (WCRP’s) Coupled Model
Intercomparison Project Phase 3 (CMIP3) multi-model
dataset. The daily baseline scenario (20C3M) GCM sim-
ulations are from 20 GCMs (Table II), and for two
meteorological variables (precipitation and average tem-
peratures at the surface). A list of the GCM simulations
(name and realisation number), used in the study are
provided in Table II. The data from all the GCMs for
the region surrounding the study region are extracted
and interpolated to a common 2Ð5° grid using bilinear
interpolation.

METHODOLOGY

The lack of measured high-quality spatial datasets (Jost
et al., 2009) is mainly due to difficulties in extrapolating
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Figure 2. Mean monthly plots for the six WOH watersheds averaged for the period of 1960–2000. In the figure, sc D Schoharie, as D Ashokan, ca
D Cannonsville, pe D Pepacton, ne D Neversink, ro D Rondout watersheds

Table II. Names of the climate models, their versions, realisation numbers, acronyms used in the study. The GCMs are classified
based on their performance in simulating the SWE are shown. All snow simulations were made using baseline runs associated with

these models

S.N GCM I.Da Acronym Country

GCM name Realisation numberb

1 BCCR-BCM2Ð0 bcc 01 Norway
2 CCSM3 ncc 01,03,05,06,07,08,09 USA
3 CGCM3Ð1(T47) cc4 01,02,03,04,05 Canada
4 CGCM3Ð1(T63) cc6 01 Canada
5 CNRM-CM3 cnr 01 France
6 CSIRO-Mk3Ð0 cs0 01,02,03 Australia
7 CSIRO-Mk3Ð5 cs5 01 Australia
8 ECHAM5/MPI-OM mpi 01,04 Germany
9 ECHO-G miu 01,02,03 Germany, Korea

10 FGOALS-g1Ð0 iap 01,03 China
11 GFDL-CM2Ð0 gf0 01 USA
12 GFDL-CM2Ð1 gf1 02 USA
13 GISS-AOM gao 01 USA
14 GISS-ER gir 01 USA
15 INGV-SXG ing 01 Italy
16 IPSL-CM4 ips 01,02 France
17 MIROC3Ð2(hires) mih 01 Japan
18 MIROC3Ð2(medres) mim 01,02 Japan
19 MRI-CGCM2Ð3Ð2 mri 01,02,03,04,05 Japan

a As provided by Lawrence Livermore National Laboratory’s Program for Coupled Model Diagnosis and Intercomparison (PCMDI): http://www-
pcmdi.llnl.gov/ipcc/model documentation/ipcc model documentation.php.
b Realisation numbers in bold are classified as models having high SS, the numbers in italics represent the models classified as medium SS, and the
numbers in black represent models having low SS. This classification is subjective.

data collected from sparse networks of climate stations.
The high-resolution daily data are not available especially
for mountainous areas where the effects of terrain create
spatially and temporally complex climatic patterns (Daly
et al., 2007). Also, lack of daily snow measurements for
the period of 1960–2000 was one of the problems faced
in this study. Further, lack of comparable daily snow
parameters in the GCM simulations and comparisons

presented in this paper are based on simulated snow
parameters. These simulations are driven using either
observed daily mean measurement of air temperature and
precipitation or daily GCM data for these variables from
the GCM grid cell nearest to the study area and are
referred as ‘observation-based model’ SWE and ‘GCM-
based simulated’ SWE, respectively. The methodology
followed in this study is shown in Figure 3.
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Outputs (Snowpack, 
Snowmelt)

Outputs (Snowpack, 
Snowmelt)

Outputs using GCM 
simulations (Snowpack, 

Snowmelt)

Probability based Skill Score

GCM Evaluation

GWLF model

Measured Inputs 
(Pptn,Tave) (Pptn,Tave)

GCM Simulations 

Links with observed data

Links with GCM simulation

Figure 3. Flow chart showing the methodology for simulating observa-
tion-based model and GCM-based SWE

SWE estimation using GWLF model

The GWLF model is a lumped parameter hydrologic
model coupled to simple water quality model and details
of the model may be found in Haith et al. (1992);
Schneiderman et al. (2002), (2007).

In GWLF, SWE at a given time (t), is a function
of SWE at a previous time (t � 1), snowfall [P�t�] and
snowmelt [Ps�t�] at time t. If the mean daily temperature
T�t� is less than or equal to 0 °C, precipitation is
assumed to be snowfall. If T�t� > 0 °C, snowmelt Ps�t�
is calculated based on Equation (1).

Ps�t� D M.T�t� �1�

Snowmelt is a function of mean daily temperature
and a snowmelt parameter or degree day factor (M)
given in Equation (1). The units of P�t� and Ps�t� are
in cm/day, while the units of T�t� and M are °C and
mm/day/°C. Air temperature is taken as the measure of
the thermal conditions of air masses which are generated
by various components (advection, convection, mixing,
radiative processes, turnover of latent heat in melting,
condensation and evaporation) and is used as input in
estimating and modelling energy for melt (Lang and
Braun, 1990). The variations in M are attributed to
differences in relative importance of individual energy
components providing energy for melt (Hock, 2003).
M depends on the basin’s geographical location, time
of year, vegetation, aspect and topography (Maidment,
1993). In general, melt rates in south-facing slopes tend to
be higher than north-facing slopes (Harms and Chanasyk,
1998; Pomeroy et al., 2003; Carey and Quinton, 2004;
Pohl and Marsh, 2006; Carey and Pomeroy, 2009) due
to a greater receipt of solar radiation. In higher-latitude
environments, longwave radiation fluxes (from the sky

and surrounding snow-covered landscape) provide similar
or higher amounts of radiation to snowmelt processes
than shortwave radiation from insolation due to low
solar elevation (cosine effect and increased scattering
due to long atmospheric path lengths). This effect is
magnified in mountains due to shading and longwave
emissions from the complex topography (Sicart et al.,
2006). The forest canopy absorbs, scatters and reflects the
direct beam solar radiation and emits longwave radiation.
Owing to the larger downward longwave radiation in
the evergreen forest than in the deciduous forest, the
daily snowmelt rates in the evergreen forest site were
larger than those in the deciduous forest site (Hashimoto
et al., 1994). Further, it was observed that the forests
had greater snow depth and snow cover compared to
agricultural lands in the Cannonsville watershed due to
increased sublimation, greater solar radiation and greater
winds (Pierson and Kick, 1995) indicating lower melt
rates in forest when compared to agricultural lands.

The value for M is calibrated for each of the six
WOH watersheds (Table III). The calibrated parameter
varies between 0Ð29 and 0Ð48 based on the comparison of
simulated and measured streamflow. They are within the
range of values typical of this region (Maidment, 1993).

GWLF is driven by daily precipitation and temperature
data. For six reservoir watersheds, six separate GWLF
model applications are driven using watershed-averaged
precipitation and air temperature. In the absence of snow
measurements, these simulations are used to provide a
surrogate for observed SWE and snowmelt corresponding
to present day conditions. They are referred to as
observation-based model SWE and snowmelt and plot
for selected years are shown in Figure 4.

The precipitation and average temperature obtained
from GCM simulations were also input into each of the
six calibrated GWLF models to obtain snowmelt and
SWE for the various combinations of GCM/realisations.
These simulations are referred to as GCM-based simu-
lated SWE.

Estimation of probability density functions of SWE

The probability density functions (PDFs) are estimated
using ‘observation-based model’ and ‘GCM-based sim-
ulated’ for the months of December–March (winter to
early spring) using MatLab (http://www.mathworks.com)
for variables SWE, snowpack and mean air tempera-
tures. Six simulated time series for each variable were
developed based on observed data (daily basin-wide aver-
aged precipitation and air temperature) for each of the
six watersheds. The pooled data from all six watersheds
were used to construct a single representative distribution
for each parameter in the observation-based model PDF.
The PDFs were also calculated for each reservoir water-
shed using daily grid cell air temperature data for each
GCM/realisation.

To estimate the PDFs used in this study, we require
bin sizes (Sb) and number of bins (Nb). For each
variable, a common value of Sb is used for all analyses;
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Table III. Melt coefficients calibrated for the six WOH watersheds

S.N Name of Melt Elevation Watershed Landuse(%)b Snow SWE
reservoir coefficient range, area (km2)a depth (mm)c

watershed cm/day/°C (mean) m Forest Agriculture (mm)c

1 Ashokan 0Ð29 125–1275 (539) 661 98 1 113Ð03 19Ð05
2 Cannonsville 0Ð41 315–1234 (572) 1177 80 19 171Ð20 24Ð64
3 Neversink 0Ð48 435–1276 (841) 238 98 2 164Ð85 19Ð81
4 Pepacton 0Ð39 353–1181 (633) 961 90 9 134Ð11 22Ð61
5 Rondout 0Ð41 248–1175 (523) 247 96 4 121Ð16 21Ð08
6 Schoharie 0Ð38 315–1234 (632) 817 91 8 127Ð00 26Ð16

a Includes the reservoir area.
b Values from Mehaffey et al. (2005) (Table I).
c Average values obtained for the watershed calculated based on snow survey data collected by the New York City Department of Environmental
Protection (NYCDEP) on 1/21/04.

Figure 4. Observation-based model SWE for selected years obtained using GWLF hydrological model. In the figure, sc D Schoharie, as D Ashokan,
ca D Cannonsville, pe D Pepacton, ne D Neversink, ro D Rondout watersheds

Nb is then determined based on the range of values
(Equation (2)). Sb selected for this study are 0Ð5 mm/day
for SWE, 0Ð5 mm/day for snowmelt and 0Ð5 °C for
average temperature.

Nb D �Vmax � Vmin�/Sb �2�

where Vmax and Vmin is the maximum and minimum
value of the variable and vary for the different combi-
nations. The frequencies of values within each bin (n) is
then calculated for GCM-based (Fgn) and observation-
based model (Fon) data.

Skill score (SS)

The ability of the GCMs to estimate snowmelt and
SWE was judged using the skill score (SS) developed by
Perkins et al, (2007) which computes the empirical PDFs
derived from observation-based model and GCM-based
simulation. The advantage of this skill score is its sim-
plicity and applicability across variables, spatial scales
and seasons. For each bin n, in the SWE frequency dis-
tribution the minimum frequency associated with either
the GCM-based (Fgn) or observation-based model (Fon)
data is recorded. SS is the summation of these minimum
frequency values over all bins (Equation (3)).

SS D
Nb∑

nD1

min�Fgn, Fon� �3�

The value of SS can range between 0 and 1. The SS
is close to 1 when the modelled and observed PDFs are
similar; close to 0 if there is negligible overlap. For SWE,
a SS is calculated by comparing the observation-based
model PDF with the PDFs from each GCM/realisation
which are then ranked.

RESULTS AND DISCUSSION

The SS for SWE are estimated for 41 GCM/realisations
used in the study. The ranks of the GCM are provided in
Figure 5 where, the x-axis denotes the rank and y-axis the
SS. The GFDL 2Ð0 (gf001) has the highest SS (0Ð93) and
CCSM (ncc09) has the lowest SS (0Ð26). On the basis of
the SS, the GCMs are classified into three categories high,
medium and low performance. The classification is based
on the changes in the SS and is subjective. In Table II,
the GCMs and realisation number which are classified
as high, medium and low performance are shown. It can
be observed that the SSs are generally consistent between
ensemble members of each GCM, however, in some cases
ensemble members fall into adjacent classes but no GCM
has one ensemble member in the highest performance
group and one in the lowest performance group. The
range of the SS in the three categories are high skill score:
0Ð87–0Ð93, medium skill score: 0Ð72–0Ð83 and low skill
score: <0Ð72 (0Ð26–0Ð72).
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GCMs with high SS GCMs with medium SS

GCMs with
low SS

Figure 5. The AR4 climate models are ranked based on average SS for SWE for the season DJFM in each realisation. The GCM with highest skill
score is given rank 1, while the GCM with lowest skill score is given the last rank. The GCMs/realisation are classified into high, medium and low

classes based on SS

In Figure 6, the PDFs of SWE, snowmelt and air
temperature for the three categories defined in Figure 5
are plotted. In Figure 6, a separate row is plotted for each
variable and columns represent a different performance
class. In each panel, the range of the GCM-based PDFs
(shaded region) is shown along with the observation-
based model PDF (bold line). For snowmelt and SWE
(rows 2 and 3) the x-axis is transformed using a natural
log. These figures suggest that the largest between-model
variability is found for models in low performance class,
and lowest between-model variability is found for models
in high performance class.

From the basic statistics (such as mean, median, stan-
dard deviation, interquartile range) estimated for all the
GCM-based SWE and observation-based model SWEs,
it is apparent that the mean statistics in the GCM-based
SWE in high performance class were more representa-
tive of observation-based model SWEs when compared
to the other two performance classes (Figure 7). For the
three GCMs selected from the high, medium and low
performance classes, the percentage difference between
mean statistics from the observation-based model SWE
and GCM-based SWE is found to be 3, 29 and 98%,
respectively. Further, it can be observed that the range in
the GCM-based SWE is less than the observation-based
model SWE.

We formed subgroups of models that share common
features to make a connection between SS and model
characteristics. The model characteristics considered for
the analysis include: (1) Horizontal resolutions of the
GCMs. (2) Convective scheme employed for precipi-
tation parameterisation; and (3) Flux correction at the
ocean–atmosphere interface. On the basis of horizon-
tal resolution, we divided the models into three groups
(high, medium and low) and compared them with the
SS. In general, the horizontal resolutions of the three
groups are >3, 2–3 and <2° for high, medium and low
groups (Kim et al., 2008). On the basis of the convective
scheme used they are divided into four groups namely,
RAS (relaxed Arakawa-Schubert), MC (moist convec-
tion adjustment), MF (Mass flux-based), AS (Arakawa-
Schubert) (Kripalani et al., 2007). On the basis of flux
correction at the ocean–atmosphere interface they are

divided into groups with no flux correction (N), heat (H),
water (W), momentum (M) (Dai, 2006; Kripalani et al.,
2007).

The results of the analysis showed that there is no
clear connection between SS and model characteristics,
as models with high skill score did not belong to a partic-
ular group in terms of horizontal resolution, convective
scheme and flux correction. This could be due to the fact
that model developers have shared parts of code, input
datasets and expertise when developing the GCMs and
that some institutions have developed multiple models
with some similarities. This may result in some mod-
els having similar biases (Jun et al., 2008; Knutti et al.,
2010). Hence, it may not be relatively straightforward
to associate underlying reasons for high/low SS with the
GCM model characteristics that are responsible for the
biases.

CONCLUSIONS

Snowmelt runoff is an important source of water for
New York City’s (NYC) water supply. The GCMs
participating in the IPCC’s AR4 report are evaluated for
their performance in simulating SWE in the water supply
watersheds using probability-based SS. In the absence of
observed daily SWE or comparable GCM-simulated daily
SWE, SWE is estimated using a simple watershed model,
which includes a degree-day snow melt parameterisation.

Results show that SSs are generally consistent between
ensemble members of each GCM. The GFDL 2Ð0 (gf001)
has the highest SS (0Ð93) and CCSM (ncc09) has the least
SS (0Ð26). On the basis of the SS, the GCM ensemble
members are classified into three categories high, medium
and low performance. The range of the SS in the three
categories is 0Ð87–0Ð93 for high skill score, 0Ð72–0Ð83
for medium skill score and <0Ð72 (0Ð26–0Ð72) for low
skill score.

The PDFs of snowmelt, SWE and mean tempera-
ture for the three performance classes show the largest
between-model variability for models in low performance
class. Differences between the mean and median from
GCM-based PDFs and observation-based model PDFs
were also greatest in the low performance class.
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Figure 6. The shaded region represents the variation in Probability Density Functions (PDFs, F(x)) for average daily temperature, and daily predictions
of snowmelt and SWE for the various AR4 climate models in the three performance classes considered in the study. The PDFs are estimated for
the period of 1962–1999 for the DJFM months. In each of the plots, the black bold line represents the PDF obtained using daily observation-based
model simulation for the study region. The red dashed line represents the median PDF and the red line shows the mean PDFs for the GCM-based

simulation

(a) (b) (c)

Figure 7. Monthly mean values obtained from simulations (daily GCM-derived SWE, represented as grey bars) and observations (daily
observation-based model SWE, represented as black bars) for the six WOH watersheds to show the differences. The GCM-derived SWE in:
(a) is from three GCMs (gf001, cs003 and ips01) with high skill score; (b) is from three GCMs (mri05, cc401 and mpi04) with medium skill score;

and (c) is from three GCMs (iap03, mih01 and mim02) with low skill score
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The statistics (such as mean, median, standard devia-
tion, interquartile range) from the GCM-based SWE sim-
ulation were more representative of the observation-based
model SWE in high performance class when compared
to the other two performance classes.

Evaluation of GCMs by estimating the skill score
for individual watersheds is deferred for future work.
Analysing the SS for each month in the winter period
would help understand the variation of SS in the winter
season during pre-melt period (earlier in winter), melt
period and post-melt period (later in winter). This is also
deferred for future research.
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[1] A variety of methods are available to estimate values of meteorological variables at
future times and at spatial scales that are appropriate for local climate change impact
assessment. One commonly used method is Change Factor Methodology (CFM), sometimes
referred to as delta change factor methodology. Although more sophisticated methods exist,
CFM is still widely applicable and used in impact analysis studies. While there are a
number of different ways by which change factors (CFs) can be calculated and used to
estimate future climate scenarios, there are no clear guidelines available in the literature to
decide which methodologies are most suitable for different applications. In this study
several categories of CFM (additive versus multiplicative and single versus multiple) for a
number of climate variables are compared and contrasted. The study employs several
theoretical case studies, as well as a real example from Cannonsville watershed, which
supplies water to New York City, USA. Results show that in cases when the frequency
distribution of Global Climate Model (GCM) baseline climate is close to the frequency
distribution of observed climate, or when the frequency distribution of GCM future climate
is close to the frequency distribution of GCM baseline climate, additive and multiplicative
single CFMs provide comparable results. Two options to guide the choice of CFM are
suggested. The first option is a detailed methodological analysis for choosing the most
appropriate CFM. The second option is a default method for use under circumstances in
which a detailed methodological analysis is too cumbersome.
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1. Introduction
[2] New York City Department of Environmental Protec-

tion (DEP) is undertaking a program to evaluate the poten-
tial effects of climate change on the New York City (NYC)
water supply. This modeling program utilizes meteorologi-
cal time series derived from Global Climate Model (GCM)
simulations. These time series are provided as input to an
integrated suite of models (including watershed hydrology,
water quality, water system operations, and reservoir hydro-
thermal models), to examine the potential effects of climate
change on water quantity and quality.

[3] One difficulty encountered in such studies is the mis-
match of spatial scales between GCMs on the one hand, and
local observations and local impact assessments on the other
hand. For example, the area of typical GCM grid cells range
between 10,000 km2 and 90,000 km2, while for the case of

the NYC water supply, model simulations are typically run
on watershed areas of 25–1200 km2.

[4] A number of techniques have been employed to over-
come this problem of mismatched spatial scales. Future cli-
mate scenarios have been derived in several ways: (1)
based on analogies with different climatic zones or histori-
cal time periods, (2) from GCMs using simple manipulation
of current climate observations (e.g. Change Factor Meth-
odology (CFM)), and (3) from more sophisticated statistical
and dynamical downscaling methodologies [Wilby et al.,
2000]. There are three types of statistical downscaling,
namely weather classification methods, weather generators,
and transfer functions. Weather classification methods
group days into a finite number of discrete weather types or
‘‘states’’ according to their synoptic similarity [Anandhi,
2010; Brinkmann, 1999; Wetterhall et al., 2005]. Weather
generators are statistical models that provide sequences of
weather variables that have similar statistical properties as
the observed data on which they are trained [Chen et al.,
2010; Mehrotra et al., 2006; Stehlik and Bárdossy, 2002;
Wilks, 1998]. Transfer functions capture the relationships
between the large scale atmospheric variables (predictors)
and the local meteorological variable of interest (predic-
tand) [Anandhi et al., 2008; Anandhi et al., 2009; Tripathi
et al., 2006]. In the dynamic downscaling approach, a Re-
gional Climate Model (RCM) is nested in a GCM. Dynamic
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downscaling can be further subdivided into one-way nesting
and two-way nesting [Wang et al., 2004].

[5] Each of the methods has its own set of advantages
and pitfalls for generating future climate scenarios [Mearns
et al., 2001; Semadeni-Davies, 2004]. The major advantage
of CFM (also referred to as delta change factor methodol-
ogy) is the ease and speed of application, and the direct
scaling of the local data in line with changes suggested by
the GCM scenario. Hence, CFM is used in many climate
change impact assessment studies [Semadeni-Davies et al.,
2008] and programs across the world, such as the US
Global Change Research Program (available at http://
www.usgcrp.gov/usgcrp/nacc/default.htm), and in a recent
study of the effect of climate change impact on lakes in
Europe (CLIME) [George, 2010]. However, there are also
some disadvantages to this approach that have been
reported in the literature. For example, the temporal
sequencing of wet and dry days generally remains
unchanged when using single change factor (explained in
detail in section 3.1), and so CFM may not be helpful in
circumstances where changes in event frequency and ante-
cedent conditions are important to the impact assessment
[Diaz-Nieto and Wilby, 2005; Gleick, 1986]. The purpose
of this paper is to shed some light on the different types of
CFM methodologies under different circumstances, and to
provide guidance on how they should be applied.

2. Study Region and Data
[6] Our study region is the Cannonsville reservoir water-

shed, which is one of the sources of NYC’s municipal
water supply. Cannonsville is a 1178 km2 watershed
located in Delaware County, about 160 km northwest of
NYC in the Catskill Mountains.

[7] Daily GCM simulation results from three GCMs are
downloaded for the grid box closest to the centroid of the
watershed. The National Center for Atmospheric Research
(NCAR), Goddard Institute of Space Studies (GISS), and Eu-
ropean Center Hamburg Model (ECHAM) are the three
GCMs used in the study. The GCM simulations were
obtained from the World Climate Research Programme’s
(WCRP’s) Coupled Model Intercomparison Project phase 3
(CMIP3) multimodel data set. The NCAR, GISS, and
ECHAM results were supplied by Columbia University/GISS
as part of an initial climate change contract with DEP [Hor-
ton and Rosenzweig, 2010; Major and O’Grady, 2010]. The
scenarios include a baseline scenario (20C3M), three future
emission scenarios (A1B, A2, and B1), and two time slices
(2046–2065 and 2081–2100). All combinations of future
emissions scenarios and time slices are compared to the
1981–2000 baseline period, and nine meteorological varia-
bles were examined depending on their availability (precipi-
tation; maximum, minimum and average temperature;
meridional wind component; zonal wind component; surface
pressure; shortwave solar radiation; and longwave radiation;
as discussed in section 4.3). The temperature and winds are
at the near surface, usually 2 m height for temperature and 10
m height for wind. The chosen future scenarios coincide with
daily data available for most GCMs. The details of the
GCMs used in the study are provided in Table 1.

[8] Daily observed data from six meteorological varia-
bles (precipitation; maximum, minimum and average

temperature ; wind speed; and shortwave solar radiation)
for the period 1981 – 2000 are used in the more detailed
study in section 4.4. For these variables, there was no sig-
nificant change in the frequency distributions calculated
over a 20 (1981 –2000) or 40 (1961 –2000) year record of
observed data.

3. Change Factor Methodologies
[9] There are several types of CFMs. These can be cate-

gorized by temporal scale, temporal resolution, mathemati-
cal formulation, or number of change factors. The first type
of CFM is categorized by the temporal scale and temporal
domain from which they are calculated. Temporal scale
refers to the timescale (e.g. daily, monthly, seasonal, an-
nual) of values that are included in the analysis. Temporal
domain refers to both the time of year (e.g. January, winter,
annual) and the beginning and ending dates of the historical
observed, historical modeled, and future modeled values to
be included in the analysis (e.g. 1981–2000 compared to
2046–2065). In general, the reliability of GCMs decrease at
higher frequency temporal scales. The monthly, seasonal,
and annual averages of any variable are better simulated
than daily values [Grotch and MacCracken, 1991; Huth,
1997]. However, there is also a need for daily hydrome-
teorological variables in hydrological and ecological impact
assessment studies relating to climate change. Studies have
evaluated GCM simulations at daily timescales and con-
cluded that some of the GCMs (in AR4 report) show consid-
erable skill at subcontinental scales even when assessed
using daily frequency distributions. This builds confidence
in using the GCMs for regional assessment [Perkins et al.,
2007] and in some cases for assessing extreme events.

[10] The second type of CFM is categorized by its mathe-
matical formulation (additive or multiplicative). In an addi-
tive CFM, one calculates the arithmetic difference between
a GCM variable derived from a current climate simulation
and derived from a future climate scenario taken at the
same GCM grid location. This difference is then added to
observed local values to obtain the modeled future values.
This method, typically used for temperature [Akhtar et al.,
2008; Hay et al., 2000; Kilsby et al., 2007], assumes that
the GCM produces a reasonable estimate of the absolute
change in the value of a particular variable regardless of the
accuracy of the GCM’s current climate simulation. A multi-
plicative change factor (CF) is similar to an additive CF
except that the ratio, rather than arithmetic difference,
between the future and current GCM simulations is calcu-
lated; the observed values are then multiplied by (rather
than added to) the CF. This method assumes that the GCM
produces a reasonable estimate of the relative change in the
value of a variable, and is typically used for precipitation

Table 1. GCMs, Emission Scenarios, and Time Slices Applied in
This Studya

GCM 20C3M Emission Scenarios Time Slices

ECHAM 1981– 2000 A2, A1B, B1 2046–2065, 2081–2100
GISS 1981– 2000 A2, A1B, B1 2046–2065, 2081–2100
NCAR 1980– 1999 A2, A1B 2045–2064, 2080–2099

aTime slice refers to the interval of time used in the calculation of
change factors.
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[Akhtar et al., 2008; Hay et al., 2000; Kilsby et al., 2007].
If CFs are to be applied multiplicatively for temperature
values, the Kelvin scale should be used. In some studies
change factors are applied incrementally by arbitrary
amounts (e.g. þ1, þ2, þ3, þ4�C change in temperature).
The scenarios obtained are also referred to as synthetic sce-
narios [Carter et al., 1994], as they do not necessarily pres-
ent a realistic set of changes that are physically plausible.
They are usually adapted for exploring system sensitivity
prior to the application of more credible, model-based sce-
narios [Rosenzweig and Iglesias, 1994; Smith and Hulme,
1998].

[11] There are no clear guidelines available in the litera-
ture as to whether CFs are to be estimated additively or mul-
tiplicatively for meteorological variables such as wind speed
and solar radiation. Nevertheless, these values are some-
times required for impact assessment studies in hydrology.
Hence, there is a need to develop a methodology for apply-
ing CFs across a wide variety of meteorological variables.

[12] The third type of CFM is categorized based on the
number of change factors (single and multiple CFs). Single
CFs are calculated identically for all values of the variable,
regardless of magnitude [Akhtar et al., 2008; Hay et al.,
2000]. Multiple CFs are those that are calculated separately
for different magnitudes of the variable [Andréasson et al.,
2004; Kilsby et al., 2007; Olsson et al., 2009]. For example,
one can calculate separate CFs for percentiles 0–10, 10–20,
and so on for the meteorological parameter of interest. There
are no clear guidelines available that suggest the appropriate
number of CFs.

[13] For any particular CFM analysis, one must choose
CF values that are appropriate for the methodology being
applied. As an example of a particular analysis, one might
consider a temporal scale of daily; a temporal domain that
includes all January values for the time period 1981 – 2000
compared to 2046 –2065; and an additive, single CF. It is
likely that one might want to do the analysis for each
month of the year. In that case, each monthly analysis
would be performed independently. The CFs may be
obtained from a single GCM grid point or an average of
grid points. In the remainder of this section, calculations of
CFs are discussed.

3.1. Single CF
[14] The procedure to calculate a single CF, additively or

multiplicatively, is explained in this section and illustrated in
Figure 1. The first step is to estimate the mean values of
GCM simulated baseline and future climates (equations (1)
and (2)).

GCMb ¼
XNb

i¼1

GCMbi=Nb ð1Þ

GCMf ¼
XNf

i¼1

GCMf i=Nf ð2Þ

[15] In equations (1) and (2) GCMb and GCMf represent
the values from a GCM baseline (20C3M) and GCM future
climate scenario, respectively, for a temporal domain.
GCMb and GCMf are the mean values from a GCM

Figure 1. Methodology to estimate future scenarios using ‘‘Single additive’’ and ‘‘Single multiplica-
tive’’ change factors.
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baseline and GCM future scenario for the designated tem-
poral domain. Nb and Nf are the number of values in the
temporal domain of the GCM baseline and GCM future
scenario.

[16] For example, when using a temporal domain corre-
sponding to January 1981–2000, at a daily temporal scale,
Nb would be equal to the number of days in all the January
months (Nb ¼ 20 � 31) during this time period while for a
monthly temporal scale, Nb would be equal to the number
of January months (Nb ¼ 20). Likewise, for a future tempo-
ral domain corresponding to January 2046–2065, at a daily
temporal scale, Nf would be equal to the number of days in
all the January months (Nf ¼ 20 � 31), and at a monthly
temporal scale, Nf would be equal to the number of January
months (Nf ¼ 20).

[17] Step 2 is to calculate additive and multiplicative
change factors (CFadd, CFmul) (equations (3) and (4)).

CFadd ¼ GCMf � GCMb ð3Þ

CFmul ¼ GCMf =GCMb ð4Þ

[18] Step 3 is to obtain local scaled future values
(LSfmul,i and LSfadd,i) by applying CFadd and CFmul (equa-
tions (5) and (6)).

LSf add;i ¼ LObi þ CFadd ð5Þ

LSf mul;i ¼ LObi � CFmul ð6Þ

where LObi are observed values of the meteorological vari-
able (at the ith time step) at an individual meteorological sta-
tion, or are the averaged meteorological time series for a
watershed for the designated temporal domain. LSfadd,i and
LSfmul,i are values of future scenarios of the variable obtained
using additive and multiplicative formulation of CFM.

3.2. Multiple (Magnitude Dependent) CFs
[19] The procedure to calculate multiple CFs (additively

or multiplicatively) is explained in this section. The first
step is to estimate the empirical cumulative distribution
functions (CDFs) for GCMf and GCMb.

[20] Step 2 is to fix the number of bins (n) to be estimated
and the resolution of the percentiles (r) in each bin. The bin
size may be uniform or nonuniform. In this study the results
using six different sets of values for n and r are compared:
(1) single CF (n ¼ 1, r ¼ 100, explained in section 3.1); (2)
3 CFs (n ¼ 3, r is variable; 0–25 percentile, 25–75 percen-
tile, and 75–100 percentile); (3) 10 CFs (n ¼ 10, r ¼ 10);
(4) 25 CFs (n ¼ 25, r ¼ 4); (5) 50 CFs (n ¼ 50, r ¼ 2); and
(6) 100 CFs (n ¼ 100, r ¼ 1).

[21] Calculations within each bin are analogous to the
calculations required for a single CF (section 3.1), so that
equations (7)– (12) are analogous to equations (1)– (6),
except that the former have subscripts ‘‘n’’ denoting that the
calculations are specific for each bin. In step 3, for each bin,
mean values GCMf and GCMb are estimated using equa-
tions (7) and (8).

GCMbn ¼
XNb

i¼1

GCMbi;n=Nb ð7Þ

GCMfn ¼
XNf

i¼1

GCMf i;n=Nf ð8Þ

[22] In step 4, calculate the CFadd,n and CFmul,n for each
bin (equations (9) and (10))

CFadd;n ¼ GCMfn � GCMbn ð9Þ

CFmul;n ¼ GCMfn =GCMbn ð10Þ

[23] The fifth step is to estimate the CDF for LOb, and
divide LOb into the same bin and percentile classes as was
used with the GCM data.

[24] The final step is to obtain future scaled climate val-
ues (LSfmul,n,j and LSfadd,n,j) by applying the change factors
to the corresponding observed values (j) in each bin in
the baseline period LOb using the general equations (11)
and (12).

LSf add;n;j ¼ LObn;j þ CFadd;n ð11Þ

LSf mul;n;j ¼ LObn;j � CFmul;n ð12Þ

4. Results and Discussion
[25] In this section the behaviors of different types of

CFMs are demonstrated. In the first two sections, theoreti-
cal examples of additive and multiplicative methodologies
for single (section 4.1) and multiple (section 4.2) CFs are
presented. Then a case study using multiple CFs from real
observations (section 4.3) is shown, followed by a compari-
son of single and multiple CF results (section 4.4). Results
of additive and multiplicative categories of CFMs are dis-
cussed in sections 4.1 to 4.4.

4.1. Theoretical Example of a Single CF
[26] It is shown, using a theoretical example, how the

estimated local scaled future value (LSb) depends on (1)
the choice of additive or multiplicative CFM; (2) the mag-
nitude of the bias in the baseline period between local
observed climate (LOb) and GCM baseline climate
(GCMb) ; and (3) the magnitude of the change factor. In the
example, the local observed value (LOb) of exactly 1 is
assumed. We then estimate the local scaled future climate
(LSfadd and LSfmul) using both additive and multiplicative
CFs based on a range of values for GCM baseline climate
(GCMb ; x axis in Figure 2) and GCM future climate
(GCMf ; y axis in Figure 2). The differences (D) between
the LSfadd and LSfmul obtained additively and multiplica-
tively, calculated using equation (13), are shown as con-
tours in Figure 2.

D ¼ LSfmul � LSfadd ð13Þ

[27] This example can apply to a single CF, or to a par-
ticular bin in a multiple CF. The results shown in Figure 2
demonstrate that when the frequency distribution of GCM
baseline simulation is close to the frequency distribution of
observed baseline climate (i.e., small bias) or when the
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mean GCM baseline is close to the mean GCM future sim-
ulations (i.e., small change factor), there is little difference
between the additive and multiplicative methods. These are
areas with a value near 0 (represented in Figure 2 as bold
red lines). However, as the bias in the baseline GCM simu-
lation increases, or as the absolute value of the change fac-
tor gets larger, the additive and multiplicative methods
produce more and more divergent results.

4.2. Theoretical Example of a Multiple CFM
[28] A graphical approach is developed to evaluate multi-

ple CFMs using ‘‘difference plots’’ and ‘‘ratio plots,’’ which
are defined here. In this example, CFs are calculated for 100
bins of equal width (i.e., all widths span exactly 1 percentile)
using both additive and multiplicative methods (Figure 3).
CF values are on the abscissa axis, and percentile values are
shown on the ordinate axis. This example shows the simple
case where, for all bins, the difference between the current
and future climates modeled by the GCM is a constant value.
In other words, the additive CF is independent of the magni-
tude of the values. In such a case, the difference plot is a
straight vertical line, and the ratio plot is a curved line.

[29] Figures 3 and 4 show more generally how the differ-
ence and ratio plots look for the simple cases where, across
bins, there is a constant difference or constant ratio
between current and future climates. These plots can be
considered theoretical templates against which to compare
similar plots derived from GCM output, and which may be
useful in determining whether an additive or multiplicative

method is most appropriate. However, it is demonstrated in
section 4.3, that results from GCM experiments are
unlikely to be as simple or as obvious as the theoretical
example shown in Figures 3 and 4.

4.3. Real Example of a Multiple CFM
[30] A real example from the Cannonsville watershed (see

section 2) is shown in Figure 5. Difference plots and ratio
plots were derived using daily values from three GCMs
(NCAR, ECHAM, and GISS), three emission scenarios (A1B,
A2, and B1), and two time slices (2046–2065 and 2081–
2100, both of which are compared to the 1981–2000 baseline
period). Nine meteorological variables (precipitation; maxi-
mum, minimum, and average temperature; meridional wind
component; zonal wind component; surface pressure; wind
speed; shortwave solar radiation; and longwave solar radia-
tion) were examined. From all of these combinations of mete-
orological variables, time periods, and emission scenarios, a
variety of patterns in the ratio and difference plots were
observed. Figure 5 shows a selection of difference and ratio
plots that are considered illustrative of more general results.

[31] The difference and ratio plots for our study area can
be broadly classified into five groups. The five classifications
include those in which: (1) the difference plot is close to a
straight vertical line, indicating that a single additive CF is
appropriate (Figure 5a); (2) the ratio plot is close to a
straight vertical line, indicating that a single multiplicative
CF is appropriate (Figure 5b); (3) the difference plot is close
to multiple straight vertical lines for different percentile

Figure 2. The contour plot of the differences in future scenario values obtained from additive and mul-
tiplicative change factors is calculated using equation (13), from the theoretical values of GCM baseline
mean (GCMb, x axis) and GCM future mean (GCMf , y axis). A local observed baseline (LOb) value of
exactly 1 is assumed. The 0 contours following the diagonal line represent small bias while those follow-
ing the vertical line represent small change factors as explained in section 4.1. Contours are not equally
spaced. Sectors 1 and 2 are referred to in section 4.4.
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ranges (say 1st through 50th percentiles, 50th through 100th
percentiles), indicating that multiple additive CFs are appro-
priate (Figure 5c); (4) the ratio plot is close to multiple
straight vertical lines for different percentile ranges (say 1st
through 50th percentiles, 50th through 100th percentiles),
indicating that multiple multiplicative CFs are appropriate
(Figure 5d); and (5) both the difference and ratio plots are
curved, indicating a larger number of multiple multiplicative
or additive CFs are probably in order (Figure 5e).

[32] It is found that the shapes of the difference and ratio
plots vary depending on meteorological variables, GCMs,

and special report on emission scenarios (SRES) scenarios.
Hence, we infer that fixing a single type of CF formulation
for use in this region may not be appropriate. We assume
that this type of variability in CFs is probably the norm, not
the exception. Thus, to apply this methodological analysis
for multiple variables/GCMs in a particular region may in
many cases be quite cumbersome. This raises the question
of how to proceed in such a case, and whether there is a
method that can be applied more generally that would cir-
cumvent the need for such a cumbersome analysis. This is
addressed in section 4.4.

4.4. Comparison of Single and Multiple CF Results
[33] In this section we determine whether one particular

method is generally as good as, or better than, the others in
all or most circumstances. Using six of the nine meteoro-
logical variables (the only ones for which observations
were available at this location), both additive and multipli-
cative CFs were used to estimated future climates either as
a single CF or from multiple CFs using 3, 10, 25, 50, and
100 bins. This results in six LSf time series derived using
the additive method, as well as six LSf time series derived
using the multiplicative method, for each GCM, emission
scenario, and future time period.

[34] For each future scenario, the root mean sum of
squares of the differences (RMSD, defined in equation
(14)) between the additive and multiplicative LSf series are
calculated for all bin sizes.

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ðLSfmul � LSfaddÞ2

q
ð14Þ

Figure 3. Explains the procedure used to obtain difference plot and ratio plots for use in the graphical
approach to study the distribution of the CFs in different magnitudes of the variable. The calculations
associated with 4 specific percentiles are illustrated using dashed lines. The difference plot and ratio plot
shown in the figure are theoretical templates to guide the choice of change factor methodology (CFM) in
cases where an additive CF is appropriate in which case the difference plot will be a vertical line and the
ratio plot will be a curved line.

Figure 4. Theoretical templates of difference and ratio
plots to guide the choice of change factor methodology
(CFM). In cases where a multiplicative CF is appropriate,
(a) the difference plot will be a curved line and (b) the ratio
plot will be a vertical line.
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[35] Figure 6 shows how RMSD depends on bin size for
one sample scenario (SRES A2). As the number of bins is
increased, RMSD always stabilizes to a constant value. Sta-
bilization of values occurs as the number of bins exceeds
approximately 25. Furthermore, in most cases RMSD is also
minimized with > ¼ 25 bins. In some cases RMSD increases
with increasing bin size (in the example shown in Figure 6,
shortwave radiation for the GISS model). This is because the
projected change is large, falling within either the upper left
quadrant (sector 1) or lower right quadrant (sector 2) of Fig-
ure 2. The multiplicative CFs ðGCMf

�
GCMbÞ in sector 1

are very high, when the value of GCMb is very small when
compared to GCMf . Such large CFs result in very unrealistic
scenarios. Hence additive CFs was recommended. Further,
from the difference and ratio plots obtained derived using
daily values from three GCMs (section 4.3), it was inferred
that fixing a single CF formulation for use in this region may
not be appropriate. It may be noted the RMSD values for
temperatures and wind speed are very small of the order of
10�4 to 10�3 K and 10�2 m/sec respectively.

[36] Some meteorological variables have upper and/or
lower limits of the value they can have. For example,

Figure 5. Illustrative examples of difference and ratio plots from a study of the Cannonsville basin. (a)
Single additive CFM, where the difference plot is close to a straight vertical line and ratio plot is curved.
(b) Single multiplicative CFM, where the ratio plot that is close to a straight vertical line and difference
plots is curved. (c) Multiple additive CFM, where the difference plot is close to multiple straight vertical
lines within different percentile bands (i.e., 1st through 40th percentiles, 40th through 100th percentiles)
and the ratio plot is curved. (d) Multiple multiplicative CFM, where the ratio plot is close to multiple
straight vertical lines for different percentile bands (i.e., First through 25th percentiles, 25th through
100th percentiles) and the difference plot is curved. (e) Nondefinitive CFM, where the difference plots
and ratio plots are both curved. Pptn, PrSL, Vwnd, LWRa in the panel abscissa titles refer to precipita-
tion, sea level pressure, meridional wind and longwave radiation respectively.
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precipitation and wind speed have a lower limit of 0 (i.e.,
positive values only). Surface temperatures in absolute
scale have a theoretical lower limit (�273 K), but not real-
istic, so it can be assumed as not having upper and lower
limits because such lower temperatures are not plausible.
Solar radiation at the earth’s surface has a lower limit of 0,
and an upper limit equal to the top-of-the-atmosphere radi-
ation multiplied by the maximum transmissivity of the
atmosphere (these values vary with latitude and time of
year). For variables such as precipitation, wind speed, and
solar radiation, the GCMf or GCMb can have values equal
or close to 0, causing multiplicative CFs to be either unde-
fined, or unrealistically high or low.

[37] Thus, there are two main results demonstrated in this
section. The first result is that the use of multiple bins usually
eliminates the difference between additive and multiplicative

CFs. This is because with multiple CFs, the magnitude of
the CF in any bin (i.e., for any magnitude of the variable) is
independent of the magnitude of CFs in other bins. Thus,
multiple CFs can mimic single CFs (when the magnitudes
of the CFs for different variable values are dependent on
each other) as well as more complicated cases (when the
magnitudes of the CFs for different variable values are
completely independent). Single CFs can essentially be
considered a special case of multiple CFs. Furthermore,
when using a sufficient number of bins (25 or more in our
analysis) the differences between additive and multiplica-
tive CFs are eliminated.

[38] The second main result is that additive CFs are pref-
erable to multiplicative CFs. This is because of the problem
that multiplicative CFs encounter with undefined, or unre-
alistically small or large, CFs associated with variable

Figure 6. Effect of the number of bins (n) on the difference between additive and multiplicative
change factors. On each panel the abscissa shows the number of bins. The ordinate shows the root sum
squares of differences (RMSD, equation (14)) between an additive and multiplicative CF. Results taken
from three GCMs; A2 emission scenario; base temporal domain is 1981 – 2000 (January only); future
temporal domain is 2046 –2065 (January only); six meteorological variables ; and daily temporal resolu-
tion. In all cases, results stabilize with �25 bins. In all cases except GISS shortwave radiation, RMSD is
minimized with �25 bins.
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values near 0. Additive CFs avoid such problems. While
using additive CFs, the values of future meteorological var-
iables which have a 0 lower limit should be checked to
make sure that they do not get negative values (e.g. precipi-
tation, wind speed, solar radiation).

5. Summary and Conclusions
[39] In this study we compare and contrast different cate-

gories of Change Factor Methodology (CFM) when using
GCM results to project future climate for subgrid-scale
impact analyzes. For some variables, the choice of additive
versus multiplicative seems, as inferred by their general
usage in the published literature, to be intuitive to research-
ers (e.g. additive for temperature, multiplicative for precipi-
tation) although the physical reasoning behind these
choices has not been adequately explained and is not
obvious. For other variables (e.g. wind speed) there seems
to be little or no precedent in the literature.

[40] In cases when the frequency distribution of GCM
baseline climate is close to the frequency distribution of
observed climate (i.e., the GCM climate simulation has a
small bias), or when the frequency distribution of GCM
future climate is close to the frequency distribution of GCM
baseline climate (i.e., the GCM projects only a small climate
change), additive and multiplicative single CFMs provide
comparable results. However, the greater the difference
between modeled and observed baseline climates, or the
greater the projected climate change, the greater will be the
difference in the local climate change projections made by
these two methods. In general, multiple CFMs provide local

climate change projections that are more consistent between
the additive and multiplicative methods.

[41] This study suggests two options to guide the choice
of change factor methodology: (1) In studies where a
detailed methodological analysis is possible, the difference
and ratio plots introduced in this study may be useful in
determining whether an additive or multiplicative method is
most appropriate. Our suggested steps for performing such
an analysis are discussed in the results section and outlined
in Figure 7. (2) In most circumstances, however, it is likely
to be too cumbersome to perform such a detailed study for
each of the different locations, GCMs, scenarios, and varia-
bles needed in a climate change impact analysis. Also, in
many cases the difference and ratio plots may not provide
conclusive evidence as to which type of CFM to employ. In
all circumstances in which a detailed methodological analy-
sis cannot be performed, or the choice of CFM is not
obvious, we recommend that multiple additive CFs with
�25 bins be used. This will minimize the impact of the choice
of whether to use the additive or multiplicative method, and
remove one source of uncertainty from the analysis.

[42] Acknowledgments. We thank the Climate Impacts Group of the
Goddard Institute of Space Studies who helped the NYCDEP obtain and
analyze GCM model output.
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Stehlik, J., and A. Bárdossy (2002), Multivariate stochastic downscaling model
for generating daily precipitation series based on atmospheric circulation, J.
Hydrol., 256(1-2), 120–141 doi:10.1016/S0022-1694(01)00529-7.

Tripathi, S, V. V. Srinivas, and R. S. Nanjundiah (2006), Downscaling of
precipitation for climate change scenarios: A support vector machine
approach., J. Hydrol., 330(3-4), 621– 640.

Wang, Y., et al. (2004), Regional climate modeling: Progress, challenges,
and prospects, J. Meteorol. Soc. Jpn., 82(6), 1599– 1628.

Wetterhall, F., S. Halldin, and C.-Y. Xu (2005), Statistical precipitation
downscaling in central Sweden with the analogue method, J. Hydrol.,
306(1– 4), 136– 174, doi:10.1016/j.jhydrol.2004.09.008.

Wilby, R., et al. (2000), Hydrological responses to dynamically and statisti-
cally downscaled climate model output, Geophys. Res. Lett., 27(8),
1199– 1202, doi:10.1029/1999GL006078.

Wilks, D. S. (1998), Multi-site generalization of a daily stochastic precipi-
tation model, J. Hydrol., 210(1-4), 178– 191, doi:10.1016/S0022-
1694(98)00186-3.

A. Anandhi, A. Frei, and A. H. Matonse, CUNY Institute for Sustainable
Cities, City University of New York, New York City, NY 10065, USA.
(aswamy@hunter.cuny.edu)

D. Lounsbury, D. C. Pierson, E. M. Schneiderman, and M. S. Zion,
Water Quality Modeling Group, New York City Department of Environ-
mental Protection, 71 Smith Ave., Kingston, NY 12401, USA.

W03501 ANANDHI ET AL.: EXAMINATION OF CHANGE FACTOR METHODOLOGIES W03501

10 of 10



HYDROLOGICAL PROCESSES
Hydrol. Process. 25, 3278–3288 (2011)
Published online 12 May 2011 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/hyp.8121

Effects of changes in snow pattern and the timing of runoff
on NYC water supply system

Adão H. Matonse,1* Donald C. Pierson,2 Allan Frei,1,3 Mark S. Zion,2 Elliot M. Schneiderman,2

Aavudai Anandhi,1 Rajith Mukundan1 and Soni M. Pradhanang1

1 City University of New York, CUNY Institute for Sustainable Cities, New York, NY
2 New York City Environmental Protection, Bureau of Water Supply, Kingston, NY

3 Hunter College, City University of New York, Department of Geography, New York, NY

Abstract:

This study focuses on the effect of projected changes in rainfall, snow accumulation and snowmelt, and consequent changes in
the timing of runoff on NYC water supply system storage and operation as simulated by the NYC reservoir system Operational
Analysis and Simulation of Integrated Systems (OASIS) model. The Generalized Watershed Loading Functions—Variable
Source Area (GWLF-VSA)—watershed model is used with future climate scenarios derived from different General Circulation
Models (GCMs) to simulate future inflows to reservoirs that are part of the New York City Water Supply System (NYCWSS).
Future scenarios that use current system operation rules and demands, but changed reservoir inflows, suggest that changes
in precipitation and snowmelt will affect regional water availability on a seasonal basis. The combined effect of projected
increases in winter air temperatures, increased winter rain, and earlier snowmelt may result in more runoff during winter. This
will cause reservoir storage levels, water releases and spills to increase during the winter and earlier reservoir refill in the
spring. An overall increase in precipitation will result in a reduction in number of days the system is under drought conditions,
despite increased evapotranspiration later in the year. Copyright  2011 John Wiley & Sons, Ltd.

KEY WORDS Climate change; snow and water supply operation; reservoir system OASIS model; reservoir system indicators;
watershed modelling
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INTRODUCTION

The New York City Water Supply System (NYCWSS)
comprises a total of 19 reservoirs and three controlled
lakes. Reservoirs were initially developed east of the
Hudson River (EOH) in and adjacent to the Croton River
Watershed. In total, 13 reservoirs were built in the EOH
portion of the supply, and today these contain approxi-
mately 10% of the water stored in the NYCWSS. In 1905,
the New York City Board of Water Supply was created
by the New York State legislature with the task of iden-
tifying and delivering new water sources for the growing
NYC metropolis (NYCDEP 2006). Reservoir construc-
tion in areas west of the Hudson River (WOH) began
with the development of the Catskill subsystem, which
was finalized with the completion of the Schoharie Reser-
voir in 1926. Additional reservoir capacity was added to
the system during the 1950s and 1960s with the addition
of four reservoirs that form the Upper Delaware subsys-
tem in the NYCWSS WOH region. Today, the total NYC
reservoir system which includes both the EOH and WOH
regions has the capacity to store up to 219 553Ð8 ha-m
(2195Ð5 ð 106 m3) of water (NYCDEP 2006). In a sys-
tem as diverse as the NYCWSS, the allocation and use of
water among the different reservoirs is based on a variety

* Correspondence to: Adão H. Matonse, CUNY Institute for Sustainable
Cities, City University of New York, New York, NY.
E-mail: amatonse@hunter.cuny.edu

of factors including the relative differences in water avail-
ability, water quality, system infrastructure, and demands.
The combined effects of these considerations have been
formalized into a rule set describing NYCWSS opera-
tion, and this rule set is the basis of the NYC OASIS
(Operational Analysis and Simulation of Integrated
Systems) (HydroLogics, Inc., 2007) system operations
model.

Previous studies have indicated that for mountain-
ous regions like the Catskill Mountains in New York
where snow accounts for an important component of
the annual precipitation, future changes in temperature
and precipitation may lead to changes in winter rainfall,
snowpack water equivalent, water loss due to evapo-
transpiration, and a shift in the timing of runoff (Blake
et al., 2000; Frei et al., 2002; Burns et al., 2007;, Hay-
hoe et al., 2007; Brekke et al., 2009). Basing on a study
involving Cannonsville and Ashokan watersheds that
are part of the NYCWSS Frei et al. (2002) estimated
that snowfall accounts for 18–21% of total precipita-
tion. Also, when soils are saturated, precipitation and
snowmelt are more likely to runoff and becoming less
available for evaporation. Given the fact that most of
snowmelt occurs during spring, when soils are saturated,
the contribution of snow to total runoff is estimated being
between 24 and 30% in this region. The effect of snow
on runoff is 1Ð3–1Ð5 times greater than its contribu-
tion to total annual precipitation (Frei et al., 2002). An

Copyright  2011 John Wiley & Sons, Ltd.
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earlier peak in snowmelt as suggested by Burns et al.
(2007) may result in reservoirs filling earlier and more
water losses. However, how these changes will impact
the NYC water supply will depend on overall water
availability, demands, operational rules and system flex-
ibility to adapt to these changes. As part of New York
City Department of Environment Protection (NYCDEP)
Climate Change Integrated Modeling Project for Water
Quantity and Quality (CCIMP) project (NYCDEP 2008)
baseline and future climate scenarios have been devel-
oped for the WOH region contributing water to the
NYCWSS. The projected climate data are used to drive
the Generalized Watershed Loading Functions—Variable
Source Area (GWLF-VSA)—watershed model to sim-
ulate snowpack, snowmelt and inflows to reservoirs
(Haith and Shoemaker, 1987; Schneiderman et al., 2002;
Schneiderman et al., 2007). As snowpack represents extra
water storage and the timing of snowmelt impacts win-
ter and spring streamflow patterns in this region (Frei
et al., 2002; Burns et al., 2007), our objective is to
investigate how changes in snowmelt and the timing of
runoff due to climate change can affect NYCWSS water
storage and operation. GWLF-VSA-simulated reservoir
inflow is input into the NYCWSS OASIS reservoir sys-
tem model to simulate water storage and NYCWSS
operation. NYC OASIS generates a selected number
of system indicators that are used to represent the
instantaneous state of system operations and to assess
system performance. These indicators include reservoir
storage volume, release and spill, drought conditions
occurrence, and probability of reservoirs to refill by
1 June.

Reservoir operation rules have evolved over time, and
the current rules in NYC OASIS model are based on
knowledge gained during years of historical operation
of the system to meet demands, maintain high water
quality, and provide regulatory releases while balanc-
ing diversion from the Delaware, Catskill, and Croton
subsystems. For this study, rules and water demands
used with the future climate simulations were consid-
ered stationary and equal to present conditions. There
are advantages and disadvantages in these assumptions:
(i) maintaining current rules helps evaluate the system
effectiveness in responding only to changes in climate
and hydrology in the WOH watersheds; (ii) simulations
with the NYC OASIS model are sensitive to existing
demand levels. A preliminary analysis of NYC water
demands indicates a decline during recent times, start-
ing in the late 1980s. A continuation of this trend
would most likely be in favour of the current system
to fulfilling its objectives, however, future changes in
population and other socio-economic development can
lead to increases in future demand levels and conse-
quent need of new adjustments in system operations.
In addition, preliminary analysis of historical data indi-
cates a positive correlation between water demands and
high temperature suggesting that climate change can
also cause a direct impact on future demands. The
incorporation of projections in future water demands is

an important component to be considered for a more
comprehensive study of the effects of climate change
on NYC water supply and will require a kind of
socio-economic analysis that is outside of the scope of
the present manuscript.

STUDY SITE

NYCWSS integrates 19 interconnected reservoirs and
two aqueducts to supply more than 1 billion gallons
of drinking water per day to about 9 million people
in NYC and nearby counties (NYCDEP 2006). It is
the largest surface water supply in the United States
with no mechanical filtration (Daily and Ellison 2002).
The system includes the NYC WOH and EOH regions
(Figure 1). As illustrated in Figure 1, the WOH portion
which is the focus of this study includes the Catskill
and Delaware system reservoir watersheds (further called
subsystems) and supplies more then 90 percent of NYC
water demands. The Delaware subsystem is required to
release water to the lower Delaware (LD) watersheds
(which serve New Jersey and Pennsylvania) as part of
implementing regulatory rules for the Delaware system.

The Catskill subsystem has a total of 53 185 ha-
m (approximately 531 ð 106 m3) storage capacity. This
includes the Ashokan (46 522 ha-m) and Schoharie
(6662 ha-m) reservoirs storages. The Delaware subsys-
tem has a total of 121 284 ha-m (1Ð212 ð 109 m3) stor-
age capacity. This capacity includes the available storage
at the Pepacton (53 071 ha-m), Cannonsville (36 226 ha-
m), Rondout (18 775 ha-m) and Neversink (13 211 ha-m)
reservoirs (NYCDEP 2006). The WOH watershed has an
approximate area of 4103 square kilometers. The regional
hydrology is influenced by snowpack water storage and
snowmelt processes that depend on temperature and pre-
cipitation patterns. One challenge for the reservoir system
operation is the management of peak flows, some of
which are associated with snowmelt and flooding events
particularly during March and April. According to the
2000 census, the population density is 29 and 499 persons
per square mile for WOH and EOH areas, respectively
(NYCDEP 2006).

WOH has a humid continental climate with cold
winters (typically �5 to 0 °C) and cool (typically 15
to 20 °C) summers. Being a mountainous region the
temperature is strongly impacted by elevation (Burns
et al., 2007) which rises to approximately 1200 m from
the Hudson River. Previous studies (such as Burns et al.,
2007) have found that a 0Ð6 degree Celsius increase
in mean annual temperature, and 136 mm increase in
yearly cumulative precipitation have occurred over the
past 50-year period for the Catskill Mountain region. This
manuscript examines how further changes in climate and
a shift in snow processes as simulated by the GCMs and
scenarios applied in this study will affect future water
availability in the region, and the status and operation of
the NYCWSS.
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Figure 1. NYC WOH reservoir watersheds and aqueducts schematic. The location view at the top right corner of this figure shows an overview of
the entire NYC water supply system including the EOH (Croton), WOH and LD parts of the system. There are release requirements from the WOH

to LD. However, LD does not contribute water to NYC water supply

METHODOLOGY

Simulated baseline and future air temperature and pre-
cipitation were derived from GCMs and a monthly delta
change methodology (as described by Anandhi et al.,
2011) and used as input to the GWLF-VSA watershed
model. In the past, the delta change methodology has
been applied in many climate change studies including
Gleick (1986), Hey et al. (2000), Kilsby et al. (2007),
Lettenmaier and Gan (1990), and Maurer and Duffy
(2005). GWLF-VSA (Schneiderman et al., 2007) is a
lumped parameter model based on the original GWLF
model (Haith and Schoemaker 1987) that simulates daily
streamflow discharge and monthly sediment and nutrient
loads at a watershed scale. The GWLF model accounts
for dissolved (originated from point sources, ground
water and rural runoff) and solid-phase (from rural and
urban runoff) nitrogen and phosphorus in streamflow.
Runoff is calculated using the USDA Soil Conservation
Service (SCS) runoff Curve Number (CN) methodol-
ogy. The CN is an empirical parameter for estimating
direct runoff or infiltration excess runoff. CN value can
range from 30 to 100 depending on the hydrologic soil
group, land cover type, land treatment, hydrologic con-
dition, and antecedent runoff condition (Rawls et al.,
1993). Streamflow results from contributions of runoff
and baseflow. Daily snowmelt is estimated based on tem-
perature degree-day, with a daily updating of a single
watershed-wide snowpack. The model accounts for an
unsaturated, shallow saturated, and deep saturated zones.

A daily mass balance for the unsaturated shallow (UtC1)
and saturated (StC1) zones are a function of shallow satu-
rated (St) and unsaturated zone (Ut) soil moistures at the
beginning of day t, the watershed runoff (Qt), evapotran-
spiration (Et), percolation into the shallow zone (PC t),
groundwater discharge to the stream (Gt) and seepage
flow to the deep saturated zone (Dt), as represented in
Equations (1) and (2).

UtC1 D Ut C Rt C Mt � Qt � Et � PCt �1�

StC1 D St C PCt � Gt � Dt �2�

Inputs to GWLF include daily precipitation and air
temperature data, runoff sources, nutrient data and a num-
ber of parameters describing transport processes. One
important modification was introduced in GWLF-VSA
version of the model (Schneiderman et al., 2007) by
accounting for surface runoff distribution across the land-
scape based on a saturation-excess interpretation of the
SCS Curve Number equation and a topographic index
of saturation probability. This modification is impor-
tant since saturation-excess is a dominant process in the
studied watersheds. GWLF-VSA development included
model calibration against measured streamflow data from
10 USGS gauge stations in the study region namely:
West Branch Delaware River at Walton, NY (01 423 000;
0Ð89); Schoharie Creek at Prattsville, NY (01 350 000;
0Ð8); Manor Kill at West Conesville Near Gilboa, NY
(01 350 080; 0Ð7); Neversink River near Claryville, NY
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(01 435 000; 0Ð82); East Branch Delaware River at Mar-
garetteville, NY (01 413 500; 0Ð81); Mill Brook near Dun-
raven, NY (01 414 500; 0Ð8); Temper Kill near Andes,
NY (01 414 500; 0Ð83); Esopus Creek at Coldbrook,
NY (01 362 500; 0Ð88); Esopus Creek at Allaben, NY
(01 362 200; 0Ð79) and Rondout Creek near Lowes Cor-
ner, NY (01 365 000; 0Ð79). The first number in the paren-
theses indicates the USGS gauge station identification
number while the second number represents the Nash-
Sutcliff efficiency coefficient (NS) value for the calibra-
tion period. Calibration was performed to fit measured
streamflows on a monthly time interval for the period
1991–2000. For this study, GWLF-VSA was used to
simulate future evapotranspiration, snowpack, snowmelt,
and streamflow discharge for all the reservoir water-
sheds in the WOH part of the NYCWSS system. For
the EOH portion of the system, historical inflows to
reservoirs were maintained throughout all simulations.
Historical daily inflows to EOH reservoirs were devel-
oped using measured monthly inflows to Croton system
available from 1927 through 1992, daily streamflow from
a nearby USGS station (Prattsville, 1902–2002), weights
based on drainage basin areas for individual EOH reser-
voirs, and a mass balance method. For this study EOH
inflows were not adjusted to account for future climate
change. This assumption was considered reasonable since
EOH contributes less than 10% to NYC water supply
requirements.

Simulated GWLF-VSA stream discharge data were
subsequently used as inputs to the NYC OASIS reservoir
system model to simulate system operations and evalu-
ate system performance. OASIS (HydroLogics, 2007) is
a generalized model that was developed to simulate the
operations of interconnected reservoir systems, and that
simulates daily changes in storage and the transfer of
water within the reservoir system by solving a linear pro-
gram. An operations control language built into OASIS
is used to set system operating rules, and a graphical
user interface is available to represent the current ele-
ments of the system and system interconnections. The
NYC OASIS model reflects the infrastructure and opera-
tion rules that are specific to the NYCWSS. The OASIS
model seeks to balance Catskill, Delaware, and Croton
subsystems, in a process that is based on storage lev-
els, the probability of the system to refill by 1 June
and season. Also, a number of rules specific to regula-
tory requirements for downstream releases, water quality
requirements and system operational needs are encoded
within the OASIS rule set.

Simulations for this study focused on changes in WOH
inflow as a result of the different climate change scenarios
while assuming EOH and LD inflows, system operation
rules and water demands are stationary and identical to
present day. System indicators are used in this study to
help evaluate the NYCWSS response to the simulated
changes in WOH inputs. These indicators are generated
for the Catskill and Delaware subsystems and include
volumes of reservoir storage, controlled releases, and
uncontrolled spills; the occurrence of drought conditions;

and the probability of reservoir to refill by 1 June.
Looking at changes in inflow, storage, release, and spill
provides information on how the current system (with
current rules and demands) can respond to changes in
WOH inflow that can be expected under future climate
conditions and helps to identify sensitive parts of the
system that will require further investigation and analysis.

Drought occurrence is based on the volume of water
or available storage in the water supply system and
different thresholds of storage are used to define three
drought levels: watch, warning, and emergency. Drought
occurrence can be used as a measure of the NYC system
performance, as it indicates the number of days per year
a particular subsystem is likely to be under drought
conditions. The call for a particular drought level is based
on a comparison between the total present day storage of
the subsystem with average yearly patterns of storage
for each individual subsystem and predefined thresholds
indicating drought conditions. The combination of the
drought conditions in Delaware and Catskill subsystems
determine the drought state for the entire NYCWSS.
Drought status can affect the operation of the water
supply and lead to voluntary and mandatory water
conservation policies.

Given the importance of extended periods of low
streamflow in determining downstream minimum releases
and drought conditions (Matonse and Kroll, 2009; Vogel
and Fennessey, 1995) we examined low-flow indices. For
this study we selected one of the most commonly used
low-flow indices in the United States, the 7-day, 10-year
(7Q10 or Q7,10) statistic which is based on 7-day annual
minimum flow series (Kroll and Vogel, 2002; Matonse,
2009). The 7Q10 is a statistical estimator of the lowest
7-day streamflow that on average will be exceeded 9 out
of 10 years (Stedinger and Thomas, 1985). We applied
a frequency analysis to baseline historical and future
simulated average daily annual maximum streamflow
values based on a log-Pearson Type III distribution
assumption (Stedinger et al., 1993). The log-Pearson
Type III distribution was chosen because it has shown
to describe annual minimum low flows in the United
States relatively well (Vogel and Wilson, 1996) and it
has been applied by the United States Geological Survey
(USGS) to describe low flow time series (Reilly and
Kroll, 2003). Here, we compare average 7Q10 from
individual Catskill and Delaware basins. The low-flow
statistics were developed using 1971–2000 baseline, and
2036–2065 and 2071–2100 simulated future streamflow
series for each individual basin.

The probability of refill (PR) by 1 June is an indicator
of the state of the NYC system at a given period of
the year. This indicator is a function of: (i) the current
day’s storage deficit; (ii) expected future water diversions
and releases (determined using historical data average
values from 1987 to 2004); and (iii) system-wide inflow
forecasts between today and 1 June (also determined
using historical data). This indicator can assume values
from 0 to 1, with 1 being the best or the most desired
state.
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Table I. General Circulation Models, emission scenarios and time slices applied in this study. The time slices reflect the extent of
data available for this study. 20C3M represents baseline simulations or a series of experimental runs where greenhouse gases are
considered to change as observed through the 20th century (IPCC 2007). Period 2046–2065 is further referred as ‘future 4665’, and

periods 2080–2099 and 2081–2100 are referred as ‘Future 8100’

GCM 20C3M Emission Scenario Time Slices

ECHAM 1981–2000 A2, A1B, B1 2046–2065, 2081–2100
GISS 1981–2000 A2, A1B, B1 2046–2065, 2081–2100
NCAR 1980–1999 A2, A1B 2046–2065, 2080–2099

INPUT DATA DESCRIPTION

Table I summarizes the climate scenarios and time peri-
ods used in this study. The model acronyms ECHAM
stands for the European Centre Hamburg Model, GISS
for the Goddard Institute for Space Studies, and NCAR
for the National Centre for Atmospheric Research. The
GCM data were provided by Columbia University/GISS
as part of a contract with the NYC Environmental Protec-
tion (Horton and Rosenzweig, 2010; Major and O’Grady,
2010). Future climate scenarios were derived using a
delta change methodology (Anandhi et al., 2011), which
calculated monthly change factors based on comparisons
between GCM baseline and future scenarios. Additive
factors for air temperature and multiplicative factors for
precipitation were applied to the historical time series
of daily data associated with each reservoir watershed,
in order to produce reservoir-specific future climate sce-
narios. Historical air temperature and precipitation for
1927–2004 were available for the study site. From this
dataset, the period 1981–2000 was used as baseline to
derive future scenarios simulation. ‘Future 4665’ and
‘Future 8100’ are used in this manuscript to refer to
the future simulated 2046–2065, and 2081–2100 (and
2080–2099 for NCAR GCM) periods, respectively. For
the NYC WOH reservoirs, the historical temperature and
precipitation time series were developed combining data
from NWS meteorological stations located in or adjacent
to the WOH watershed area and archived at the Northeast
Region Climate Center (NRCC) at Cornell University,
NY. Data from these stations were combined by apply-
ing inverse distance weighting and Thiessen polygons
methods. Also, correction factors were used together with
modelled daily air temperature to account for elevation
variation and a regression methodology was applied to fill
missing measurements of daily precipitation data. Inflows
to the reservoirs constitute major inputs to NYC OASIS
model. Future scenarios of air temperature and precip-
itation were used in GWLF-VSA to derive basin-wide
inflows for each of the different climate scenarios, and
present day (baseline conditions).

Precipitation, air temperature and snowpack

For figures 2 through 6 the Box-plots represent the
25th (Q1) and 75th (Q3) quartiles (or the interquartile
range) from all 8 climate change scenarios. For the
future 4665 (white box plots) and future 8100 (gray box
plots) time periods; the whiskers representing the lowest
and highest data values within the lower (Q1 � 1Ð5 ð (Q3

� Q1)) and upper (Q3 C 1Ð5 ð (Q3 � Q1)) limits; the
dark horizontal lines in the box-plots represent the median
and the asterisks represent outliers. The box plots in
Figure 2(a) show the medians and the level of variability
of monthly precipitation changes as simulated by the
different GCM model scenarios. This variability reflects
the high uncertainly associated with GCM simulation
of precipitation. On average precipitation is simulated
to increase during most months except for May and
August. The average annual precipitation calculated using
data from all models is simulated to increase by 12Ð7
and 15Ð3% for future 4665 and future 8100 periods,
respectively. Winter (December, January, and February
(DJF)) precipitation is projected to increase in average
by 27% for both periods, while summer (June, July, and
August (JJA)) precipitation is projected to increase only
by 4Ð6 and 5Ð5% for future 4665 and future 8100 periods,
respectively.

Air temperature is projected to increase over the WOH
region under future GCM climate (Figure 2(a)). The dif-
ference in simulated air temperature by the different sce-
narios appears slightly higher for the future 8100 period
than the future 4665 period. On average (all models com-
bined), air temperature is projected to increase C2Ð2
(C3Ð4) annually, C2Ð7 (C3Ð7) during DJF, and C1Ð9
(C3Ð3) during JJA by future 4665 (and future 8100) peri-
ods. These values are consistent with seasonal trends in
historical temperature where average increases in win-
ter temperature are higher than during summer (Hayhoe
et al., 2007). Also, these values are within the ranges of
future changes projected from a different set of GCMs
by Hayhoe et al. (2007) for the US Northeast, except
for DJF, future 4665 period where our predicted average
value is slightly higher than their average estimated from
the B1, A2, and A1 emission scenarios.

Higher temperature during winter resulted in a large
reduction in snowpack snow water equivalent as simu-
lated by GWLF-VSA (Figure 2(c)). Snowfall and snow-
pack are projected to greatly decrease during the winter
months as increased temperature causes more of the pre-
cipitation to fall as rain and since the snowpack that does
develop tends to melt faster and earlier in the year. This
is consistent with the results shown in Figure 2(c) where
relative reductions in snowpack are lower during January
and highest during March and April. Between the two
simulated future periods the future 8100 period exhibits
higher decreases in snowpack than the future 4665 period
due to the higher temperature increase predicted for
the future 8100 period. Average changes in snowpack
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Figure 2. Monthly average daily precipitation (a), air temperature (b), and snowpack (c) for baseline and future scenarios. These data are areal
averages for all NYC WOH watersheds. The solid line represents the baseline scenario. Box-plots represent the interquartile range from all 8 climate
change scenarios for the future 4665 (white box plots) and future 8100 (gray box plots) time periods; the whiskers represent the lowest and highest

data values within the lower and upper limits. The dark horizontal lines in the box-plots represent the median and the asterisks represent outliers
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Figure 3. Average monthly inflow (in cubic meters per second) for the baseline (solid line) and simulated future 4665 (white box plots) and future 8100
(gray box plots) periods for the Catskill (a) and Delaware (b) subsystems. Box-plots represent the interquartile range from all eight climate change
scenarios by simulated time period, the whiskers represent the values within the upper and lower limits. The dark horizontal lines in the box-plots

represent the median and the asterisks represent outliers

between January and April from different scenarios range
from 45% to 80% decrease for the future 4665 period and
from 60% to 93% decrease for the future 8100 period.
The percentage change increases from January to April
suggesting a potential positive feedback process that may
occur as a result of a reduction in snow coverage area.
This pattern is further illustrated in Figure 7(a). Snowfall
follows a similar pattern but with slightly lower mag-
nitude of percent changes. The average snowfall percent
change from November to April varies from 0 to 43% for
the simulated future 4665 and from 26 to 65% for the

simulated future 8100. For both simulated future peri-
ods snowfall reduction is lowest during January and it
increases as we move backward toward November or
forward toward April.

Simulated future inflow to WOH reservoirs

Most GCMs project increased winter and reduced early
spring reservoir inflow due to earlier future snow melt
(Figure 3). These results are consistent with previous cli-
mate change studies in the region (Blake et al., 2000;
Neff et al., 2000; Frei et al., 2002; Burns et al., 2007;
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Hayhoe et al., 2007; Brekke et al., 2009) that project
an increase in late winter and spring runoff and earlier
spring snowmelt. There are particularly strong indications
that levels of winter streamflow will increase since future
predictions all fall well above simulations of contempo-
rary conditions from December to February. This is true
for both the Catskill and Delaware subsystems. The dis-
agreement between streamflows from the different GCM
simulations is high for April, October, and November
in particular when simulating the time period 50 years
forward. These monthly patterns reflect a large disagree-
ment (and uncertainty) among the different GCMs used
for this study in simulating precipitation (Figure 2(b)).
Also, most of the simulated April, October, and Novem-
ber precipitation becomes quickly available for runoff due
either to high relative reductions in the April snowpack
(80–90% reduction for April) or a lack of snow (close to
zero cm during October and November). Annual inflow
is higher for most future scenarios but also with large
variations in magnitude between estimates from different
GCMs. On average, simulations associated with different
GCMs indicate an increased 7Q10 for the future 4665
and future 8100 periods in both Catskill and Delaware
watersheds (Table II). These values represent average
statistics over the NYC WOH region where values for the
later period appear to be slightly less than future 4665,
a result that can be related to the difference in average
evapotranspiration for the two periods and the impact
of extreme climate scenarios. If the shift in runoff tim-
ing associated with earlier snowmelt was the only effect
of climate change, one would expect less water being
available during low flows periods due to more water

being lost during winter. The simulated future 7Q10 sug-
gest that for low flows the combined effect of earlier
snowmelt and increased rainfall are more important
leading to potentially more water being available for the
reservoirs throughout the entire year.

RESULTS ON SYSTEM INDICATORS
AND DISCUSSION

Reservoir storage, release, and spill

Simulated future reservoir storage, release, and spill
show a pattern that is directly related to changes in
snowmelt amount and timing of runoff. As shown in
Figure 4, the combined effect of changes in snowmelt
and timing of winter—spring runoff for simulated future
scenarios leads to the reservoirs filling earlier in the
year. Future simulated results also suggest that there will
be increased future storage levels throughout the year.
However, the increase is more pronounced during winter
months than during summer.

The disagreement in the simulated average storage
among the different GCM simulation scenarios is greater
during late fall and earlier winter than during the summer,
and reflects the uncertainty associated with future precip-
itation simulation. The relationship between snowpack,
snowmelt, and reservoir releases is complex, given that
OASIS attempts to maintain a void in reservoir storage of
50% of the estimated watershed snow water equivalent.
Higher projected winter inflows cause the reservoirs that
usually reach their 90% storage capacity in April under
historical conditions to, on average, fill up one or two
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Figure 4. Storage patterns for Delaware (a) and Catskill (b) subsystems and Delaware release (c) for the baseline (solid line), future 4665 (white box
plots) and future 8100 (gray box plots) scenarios. Box plots show the median, interquantile range, upper and lower whiskers and outliers
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months earlier respectively for the 4664 and 8100 sce-
narios (Figure 5), and as a result, OASIS increases spills
and releases in order to maintain a void in the reser-
voirs. However, since the snowpack is also projected to
decrease in the future, the size of the required void also
decreases making it possible to maintain reservoirs at a
higher level. The overall effect is an increase in controlled
releases and spills during winter and early spring, but
also, more water stored at the beginning of the summer
months that despite subsequent lower changes in inflow
(except for July) offset any increases in evapotranspira-
tion. Figure 5 further illustrates how reservoirs fill earlier
and maintain higher levels throughout the year under
future simulated climate. It is striking that the Catskill
system reservoirs are projected to reach a 90% storage
level two months earlier 100 years into the future. Under
the assumption of no change in LD inflows the effect is
somewhat less pronounced in Delaware subsystem, since
as described above, this subsystem is also expected to
show an increased release of water to the lower Delaware
watershed.

Figure 6 shows box-plots for the spill volume from
November (previous year) to before March. The volume
of spill during this period increases in both subsystems
under the simulated future scenarios. This increase is
slightly more pronounced for the future period 100 years
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Figure 5. First Julian day when reservoirs in Catskill and Delaware
subsystems pass the level of 90%t of the total storage capacity. The
lines with dark dots represent the average baseline values. The box-plots
represent simulated data by time period. Box plots show the median,

interquantile range, upper and lower whiskers

forward. It is important to note that the increase in
volume of spill does not directly address any issue
related to flooding, which was not part of this study, but
rather is an indicator of water that would no longer be
available in the system for water supply. The increased
water loss from the water supply system is of course,
related to greater winter stream discharges (Figure 3)
that lead to the reservoirs filling earlier and spilling
more. This is ultimately a consequence of the projected
increase in snow melt and a decreased amount of water
stored in the snowpack. Also, higher winter inflows may
occasionally result in elevated turbidity, which under
extreme circumstances, may trigger a reduction in the use
of the Catskill subsystem resulting in greater simulated
spills.

In Figure 7, we show baseline and future estimates of
the storage of water in the reservoir system, snowpack,
and the combination of the two. From these data, it is
apparent that while future scenarios show the reservoir
system to fill earlier, this occurs at the expense of
snow storage. This, when combined with greater levels
of evaportranspiration later in the year, might have
potentially led to decreased reservoir storage levels
during summer. However, as shown in Figure 7(c), the
future storage levels are increased as a result of an
overall increased precipitation (Figure 2(b)). This result
also explains the slight improvements in simulated 7Q10
low flow statistics particularly for the future 3665 period
(Table II) and reduction in drought conditions occurrence
(next section). It is worth noting that the uncertainty in
future projections of precipitation is large, so that the loss
of snow storage still could be an issue of concern.

Drought conditions occurrence and probability of refill
by 1st June

On average, simulated future conditions may result
in a reduction in average number of days per year the
system is under Drought Watch, Warning and Emer-
gency (Figure 8) even thought there was high variability
between GCM predictions. Also, both the Catskill and
Delaware subsystems show an increased probability of
refill by 1 June for future scenarios compared to present
conditions. The probability of refill by 1 June is an indi-
cator used in NYCWSS to help with the decision making
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Figure 6. Yearly volume of spill from November to 1 March for the Catskill (a) and Delaware (b) subsystems for the baseline and future periods. Box
plots show the median (horizontal line) and interquantile range, whiskers show the extend of the upper and lower limits and the asterisks represent

outliers

Copyright  2011 John Wiley & Sons, Ltd. Hydrol. Process. 25, 3278–3288 (2011)



3286 A. H. MATONSE ET AL.
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Figure 7. Baseline and average over future scenarios of monthly snowpack (a), storage (b) and storage plus snowpack (c) for the WOH system

Table II. 7Q10 low-flow statistics for the baseline and future
simulated periods. The values represent an average over the NYC

WOH region

Catskill (m3/s) Delaware (m3/s)

Baseline historical 0Ð19 0Ð97
Future 3665 0Ð25 1Ð24
Future 7100 0Ð19 1Ð03

process of moving water from and between reservoirs
during the operation of the system. This reduction in
drought conditions occurrence and increase in probability
of refill by 1 June are consistent with an average increase

in 7Q10 low flow statistic and more water availability
during the traditional summer low flow (Figure 7(c)).

SUMMARY AND CONCLUSIONS

The state of the NYCWSS described by the water bal-
ance between streamflow inputs, storage, release, and
spill is complex and dependent on various rules and
constraints within the system. In NYC OASIS, the total
daily withdrawal of water from the system must account
for NYC demand, all other required releases, and any
changes in system storage. The NYC OASIS model was
used to model baseline historical and future climate sim-
ulated water supply system operation. Simulated changes
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Figure 8. Baseline and simulated future average number of days per year the Catskill (a) and Delaware (b) subsystems are in watch, warning and
emergency drought conditions
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in snowmelt and runoff derived from GWLF-VSA and
climate inputs from three GCMs in this study indicate
an increase in winter streamflow with a shift in the his-
torical April streamflow peak to earlier in the year and
a reduction in snowpack accumulation that is consistent
with an increase in temperature simulated by the GCMs
for the region. These results are consistent with histor-
ical trends (Hodgkins et al., 2003; Burns et al., 2007)
and previous climate change studies for the Northeast
US (e.g. Frei et al., 2002; Hayhoe et al., 2007) and Mid-
Atlantic (Neff et al., 2000) regions. However, our results
do not show an overall decrease in runoff as suggested
by Frei et al. (2002) that would occur if increased evap-
oration rates offset any surplus precipitation. Changes
in snowmelt and runoff timing appear to have an affect
of increasing reservoir storage levels, spill, and releases
during winter and early spring. Despite relatively small
changes in inflow and higher evapotranspiration rates dur-
ing most of the summer period, higher simulated storage
levels during winter and spring and more precipitation
throughout the year result in improving the probabil-
ity of refill by 1 June and decreasing the number of
days the system is likely to be under watch, warning,
and emergency drought conditions. These positive effects
come at the expense of a loss in snow water storage
that would otherwise persist longer into the year, drain
into the reservoirs at a slower rate, and would more
likely be stored in the reservoir than lost as spill dur-
ing winter. In terms of the total winter storage, the loss
of snow storage is relatively small in volume compared
to gain in runoff, and this loss of potential spring runoff
water is apparently compensated for by the reservoirs
filling earlier (and at higher levels than under baseline
conditions) and a projected overall increase in precipita-
tion.

These results are preliminary because of assumptions
concerning EOH and LD inflows, stationary rules, and
water demands, and are limited to the performance of the
applied GCM models and other modelling approaches.
Simulations with the NYC OASIS reservoir system
model are sensitive to inflows that are driven by pre-
cipitation and air temperature inputs from GCM models.
Climate change simulations are dependent on selected
GCM models and scenarios because different GCMs rep-
resent different physical processes and feedbacks differ-
ently resulting in high uncertainty particularly in simu-
lated future precipitation at a regional scale (Neff et al.,
2000; Annan et al., 2005; Gleckler et al., 2008; Hayhoe
et al., 2007). Despite these constraints, our results show
how the NYCWSS can adjust to simulated changes in
climate and how an increase in both temperature and
rainfall can potentially result in a reduced frequency of
drought. Future work will make use of a larger set of
GCM models and climate change scenarios, account for
future projected water demands and will examine whether
or not future changes will require changes in reservoir
operation policies to optimize use of the NYCWSS under
future climate conditions.
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Testing and Application of a Transport Model for Runoff
Event Inputs for a Water Supply Reservoir

Susan M. O’Donnell1; Rakesh K. Gelda2; Steven W. Effler3; and Donald C. Pierson4

Abstract: Effective simulation of the fate and transport of runoff event inflows is an important goal of many water quality modeling ini-
tiatives. The set-up and testing of a two-dimensional hydrodynamic transport model is documented for a water supply reservoir, Schoharie
Reservoir, New York, that uses specific conductance (SC) as a conservative tracer and focuses on fate and transport of runoff event inputs,
particularly the plunging of density currents in summer and fall. Model testing is supported by temporally detailed measurements of meteoro-
logical, operational, and tributary (temperature and SC) model drivers, and temporally and spatially replete in-reservoir patterns of SC fol-
lowing multiple runoff events, obtained with a combination of robotic monitoring platforms and gridding with rapid profiling
instrumentation. Specific conductance is demonstrated to be an ideal tracer because of the distinct tributary signals and subsequent
in-reservoir signatures imparted from runoff events and its close coupling to turbidity patterns that are primary water quality concerns
for managers. The model is demonstrated to perform well in simulating in-reservoir signatures of SC following multiple runoff events over
the spring to fall interval of 2003, including vertical, longitudinal, and temporal patterns, and features of the thermal stratification regime for
the same interval. The validated model is applied in a probabilistic manner on the basis of a 61-year record (239 runoff events) of model
drivers to provide a robust representation of the transport of runoff event inputs relative to the location of the water supply intake. This
application demonstrates the entry of runoff event inflows as plunging density currents in summer and fall is a recurring phenomenon
for this reservoir. DOI: 10.1061/(ASCE)EE.1943-7870.0000378. © 2011 American Society of Civil Engineers.

CE Database subject headings: Hydrodynamics; Hydrologic models; Reservoirs; Water quality; New York; Runoff.

Author keywords: Hydrodynamic model; Specific conductance; Schoharie Reservoir; Plunging currents.

Introduction

Most mechanistic water quality models can be partitioned into
transport and kinetic submodels. Design or selection of an appro-
priate transport model that serves as the physical framework for the
overall water quality model is a critical first step; i.e., “the first
step…. is to determine where the water goes and how water move-
ment affects the concentrations of dissolved and suspended mate-
rials” (Martin and McCutcheon 1999, p.7). A primary issue for the
transport submodel is the physical dimensions (e.g., 1, 2, or 3) nec-
essary to describe the spatial features of impact (Martin and
McCutcheon 1999). One-dimensional models that consider vertical
differences in lakes and reservoirs are often appropriate when
autochthonous (internal production) processes dominate, such as
for nutrient-eutrophication modeling (Chapra 1997). However, sub-
stantial two- or three-dimensional structure is often manifested

where allochthonous (external) inputs are important in imparting
spatial signatures, such as from spills (Chung and Gu 1998) or run-
off event-driven loads (Canale et al. 1993; Effler et al. 2006).

Density differences, particularly thermally-based, often prevail
between tributaries and receiving lakes and reservoirs associated
with divergent rates of heating and cooling of proximate lotic
and lentic waters (Martin and McCutcheon 1999). Moreover,
streams often remain cooler, and therefore more dense, than the
upper waters of receiving lentic systems in summer from the effects
of canopy and ground water inputs (O’Donnell and Effler 2006;
Effler et al. 2009). If local mixing in the region of a dense inflow
is inadequate to eliminate density differences, the density current
(plunging inflow) will plunge and travel along the sloping bottom
as an underflow (Fischer and Smith 1983; Martin and McCutcheon
1999). If a depth is encountered in a stratified lake or reservoir in
which the density of the underflow equals that of the water column,
the neutrally buoyant density current will separate from the bottom
and intrude into that layer as an interflow (Fischer et al. 1979;
Martin and McCutcheon 1999). The plunging phenomenon is
accompanied by entrainment of ambient water (Akiyama and
Stefan 1984; Alavian et al. 1992; Gu and Chung 1998).

Density currents have been documented for a number of lakes
(Serrya 1974; Hamblin and Carmack 1978; Effler et al. 2009) and
reservoirs (Hebbert et al. 1979; Johnson and Merritt 1979; Ford and
Johnson 1983; LaBounty and Horn 1997; Effler et al. 2006; Gelda
et al. 2009). Moreover, the phenomenon is probably unrecognized
in many lentic systems. The submerged river channels of reservoirs
(thalwegs) promote preservation of underflows, a feature that con-
tributes to it being more common in reservoirs than lakes (Martin
and McCutcheon 1999). The density current phenomenon can have
important water quality implications by routing external loads
to stratified depths. Accordingly, this can diminish the effective
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external loading of constituents to epilimnia in which issues of pri-
mary production and public health issues are of concern (Effler et al.
2009). Conversely, conditions within the density current may be
of concern, such as oxygen depletion (Romero and Imberger
2003) or turbidity levels relative to withdrawal depths for water
supply reservoirs (Effler et al. 2006). The behavior of density cur-
rents and the spatial patterns in constituents imparted by the phe-
nomenon dictates the adoption of either a two- (Gu and Chung
1998) or three-dimensional (Dallimore et al. 2003) transport model
to represent related features and dynamics of water quality concern.

Ideally, testing of a transport submodel is separated from, and
conducted before, that of the overall water quality model (Chapra
1997; Martin and McCutcheon 1999). This avoids embedding
transport effects within the calibration of kinetic coefficients.
Conservative tracers are invaluable in supporting the testing of
transport models (Martin and McCutcheon 1999). Application of
a “nearly” conservative dye is a common practice, although such
interventions are generally limited in representing the effects of a
robust range of driving conditions. Passive, system-specific, tra-
cers offer greater potential in that regard, where opportunities
exist. Potential natural or site-specific tracers include chloride
(Richardson 1976; Effler et al. 1989; Doerr et al. 1994), salinity,
specific conductance, and sodium (Martin and McCutcheon
1999). Coupled dynamics in inflow concentrations and loads
(e.g., the “signal”) and in-reservoir spatial patterns (e.g., the “sig-
nature”) offer the opportunity to test the performance of a transport
model. Manual sampling and laboratory measurements can place
practical limitations on temporal and spatial resolution of such pat-
terns. However, patterns of specific conductance (SC), an aggregate
metric of ionic content (Clesceri et al. 1998), can now be resolved
in great detail in time and space with deployed robotic (O’Donnell
and Effler 2006; Effler et al. 2009) and rapid profiling (Effler et al.
2006) instrumentation. A dilution effect on ionic content (i.e.,
decrease in SC) is observed widely in tributaries during runoff
events (Manczak and Florczyk 1971; Matthews and Effler 2003;
Effler et al. 2009) that represents an opportunity to track the trans-
port of these lower SC inputs within the receiving lentic system.

This paper describes the setup and testing of a two-dimensional
hydrodynamic/transport model for a water supply reservoir that
focuses on simulation of the fate and transport of turbid density
currents formed during runoff events. Model testing is supported
by temporally replete data sets for the dynamics of tributary flow,
reservoir operations, meteorological drivers, and tributary and in-
reservoir patterns of temperature (T) and a conservative tracer, SC.
Testing against observed in-reservoir patterns of SC, as well as T , is
documented for the spring to fall interval of a single year, which
included a wide range of runoff events and ambient stratification
conditions. The validated model is used to investigate the influence
of the completeness of the supporting data and features of model set
up on model performance. Finally, the validated transport model is
applied for a long-term (61 years) driver data set to develop robust
probabilistic representations of features of runoff event-driven
transport, including turbid density currents, in the vicinity of the
water supply intake.

Study System

Schoharie Reservoir is located in the Catskill Mountains of
southeastern New York (latitude 42°23′ N; longitude 74°26′ W),
approximately 190 km from New York City [Fig. 1(a)]. This
impoundment is part of a network of 19 reservoirs that supplies
drinking water to 9 million people in the New York City area.
The reservoir is 8 km long with a maximum width of 1 km; it lacks

dendrictic complexities [Fig. 1(b)] and has a dimictic density strati-
fication regime. The reservoir has a surface area of 4:3 km2, a vol-
ume of 79 × 106 m3, and a maximum depth of 41 m when full.
However, these morphometric features vary seasonally and year-to-
year associated with the drawdown of its surface in response to
withdrawals for the water supply and natural variations in runoff.
The reservoir’s primary tributary, Schoharie Creek (drains 75% of
the 815 km2 watershed), enters the southern end of the basin
[Fig. 1(b)]. The second largest tributary, Manor Kill, drains 11%
of the watershed and enters along the eastern shore [Fig. 1(b)].
The maximum longitudinal slope along the thalweg of the basin is
2%. Schoharie Reservoir flushes 10:1 y�1 on average on a com-
pletely mixed basis. This impoundment is described as an upstream
reservoir within the overall system because water withdrawn for the
water supply (intake is 19 m deep when full, effective elevation ¼
326:9 m) travels through a tunnel, then a stream, and two down-
stream reservoirs before delivery to New York City.

Fig. 1. Schoharie Reservoir: (a) location within NewYork; (b) reservoir
shoreline for full conditions with dam, water supply intake, meteoro-
logical monitoring sites, tributary (Schoharie Creek, Bear Kill, and
Manor Kill) entry points, long-term monitoring sites, robotic profiling
platform sites for 2003, and longitudinal model segments; and (c) long-
itudinal profile of model segmentation (longitudinal segments and
vertical layers)
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The reservoir suffers from the problem of high turbidity follow-
ing runoff events associated with inputs received through the tribu-
taries, but especially Schoharie Creek (Effler et al. 2006). This
turbid water has been documented to enter as a density current
at certain times because of lower stream temperature (O’Donnell
and Effler 2006) manifested as subsurface turbidity peaks with sub-
stantial longitudinal gradients, but with limited and short-lived
lateral differences (Effler et al. 2006). Significant longitudinal dif-
ferences in thermal stratification are not observed in this system
(Gelda and Effler 2007a). Management alternatives to abate turbid-
ity levels have been considered including: (1) reductions in external
inputs; (2) a variety of in-reservoir engineered structures to reduce
transport of turbidity toward the intake; and (3) effective position-
ing and operation of the intake(s) to avoid the withdrawal of turbid
layers. A mechanistic predictive turbidity model is required to
provide quantitative guidance for management deliberations. A
representative hydrodynamic transport model that can accurately
simulate the behavior of runoff event inputs, including transient
turbid density currents, is an essential component (submodel) of
such a turbidity model.

Modeling Strategy, Model Description, and
Specification of Inputs and State Variable Patterns

The selection of the transport model was influenced by multiple
factors: (1) the need to represent the primary longitudinal spatial
features of the impacts of runoff events on in-reservoir turbidity
patterns; (2) the management alternatives under consideration;
(3) the need to integrate the water quality model with a water supply
(hydrologic) model; (4) the need to support robust model simula-
tions; and (5) the principle of parsimony. According to the principle
of parsimony, the adopted framework should only be as
complex as necessary to address the problem (Chapra 1997; Martin
and McCutcheon 1999). The selection of a two-dimensional
hydrodynamic/transport model that serves as the submodel of
CE-QUAL-W2 (designated W2/T) for this work is consistent with
these factors. More complete, but complex, three-dimensional
models have distinct disadvantages for this situation. First, ex-
tended (e.g., seasonal) simulations are problematic because of over-
mixing manifested in three-dimensional model simulations for long
narrow basin configurations such as Schoharie Reservoir. Second,
these models are much more computationally demanding. Two
features of the modeling initiative for this reservoir make this limi-
tation particularly problematic: (1) the planned integration of the
water quality model with a water supply system model (OASIS;
Hydrologics 2003); and (2) the planned model application strategy
of long-term simulations (61 years) to provide robust representa-
tions of behavior and variability to be expected (Gelda and Effler
2008). The integration with the system/operations model is neces-
sary because management alternatives that affect this reservoir’s
operations need to be considered in the context of the effects on
the overall water supply system (i.e., all 19 reservoirs).

W2/T is a dynamic, laterally averaged two-dimensional (longi-
tudinal and vertical) model (Edinger and Buchak 1975; Cole and
Wells 2002) that is based on the finite-difference solution of partial
differential equations for laterally averaged fluid motion and mass
transport. The basic equations of the model that describe horizontal
momentum, hydrostatic pressure, continuity, free water surface
elevation, equation of state, and constituent transport have been
presented previously (Chung and Gu 1998; Gu and Chung 1998;
Cole and Wells 2002). Vertical velocities are assumed to be suffi-
ciently small for the vertical momentum equation to be simplified
to the hydrostatic equation. The heat budget of W2/T that supports

simulation of the thermal stratification regime includes terms for
short- and long-wave radiation, convection, conduction, evapora-
tive heat loss and back radiation (Cole and Wells 2002).

The model represents the reservoir as a grid of longitudinal
segments and vertical layers [Fig. 1(c)]. The lateral dimension is
described as the average cross-sectional width. Features of outflow
structures are represented including the spillway length of the dam
and elevations of the water supply withdrawal and dam outlet. The
withdrawal envelope is represented by a relationship (Cole and
Wells 2002) that describes the decreasing contributions from water
column depths with increasing distance from the intake. Inputs for
W2/T include wind speed and direction, air temperature, dew point
temperature, solar radiation, the light attenuation coefficient, in-
flows, inflow temperature, and outflows. The model has six coef-
ficients (Table 1) that are subject to calibration. The values of the
coefficients for longitudinal eddy viscosity, eddy diffusivity, wind
shelter, and the Chezy coefficient directly affect simulated hydro-
dynamics and in turn affect the distribution of heat. The other two
coefficients, the fraction of incident solar radiation absorbed at the
water surface and the coefficient for bottom heat exchange, directly
affect the heat budget calculations.

Schoharie Reservoir is represented by 17 longitudinal segments
with layer thickness of 1 m [Fig. 1(c)] consistent with the guide-
lines of Cole and Wells (2002). Morphometric features of the grid
were established by a digitized bathymetric map obtained in a
1997 survey from analysis with Geographical Information Systems
(GIS) software (IDRISI 2005). Inflows and outflows directly enter
and exit model segments according to their locations. Ninety-five
percent of the watershed was gauged for flow rates (U.S. Geologic
Survey) through monitoring at Schoharie Creek, Manor Kill, and
Bear Kill [Fig. 1(b)]. Available time steps of these flow measure-
ments that were considered in this study included 15 min, 60 min,
and 24 h averages; 15 min information supported model testing.
Ungauged (∼5%) inflows were assumed to have dynamics of flow
and other conditions that tracked those of Schoharie Creek. Out-
flows and water surface elevation of the reservoir were specified
at a 1-day time step as the daily average values reported from mon-
itoring by the New York City Department of Environmental Pro-
tection (NYCDEP). A wide range of magnitudes of runoff events
occurred in the study interval of 2003 [Fig. 2(a)]. Fifteen events
were identified (Table 2); two of these contained two distinct (but
closely spaced in time) peaks. The recurrence frequencies of the
peak flows ranged from 33 y�1 (a minor event, i.e., that on average
occurs 33 times per year) to 1 y�1 (major event; Table 2), with peak
Schoharie Creek flows of 15.7 to 385:5 m3 s�1.

Meteorologic measurements [Figs. 2(b)–2(d)] of model inputs
were made at two sites, one on the reservoir adjoining the intake
location (Site 3, reservoir site designations from NYCDEP), the
other at the intake facility [Fig. 1(b)]. The measurements were
available at 15 min time steps (as average values over that interval);
time series of air temperature [Fig. 2(b)], wind speed [Fig. 2(c)],

Table 1. Coefficient Values for Two-Dimensional Hydrodynamic and
Transport Model W2/T for Schoharie Reservoir

Coefficient Value

Longitudinal eddy viscosity 1 m2 s�1

Longitudinal eddy diffusivity 10 m2 s�1

Chezy coefficient 70 m0:5 s�1

Wind sheltering coefficient 0.8

Fraction of incident solar radiation

absorbed at the water surface

0.45

Coefficient of bottom exchange 7:0 × 10�8 Wm�2C�1°
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and solar radiation [Fig. 2(d)] are presented for the 2003 study
interval. Measurements of temperature [Fig. 2(e); accuracy
�0:15°C, resolution 0.01°C], SC [Fig. 2(f); accuracy �5%, reso-
lution 1 μS cm�1], and turbidity [Tn, nephelometric turbidity units
(NTU), Fig. 2(g); accuracy �5% of reading or 2 NTU, resolution
0.1 NTU] were made near the mouth of Schoharie Creek at 15 min
intervals for the study interval with a robotic monitoring unit
(O’Donnell and Effler 2006). Although Tn is not modeled in this
study, observations are included to establish a coupling between SC
and Tn tributary signals and in-reservoir signatures. Temperatures
of other tributaries were specified as equal to those measured at
Schoharie Creek. Values of SC for Manor Kill and Bear Kill were
predicted from tributary-specific SC-flow relationships developed
from NYCDEP’s fixed frequency (twice per month) monitoring
program.

In-reservoir patterns of the model state variables of T and SC,
and Tn (and a surrogate metric of Tn, the beam attenuation coef-
ficient; Effler et al. 2006) and downwelling irradiance (to specify
the attenuation coefficient, Table 1) were obtained with a combi-
nation of rapid profiling instrumentation (0.25 m vertical resolu-
tion; Effler et al. 2006) and solar-powered robotic profiling
platforms (1 m vertical resolution; O’Donnell and Effler 2006).
“Gridding” was conducted with rapid profiling instrumentation by
collecting profiles at ∼30 sites throughout the reservoir (within
∼8 h) on multiple occasions following runoff events to provide spa-
tially replete patterns to support model testing. Lateral transects
were included and generally supported the two-dimensional frame-
work selection (Effler et al. 2006). The profiling platforms provided
more frequent (2–4 profiles day�1) representations, but at fewer
sites [Fig. 1(b)].

Modeling Opportunity

Schoharie Creek was colder than the upper layers of the reservoir
for much of the May–October period of 2003 but particularly start-
ing in August [Fig. 2(e)], and thus had the propensity to plunge
during those intervals. The diurnal variations in the stream’s T ,
associated with cyclic changes in heat input within a day (Webb
and Walling 1988; Sinokrot and Stefan 1993), were often substan-
tial relative to this propensity.

The runoff events [Fig. 2(a)] caused temporally coupled pertur-
bations for SC and Tn in Schoharie Creek that were characterized
by abrupt decreases in SC [Fig. 2(f)] and increases in Tn [Fig. 2(g)].
Accordingly, each runoff event sent pulselike signals of decreased
SC and increased Tn that accompanied the increased flow to the
reservoir. These decreased levels of SC were usually lower than
the upper waters of the reservoir [Fig. 2(f)], thereby often offering
an opportunity to use SC as a tracer to track the transport of runoff
flows within the water column. The temporal patterns of SC and Tn

in the upper waters of the reservoir were uniform by comparison,

Table 2. Runoff Events, Identification, and Description

Event number Date of peak Q Peaka Qðm3 s�1Þ Recurrence y�1

1 May 2 76.2 7

2 May 12 34.6 16

3 May 27 32.2 22

4 June 1 134.3 5

5 June 22 65.9 9

6 July 22 15.7 33

7 August 3 61.5 15

8 August 10 104.6 10

9 September 4 130.3 11

10 September 15 53.4 11

11 September 19 45.6 17

12 September 23 200.2 4

13 September 28 241.0 1

14 October 15 57.1 15

15 October 27 385.5 1
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with much lower Tn levels compared to Schoharie Creek, and con-
sistent with the entry of this stream as a turbid density current.

Clear signatures of the entry of turbid density currents with
lower SC were documented in response to most runoff events as
illustrated for two events with robotic profiles collected adjoining
the intake before and soon after the arrival of the turbid subsurface
plume [Figs. 3(a)–3(d)]. The density currents entered metalimnetic
depths in both cases, and the plume was relatively thick for both the
early June and mid-August events. The SC signatures mirrored
those of the Tn patterns in both cases [Figs. 3(a)–3(d)]. Thus,
the coupled dynamics of SC in the inflows and the reservoir water
column offer an excellent opportunity to support testing of a trans-
port model with particularly strong signatures available for the
important water quality issue of the behavior of turbid density
currents.

Execution and Performance Evaluation

The model’s autostepping algorithm (Cole and Wells 2002) calcu-
lates a maximum time step within a specified range based on
hydrodynamic numerical stability requirements, and then uses a
fraction of this value for the actual time-step calculations. The mini-
mum and maximum time steps used were 1 s and 1 h, respectively.
Initial conditions were those measured on May 5. Overall model
validation was based on continuous simulation over the May
5–November 15 interval. The same set of model coefficients
(Table 1) was used throughout the simulation period; these
coincided with the values used in long-term (14 y) testing of the
framework for thermal stratification performance for this reservoir
for an earlier period (1989–2002; Gelda and Effler 2007a). More-
over, these coefficient values correspond closely to those adopted
elsewhere for this model (Martin 1988; Gelda et al. 1998) and
recommended by Cole and Wells (2002).

The primary focus of testing was performance in simulating the
transient patterns of SC in time and space following the runoff
events of the study period. Salient features of performance evalu-
ation include spatial (in both the vertical and longitudinal dimen-
sions) and temporal (from events to seasonal) patterns. However,
because transport, particularly of density currents, in lakes and
reservoirs is highly dependent on the attendant stratification
regime (Martin and McCutcheon 1999), accurate simulation of
thermal stratification for the study interval of 2003 with the
hydrodynamic/transport model was also a necessary goal. Model
performance was evaluated both qualitatively (i.e., graphically as
vertical profiles, spatial, and temporal contours) and quantitatively
[root mean square error (RMSE); Thomann 1982].

Model Performance

W2/T performed very well in simulating the thermal stratification
regime of Schoharie Reservoir over the study period of May–
November of 2003 as depicted by the comparisons of observed
and predicted T profiles from selected days in each month for
Site 1 (Fig. 4). Systematic longitudinal differences in thermal strati-
fication were not observed or predicted. The RMSE for the entire
simulation interval of 2003 resulting from the paired observations
(rapid profiling instrumentation) and predictions made at multiple
depths at each of the long-term primary monitoring sites [numbers
1–4; see Fig. 1(a)] was 0.63°C. This compares favorably to the
annual values reported for the 1989–2002 period for Schoharie
Reservoir (0.85–1.75°C; Gelda and Effler 2007a), and other
systems for which this metric of performance was reported for
seasonal simulations of the stratification regime (Gelda et al.
1998; Owens 1998; O’Donnell et al. 2010).
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The fate and transport of density currents from runoff events
were also well simulated as evidenced in comparisons of observed
and predicted SC patterns. The observed substantial changes im-
parted in vertical profiles were well simulated as represented for
five runoff events (Fig. 5). The depth axis is elevation in these
presentations, rather than depth from the surface, to accommodate
variations in water surface elevation although drawdown was
limited in this year because of the generally high runoff. The eleva-
tion of the water surface when the reservoir is full is 344 m;
the corresponding depth of water column at Site 3 under these

conditions is 20 m. Vertical patterns were well predicted both
before [Figs. 5(a), 5(c), 5(e), 5(g), and 5(i)] and soon after
[Figs. 5(b), 5(d), 5(f), 5(h), and 5(j)] these events at various sites.
The vertical character of the signatures differed substantially for
these cases, offering a robust test. Density current behavior, man-
ifested as a subsurface decrease in SC from an interflow, was
well simulated for the May [Figs. 5(a) and 5(b)] and August
[Figs. 5(c)–5(f)] events. In contrast, the late September runoff event
(number 3) entered the upper waters [Figs. 5(g) and 5(h)], consis-
tent with the lack of substantial T differences between the stream
and upper waters of the lake. The simulations for late October
[Figs. 5(i) and 5(j)] represented another density current case when
the plunging inflow acted as an underflow at Site 3 because the
epilimnion had deepened substantially by that time [Fig. 4(f)].

Longitudinal differences in SC imparted by runoff event density
currents were also well predicted as illustrated by comparison of
observed and simulated longitudinal/elevation contours of SC
for two and four days after a September event [number 12;
Figs. 6(a)–6(d)]. The general patterns, including vertical position
and longitudinal extent of lower SC waters, were well predicted
although the simulated leading edge [Figs. 6(b) and 6(d)] was
shifted somewhat further downstream than the observations
[Figs. 6(a) and 6(c)]. The model also performed well in simulating
the combined vertical and temporal patterns of SC at different lo-
cations in the reservoir, and is illustrated in this study through com-
parison of observed (robotic) and predicted time/elevation isopleths
of SC for Site 3 [Figs. 7(a) and 7(b)]. Both temporal and vertical
features were well simulated, including occurrences of subsurface
(metalimnetic) minimums associated with the entry of density cur-
rents. The RMSE for SC predictions for the overall simulation in-
terval of 2003, resulting from paired observations and predictions
from the long-term monitoring sites was 5:0 μS cm�1, a value that
was < 10% of the overall observed average value.

Validation of W2/T has been demonstrated for Schoharie
Reservoir by the successful simulation of the fate and transport
of inflows from multiple runoff events throughout the reservoir
in 2003 established on predictions of SC and the thermal stratifi-
cation regime for the same interval. The testing was robust in the
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context of the number of events, differences in the magnitudes of
the events, and differences in the vertical position of the entry of the
inflow into the water column of the reservoir. The good perfor-
mance of W2/T for this conservative metric supports the framework

to conduct mass balance calculations and to serve as the physical
transport submodel for a water quality model (Chapra 1997; Martin
and McCutcheon 1999). Moreover, it supports the representative-
ness of the various inputs that are embedded in these calculations
and that are critical to their success; e.g., levels of SC in the inflows
and the reservoir, inflow and outflow rates, and bathymetry.
Resolution of the inflow density and SC signal and in-reservoir
stratification and SC (model state variable) patterns was made
possible through the implementation of a program of robotic
monitoring and gridding with rapid profiling instrumentation.
Additional independent support for W2/T for Schoharie Reservoir
was provided by the reported similarity of model predictions and
instrument (acoustic Doppler velocimeter) measurements of bed
(bottom) stress at an upstream position in the basin along the
thalweg (Owens et al. 2010).

Sensitivity Analyses

Sensitivity analyses were conducted with the validated model to
evaluate the effects of the protocols adopted to specify inputs,
model segmentation, and initialization of the model. RMSE
values obtained with the validated model are compared with those
for the sensitivity scenarios (Table 3), established on eight sites
along the reservoir’s main axis that include long-term Sites 1–4
[Fig. 1(b)]. The first three analyses (Table 3) focus on selected
days and runoff events to depict sensitivity in predicting short-term
patterns and are consistent with the transient character of the effects
of these events. These address the needs for specifying tributary
inputs. Specifications of the minor (other than Schoharie Creek)
tributary T and SC inputs according to the temporally limited
(biweekly) observations, instead of the adopted protocols, caused
noteworthy deterioration in the RMSE metric of performance for
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Table 3. Results of Sensitivity Analyses with Validated Transport Model for Schoharie Reservoir

Run
number Description

Root mean square error (RMSE)

Temperature (°C) Specific conductance (μS cm�1)

Validation run Sensitivity run Validation run Sensitivity run

1 Minor tributaries: use biweekly T observations

instead, October 30 (Event number 15)

0.41 0.35 7.0 8.7

2 Minor tributaries: use biweekly SC observations

instead, September 5 (Event number 9)

0.59 0.59 4.0 8.4

3 Alternate measurement frequency for Schoharie

Creek, T and SC, September 5 (Event number 9)

A. daily 0.59 0.66 4.0 3.7

B. weekly 0.59 0.96 4.0 10.2

C. bi-monthly 0.59 0.96 4.0 12.3

4. Land-based meteorological measurement instead 0.63 0.74 5.18

5. Alternate segmentation schemes

A. 17 × 0:5 0.63 0.66 5.05 5.03

B. 34 × 1:0 0.63 1.05 5.05 5.77

C. 35 × 0:5 0.63 1.06 5.05 5.77

6. Reinitialize model for each event instead

A. June 1–9 0.71 0.76 6.64 3.93

B. July 22–24 0.71 0.76 6.64 3.93

C. August 3–8 0.56 0.56 5.56 3.87

D. August 10–15 0.65 1.04 5.59 4.45

E. September 4–9 0.57 0.74 3.89 3.47

F. September 23–October 3 0.63 0.62 4.06 3.33

G. October 27–November 3 0.47 0.54 6.70 4.76
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SC but not T (Table 3). These results are generally consistent with
the need for temporally detailed specifications of these model
inputs to effectively simulate the transient in-reservoir patterns
of SC. The importance of temporally detailed measurements of
the major input (Schoharie Creek) was illustrated through compari-
son of the RMSE values for the validated model (15 min) versus
results from measurement time steps instead of daily, weekly and
biweekly (Table 3). These results indicate substantial deterioration
in performance with measurements less frequent than daily. Only
modest differences in performance were observed when meteoro-
logical data from a nearby land-based position were used instead
of the observations from the robot at Site 3 (Table 3).

The adopted model segmentation scheme [Fig. 1(c); i.e., 17 × 1]
is supported by the results of sensitivity analyses conducted with
different (n ¼ 3) segmentations (17 × 0:5, 34 × 1:0, and 34 × 0:5).
Each of the three alternatives represented more detailed spatial
resolution of the reservoir. No systematic improvements in RMSE
were observed (Table 3). Accordingly, the adopted segmentation
provides an appropriate spatial representation of this reservoir
that avoids noteworthy numeric errors. The continuous simulation
approach through the study period adopted in this work is an
inherently more rigorous test of the model than an approach that
(re)initializes before each runoff event. The latter approach would
have essentially no benefit for T performance. However, the RMSE
for SC would have been somewhat lower with reinitialization;
approximately 30% lower on average for the seven considered
events (Table 3).

Model Application

It is important to acquire a robust representation of the fate and
transport of runoff event turbid inflows within water supply reser-
voirs, particularly relative to intake locations, to identify recurring
patterns, associated risks, and expected variability. These attributes
are resolved for Schoharie Reservoir through application of the va-
lidated transport submodel, and by conducting coupled simulations
for thermal stratification and a hypothetical conservative tracer (i.e.,
a numerical dye study) for runoff events. The tracer concentration
was set at 1;000 mgL�1 at the peak flow in Schoharie Creek for
each runoff event, a concentration that provided adequate in-reser-
voir signatures over the full range of runoff events considered.
Model simulations were carried out for each event individually
to avoid “carry-over” effects of injected tracer from one event to
subsequent events. A probabilistic modeling strategy (Gelda and
Effler 2008) was adopted, which incorporates model simulations
for 61 years of historical conditions and utilizes paired long-term
records of meteorology, hydrology, operations, and empirical mod-
els to specify stream water T and SC for that period. This long-term
simulation approach (Owens et al. 1998; Gelda et al. 2001; Gelda
and Effler 2008; O,Donnell et al. 2010) has the advantages of:
(1) providing a robust probabilistic context for predictions; and
(2) predictions are inherently representative because the model
drivers correspond to actual historical conditions for the site.
The empirical stream T model that is critical to the buoyancy of
the tributaries (i.e., density current versus overflow behavior)
and established on stream flow and air T, was demonstrated to per-
form well for Schoharie Creek (Gelda and Effler 2008).

A total of 239 runoff events were identified in the 61-year
hydrologic record for Schoharie Creek. The highest peak flow
was 740 m3 s�1 and the median peak flow was 130 m3 s�1; secon-
dary peaks within events were not considered. Simulations were
initiated on January 1 of the year of each event and continued
for six months after the tracer injection. Model simulations were

analyzed for features of transport for runoff event inflow, including
density currents and predictions of travel time (tt) for the effects of
the peak tracer concentrations to reach the water supply intake.
A schematic representation of predictions for one event (mid-
August 2004), along with specified tracer plume characteristics,
serve to identify the features described in this probabilistic analysis
[Fig. 8(a)]. The in-reservoir characterizations correspond to pre-
dicted conditions in the model segment that contains Site 3 adjoin-
ing the intake. These predictions for the tracer generally track those
for the peak Tn impacts because spatial patterns of Tn have been
demonstrated to be transport-driven immediately following the
events (Gelda and Effler 2007b; Gelda et al. 2009). Divergence be-
tween Tn and the tracer concentrations increases with time follow-
ing an event from the operation of the settling loss process and is
consistent with the behavior observed for Tn and SC following
events (O’Donnell and Effler 2006).

Seasonal characterizations of the elevation of cmax [peak tracer
concentrations; Fig. 8(b)] and b [thickness of plume; Fig. 8(c)] are
presented in a box plot format (5, 10, 25, 50, average, 75, 90, 95
percentiles shown). Wide variability is predicted for most months
although these representations are not robust for July (particularly)
and August because runoff events have been relatively rare in these
months over the 61 year record. Wide interannual variations in the
extent and timing of drawdown [i.e., elevation not depth for y-axis,
Fig. 8(b); Gelda and Effler 2008] contribute to the predicted vari-
ability in these features of the fate of runoff event inputs, particu-
larly over the July–November interval. The particularly wide
variations in the cmax elevation predicted during turnover and ice
cover (November–April) is consistent with the combined effects
of no, or modest, vertical density differences within the reservoir
and variability in the relative buoyancy of stream inputs [Fig. 8(b)].
Deeper and recurring plunging in the basin was predicted for the
late summer through early fall interval approaching the intake
depth [Fig. 8(b)], which indicates the seasonal recurrence of
the density current phenomenon addressed in detail for 2003
(Figs. 5–7). The deepening through this interval generally tracks
that of the metalimnion with the approach to fall turnover (Gelda
and Effler 2007a). The thicknesses of the runoff event plumes are
predicted to usually be less than 10 m during summer stratification
(May–October) and ice cover (January and February) and often less
than 5 m [Fig. 8(c)]. This feature is predicted to be much more
variable during intervals of turnover. Cases of b ∼ 19 m correspond
to the runoff event input being distributed throughout the water
column and is expected when the entering water density equals that
of the water column during turnover.

Runoff event density currents have most often entered the metal-
imnion but above the thermocline depth (zt; maximum density
gradient). The depth of intrusion of a density current (zi) relative
to zt is described by zr [¼ zi � zt; Fig. 8(a)]; a negative zr indicates
entry above zt. Approximately 45% of the events were predicted to
have zr values within the range of �5 to 0 m [Fig. 8(d)]. Events
with more negative zr values (< 25%) correspond to those that
either enter as overflows or are well mixed into the epilimnion,
conditions that occur most often in spring when T increases occur
more rapidly in the stream than in the reservoir. The higher zr
values [5–15 m; Fig. 8(d)] generally correspond to runoff events
when the associated density current is an underflow at Site 3, which
is an undesirable condition because of proximity to the intake. The
predicted intrusion depth for runoff event density currents was
predicted to usually be somewhat shallower than the reservoir
water column depth in which the T equals that of the creek
during the event [zeqT; see Fig. 8(a)]. This is consistent with the
effects of the entrainment mixing process that operates on density
currents (Akiyama and Stefan 1984; Alavian et al. 1992) and
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diminishes T and density differences as the plume is transported
down-reservoir.

The effects of runoff event inflows can reach the water supply
intake of Schoharie Reservoir rapidly. The travel time, tt , the time
from the peak of a runoff event in the Creek to the time when the
maximum effect is observed in the withdrawn water, was predicted
to be within 12 h for ∼40% of the events and within 24 h for 70% of
the events [Fig. 8(f)]. The noteworthy percentage > 96 h reflects
the effects of changes in operating strategy embedded in the
61-year record when the intake was shut down during major runoff
events to reduce the transport of turbid water downstream.

Summary

The hydrodynamic/transport model W2/T has been validated for
Schoharie Reservoir, New York, established from the successful
simulation of in-reservoir patterns of SC and T for a 7-month
interval with multiple (n ¼ 15) events. In particular, the model
performed well in simulating the plunging behavior of density
currents, a prominent feature of the transport of runoff event in-
flows over the summer through fall interval in this reservoir.

The model testing effort was supported by a comprehensive
monitoring program of model drivers, including meteorological,
hydrological, operational and tributary density and SC levels,
and detailed in-reservoir patterns of the state variables SC and T .
The average RMSE for predictions of these patterns over the entire
study interval was 5:0 μS cm�1, or < 10% of the average SC, and
0.63°C, respectively. Testing of the transport model was robust
because of the number of runoff events addressed, the range of
magnitudes of the events, and differences in the depth(s) of entry
of the inflows. The demonstrated performance of W2/T supports its
use to serve as the physical transport submodel for a water quality
model for the reservoir that particularly addresses the reservoir’s
turbidity issue.

The validated transport model was applied through simulations
of thermal stratification and conservative tracer concentrations to
characterize the fate and transport of runoff event inflows that
are relative to the reservoir’s single intake for a 61-year historical
record (239 events) of driving conditions. The results of these sim-
ulations provided a robust probabilistic representation of an array
of related attributes including: (1) the entry elevation of runoff
event inflows into the water column; (2) the thickness of the inflow

zi = depth of intrusion
zt = depth of thermocline
zr = depth of intrusion relative to zt
zeqT = depth at which Tin-res ≈ Tinflow

cmax = peak tracer conc. at site 3

b = thickness of the zone of c ≥ 0.7cmax

(a) schematic tracer plume
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Fig. 8. Model applications for a conservative tracer for 61 years of historical runoff events (n ¼ 239) for Schoharie Reservoir to describe fate and
transport of runoff event inflows at Site 3 and the water supply intake: (a) schematic representation of the predicted tracer transport for the August 13,
2004 runoff event, as an example, with specification of selected descriptive features; (b) predicted seasonal pattern of the elevation of the peak tracer
concentration (cmax), as a box plot; (c) predicted seasonal pattern of the thickness of the runoff event plume (b), as a box plot; (d) predicted distribution
of zr , the depth of intrusion of the runoff event plume (zi) relative to the thermocline depth (zt; zr ¼ zi � zt); (e) relationship between zi and zeqT, the
reservoir depth at which the T equals the inflow T ; and (f) the distribution of the travel time (tt) for the effects of the peak stream flow tracer to reach
the intake
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plume (interflow); (3) the depth of entry relative to the thermocline;
and (4) the time of travel for effects of a runoff event to reach the
water supply intake. Key findings of this analysis included: (1) the
recurrence of the density current phenomenon,; (2) density current
thicknesses of 5–10 m and entry within the metalimnion (but above
the thermocline) in late summer; and (3) travel times of less than
one day for the effects of most (70%) runoff events to reach the
intake.

Effective simulation of the fate and transport of runoff event
inflows and independent testing of the transport submodel are
common goals in water quality modeling initiatives for many lakes
and reservoirs that have been met in this study. Features of the
integrated program of monitoring and modeling described in this
study are transferable to meet such goals for many other systems.
For example, a two-dimensional framework that is capable of
representation of the behavior of density currents, such as W2/T, is
an appropriate and parsimonious choice for many systems, but
particularly those with long narrow configurations. Specific con-
ductance (SC) is expected to be a viable conservative tracer to track
runoff event inflows in many cases because the dilution effect dur-
ing events reported in this study occurs widely. This state variable
choice can be supported by modern robotic and rapid profiling
instrumentation, such as implemented in this work, which enables
the necessary resolution of the transient tributary signals and in-
reservoir signatures to support testing. Finally, long-term historical
records of model drivers exist for many sites that should be used to
support application of validated models to investigate recurring
features and variability in the fate and transport of runoff event
inflows.
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Modeling Resuspension in a Dynamic
Water Supply Reservoir

Emmet M. Owens, M.ASCE1; Rakesh K. Gelda2; Steven W. Effler3; P. J. Rusello4;
Edwin C. Cowen5; and Donald C. Pierson6

Abstract: Enhancements to the two-dimensional lake and reservoir water quality model W2Tn to simulate the effects of currents and waves
on sediment resuspension and turbidity are described. Bed stress attributable to currents was computed by the hydrothermal component of
W2Tn, whereas a surface wave component was added to W2Tn to determine bed stress owing to waves. Resuspension flux is computed from
bed stress and is included as a source of turbidity to the water column. The model is tested through application to Schoharie Reservoir, a
drinking water supply that experiences episodes of elevated turbidity caused by runoff events and exacerbated by drawdown. Model
predictions of bed stress attributed to currents are validated by using measurements obtained from acoustic Doppler instrumentation.
The surface wave component of the model is established on a framework that has been previously validated for Schoharie Reservoir. Testing
of the enhanced turbidity component of W2Tn was completed for a 3.5-year period of historical observations, which included a number of
runoff events covering a range of severity and variations in reservoir drawdown. The enhanced model performed well in simulating observed
conditions in the water column. The resuspension mechanism made a significant contribution to the predicted turbidity during periods of
reservoir drawdown and during a severe runoff event. The model also performed well in simulating the observed turbidity of the drinking
water withdrawal. Resuspension of particles contributing to turbidity was largely attributable to reservoir currents with surface wave-induced
resuspension playing a smaller role. The potential application of this model to other water bodies and water quality issues is discussed. DOI:
10.1061/(ASCE)EE.1943-7870.0000358. © 2011 American Society of Civil Engineers.

CE Database subject headings: Reservoirs; Mathematical models; Turbidity; Water supply.

Author keywords: Reservoirs; Mathematical models; Turbidity; Resuspension.

Introduction

Suspended particles in surface waters are a common problem in
environmental engineering. Pollutants such as nutrients, toxic
organics, or metals may be associated with particles so that the fate
and transport of such pollutants is closely linked to that of particles.
In other water bodies, the particles themselves are of concern. One
such case is the problem of turbidity in drinking water supplies.
Turbidity (Tn) is a common measure of light-scattering by sus-
pended particles. In supplies that receive filtration, the dosage of
coagulant or disinfectant depends on the raw water Tn. In unfiltered

supplies, the federal Safe Drinking Water Act (USEPA 1996) limits
the Tn of delivered water. In dealing with water bodies that expe-
rience elevated Tn, mathematical models may aid in understanding
the processes that affect suspended solids or turbidity and may be
useful in the evaluation of water quality management alternatives.

Tributary streams are often a significant source of particles to
the water column of lakes or reservoirs. Resuspension of particles
from a lake or reservoir bottom also occurs in virtually all such
systems, although its magnitude relative to tributary inputs varies
substantially (Bloesch 1995). Resuspension occurs when the bed
shear stress associated with water motion exceeds the critical stress
of the sediment bed. Consistent with models of motion in surface
waters, the driving force for bed stress may be divided into current
and surface wave components (Martin and McCutcheon 1999).
Wind-driven surface waves are the most commonly cited mecha-
nism for resuspension in lakes and reservoirs. Surface waves gen-
erate significant bed stress when the water depth is less than
approximately half the wavelength (Dean and Dalrymple 1991).
Separate models have been used to predict motion and bed stress
associated with “currents,” which effectively includes all motion
not attributable to surface waves including motion driven by bar-
otropic and baroclinic pressure gradients and wind shear (Martin
and McCutcheon 1999).

One, or in some cases both, of these mechanisms have been con-
sidered in models of resuspension in lakes and reservoirs. A simple
model that assumed the water column to be well mixed vertically
and neglected horizontal particle transport has been applied to sim-
ulate wave-induced resuspension in shallow lakes (Luettich et al.
1990; Hawley and Lesht 1992). Similarly, James et al. (1997)
simulated wave-induced resuspension in a depth-averaged model
of a shallow lake, but included the horizontal advection and
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dispersion of suspended material. Currents alone drove resuspen-
sion in a reservoir model study (Ziegler and Nisbet 1995), whereas
Lick et al. (1994) and Lou et al. (2000) considered the combined
effects of waves and currents.

Both two (2D) and three-dimensional (3D) models that in-
clude resuspension have been used previously to describe spatial
variations in the water column of lakes and reservoirs. In shallow
water bodies that do not experience significant stratification, it is
reasonable to assume vertical uniformity in the water column.
For this type of system, a depth-averaged 2D model has been
successfully applied (Lick et al. 1994; Ziegler and Nisbet 1995;
James et al. 1997). The more general 3D models consider spatial
variation and particle transport in the vertical direction also (Lou
et al. 2000; Jin and Ji 2004). However, when the focus is on
water quality in the water column or outflow, many lakes and
reservoirs may be accurately simulated by using a 2D vertical-
longitudinal approach (Martin and McCutcheon 1999). Typically,
these water bodies are sufficiently deep so that thermal stratifi-
cation occurs, and they have a long, narrow shape so that water
quality does not vary significantly in the lateral direction. Verti-
cal-longitudinal models have been widely used in the analysis of
such water bodies (Gu et al. 1996; Chung and Gu 1998; Ahlfeld
et al. 2003). Although the use of a 3D model may be appealing
simply because it is not based on an assumption of lateral homo-
geneity, these models have practical limitations. If iterative model
simulations are to be made in an effort to optimize operation of a
multiple-reservoir system to maximize the quality of delivered
water, the computational or run-time requirements of a 3D model
may be impractically high.

The model W2Tn, which predicts the dynamics of Tn associated
with multiple particle size classes within a 2D vertical-longitudinal
framework, was recently presented (Gelda and Effler 2007a). This
model was applied to Schoharie Reservoir, a water supply reservoir
that experiences episodes of elevated turbidity triggered by runoff
events. W2Tn performed well in reproducing observed conditions
during a year that the reservoir remained at nearly full storage
(Gelda and Effler 2007a). However, field studies indicate that
resuspension is significant when the reservoir is drawn down
(Effler et al. 2008).

This study describes enhancements to W2Tn to allow simula-
tion of resuspension as a source of turbidity to the water column.
These enhancements build on the earlier version of W2Tn (Gelda
and Effler 2007a; Gelda et al. 2009), which considered tributary
input, advective and dispersive transport, settling, and export in
the simulation of turbidity associated with multiple particle size
classes. A previously-tested surface wave model (Owens 2009)
was added to W2Tn to provide predictions of bed stress associated
with surface waves. The enhanced model was tested for a 3.5-year
period of historical conditions at Schoharie Reservoir that includes
a wide range of drawdown and runoff events, allowing the impor-
tance of the resuspension source to be evaluated. The applicability
of this framework to address management options for turbidity
control at Schoharie Reservoir, and broader particle-related water
quality issues, is considered.

Reservoir Description and Turbidity Events

Schoharie Reservoir is located in southeast New York State
[Fig. 1(a)], 190 km northwest of New York City. It is one of 19
reservoirs that supply drinking water to 9 million people in and
around New York City, the largest unfiltered water supply in the
United States. Water withdrawn for supply (single intake located
at a depth of 23 m with the reservoir full) travels through a stream,

three reservoirs ( the east and west basins of Ashokan and Kensico),
and several aqueducts before reaching New York City. When full,
the basin is 8 km long, 1 km wide, has a 4:6 km2 surface area, and
mean and maximum depths of 17 and 42 m, respectively. These
morphometric features vary seasonally and year-to-year as a result
of drawdown and refilling [Fig. 1(c)]. The reservoir has a dimictic
stratification regime (Gelda and Effler 2007b) and flushes ∼10
times per year on a completely mixed basis.

Schoharie Creek, which drains 75% of the watershed, enters
at the southern end of the basin and is the largest source of water
and sediment [Fig. 1(b); Gelda and Effler 2007a]. High concen-
trations of inorganic sediment are carried by the stream from ero-
sion of glacial and fluvial material in the banks (Gelda and Effler
2007a). During much of the year, Schoharie Creek is cooler
than the surface waters of the reservoir and so tends to plunge
(O’Donnell and Effler 2006). In addition to the drinking water
withdrawal, outflow occurs over a spillway adjacent to the dam
at the north end [Fig. 1(b)]. Spillway flow averages 56% of
reservoir inflow.

The water quality problem of interest in this study is the increase
in Tn in the reservoir water column and drinking water withdrawal
in response to runoff events (Effler et al. 2006a; 2008). Although
the turbidity increases reservoir-wide after such events, significant
spatial patterns exist. Schoharie Creek enters as an underflow, flow-
ing downslope and following the thalweg of its drowned channel.
When the reservoir is stratified, the underflow intrudes into the
water column in the vicinity of the thermocline (O’Donnell and
Effler 2006). Under these conditions, maximum turbidity levels are
found at the depth of this interflow (Effler et al. 2006a). Substantial
longitudinal structure in Tn is observed (O’Donnell and Effler
2006; Prestigiacomo et al. 2008), because of advection of the turbid
interflow and accompanying mixing and particle deposition (Effler
et al. 2006b). At most times, lateral variations in Tn were generally
not present; when observed, lateral gradients were modest and per-
sisted less than a day. Tn generally diminishes within several days
after the end of an event in Schoharie Reservoir, although elevated
turbidity may persist for weeks or months following severe events
(Prestigiacomo et al. 2008). Various management alternatives are
being evaluated to reduce the high Tn levels in the reservoir
and withdrawal following runoff events.

Supporting Data

Monitoring and Particle Characterization

Detailed monitoring data were available to support application
and testing of a turbidity model for Schoharie Reservoir. Available
hydrologic and meteorological data included: (1) streamflow from
3 USGS gauges (Schoharie Creek and 2 other tributaries), gauging
95% of the reservoir drainage area; (2) reservoir operations [New
York City Department of Environmental Protection, (NYCDEP)],
including water surface elevation (WSE), withdrawal and spill flow
rates, and (3) on-site [buoy at Site 3; Fig. 1(b)] meteorology (wind
speed and direction, air temperature and humidity, and incident
solar radiation). Routine Tnmeasurements (5 per week) were made
by NYCDEP of the drinking water withdrawal from Schoharie
Reservoir, the location of greatest concern for drinking water
quality. Robotic monitoring (4 observations=h) was conducted at
the mouth of Schoharie Creek (O’Donnell and Effler 2006;
Prestigiacomo et al. 2008). Three solar-powered vertical profiling
units were moored along the longitudinal axis of the reservoir
[Sites 1, 2, and 3; Fig. 1(b)], collecting at least 2 profiles each day
at a 1-m-depth interval (Prestigiacomo et al. 2008). In addition,
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manual drops of a rapid-profiling instrument cluster were made at
multiple sites (usually ≥ 25) in the days following runoff events
(Effler et al. 2006a, b, 2008). Stream and reservoir monitoring in-
cluded Tn, temperature (T), and specific conductance (SC).
Although many Tn observations were made directly, others were
computed from direct measurements of the beam attenuation coef-
ficient (Effler et al. 2006a), an alternate measure of light scattering.
Neither suspended nor dissolved solids concentrations significantly
affect buoyancy in this reservoir.

Extensive characterization of particles (number, concentration,
size distribution, and composition) and associated light scattering
in Schoharie Creek (Effler et al. 2007), Schoharie Reservoir (Peng
and Effler 2007), and Ashokan and Kensico Reservoirs (Peng et al.
2009) were conducted with scanning electron microscopy inter-
faced with automated X-ray microanalysis and image analysis
(SAX). In these waters, almost all of the particles that contribute
to turbidity were found to be inorganic (minerogenic) and of
terrigenous origin (Peng and Effler 2007). The contribution of
particles within various size classes was determined, establishing
that Tn is primarily associated with clay minerals, 1–10 μm in
diameter (Peng and Effler 2007; Peng et al. 2009). This direct char-
acterization of the turbidity-causing particles was invaluable in
guiding and constraining the specification of particle behavior in
the model (Gelda et al. 2009).

Resuspension Process Measurements

Deployments of two acoustic Doppler instruments were made in
the late summer of 2004 to investigate physical processes that lead
to bed stress and resuspension. A 6 MHz Nortek Vector acoustic
Doppler velocimeter (ADV) was deployed in the southern portion
of the basin along the thalweg [Fig. 1(b)] for August 10–17; water
depth at the site was ∼10 m. The cabled probe head of the ADV
was deployed in an upward-looking configuration with the meas-
urement volume located 0.2 m above the bed. The ADVoperated in
burst-mode, collecting a 10-min burst at 8 Hz each hour. The ADV
allowed direct determination of the turbulent bed stress components
�ρu0w0 and �ρv0w0, where ρ is the water density, u0 and v0 are the
orthogonal horizontal turbulent velocity fluctuations about their
mean values, w0 is the vertical velocity fluctuation about its mean
value, the overbar indicates the average over a burst interval, and

the bed stress τB ¼ ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0w02 þ v0w02

p
. The ADV simultaneously

measures acoustic backscatter intensity, a surrogate for suspended
sediment concentration. In addition, a 600 kHz Teledyne RD
Instruments Workhorse acoustic Doppler current profiler (ADCP)
was deployed in an upward-looking mode, in approximately 17 m
of water [Fig. 1(b)] near the lateral midpoint of the basin for the
September 1–22 interval. The ADCP was operated in Mode 1
(broadband) collecting 1,024 samples at 2 Hz in hourly bursts.

Fig. 1. (a) Schoharie Reservoir location in New York State; (b) reservoir features, monitoring locations, and model longitudinal segmentation;
(c) frequency of occurrence of minimum annual reservoir water surface elevation (WSE) and maximum annual drawdown; and all years for which
maximum annual drawdown exceeded 20 m occurred before 1980
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The instrument was configured with 35 bins (each 0.5 m in depth),
and hence profiled the entire water column.

The August 2004 deployment captured two moderate runoff
events [Fig. 2(a)]; Schoharie Creek was plunging throughout the
deployment, and the ADV was within the underflow formed by
the plunging creek. The dynamics in backscatter across the 3 beams
[Fig. 2(b)] showed strong correlation (r ¼ 0:72, p < 0:001) with
the creek discharge [Fig. 2(a)] during the events on August
12–13 and August 16–17. The 6-h lag between the peaks in the
hydrograph and backscatter is a result of travel time between
the two locations and was accounted for in determining the corre-
lation. Increases in backscatter on August 11–12 in the absence of
substantial discharge [Figs. 2(a) and 2(b)] depict the effects of first-
mode baroclinic (internal) seiching, which is also apparent in the
ADV burst-mode average velocity data (not shown). Baroclinic
seiche motion has been observed to drive resuspension elsewhere
(Pierson and Weyhenmeyer 1994). The similarity in the time series
of backscatter and discharge results from a combination of turbid
inflow from the watershed and local resuspension caused by the
bed stress caused by the underflow. The variation of the observed
bed stress τB [Fig. 2(c)] clearly indicates that runoff events lead to
increases in τB (August 13, 16, and 17). Such levels of τB have
been found to be sufficient to initiate resuspension in other water
bodies (James et al. 1997; Lick et al. 1994).

A consistent pattern was observed in the ADCP data from
September when two larger runoff events occurred [Fig. 2(d)].

Increases in backscatter associated with the event on September 7,
and particularly the larger event on September 17, again depict
the combined effects of tributary input and local resuspension
[Fig. 2(e)]. Local resuspension or advection driven by motion as-
sociated with the first-mode baroclinic seiche, with a period of
∼2 days, is suggested by the cyclic backscatter pattern observed
in portions of the deployment. A simple, two-layer first-mode
seiche calculation for the observed stratification conditions yields
a period of 2 days.

Existing Model and Enhancements

Model Components

The turbidity model W2Tn described in this study has three com-
ponents. The hydrothermal component, which computes water
motion (including motion associated with plunging inflow and in-
ternal seiche), temperature, diffusion/dispersion coefficients, bed
stress, WSE, and selective withdrawal, was directly adopted from
the U. S. Army Corps of Engineers model CE-QUAL-W2 (Cole
and Wells 2002). No modifications to the hydrodynamic, thermal,
or transport aspects of this public-domain code were made. The
turbidity component was originally described by Gelda and Effler
(2007a), and is advanced in this study to include resuspension. The
third component deals with surface waves. A portion of this com-
ponent, dealing with the prediction of wave characteristics as a
function of wind and basin characteristics, has been described
and tested previously (Owens 2009). Calculation of the bed stress
associated with predicted wave characteristics has been added to
the surface wave component.

The selection of a laterally-averaged, 2D approach for simulat-
ing turbidity in this reservoir was motivated by two considerations.
Most importantly, observations of turbidity, throughout the sea-
sonal cycle and over a wide range of hydrologic, meteorological,
and operating conditions, indicate that lateral gradients in turbidity
usually do not exist and are of modest magnitude and short duration
when observed (Effler et al. 2006b). In addition, there are serious
shortcomings associated with use of a 3D approach given the in-
tended management application of this model. This model of
Schoharie will be integrated with similar models of the two basins
of Ashokan (Gelda et al. 2009) and Kensico Reservoirs. Linked
simulations for these basins will be integrated within a larger
reservoir system model; iterative model solutions will be made to
determine optimal system operation subject to specified objectives,
rules, and constraints, including reservoir Tn levels simulated by
the W2Tn model. Long-term planning applications of this tool will
involve simulations for the record (currently 57 years; Gelda and
Effler 2008) of historical hydrologic and meteorological condi-
tions. The computational burden associated with this approach
would make use of a 3D model extremely impractical.

Hydrothermal Component of W2Tn

The hydrothermal component of W2Tn is established on later-
ally-averaged conservation equations for longitudinal momentum,
water volume, and temperature; hydrostatic pressure is assumed
in the vertical direction. This model has been applied to a num-
ber of systems, including the simulation of plunging inflows in
deep, narrow basins (Chung and Gu 1998; Ahlfeld et al. 2003).
A grid of 17 longitudinal segments [Fig. 1(b)], and layers 1 m in
thickness were used to describe spatial variations. As a result of
accurate simulation of observed seasonal variation in water col-
umn and withdrawal temperature for a 14-year period (Gelda and
Effler 2007b) and of the behavior of density currents in 2003
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Fig. 2. Schoharie Creek streamflow, ADV, and ADCP observations in
Schoharie Reservoir in 2004: (a) Schoharie Creek streamflow; (b) ADV
acoustic backscatter; (c) turbulent bed stress observed by the ADVand
predicted by the model at the ADV site; (d) Schoharie Creek stream-
flow; and (e) ADCP acoustic backscatter at 1.0 m above the bed
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(Gelda and Effler 2007a), the hydrothermal component of the
model has been validated for Schoharie Reservoir.

Turbidity Component of W2Tn

Aside from resuspension, the structure of the turbidity component
of W2Tn is identical to an earlier version used to study Tn at
Schoharie (Gelda and Effler 2007a; Gelda and Effler 2008). The
model uses Tn as the state variable and thus assumes that this
optical property behaves in a conservative manner. By using this
approach, good model performance has been achieved in simulat-
ing turbidity events in Ashokan Reservoir (Gelda et al. 2009) and
for full reservoir conditions in Schoharie Reservoir (Gelda and
Effler 2007a). Total turbidity is assumed equal to the sum of
turbidity associated with one or more particle classes; settling
velocity differentiates the classes. In this study, three particle
classes, represented by Stokes equivalent sizes (diameters) of 1.0,
3.1, and 8.1 um, respectively, were used. These are the same as
recently adopted for downstream Ashokan Reservoir (Gelda et al.
2009) based on equivalent light scattering characteristics of turbid-
ity-causing particles in the two reservoirs (Peng et al. 2009). More-
over, these particle sizes are consistent with the contributions of
various size classes to Tn in Schoharie Reservoir determined by
SAX measurements (Peng and Effler 2007; Peng et al. 2009).
These specifications for particle classes represent an upgrade from
the earlier application of W2Tn to Schoharie (Gelda and Effler
2007a), in which these features were more calibration-based and
less consistent with SAX observations. Model calibration, guided
by the findings for the primary tributary to Ashokan Reservoir
(Gelda et al. 2009), was used to determine the fraction of total tur-
bidity in stream inflow associated with the three particle classes.

The starting point for the enhancements associated with resus-
pension is the two-dimensional “turbidity conservation” equation

∂
∂t ðBTniÞ þ

∂
∂x ðBUTniÞ þ

∂
∂z ½BðW �WSiÞTni�

¼ ∂
∂x

�
BE

∂Tni
∂x

�
þ ∂
∂z

�
BD

∂Tni
∂z

�
þ dBR

dz
εRi þ

dBL

dz
εLii ð1Þ

where Tni = turbidity associated with particle class i; B = cross
section width; t = time; U = longitudinal velocity; x = longitudinal
position; W = vertical velocity; WSi = settling velocity of particle
class i; z = vertical position; E = longitudinal dispersion coefficient;
D = vertical diffusion coefficient; BR, BL = width of cross section to
right and left of centerline (BR þ BL ¼ B); and εRi, εLi = resuspen-
sion flux of turbidity associated with particle class i to right and left
of centerline. Separate resuspension expressions for the right and
left sides of the cross section were included to allow for wave-
induced resuspension to be different on the two sides, which
may occur because of differences in flux or bathymetry. This
two-dimensional equation assumes that Tni is uniform in the lateral
direction over the width B. However, the fluxes εRi and εLi vary
with z and thus with lateral position. Tn does not affect density
and is transported as a passive scalar.

The resuspension fluxes εRi and εLi are computed by

εRi ¼ εRWi þ εUi ð2a Þ

εLi ¼ εLWi þ εUi ð2b Þ

where εRWi and εLWi = surface wave-induced resuspension on the
right and left sides of the cross section; and εUi = current-induced
resuspension, each for particle class i. These components of resus-
pension are computed by

εRWi ¼

8<
:C1

�
τRW�τCi

τCi

�
C3

; for τRW > τCi
0; for τRW < τCi

ð3a Þ

εLWi ¼

8<
:C1

�
τLW�τCi

τCi

�
C3

; for τLW > τCi
0; for τLW < τCi

ð3b Þ

εUi ¼

8<
:C1

�
τU�τCi
τCi

�
C3

; for τU > τCi
0; for τU < τCi

ð3c Þ

where τRW and τLW = surface wave-induced bed stress on right
and left sides; τU = current-induced bed shear stress; C1 and C3 =
empirical coefficients; and τCi = critical bed stress for particle
class i.

The total resuspension rate was computed as the sum [Eq. (2)] of
the rates associated with the two mechanisms (currents and surface
waves) that generate bed stress. A more general approach would be
to calculate a single resultant stress that considers both components
of motion with proper accounting for differences in magnitude and
direction of the components and the oscillatory nature of wave
motion (Grant and Madsen 1979; Lick et al. 1994). The approach
expressed by Eq. (2) was used in this study for two reasons. First,
this model predicts water motion only in the longitudinal direction.
Procedures for combining current and wave-driven motion to de-
termine a resultant bed stress (e.g., Grant and Madsen 1979) require
the magnitude and direction (in the horizontal plane) of each com-
ponent of motion be known. Using this approach requires the use of
a 3D hydrodynamic model that is not otherwise justified for this
reservoir. More importantly, calculation of the two components
of bed stress in Schoharie Reservoir shows that the current-induced
(τU) and surface wave-induced (τRW , τLW ) bed stresses very rarely
reach significant (∼τCi) levels at the same time and location as dem-
onstrated subsequently. In other words, at any particular time and
location, only one of the fluxes on the right side of Eq. (2) is sig-
nificant. The current-induced bed stress is computed by

τU ¼
ρg
C2
B
U2 ð4Þ

where CB = Chezy roughness coefficient; and g = acceleration of
gravity.

Surface Wave Component of W2Tn

The prediction of surface wave characteristics in W2Tn was accom-
plished by using a framework based on the Donelan/GLERL wave
model (Schwab et al. 1984). The application and testing of this
framework for Schoharie Reservoir has been described elsewhere
(Owens 2009), and is summarized briefly in this work. A model
grid, consisting of 1,812 fifty-meter squares, was used to represent
the reservoir water surface at full storage with a bottom elevation
assigned to each grid square. The effect of changing water-surface
elevation was considered by allowing individual squares to become
inactive during drawdown and reactivated during refilling. The
steep nearshore bottom slopes, together with relatively small wave-
length (maximum ∼1 m), indicate that wave-induced bed stress
occurs in a narrow shallow strip along the leeward shore. The width
of this strip is less than the 50-meter grid size so that the transition
from deep water to the shoreline, and the accompanying wave
shoaling and refraction, was not simulated by the model. The
model was validated by comparing predictions to field wave mea-
surements made in the fall of 2002, a period that included several
wind events (Owens 2009).
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Previous lake or reservoir water quality models that simulate
surface wave-induced resuspension have been applied to shallow
water bodies (Luettich et al. 1990; Hawley and Lesht 1992; Lick
et al. 1994; James et al. 1997; Jin and Ji 2004). In these models,
the gradual increase in τW moving from deep water toward the
shoreline was considered in the calculation of resuspension. In
Schoharie, this transition occurs over distance less than the size
of a 50-meter grid square and makes the calculation of bed stress
associated with local wave characteristics and water depth prob-
lematic. W2Tn computes the average bed stress over the nearshore
region from the rate of dissipation of wave energy determined from
deep-water wave characteristics. The wave power per unit length of
shoreline F was computed from wave model predictions (Dean and
Dalrymple 1991)

F ¼ 1
16

ρg2
H2

ω
cosΔθS ð5Þ

where H and ω = significant wave height and frequency; andΔθS =
angle of incidence of waves relative to shoreline (jΔθSj ≤ π=2).
The average bed stress over the nearshore region is

τW ¼
F

BWCg
¼ ρg

8BW
H2 cosΔθS ð6Þ

where BW = width of resuspension zone; τW = average bed stress
over BW ;and Cg = wave group velocity. Predictions of wave height,
period, and direction were used in Eq. (6) to compute τW for each
of the grid squares located at the shoreline. Average values of τW
were computed for the grid squares located along the right and left
shorelines in each longitudinal segment in the 2D model, yielding
values of τRW and τLW for each segment. These bed stresses were
then used in the turbidity component of the model [Eqs. (3a) and
(3b)] to determine resuspension.

Model Testing

W2Tn was tested for the conditions that occurred at Schoharie
Reservoir from September 2002 through December 2005. This in-
terval includes a severe runoff event (April 3, 2005; the daily aver-
age Schoharie Creek streamflow of 439 m3=s ranked eighth in the
106-year streamflow record) and another major event (September
18, 2004; the daily average flow of 422 m3=s ranked tenth in the
record). Both of these events, and a series of moderate events in
spring 2003 and fall of 2003 and 2004, occurred at full reservoir
storage [Figs. 3(a) and 3(b)]. Significant drawdown occurred in the
summer–fall interval of 2002 and 2005 [Fig. 3(b)]; the 16–17 m
maximum drawdown that occurred in these two years was
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exceeded in approximately half the years of the record [Fig. 1(c)].
Modest runoff events in the fall of both years quickly refilled the
reservoir [Fig. 3(a) and 3(b)].

A further validation of the previously tested (Gelda and Effler
2007a) hydrothermal component of the model was completed by
comparison of the ADV-observed bed stress to the model prediction
[Eq. (4)] at the deployment location [Fig. 1(a)]. The predicted and

observed bed stress compared well for the August 10–17, 2004
interval [Fig. 2(c)], providing direct validation of the use of
CB ¼ 70 [Eq. (4)], and more generally of the ability of the laterally
averaged 2D model to predict local water motion and bed stress
conditions.

The Ashokan model (Gelda et al. 2009) and the earlier work at
Schoharie (Gelda and Effler 2007a) established that multiple par-
ticle classes and the associated settling velocities are required to
simulate the dynamics of impact and recovery of the water column
caused by runoff events; although three particle classes were mod-
erately better than two, more than three produced little additional
benefit. The Stokes equivalent sizes for the three particles classes
determined for Ashokan Reservoir (Gelda et al. 2009) were
adopted for Schoharie (Table 1). These velocities, and the related
time scale for particle deposition tDi ¼ �h=WSi in which �h is the
mean depth of the basin, vary significantly for the three classes
(Table 1). Initial testing focused on April 2003–December 2004,

Table 1. Turbidity Particle Size Class Coefficients Not Related to Resuspension

Particle Class
Stokes equivalent

size, (μm)
Settling velocity

at 18°C Wsi, (m=day)
Deposition

time scale, tDi, (day)

Tributary load fraction (%)

Q < 40 m3=s Q > 40 m3=s

Class 1 (small) 1.0 0.075 220 10 10

Class 2 (medium) 3.1 0.75 22 65 45

Class 3 (large) 8.1 5.0 3.3 25 45

Table 2. Values of Resuspension Coefficients for Schoharie Reservoir

Coefficient Value

C1 (NTU·m · s�1) 1 × 10�5

C3 (dimensionless) 2.6

τC1 (Pa; small fraction) 0.08

τC2 (Pa; medium fraction) 0.10

τC3 (Pa; large fraction) 0.20
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when the reservoir was full ∼90% of the time [Fig. 3(b)]. Model
performance for this period was good without invoking resuspen-
sion associated with currents or surface waves, a result consistent
with the earlier application of W2Tn to Schoharie (Gelda and Effler
2007a). The fraction of the observed Schoharie Creek inflow tur-
bidity assigned to each particle size class (Table 1) was adjusted to
maximize model performance for this period. A modest shift in the
fractions was made for days when the daily average Schoharie
Creek flow exceeded 40 m3=s (Table 1). This allowed the model
to simulate the large April 2005 event accurately. These fractional
contributions, including the shift for high flow, were qualitatively
consistent with SAX observations for Schoharie Creek and the
effect of elevated streamflow and resulting bed stress on particle
size distributions (Effler et al. 2007).

The model generally underpredicted the observed turbidity in
the water column and reservoir withdrawal for the drawdown
periods in the fall of 2002 and 2005 when resuspension was not
simulated [C1 ¼ 0, Eq. (3)]. Preliminary calibration of the resus-
pension coefficients C1 and C3, and the critical shear stress τCi
[Eq. (3)], lead to values of C1 ≈ 10�5 NTU-m=s, C3 ¼ 2:6, and
τCi ≈ 0:1 Pa. With the critical stress equal for the three classes,
equal amounts of turbidity are resuspended from the bed for each
class. Final calibration of the critical bed stress, accounting for
events occurring during drawdown and the April 2005 event,
yielded values of the critical shear stress that differed for the three
classes (0.08, 0.1, and 0.2 Pa for the small, medium, and large
Stokes equivalent size classes, respectively; Table 2).

Predictions shown in this study (Figs. 3–6) are based on a con-
tinuous simulation for September 2002 through December 2005, by
using the observed water column T and Tn for initial conditions.
Comparison of predicted and observed Tn, averaged vertically over
three portions of the water column, indicate the model performed
well in simulating the peaks associated with events, the recovery
from peaks, and the overall dynamics of turbidity in the reservoir
at Site 3 near the intake structure [Figs. 3(c)–3(e)]. The focus is on
the prediction of Tn at levels of water quality concern in this res-
ervoir (> 10 NTU), which only occur in response to runoff events
[Fig. 3(a)]. When the Tn predictions are viewed as a time series at
one depth or a range of depths, the effect of resuspension is most
obvious during the period of recovery from events [Figs. 3(c)–3(e)].

The effect of resuspension is seen more clearly when the pre-
dictions are viewed as vertical profiles (Fig. 4). At the onset of the
runoff event of October 12, 2002, the reservoir was drawn down
apprpximately 16 m [Fig. 3(b)]. At Site 1.5 [Fig. 1(a)], as through-
out the deeper stratified portion of the reservoir, the maximum
turbidity was observed at ∼7 m depth, attributable to the turbid
interflow from Schoharie Creek [Figs. 4(a) and 4(b)]. The model
captured the observed subsurface peak. This feature of model
performance depended critically on accurate prediction of mixing
associated with the plunging inflow, and the depth of the interflow,
by the hydrothermal component of the model. The magnitude of Tn
was also simulated well, in large part because of the effect of re-
suspension, particularly in the early portion of the event (difference
in simulations with and without resuspension; Figs. 4(a)–4(c)]. The
greatest increase in turbidity associated with resuspension occurred
at the subsurface peak. This indicates that resuspension was pre-
dicted to occur in the upper portion of the reservoir where Scho-
harie Creek flows through a reduced cross-sectional area because of
drawdown, thus creating large velocity U, shear stress τU [Eq. (4)],
and resuspension εU [Eq. 3(c)]. This resuspended material is effec-
tively added to the turbidity “load” from the watershed and enters
the water column as an interflow. Resuspension also improved
the model predictions for the slightly larger event of October 17
[Fig. 4(d)] and in the recovery following both October events

[Figs. 4(c) and 4(e)]. The model also performed well in simulating
the interflow-driven vertical distribution of Tn for the September
2004 event at Site 1.5 [Figs. 4(f)–4(j)] when the reservoir was
at full storage [Fig. 3(b)]. As a result, the impact of resuspension
on the predicted Tn was less than in the fall of 2002. As under
drawdown conditions, the impact of resuspension was greatest
at the subsurface peak [Figs. 4(g)–4(i)]. The recovery of the water
column to lower Tn levels following the event was simulated well
by the model [Fig. 4(j)].

The highest turbidities observed in the reservoir during the
2002-2005 interval occurred following the severe runoff event
on April 2–3, 2005. As in the 2002 and 2004 events, Schoharie
Creek was cooler and plunged. However, because of the lack of
thermal stratification in the water column, the plunging, turbid
stream flowed down the sloping bottom into the deepest portions
of the reservoir and formed a thick, highly turbid (peaks
∼300 NTU) underflow layer over the length of the basin
[Figs. 4(k)–4(p)]. This event was also unusual in that elevated
Tn persisted in the lower waters for approximately four months fol-
lowing the event [Figs. 3(c)–3(e)], despite a lack of significant addi-
tional runoff [Fig. 3(a)]. The model performed well in simulating
the thickness of the turbid layer and the vertical distribution of
Tn [Figs. 4(k)–4(p)]. Resuspension had a significant impact
on the predictions, both weeks [Figs. 4(k)–4(m)] and months
[Figs. 4(n)–4(p)] after the event.

Resuspension driven by surface waves occurs at depths less than
approximately 1 m in Schoharie Reservoir, where the rather small
waves (Owens 2009) cause significant bed stress. The effect of
resuspension in this range of depth was relatively small throughout
the simulation period (Fig. 4), indicating that current-induced
resuspension was more significant than that caused by surface
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Fig. 5. Frequency of occurrence of various levels of predicted bed
stress at selected points in the reservoir for the September 2002–
December 2005 simulation: (a) current-induced bed stress, τU , in
the thalweg at the site of the ADV deployment (τU > 1:0 Pa for
0.25% of the simulation period); (b) surface wave-induced bed stress
on the right side, τRW , at the segment containing Site 2, which is on
average the location of maximum surface wave effect; and the critical
shear stress for resuspension for the 3 particle classes considered in the
model (τC1, τC2, and τC3) are shown
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waves. At a site on the east shoreline of the reservoir near Site 2,
where average wave impact is largest, the wave-induced bed stress
(τRW ) exceeded the critical stress τC1 ¼ 0:08 Pa only 0.5% of the
time, and peak values of τRW were less than for τU [Fig. 5(b)]. At
the site of the ADV deployment in the upstream portion of the
reservoir [Fig. 1(a)], the bed stress associated with currents (τU)
exceeded the lowest critical shear stress for resuspension (τC1 ¼
0:08 Pa) approximately 1% of the time over the entire September
2002–December 2005 simulation period [Fig. 5(a)]. Thus, resus-
pension is an infrequently occurring, episodic process, although
its impact may persist for weeks or months after resuspension
has ceased while the slowly settling fraction remains suspended
in the water column [Figs. 4(k)–4(p)].

The frequency of occurrence of various levels of high
(> 10 NTU) withdrawal turbidity (TnW ) predicted by the model
compared very well with the corresponding frequency distribution
of observed TnW for the September 2002–December 2005 period
(Fig. 6). Accurate prediction of high TnW levels serves as an addi-
tional validation of predictions of Tn in the water column and of the
model’s selective withdrawal algorithm used to mix water and Tn
from various layers at and near the elevation of the intake to de-
termine TnW : Including resuspension in the model increased the
accuracy of predictions of TnW (Fig. 6). Average levels of model
error (Table 3) were similar to those achieved in the model appli-
cation to Ashokan Reservoir (Gelda et al. 2009) and indicate the
improved accuracy resulting from consideration of resuspension.

Discussion

Resuspension was generally the dominant source of particles to the
water column in previous modeling studies of lake and reservoirs

that considered resuspension (Hawley and Lesht 1992; Lick et al.
1994; James et al. 1997; Luettich et al. 1990). Relative to Schoharie
Reservoir, these water bodies are much more shallow and with
greater fetch so that surface waves induce resuspension over most
of, or the entire, bottom area. In Schoharie Reservoir, the primary
source of particles and turbidity to the water column is loading from
tributaries. Resuspension occurs over a small fraction of the reser-
voir bottom—primarily along the thalweg in the shallow upstream
areas during runoff events (current-induced) and secondarily in
shallow regions along the leeward shore (surface wave-induced).
Resuspension plays a secondary, but nonetheless significant, role
as a source of particles to the water column. The importance of
resuspension is greatest during runoff events that are either very
severe (e.g., the April 2005 event) or occur during periods of draw-
down (late summer–fall of 2002 and 2005).

Many reservoirs and some lakes are bathymetrically similar to
Schoharie Reservoir because impoundment and storage of a large
water volume is achieved by construction of a high dam in a rel-
atively narrow valley. The 2D framework of W2Tn would be appli-
cable to water quality problems associated with suspended particles
in such reservoirs. For a problem such as eutrophication, the frame-
work may be simplified to simulate a single particle class, and
Eq. (3) may be recast to represent resuspension of particle mass
rather than turbidity, as generally done in shallow lake eutrophica-
tion models (James et al. 1997). Resuspension has been found
to play a role in reservoir eutrophication in a reservoir similar to
Schoharie (Effler and Matthews 2004).

Of course, deep lakes and reservoirs exist for which the
assumption of lateral homogeneity is not valid and may require
a three-dimensional approach. In such systems, the general resus-
pension approach taken in this study may be used. If the conditions
are such that current and surface wave-induced bed stress occur
simultaneously over significant portions of the bed, then the pre-
dicted bed stress caused by currents, predicted by a 3D hydrody-
namic model, may be combined with the predicted bed stress from
a surface wave model (Grant and Madsen 1979) to generate a total
stress to drive resuspension [Eq. (3)].

No simulation of characteristics of the sediment bed was in-
cluded in the described model. Sediment bed components have
been included in resuspension models and may quantify the local
accumulation of mass from deposition, loss from resuspension,
armoring of the bed by preferential resuspension of individual size
fractions, and time-dependent cohesive effects on the resuspension
rate (Lick et al. 1994; Ziegler and Nisbet 1995). Simulation of sedi-
ment mass in the bed allows for resuspension to be limited by the
supply or availability of particles at the bed surface. Although in-
cluding these processes in a model potentially provides additional
predictive capability, such advantages can only be realized if these
processes are important in regulating the conditions of practical in-
terest and if data are available to quantify rates or coefficients used
to simulate these processes. W2Tn effectively assumed that the
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period; observed turbidity less than 10 NTU were not included; only
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Table 3. Performance of the Turbidity Model W2Tn in Simulating Reservoir Water Column and Withdrawal Tn with (C1 ¼ 1 × 10�5) and without (C1 ¼ 0)
Simulation of Resuspension

Period

Normalized root mean square error in Tn (%)

Water column Withdrawal

With resuspension No resuspension With resuspension No resuspension

Drawdown was significant: September–December 2002,

July–December 2005

20 34 17 32

Full reservoir (drawdown was small): January 2003–June 2005 17 16 14 15

Note: Normalized root mean square (rms) error is the rms error relative to the observed peak turbidity for the most recent runoff event.
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resuspension rate [Eq. (3)] is not limited by the supply of sediment
on the bed. Model testing of W2Tn for Schoharie Reservoir indi-
cates that sediment resuspension can be adequately simulated by
using a simpler framework that does not include a bed component.

Accurate prediction of the turbidity peaks for the various events
[Figs. 3(c)–3(e)] indicates that the total quantity of turbidity input
to the water column from watershed loading and resuspension is
simulated accurately. Also of interest is the predicted 4-month-long
recovery of the water column from the peak for the April 2005
event. In approximately the first 2 weeks after the event, deposition
is dominated by large particles (tD3 ¼ 3:3 days; Table 1). From
approximately 2 weeks to 2 months after the event, the large
particles are mostly absent from the water column and deposition
of medium class (tD2 ¼ 22 days) dominates. After 2 months, par-
ticles in the water column are predominantly of the small class
(tD1 ¼ 220 days). The model generates accurate predictions of
the recovery over each of these three portions of the 4-month re-
covery period [Figs. 3(c)–3(e)], indicating that the relative contri-
bution of the three classes to watershed loading and resuspension
was simulated accurately. These model predictions are also consis-
tent with the observed slow attenuation of ADV backscatter peaks.

Summary

A model (W2Tn) that simulates the fate and transport of particles
that contribute to turbidity in the water column of a lake or reservoir
is described with emphasis on enhancements to include particle re-
suspension. W2Tn uses a two-dimensional, laterally averaged ap-
proach to represent conditions in the water column, and so is well
suited to simulate turbidity in deep, narrow lake and reservoir ba-
sins. The model has hydrothermal, surface wave, and turbidity
components. The hydrothermal component is adopted directly from
CE-QUAL-W2, a 2D lake and reservoir model, and predicts lon-
gitudinal and vertical water motion, advective and dispersive trans-
port, water surface elevation, and temperature, and simulates
selective withdrawal of reservoir outflows. The surface wave com-
ponent, added in the enhanced model, predicts wave characteristics
(significant height and period) over the surface of the water body,
and bed stress because of waves. Lastly, the turbidity component
computes this optical property in the water column and is enhanced
to include simulation of the resuspension of turbidity-causing
particles driven by currents and surface waves.

The model was tested for Schoharie Reservoir, an 8-km-long,
42-m-deep water supply reservoir located in the Catskill region
of New York State, for a 3.5-year period. This reservoir experiences
episodes of elevated turbidity caused by runoff events in its tribu-
tary streams. Measurements of environmental conditions, including
meteorology, reservoir operations (water withdrawal and spill), and
tributary inflow (flow, temperature, and turbidity) were used as
model inputs. Water column turbidity, temperature measurements
from robotic and manual monitoring programs, and measurements
of withdrawal turbidity and temperature provided data for model
validation. Measurements of bed stress, which were obtained by
using an ADV deployed in the drowned channel of the major tribu-
tary, found that variations in bed stress were correlated with stream-
flow, and good comparison was found with current-induced bed
stress predicted by the model. Physical and chemical characteriza-
tion of collections of individual particles from Schoharie Reservoir
and its major tributary also supported testing of the model.

Three classes of turbidity, differentiated by settling velocity or
Stokes equivalent particle size, were used in this model application.
Site-specific values of three model coefficients used to quantify re-
suspension were determined by optimizing the agreement between

predicted and observed turbidity in the reservoir water column and
withdrawal. The validated model generated predictions of turbidity
in the water column and reservoir withdrawal that agreed well with
observations over the 3.5-year period, which included two severe
and numerous moderate runoff events and two periods of signifi-
cant reservoir drawdown. The model accurately simulated subsur-
face peaks in the water column associated with plunging stream
inflow to the reservoir, longitudinal variations in turbidity, and
the return to low turbidity levels following events. Resuspension
was found to contribute importantly to turbidity in the water col-
umn during periods of drawdown and for severe runoff events.
W2Tn may be applied to the analysis of turbidity in other water
bodies where the two-dimensional approach is applicable. More-
over, the enhanced model is appropriate to support robust simula-
tion of the effects of resuspension for various water quality issues
associated with particles.
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Notation

The following symbols are used in this paper:
B = cross section width;

BL, BR = cross section width to the left and right of centerline;
BW = width of resuspension zone;

C1, C3 = empirical resuspension coefficients;
CB = Chezy roughness coefficient;
D = vertical diffusion coefficient;
E = longitudinal dispersion coefficient;
g = acceleration of gravity;
H = significant wave height;
�h = mean depth of reservoir basin;
t = time;

tD = deposition time scale;
U = longitudinal current velocity;
W = vertical velocity;

WSi = settling velocity of particle class i;
x = longitudinal position;
z = vertical position;

ΔθS = angle of incidence of waves relative to the shoreline;
εLi, εRi = resuspension flux of particle class i to left and right of

centerline;
εUi = current-induced resuspension of particle class i;
ρ = water density;

τCi = critical bed stress for resuspension of particle class i;
τLW ,
τRW

= surface wave-induced bed stress on the left and right
side of centerline;

τU = current-induced bed stress; and
ω = significant wave frequency.
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For lakes, changes in the timing of ice-on and ice-off, along
with changes in the duration of ice cover, have been clearly

established as sensitive indicators of climate change (e.g., Mag-
nuson et al. 2000). Long-term trends toward later ice-on and
earlier ice-off, presumably associated with global warming,
have been detected in Canada (Skinner 1993; Duguay et al.
2006), Finland (Palecki and Barry 1986; Korhonen 2006),
Switzerland (Livingstone 1997), and in the New England
(Hodgkins et al. 2002) and North Central regions of the United
States (Robertson et al. 1992; Johnson and Stefan 2006; Jensen
et al. 2007). Simulations of future ice cover dynamics based on
Global Climate Model (GCM) output also suggest that the
duration of lake ice cover will decrease as result of global warm-
ing (Fang and Stefan 1998, 1999; Stefan et al. 1998).

Because changes in the timing and duration of ice cover
influence lake biology and biogeochemistry, they can be
expected to be an important mechanism through which the
effects of global warming are transferred to lake ecosystems
(Blenckner 2005). The timing of ice-off has been shown to
influence the timing, magnitude, and composition of the phy-
toplankton spring bloom (Pettersson 1990; Adrian et al. 1999;
Weyhenmeyer et al. 1999), and winter oxygen concentrations
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Abstract
A simple method to automatically measure the date of ice-on, the date of ice-off, and the duration of lake ice

cover is described. The presence of ice cover is detected by recording water temperature just below the ice/water
interface and just above the lake bottom using moored temperature sensors. The occurrence of ice-on rapidly leads
to detectible levels of inverse stratification, defined as existing when the upper sensor records a temperature at least
0.1°C below that of the bottom sensor, whereas the occurrence of ice-off leads to the return of isothermal mixing.
Based on data from 10 lakes over a total of 43 winter seasons, we found that the timing and duration of inverse
stratification monitored by recording temperature sensors compares well with ice cover statistics based on human
observation. The root mean square difference between the observer-based and temperature-based estimates was 7.1
d for ice-on, 6.4 d for ice-off, and 10.0 d for the duration of ice cover. The coefficient of determination between
the two types of estimates was 0.93, 0.86, and 0.91, respectively. The availability of inexpensive self-contained tem-
perature loggers should allow expanded monitoring of ice cover in a large and diverse array of lakes. Such moni-
toring is needed to improve our ability to monitor the progression of global climate change, and to improve our
understanding of the relationship between climate and ice cover over a wide range of temporal and spatial scales.
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(Fang and Stefan 1997; Wiedner and Nixdorf 1998; Phillips
and Fawley 2002). The timing of ice-out may also influence
spring and summer lake water temperatures (Austin and Col-
man 2007, 2008), with longer-term effects on hypolimnetic
temperatures following thermal stratification (Livingstone
1993; Gerten and Adrian 2001; Straile et al. 2003).

Ice phenology data are still most commonly recorded by
visual observation. The use of satellite remote sensing for this
purpose is becoming more and more common (Wynne et al.
1996; Wynne et al. 1998; Latifovic and Pouliot 2007), and it
has been shown that satellite-derived estimates of ice cover
phenology, particularly ice loss, are close to observer-based
estimates (Wynne et al. 1996). The utility of satellite remote
sensing, however, is limited by the occurrence of cloud cover
and by the fact that it is generally only suitable for large lakes
(e.g., >10 km2). While ice phenology is strongly related to
global and regional climatic forcing, local conditions such as
topography, lake basin morphometry, and snow accumula-
tion patterns also play a role (Williams et al. 2004). Monitor-
ing the ice cover of a large number of lakes over a large spa-
tial extent would therefore, allow the mechanisms
responsible for local variations in ice cover to be better under-
stood, and would also allow estimates of regional variations
in ice cover to be made that more adequately account for
local variability. When surveying regional variations in ice
cover, it can be especially important to include lakes of all
size and remote lakes in sparsely populated areas where dedi-
cated human observers are not available and where frequent
sampling is not possible.

To increase the consistency of ice cover measurements,
and to make it possible to record routinely the timing and
duration of ice cover on large numbers of lakes, a simple auto-
mated method to detect ice cover is needed. We demonstrate
the utility of a method based on automatic water temperature
measurements that uses the timing of the beginning and end
of inverse thermal stratification as an indicator of the timing
of ice-on and ice-off. This simple method for estimating the
timing and duration of ice cover is tested on a number of
lakes and reservoirs, most of which are part of the Global
Lakes Ecological Observatory Network (GLEON;
www.gleon.org). Given the simplicity of the method, the
availability of inexpensive autonomous temperature loggers,
and the clear need for expanded lake ice monitoring, we sug-
gest that such temperature-based ice-phenology mea-
surements can supplement present efforts to monitor lake ice.
The purpose of this article is to systematically compare esti-
mates of the onset, loss, and duration of ice cover based on
the proposed temperature-based estimation method and esti-
mates based on visual observation. We also examine the
effects of using two different temperature sensor deployments
with the proposed temperature-based method; a surface tem-
perature sensor moored at a shallow depth that freezes into
the ice cover, or a surface sensor moored just below the max-
imum depth of the ice.

Materials and procedures

The lakes and reservoirs included in this study are listed in
Table 1. All have systems for recording lake water temperatures
automatically that are deployed during the winter ice season,
and all have independent, observer-based estimates of the tim-
ing and duration of lake ice cover. For all lakes, relevant mete-
orological data, such as wind speed, solar radiation, and air tem-
perature, are available that are measured either on the same
monitoring buoy that carries the water temperature measuring
system or at a nearby meteorological station. At Lake Erken,
Sweden, from which much of our data were obtained, the water
temperature is measured at 3 depths (1.0, 3.0, and 15 m) using
thermocouple sensors that are moored year-round in the lake
(Table 2); in addition, there is a permanent lake monitoring sta-
tion located on a small island approximately 500 m from shore
and 100 m from the deepest part of the lake at which a number
of routine meteorological measurements are made.

A number of relatively inexpensive (approximately $150-
$200) autonomous temperature logging systems are commer-
cially available that would be suitable for detecting ice cover as
we describe here. Two such systems (manufactured by Vemco
and Onset) are used at sites included in this study (Table 2).
These systems are hermetically sealed, contain a long-life bat-
tery, and are capable of logging water temperature data over at
least a six-month period. Once retrieved, data can be down-
loaded as an optical signal transmitted through the tempera-
ture logger housing. The great advantage of these systems is
that they can be rapidly deployed and do not require under-
water cabling and an onshore data logger installation, as used
at Lake Erken. These systems could, therefore, be deployed in
large numbers of lakes to provide a better understanding of
local and regional variability in lake ice phenology.

Two different mooring configurations were used at the dif-
ferent lake sites listed in Table 1. At some sites, the uppermost
sensor was deployed at a depth just below the expected maxi-
mum depth of ice cover. In Lake Erken, for example, the
uppermost sensor was permanently moored at a depth of 1 m
(Fig. 1), so ice movements had no effect on the installation.
Sensors at Lake Erken have performed reliably without main-
tenance for periods of up to 10 y. An alternative is to place one
sensor at a shallow depth (e.g., 0.1 m) and for the mooring
buoy to be deployed at, rather than below, the surface. This
mooring configuration is more precise in detecting the timing
of ice-on and ice-off, but requires greater maintenance, and
also requires sensors that can withstand being frozen into the
ice. It is well suited for autonomous temperature loggers, as
the recorded data must be retrieved from these regularly,
allowing the mooring to be checked and redeployed immedi-
ately after data retrieval.

From the water temperature time series, the period of ice
cover can be discerned as the period during which inverse
thermal stratification is continually recorded. The boundary
between isothermal and inversely stratified conditions is quite
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Table 1. Details of ice phenology estimates. Mean values are calculated for both estimates of onset, loss, and duration of ice cover and
the difference between methods. Means also show 95% confidence interval. The root mean square of the differences is calculated. 

Observed determined 
Data from minus temperature 

temperature sensors Visual observations determined estimates
Lake Location Winter Onset Loss Duration Onset Loss Duration Onset Loss Duration

Erken Sweden 1988-1989 2-Dec-88 5-Feb-89 65 1-Dec-88 3-Feb-89 64 –1 –2 –1
Erken Sweden 1989-1990 6-Dec-89 7-Dec-89 6-Feb-90 61 1
Erken Sweden 1990-1991 14-Jan-91 27-Mar-91 72 11-Jan-91 21-Mar-91 69 –3 –6 –3
Erken Sweden 1991-1992 23-Jan-92 22-Mar-92 59 25-Jan-92 12-Mar-92 47 2 –10 –12
Erken Sweden 1992-1993 18-Mar-93 21-Feb-93 18-Mar-93 25 0
Erken Sweden 1995-1996 29-Nov-95 16-Apr-96 139 28-Nov-95 15-Apr-96 139 –1 –1 0
Erken Sweden 1996-1997 20-Dec-96 18-Mar-97 88 18-Dec-96 13-Mar-97 85 –2 –5 –3
Erken Sweden 1997-1998 2-Feb-98 1-Feb-98 4-Apr-98 62 –1
Erken Sweden 1998-1999 20-Dec-98 4-Apr-99 105 20-Dec-98 9-Apr-99 110 0 5 5
Erken Sweden 1999-2000 22-Dec-99 27-Mar-00 96 29-Dec-99 16-Apr-00 109 7 20 13
Erken Sweden 2000-2001 13-Jan-01 9-Apr-01 86 19-Jan-01 9-Apr-01 80 6 0 –6
Erken Sweden 2001-2002 23-Dec-01 29-Mar-02 96 15-Dec-01 4-Apr-02 110 –8 6 14
Erken Sweden 2002-2003 7-Dec-02 8-Dec-02 5-Apr-03 118 1
Erken Sweden 2003-2004 30-Dec-03 1-Apr-04 93 30-Dec-03 14-Apr-04 106 0 13 13
Erken Sweden 2004-2005 8-Apr-05 27-Jan-05 11-Apr-05 74 3
Erken Sweden 2005-2006 4-Jan-06 22-Apr-06 108 1-Jan-06 24-Apr-06 113 –3 2 5
Erken Sweden 2006-2007 27-Jan-07 24-Mar-07 56 24-Jan-07 1-Apr-07 67 –3 8 11
Erken Sweden 2008-2009 6-Jan-09 10-Apr-09 94 3-Jan-09 14-Apr-09 101 –3 4 7
Mälaren/Galten Sweden 1998-1999 22-Nov-98 10-Apr-99 139 19-Nov-98 8-Apr-99 140 –3 –2 1
Mälaren/Galten Sweden 1999-2000 15-Dec-99 26-Mar-00 102 14-Dec-99 22-Mar-00 99 –1 –4 –3
Mälaren/Galten Sweden 2000-2001 12-Jan-01 14-Jan-01 2
Mälaren/Ekoln Sweden 1998-1999 11-Jan-99 1-Apr-99 80 11-Jan-99 8-Apr-99 87 0 7 7
Mälaren/Ekoln Sweden 1999-2000 31-Dec-99 23-Apr-00 114 31-Dec-99 17-Apr-00 108 0 –6 –6
Mälaren/Ekoln Sweden 2000-2001 10-Jan-01 14-Jan-01 4
Pääjärvi Finland 2000-2001 4-Jan-01 30-Apr-01 116 20-Jan-01 25-Apr-01 95 16 –5 –21
Valkea-kotinen Finland 2002-2003 26-Apr-03 18-Oct-02 7-May-03 201 11
Valkea-kotinen Finland 2003-2004 10-Nov-03 21-Nov-03 28-Apr-04 159 11
Valkea-kotinen Finland 2004-2005 16-Nov-04 16-Nov-04 26-Apr-05 161 0
Sparkling Wisconsin 1999-2000 8-Dec-99 2-Apr-00 116 16-Dec-99 2-Apr-00 108 8 0 –8
Sparkling Wisconsin 2000-2001 28-Nov-00 14-Apr-01 137 2-Dec-00 22-Apr-01 141 4 8 4
Sparkling Wisconsin 2001-2002 13-Dec-01 24-Apr-02 132 25-Dec-01 18-Apr-02 114 12 –6 –18
Sparkling Wisconsin 2002-2003 24-Nov-02 22-Apr-03 149 26-Nov-02 24-Apr-03 149 2 2 0
Sparkling Wisconsin 2003-2004 21-Nov-03 20-Apr-04 151 2-Dec-03 17-Apr-04 137 11 –3 –14
Sparkling Wisconsin 2004-2005 21-Nov-04 10-Apr-05 140 16-Dec-04 14-Apr-05 119 25 4 –21
Sparkling Wisconsin 2005-2006 20-Nov-05 2-Dec-05 13-Apr-06 132 12
Trout Bog Wisconsin 2003-2004 12-Nov-03 21-Apr-04 161 8-Nov-03 20-Apr-04 164 –4 –1 3
Trout Bog Wisconsin 2004-2005 19-Nov-04 13-Apr-05 145 23-Nov-04 14-Apr-05 142 4 1 –3
Trout Bog Wisconsin 2005-2006 28-Nov-05 21-Nov-05 12-Apr-06 142 –7
Ashokan Reservoir New York 2004-2005 19-Jan-05 31-Mar-05 71 14-Jan-05 1-Apr-05 77 –5 1 6
Rondout Reservoir New York 2004-2005 16-Jan-05 9-Apr-05 83 24-Jan-05 4-Apr-05 70 8 –5 –13
Rondout Reservoir New York 2006-2007 14-Feb-07 27-Mar-07 41 12-Feb-07 28-Mar-07 44 –2 1 3
Rondout Reservoir New York 2007-2008 9-Feb-08 22-Mar-08 42 2-Feb-08 31-Mar-08 58 –7 9 16
Lake Sunapee New Hampshire 2007-2008 29-Nov-07 22-Apr-08 145 23-Apr-08 1
Mean (all data) 20 Dec 6 Apr 23 Dec 7 Apr 2.1 1.5 –0.8 

± 8.3d ± 5.4d ± 8.3d ± 5.5d ± 2.1 ± 2.1 ± 3.6’
RMS Difference (all data) 7.1 6.4 10.0
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clear, and from temperature time-series such as those illus-
trated in Fig. 1B, it is possible to estimate the timing and dura-
tion of ice cover by simple visual inspection. However, to
maintain the greatest possible consistency when comparing
different time periods and different sites, we used a simple
algorithm to define the presence of ice cover. In most cases,

lakes were classified as ice-covered any time the temperature
difference between the bottom and top temperature sensors
was greater than 0.1°C. The top sensor used in these calcula-
tions was always the shallowest deployed and varied in depth
from 0.01-3.0 m at different sites (Table 2). This method can
detect ephemeral ice formation when ice forms for relatively

Table 2. Temperature sensor and data logger information. 

Temperature Upper and lower 
Site Logger and sensor information resolution depths (m)

Lake Erken, Sweden Campbell Scientific CR10 Thermocouple Temperature Sensors 0.05°C* 1.0, 15.0
Lake Sunapee, New Hampshire Campbell CR10 and Apprise Technology Templine 0.1°C† 0.1, 13.0
Wisconsin Lakes Apprise Technology. TempLine 0.1°C†

Sparkling 0.01, 18.0
Trout Bog 0.01, 7.0

New York City Reservoirs Vemco Minilog 12 bit self-contained temperature logger 0.015°C†

Ashokan 0.5, 48.0
Rondout 3.0, 43.0

Finland Lakes Vemco Minilog 8 bit self-contained temperature logger 0.2°C†

Pääjärvi 0.2, 40.0
Valkea-kotinen 0.5, 4.5

Lake Mälaren Basins, Sweden Onset Stow Away, 8 bit self-contained temperature logger 0.2°C†

Ekoln 1.0, 28.0
Galten 1.0, 8.75

*Based on actual measurements—includes noise resulting from a long cable length to 15 m sensor
†Manufacturer specifications

Fig. 1. (A) Illustration of mooring of temperature sensors to detect the presence and absence of ice cover. (B) Temperature recordings from sensors
moored over the winter of 2001–2002 in Lake Erken, Sweden. 
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short periods of time (i.e., days-weeks), or more permanent ice
cover that forms for a large portion of the winter (i.e., weeks-
months), and which is characteristic of all of the lakes in Table
1. Inverse stratification also can occur briefly without the
development of ice. This is normally a short-term phenome-
non (hours-days) that could give a false indication of
ephemeral ice cover. Permanent ice cover was considered to
occur over the longest continuous period during any winter
when the temperature difference exceeded the 0.1°C thresh-
old. The purpose of separating permanent ice cover from
ephemeral ice cover was to allow comparisons with the avail-
able observer-based estimates, which record continuous ice
cover as a single set of ice-on and ice-off dates. For lakes with
8-bit loggers, which have a temperature resolution of 0.2°C
(Table 2), the same methodology was used, but ice-cover was
considered to be present when the temperature difference
exceeded 0.4°C rather than 0.1°C. Whereas the higher resolu-
tion temperature measurements are preferable, tests using
both thresholds with data from Lake Erken found that, on
average, the 0.4°C threshold resulted in the onset of ice cover
being estimated 4 d later and the loss of ice cover being esti-
mated 3 d earlier, showing that the lower resolution data
could produce meaningful but less precise estimates.

Independent estimates of the calendar dates of ice-on and
ice-off were obtained by visual observation at all of the sites
listed in Table 1. The exact protocol for making such observa-
tions varied from lake to lake, often depending on the exis-
tence of a regular lake sampling program (the New York City
Reservoirs and Wisconsin lakes), on the proximity of the lake
to a field station/research lab (Wisconsin Lakes, Lake Erken,
and Lake Pääjärvi), or on interested local observers (Lake
Sunapee, Lake Mälaren). Factors such as the frequency of
observation and the perception of what constitutes ice cover
(i.e., partial as opposed to complete freeze over) adds uncer-
tainty to the data used to verify our temperature-based calcu-
lations of the timing of ice-on and ice-off. There are errors in
both temperature-derived and observer-based estimates of ice
cover, and there are no clear trends in Table 1 suggesting one
estimate is more accurate than the other. For example, one of
the largest differences in Table 1 is for Lake Pääjärvi, the site of
a university field station where visual observations are fre-
quently made, whereas relatively small differences were
obtained for Lake Mälaren where the lower resolution temper-
ature sensors were used. Consequently, when comparing these
estimates, we refer to differences between them rather than an
error in either of the methods.

To provide a quantitative index of the difference between
observer and temperature based estimates of ice phenology,
mean values of temperature based and observation based esti-
mates of the onset loss and duration of ice cover are given in
Table 1. The mean, as well as the root mean square (RMS) of
the differences between yearly estimates of ice-on, ice-off and
ice cover duration, are also given in the same table. In the case
of Lake Erken, we also compare the trend in ice cover derived

from both visual observation and temperature measurements
with local variations in air temperature measured at the lake.

Assessment and discussion
The data in Fig. 1B illustrate how ice cover can be detected

by placing two water temperature sensors in a lake as
described above. Ice-on is characterized by a separation of the
water temperatures, as the lake surface cools to approach 0°C
and the bottom temperature gradually increases as a result of
sediment heating. Loss of ice cover leads to a breakdown of
this temperature gradient and a return to isothermal condi-
tions. This method is hardly novel; various studies have
adopted a similar approach, making the tacit or explicit
assumption that the behavior of water temperatures measured
using single or multiple thermistors are strongly linked to the
timing of ice-on and ice-off (Schmidt et al. 2004; Thompson et
al. 2005; Šporka et al. 2006). We are not, however, aware of a
systematic comparison of temperature-based and observer-
based ice phenology data as presented here.

The timing of ice-on, timing of ice-off, and the duration of
ice cover were calculated for all 10 sites listed in Table 1, for all
years for which both observer-based ice phenology estimates
were available and temperature-based ice phenology estimates
could be calculated. The observer-based and temperature-
based ice phenology estimates correspond well (Fig. 2),
although in some cases, there were relatively large positive or
negative residuals between the two estimates (Table 1). These
tended to cancel out so that over the 43 cases examined the
average observation-based and temperature-based estimate of
the onset and loss of ice cover agreed within 1-2 d. The RMS
difference between the two estimates ranged from 6–10 d, and
a linear regression between the two estimates yielded a gradi-
ent that was not statistically different (P < 0.01) from a 1:1
relationship (Fig. 2).

For lakes where the upper sensor was moored below the ice
(Table 2), the relationship describing the timing of ice-off
showed several cases where there were relatively large positive
differences (Table 1), suggesting a bias that would lead to the
temperature-based estimates indicating an earlier ice-off date
than the observer-based estimates. Estimates of the duration
of ice cover encompass discrepancies associated with both ice-
on and ice-off, and as a result show a somewhat greater RMS
difference than either of these (Table 1).

One possible explanation for the apparent bias toward early
estimates of the timing of ice-off exhibited by the proposed
temperature method can be offered based on the temperature
time-series of three sensors in Lake Sunapee (Fig. 3), where the
uppermost sensor was allowed to freeze into the ice. From
these data, it is apparent that even though the lake became
isothermal between 0.5 m and the lake bottom on 7 April
2008 (an indicator similar to that used at Lake Erken for the
occurrence of ice-off), inverse stratification was still detectable
between 0.1 and 0.5 m. It took an additional 15 d for this
stratification just below the decaying ice cover to disappear on
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22 April 2008, and the ice-off date estimated using the 0.1 m
temperature sensor was within 1 d of the observed ice-off date
(Table 1). Estimates of land snow cover in the vicinity of Lake
Sunapee (http://www.nohrsc.noaa.gov) suggest that snow
depth ranged between trace levels and 5 cm on 4 April 2008,
and that the area was completely free of snow by 10-11 April
2008. It has been previously documented (Kelley 1997) that in
the absence of snow, solar radiation passing through the ice
will lead to warming and convective mixing below the ice.
This is apparently what happened in Lake Sunapee (Fig. 3). As
the water temperature at 0.1 m increased to above 0°C, only
the upper 0.5 m of the water column remained inversely strat-
ified. The remaining water from 0.5m–13 m warmed over time
and remained isothermal, suggesting convective mixing. The
period when the lake was isothermal in all but the upper most
0.5 m is shown in Fig. 3A, and detailed meteorological data
from this time are shown in Fig. 3B-C. During this time, it was
unusually sunny and calm. Solar radiation levels were often
near the maximum that could be expected, and the air tem-
perature was well above freezing. Wind levels during this
period were relatively low, which allowed the ice cover to
decay slowly.

In addition to Lake Sunapee, there are nine additional data
sets in Table 1 that contain data from both a shallow (0.01–0.2
m) sensor and a sensor at 1 m depth. The differences in the
timing of ice-on and ice-off as estimated using the two differ-
ent surface sensor depths are shown in Fig. 4. These data show
that estimation of the timing of ice-on is not affected by the
depth of the upper sensor, and further suggest that the timing
of ice-off can at times be underestimated using a sensor at 1 m
depth. For the data in Fig. 4, the date of ice-off would be
underestimated by more than a week in 3 of 10 cases.

The underestimation of the date of ice-off does not always
occur as shown by Fig. 4, presumably since ice-off, especially
in large lakes, often occurs during windy conditions that lead
to more rapid break-up and vigorous mixing. There are many
cases in Table 1 where the date of ice-off closely matches visual
observations, even though a shallow surface sensor was not
used. However, the phenomenon illustrated by Figs. 3 and 4
can explain the apparent bias toward earlier ice-off dates in
the temperature-based estimates shown in Fig. 2B. For this rea-
son, we recommend that, whenever possible, a sensor be
deployed at a shallow depth so that it will be frozen into the
ice. For all lakes for which 0.01–0.2 m data were available
(Table 2), this shallow sensor was used to calculate the tem-
perature-based ice phenology estimates in Table 1. Biases, such
as those illustrated in Fig. 4, therefore, only exist in Table 1 for
cases where the upper sensor was at a deeper depth (0.5–3.0
m).

A second source of uncertainty in both observational and
temperature-based estimates of ice cover is related to the fact
that lakes (particularly large lakes) do not always completely
freeze over or become ice free during a short time interval. In
some cases, the onset or loss of ice may occur over a period of

Fig. 2. . Comparison between temperature-based and observer-based
ice phenology estimates. (A) Date of ice-on. (B) Date of ice-off. (C) Dura-
tion of ice cover (days). Dashed black line shows the 1:1 relationship and
red line shows linear regression relationships. In all cases the slope of the
regression was not significantly different from 1 (t-test; P < 0.01).   
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a week or more, adding uncertainty to observer-based esti-
mates because there may be differences in the perception of
what constitutes “complete” ice cover, or in the case of tem-
perature-based estimates,uncertainty may result from to the
placement of the sensors relative the location of ice and open
water. Such uncertainty must account for some of the varia-
tions between temperature- and observer-based estimates of
ice cover in Table 1. To reduce measurement uncertainty in
large lakes, or lakes that are known to freeze unevenly, we
would suggest deploying multiple measurement buoys.

Utility of temperature-based estimates of ice cover
Verification of the temperature-based ice phenology esti-

mates is difficult because the data used for comparison are
based on human observations, which in themselves may be in
error because of differences in perception, or more likely, dif-
ferences in the frequency of measurement and availability of
dedicated observers. Our results (Fig. 2) show that the temper-
ature-based estimates are comparable with observer-based esti-
mates, although at times there can be discrepancies between
the two. It would not be appropriate to call such discrepancies

Fig. 3. (A) Example of under-ice temperature measurements made in Lake Sunapee, New Hampshire, from 2007 Nov to 2008 Apr. Data are shown
from both a shallow surface sensor that froze into the ice (black solid line) and a sensor moored just below the ice cover (dashed blue line). (B) Incom-
ing photosynthetically active radiation (PAR, hourly). (C) Wind speed (hourly) and air temperature (daily means) measured during April 2008. The shaded
portions of B and C correspond to the 7 Apr 2008–22 Apr 2008 period shown in A.  
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errors in either measurement technique, because neither tem-
perature-based nor observer-based estimates can be considered
to give true measures of the timing of ice-on and ice-off, as
both are subject to error.

The value of the automated temperature-based estimates
can also be judged by their ability to show the same long-term
trends in ice phenology that have already been shown to exist
in observer-based estimates. If measurements based solely on
water temperature are able to produce the same trend as data
collected by more labor-intensive visual observations, this
would clearly indicate that the proposed temperature-based
method has practical use. To test this assumption, we made
use of data collected from Lake Erken and examine trends in
duration of ice cover and its relationship to measurements of
air temperature made at the same site over the time period
when both temperature-based and observer-based estimates of
ice duration were available. The relationship between ice
cover duration and cumulative negative degree days (Fig. 5) is
well described using either temperature-based or observer-
based estimates of ice cover. Analysis of covariance found that
the linear trend lines associated with the two data sets could
not be statistically distinguished from one another (P ~ 0.5).
This example clearly verifies the value of the temperature-
based estimates of ice cover duration, since estimation of ice
cover duration by either method would produce essentially
the same trend with air temperature.

Comments and recommendations
A simple method to automatically determine the timing of

ice-on, the timing of ice-off, and the duration of lake ice cover
is described that makes use of water temperature mea-

surements. The temperature-based estimates were compared
with observation-based estimates for 43 winter seasons using
data from 10 lakes and reservoirs. RMS differences between the

Fig. 4. Estimation of the onset (A) and loss (B) of ice cover calculated using the proposed temperature method, but with near surface versus 1-m sur-
face sensor. The line shows the 1:1 correspondence between estimates; the circled point in (B) is Lake Sunapee.  

Fig. 5. . Relationship between duration of ice cover and cumulative neg-
ative degree days during the winter measured at Lake Erken, Sweden. Ice
cover statistics are either derived from observations (small black points) or
temperature measurements (large red points). The regression line derived
from observation-based ice duration is shown as a dashed black line,
while the regression line derived from temperature-based ice duration is
show as a solid red line.  
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two estimates calculated over the entire data set were 7.1 d for
the timing of ice-on, 6.4 d for the timing of ice-off, and 10.0 d
for the duration of ice cover. Compared with observer-based
estimates, temperature-based estimates of the date of ice-off
can at times show a bias toward earlier dates. This is likely a
consequence of convective mixing under the decaying ice
cover, and the bias can be eliminated by using a shallow sensor
that freezes into the ice. Ice phenology estimates made by the
proposed temperature based method show similar differences
to observations as estimates based on satellite remote sensing
(Wynne et al. 1996), however many of the lakes studied here
would be too small for measurement by remote sensing.

The proposed method could be used in regional studies of
large numbers of lakes to better document temporal and spa-
tial changes in ice phenology. This would lead to a better
understanding of the factors that influence variations in lake
ice cover, and would allow long term trends in lake ice cover
to be examined in the context of more robust estimates of
local and regional variability.
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Abstract:

Snow is an important component of the water resources of New York State and the watersheds and reservoirs of New York City
(NYC) water supply. In many of the NYC water supply watersheds the hydrologic regimes of high-elevation headwaters are
linked to streamflow and channel processes in low-elevation stream reaches that serve as inputs to water supply reservoirs. To
better simulate this linkage there is a need to understand spatial variations in snowpack and snowmelt. Snowmelt hydrology is
an important component of the Soil and Water Assessment Tool (SWAT) model in watersheds where spring runoff is strongly
affected by melting snow. This study compares model simulated snowpack and snowmelt at different elevation bands with
snow survey data available for the Cannonsville reservoir watershed. Simulations examine the effects of parameterising the
SWAT snowmelt sub-model using 1, 3, and 5 elevation bands by comparison with measured snow and streamflow. Comparison
between measured and simulated snowpack produced correlation coefficients ranging from 0Ð35 to 0Ð85. Simulations of both
daily and seasonal streamflow, improved when using 3 elevation bands with r2 of 0Ð73 and ENS of 0Ð72. Streamflow simulations
showed slightly lower model performance when basin elevation was assumed to be equal to snow survey site elevation, due
to the snow survey sites being somewhat biased toward lower elevations. The effect of climate change was also evaluated and
showed that under higher air temperatures in future climate change scenarios, SWAT indicated more precipitation falling as
rain, increased and earlier snowmelt, and a reduced snowpack leading to a change in the pattern of streamflow, particularly
during winter and early spring. Copyright  2011 John Wiley & Sons, Ltd.

KEY WORDS elevation; snowpack; snowmelt; streamflow; SWAT; climate change

Received 15 July 2010; Accepted 9 May 2011

INTRODUCTION

Snow is an important component of the hydrologic cycle
particularly for land areas poleward of about 40° latitude
(Adam et al., 2009). Snowmelt is a significant surface
water input of importance to many aspects of hydrology
including water supply, erosion and flood control (Tar-
boton et al., 1995). Hence in these regions, knowledge
of the amount of snowfall and snow accumulation on the
ground (snow cover), as well as their spatial distribu-
tion is essential for effective planning, management, and
adaptation of water resources to climate change.

The most important snow data that snow hydrologists
use is the snowpack snow water equivalent (SWE) (Ding-
man, 1994) and snowmelt. The SWE is defined as a mass
of water contained in the snowpack and is expressed in
units identical to precipitation (Paul et al., 1994). The
SWE is the measure of snow used in snow runoff analy-
sis to determine the quantity and distribution of snow and
it is the primary determinant governing the magnitude of

* Correspondence to: Soni M. Pradhanang, Institute of Sustainable Cities,
City University of New York, 71 Smith Ave, Kingston, NY 12401, USA.
E-mail: spradh@hunter.cuny.edu

the snowmelt runoff volume. In a basin during the win-
ter accumulation period, SWE responds, either directly
or indirectly, to a variety of meteorological and topo-
graphical interactions that influences snow accumulation
and distribution. The meteorological factors include air
temperature, wind, precipitable water, atmospheric circu-
lation patterns, frontal activity, lapse rate, and stability
of the air mass. Topographical factors include elevation,
slope, aspect, exposure, and vegetation cover (USACE,
1991).

The properties of fallen snowpack change contin-
uously as a function of energy fluxes, wind, mois-
ture, water vapour, and atmospheric pressure. The pro-
cesses involved in snowpack development and snowmelt
have been widely described (Dingman 1994; Tarboton
et al., 1995; Tarboton and Luce, 1996; USACE, 1991;
You et al., 2004). Snowmelt is modelled with differ-
ent approaches from simple regression methods and
approaches based only on temperature measurements to
physics-based models involving all processes (Ferguson,
1999), or based on an energy balance (Walter et al.,
2005; Marks et al., 1999). Owing to simplicity and ease
of use, temperature index-based empirical models are

Copyright  2011 John Wiley & Sons, Ltd.
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frequently used to estimate snowmelt compared to
complex, data intensive energy budget snowmelt models
(Zhang et al., 2008).

The spatial variation of snow accumulation and melt
processes are high in river basins which have high ele-
vation differences, low temperatures, large areas, and
complex topography, (Debele et al., 2009; Zhang et al.,
2008). In such regions, there is a need to model these
processes in a continuous and distributed way. Correctly
modelling snowmelt in a hydrologic model is especially
important because incorrectly simulated snowmelt may
result in inaccurate predictions of the timing and magni-
tude of streamflow. (Frankenberger et al., 1999; Fontaine
et al., 2002).

The most common approach to achieve distributed
snowmelt modelling is to subdivide the basin into zones
and/or bands based upon elevation, allowing the model
to discretize the snowmelt process based on watershed
topography (Rango and Martinec, 1995; Hartman et al.,
1999). In order to use the elevation band algorithm, for
each sub-basin, the average elevation of each band and
the percentage of the sub-basin area within that band are
required (Fontaine et al., 2002). For each elevation band,
precipitation, snow, soil moisture, etc. are simulated
independently; then moisture output from each band is
totaled to obtain input into the hydrologic model routines
dealing with soil moisture and stream runoff. The snow
accumulation, sublimation and melt computed within
each elevation band are weight-averaged sub-basinwise
(Neitsch et al., 2005). Snowmelt estimation based on the
elevation band approach assumes that snowmelt depth in
all sub-basins within the same elevation band is constant.
While elevation is a dominant factor influencing snow
processes, there are other factors that affect snowmelt,
such as, land use/land cover, aspect, and slope (Morid
et al., 2002).

This study examined the accuracy of the SWAT 2005
model (Neitsch et al., 2005) simulating snowpack SWE
and snowmelt influenced stream flow in the Cannonsville
watershed, which is part of the NYC water supply.
SWAT2005, which uses a simple temperature index
method to simulate snow, has been previously used
with reasonable success to account for changes in the
snowpack by other simple snow models (USACE, 1991).
The objectives of this study were:

1. To evaluate the performance of SWAT model’s tem-
perature index-based snowmelt algorithm in simulating
snowpack. We compared the snowpack output from
SWAT 2005 model to the snow survey data collected
by the New York City Department of Environmental
Protection (NYCEP).

2. To evaluate model performance in predicting daily
streamflow using three different distributions of ele-
vation bands: snow survey site elevations, and the
SWAT-defaults of 3 and 5 elevation bands.

3. To assess changes in annual snowfall and snowmelt as
a result of change in climate using four future climate
scenarios.

SITE DESCRIPTION

The Cannonsville watershed is one of New York City’s
largest drinking water reservoirs and is located in
Delaware County in the Catskill region of New York
(Figure 1). The major land uses in the 1178 km2 Can-
nonsville watershed are forests (59% of the land area),
pasture (26%) and succession farmland (10%). Mean
annual precipitation at the Walton, NY climate station
is about 1100 mm/yr, of which approximately one-third
falls as snow. The elevation of the watershed ranges from
approximately 300 m above mean sea level in the low-
land areas to approximately 1100 m in the uplands, while
the average land-surface slope is 19%. The development
of snowpack in this region is variable. Snow accumula-
tion can begin as early as November and snowpack can
persist until late April. However, a continuous and pro-
gressive increase in the snowpack over the winter is not
common. Snowpack SWE varies throughout the winter
as a consequence of intermittent melt and rain on snow
events. By March–April the snowpack typically begins
to ripen and meltwater is released to stream resulting in
the highest discharge of a year.

METHODS AND DATA

The SWAT 2005 model uses a simple snowmelt algorithm
that requires readily available daily measurements of tem-
perature and precipitation as inputs. The model allows the
sub-basins to be divided into a maximum of ten elevation
bands to account for elevation gradients and, therefore,
spatial differences in snow accumulation and melt (Wang
and Melesse, 2005). In SWAT, a watershed is divided
into a number of sub-basins for modelling purposes.
Within sub-basins, Hydrological Response Units (HRU)
are further delineated, based on land use, soil attributes,
and slope (Neitsch et al., 2005). The proper inclusion
and representation of available watershed specific spatial
data is crucial in defining representative HRUs. Calibra-
tion efforts (i.e. the adjustment of model performance
by optimisation of parameters) for streamflow focused
on improving model predictions, by comparing to mea-
surements at the stream gauging station at Walton, NY
(Figure 1).

Daily precipitation, minimum and maximum tempera-
ture data were obtained from cooperative stations recog-
nized by the National Climate Data Center and obtained
from the Northeast Regional Climate Center. A digi-
tal elevation map (DEM), soil data from detailed State
Soil Survey Geographic Database (SSURGO) and land
use coverage (National Land Use Land Cover 2001)
were input to ArcSWAT (Neitsch et al., 2005) in order
to generate SWAT 2005 model inputs. A total 19 sub-
basins were (Figure 1) delineated in ArcSWAT using
10 m DEM for Cannonsville watershed. Model simula-
tions were run for 12 years (1989–2000) with the first
2 years used for initialisation in order to assure that
model state variables have stabilized (Kirchner, 2009).

Copyright  2011 John Wiley & Sons, Ltd. Hydrol. Process. 25, 3268–3277 (2011)
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Figure 1. Cannonsville watershed and snow survey sites

Table I. Calibration parameters and their best parameter ranges for SWAT model simulations

SWAT input
variables

Description Best parameter estimate SWAT
default

Mean
elevation

Snow survey
elevation

3Bands 5Bands

SFTMP Snowfall temperature [°C] 0Ð011 0Ð01 0Ð01 0Ð033 1Ð0
SMTMP Snow melt base temperature [°C] 1Ð005 1Ð068 1Ð00 1Ð122 0Ð5
SMFMX Melt factor for snow on June 21 [mm

H2O/°C-day]
1Ð697 1Ð37 1Ð01 1Ð74 4Ð5

TIMP Snow pack temperature lag factor 0Ð477 0Ð68 0Ð370 0Ð406 1Ð0
PLAPS Precipitation lapse rate [mm/km] 37Ð780 30Ð080 12Ð11 20Ð03 0Ð0
TLAPS Temperature lapse rate [°C/km] 6Ð860 6Ð80 6Ð77 7Ð0 0Ð0
SNO SUB Initial snow water content [mm] 5Ð813 6Ð90 5Ð03 5Ð5 0Ð0
SURLAG Surface runoff lag time [days] 0Ð765 1Ð73 0Ð347 0Ð340 4Ð0
ALPHA BF Baseflow alpha factor [days] 0Ð037 0Ð120 0Ð05 0Ð062 0Ð048
GW DELAY Groundwater delay [days] 0Ð397 0Ð011 0Ð354 0Ð01 31
GWQMN Threshold depth of water in the shallow aquifer

required for return flow to occur [mm]
0Ð01 3Ð591 0Ð272 2Ð48 0Ð0

REVAPMN Threshold depth of water in the shallow aquifer
for ‘revap’ to occur [mm]

0Ð017 0Ð011 0Ð563 0Ð711 1Ð0

CN2 Initial SCS CN II value 0Ð01a 0Ð01a 0Ð01a 0Ð01a —
ESCO soil evaporation compensation factor 0Ð17 0Ð01 0Ð012 0Ð025 0Ð95
EPCO plant water uptake compensation factor 0Ð815 0Ð86 0Ð986 0Ð901 1Ð0
CH N2 Manning’s n value for main channel 0Ð031 0Ð040 0Ð033 0Ð039 0Ð014

a Parameters that were used as multiplicative factors.

Parameters in SWAT that control the snowpack forma-
tion and snowmelt were adjusted to create a better match
between observed streamflow data and spring runoff. The
parameters that were adjusted include a number of factors

(Table I) that account for snow pack characteristics snow
accumulation, snowmelt and sublimation. Other stream-
flow parameters such as Manning’s n value for main
channel (Ch N2), initial Soil Conservation Service (SCS)

Copyright  2011 John Wiley & Sons, Ltd. Hydrol. Process. 25, 3268–3277 (2011)
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curve number II (CN2), baseflow alpha factor (Alpha-
bf), and snowpack temperature lag factor (TIMP), the
parameters surface runoff lag time (SURLAG), threshold
depth of water in the shallow aquifer required for return
flow to occur (GWQMN), threshold depth of water in the
shallow aquifer for revaporisation to occur (REVAPMN),
soil evaporation compensation factor (ESCO) and other
groundwater, channel and basin related parameters were
also adjusted.

Four configurations of elevation band were applied and
tested at the sub-basin level. (1) SWAT default, i.e. aver-
age elevation of sub-basin (0Band); (2) A single band
with snow survey site elevation used as average eleva-
tion of sub-basin (1Band); (3) Three equal area eleva-
tion bands (3Bands); and (4) Five equal area elevation
bands (5Bands). The SWAT 2005 model was calibrated
for streamflow from 1991–2000 and was verified for
2004–2008 years. The simulation results were compared
with the corresponding observed values at daily, monthly
and seasonal (winter–spring) time steps. Model perfor-
mance on daily streamflow was evaluated using time
series plots model performance statistics. The coeffi-
cient of determination (r2), the Nash-Suttcliffe coeffi-
cients (ENS) (Nash and Suttcliffe, 1970) and the root
mean squared error (RMSE) were used to assess the
ability of the model to replicate temporal trends (daily
and monthly) in measured stream flow data. Stream-
flow simulations were based on different configurations
of elevation data which are used by the snowmelt sub-
model. The measured snowpack data from each snow
survey site were compared to model simulated snowpack
at each sub-basin when the elevation of the basin was set
equal to the elevation of the snow survey site (i.e. 1Band
method described above) This comparison was made for
the 2004–2008 period using correlation coefficients.

SNOWMELT ALGORITHM IN SWAT

The snowmelt algorithm in SWAT consists of simple tem-
perature index method. The major climate data needed for
this purpose are maximum and minimum temperature and
precipitation. When the mean daily air temperature is less
than the snowfall temperature (SFTMP), the precipitation
is classified as snow and the liquid water equivalent of the
snow precipitation is added to the snowpack. The snow-
pack increases with additional snowfall, but decreases as
snowmelt or sublimation occurs. The mass balance for
the snowpack is computed as:

SNOi D SNOi�1 C Rsfi � Esubi � SNOmlti �1�

where SNO i and SNO i�1 are the water equivalents of
the snowpack on the current day (i) and previous day
(i � 1), respectively, Rsfi is the water equivalent of the
snow precipitation on day i, Esubi is the water equivalent
of the snow sublimation on day i, and SNOmlti is the
water equivalent of the snowmelt on day i. Snowmelt is
calculated as a linear function of the difference between
the average snowpack maximum air temperature and the

base, or threshold, temperature for snowmelt (Neitsch
et al., 2005). Sublimation from the snow surface is com-
puted as the function of potential evapotranspiration. A
temperature lag factor accounts for thermal characteris-
tics of the snow pack that have influence on the snow
pack density, snow pack depth, exposure. As this factor
approaches 1Ð0, the mean air temperature on the current
day exerts an increasingly greater influence on the snow
pack temperature, and the snow pack temperature from
the previous day become less influential (Neitsch et al.,
2005). Details about calculations are in SWAT 2005 the-
oretical documentation (Neitsch et al., 2005).

In SWAT, sub-basin temperatures and precipitation are
adjusted for each elevation band in a sub-basin as a
function of the lapse rate and the difference between
elevation of the meteorological gaging station providing
input to the model and the average elevation specified
for the band (Neitsch et al., 2005). In this study, 3 and
5 elevation bands (with equal area) were established for
each sub-basin, and the average elevation of each band
and the percentage of the sub-basin area within that band
are required (Fontaine et al., 2002). Temperature and
precipitation are calculated for each band as a function of
the respective lapse rate and the difference between the
gage elevation and the average elevation specified for the
band using following equations:

TB D T C �ZB � Z�.
dT

dZ
�2�

PB D P C �ZB � Z�.
dP

dZ
�3�

where TB, is the elevation band mean temperature (°C),
T, is the temperature measured at the weather station
(°C), ZB is the midpoint elevation of the band (m), Z
is the weather station’s elevation (m), PB is the mean
precipitation of the band (mm), P is the precipitation mea-
sured at the weather station (mm), dP /dZ is the precipi-
tation lapse rate (mm/km), and dT /dZ is the temperature
lapse rate (°C/km). To account for the orographic effects
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Figure 2. Correlation coefficients of mean SWE for snow survey sites
and corresponding hydrologic response units
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Figure 3. Winter–Spring Monthly (December–April) stream hydrograph for 1991–2000 (calibration year) and 2002–2008 study period for
Cannonsville Watershed. a) SWAT-simulated and measured streamflow for simulation using mean elevation and snow survey elevation (top left

and right); b) SWAT-simulated and measured streamflow for simulation using three and five elevation bands (bottom left and right)

on precipitation and temperature (and thus evapotran-
spiration and snow processes), algorithms for elevation
bands and lapse rates were used. A temperature lapse rate
of 6 °C/km (Gershmehl et al., 1988) was initially used
in the simulations, and this value was later adjusted by
model calibration (Table I).

SNOW SURVEY AND METEOROLOGICAL DATA

Snowpack data were obtained from New York City
Department of Environmental Protection (NYCDEP)
between 2004 through 2008 from the Cannonsville water-
shed. The NYCDEP conducts snow surveys to measure
snow depth and SWE, every two weeks from January 15
through mid April (personal communication, Jim Porter,
NYCDEP). Eight snow survey sites with data through

2008 were used for this study (Figure 1). Snow data are
collected using snow tubes, either Adirondack or Mt.
Rose. In this method, the tube is pushed into the snow
and extracted with an intact snow core, then weighed on
a scale calibrated in inches of water. An initial volume
of SWE is determined on the first survey date. As the
snow season progresses, changes in the snowpack mea-
sured by subsequent surveys area attributed to snowmelt
and accumulation.

CLIMATE SCENARIOS

The potential effect of climate change on snowfall and
snowmelt was evaluated using four climate scenarios, i.e.
GFDL A2, GFDL B1, IPSL A2 and IPSL B1 (Table III),

Figure 4. Snow water equivalent distribution for 3- and 5-elevation bands for sub-basin 10 simulated by SWAT model
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Table II. Model performance of daily streamflow using different elevation bands (1991–2000). (Values in parentheses represent
statistics for the period 2004–2008)

Period Statistics Snow survey
elevation

SWAT mean
elevation

3-elevation
Bands

5-elevation
Bands

Daily streamflow Nash and Sutcliffe’s Efficiency (ENS) 0Ð72 0Ð72 0Ð73 0Ð73
(0Ð50) (0Ð47) (0Ð46) (0Ð56)

Coefficient of Determination (r2) 0Ð73 0Ð72 0Ð74 0Ð74
(0Ð55) (0Ð53) (0Ð61) (0Ð59)

Root Mean Squared Error (RMSE) 13Ð53 13Ð62 13Ð19 13Ð21
(20Ð88) (21Ð52) (18Ð77) (19Ð66)

Winter-spring streamflow Nash and Sutcliffe’s Efficiency (ENS) 0Ð71 0Ð71 0Ð72 0Ð72
(0Ð41) (0Ð39) (0Ð55) (0Ð47)

Coefficient of Determination (r2) 0Ð73 0Ð74 0Ð76 0Ð75
(0Ð55) (0Ð54) (0Ð63) (0Ð60)

Root Mean Squared Error (RMSE) 17Ð08 17Ð15 16Ð71 16Ð79
(24Ð55) (25Ð94) (21Ð46) (23Ð26)

Monthly streamflow Nash and Sutcliffe’s Efficiency (ENS) 0Ð80 0Ð82 0Ð80 0Ð82
(0Ð54) (0Ð58) (0Ð64) (0Ð57)

Coefficient of Determination (r2) 0Ð82 0Ð82 0Ð83 0Ð83
(0Ð63) (0Ð64) (0Ð67) (0Ð63)

Root Mean Squared Error (RMSE) 6Ð29 6Ð72 6Ð62 6Ð29
(9Ð89) (9Ð56) (8Ð76) (9Ð57)

which represent a wide range of future emission scenar-
ios and climate conditions, during the 2081–2100 future
period. Climate scenarios were downscaled using change
factor methodology (Anandhi et al., 2010). Monthly
change factors (CFs) were calculated from the difference
between baseline (20C3M) and future GCM data. For
temperature parameters additive factors were calculated
and for all other parameters multiplicative factors were
calculated. These monthly CFs were used to change local
meteorological data to represent the future climate con-
ditions associated with a given GCM, emission scenario.

RESULTS

Snowpack distribution and snowmelt comparison

The snow and hydrology parameters, default values
and best parameter estimates from calibration are pre-
sented in Table I. Snow-related parameters were used in
calibration to effectively simulate snow processes and
hydrology. The melt factor for snow for summer solstice
(SMFMX) was varied from 1Ð0 to 1Ð7 mm H2O/°C-day
based on the work of Huber and Dickinson (1988) and
Westerstörm (1984). The temperature lag factor ranged
from 0Ð3 to 0Ð68. This range, which produced the best fit
to observed data, is close to the findings of Fontaine et al.,
(2002) who observed values of the lag factor ranging
from 0Ð0 to 0Ð5 for areas characterized by deep snow-
pack.

Comparison between simulated snowpack using and
measured NYDCEP snow survey data showed highly
variable results. The inaccuracies of model predicted
snowpack depended upon the spatial and temporal scales
of comparison. Snowpack data from the eight snow sur-
vey sites were compared with modelled data. Correlation
coefficients ranging from 0Ð35 to 0Ð85 were obtained

when comparing the mean monthly snowpack data from
2004 to 2008 (Figure 2). The sub-basins with higher ele-
vation had better prediction of snow as shown by the cor-
relation coefficients (Figure 2). Snow survey sites C-17
(sub-basin 10), C-20 (sub-basin 4), C-22 (sub-basin 13)
and C-24 (sub-basin 1) had average elevation greater than
500 m. The land use for C-17 and C-24 were forested,
while C-22 and C-24 were classified as agriculture and
low-intensity residential land use.

Spatial variations in the snowpack were better repre-
sented using three elevation bands compared to 1 and
5 bands, and this lead to slight improvements in the
correlation coefficients calculated between simulated and
measured snowpack (Figure 2). In addition, winter-spring
streamflow predictions were also slightly improved when
using three elevation bands (Table II), although the dif-
ferences with five elevation bands results were not sub-
stantial. The distribution of modelled snowpack for each
sub-basin varied for each month. The simulated snow
distribution map for the 3 and 5 elevation band config-
urations of sub-basin 10 is presented in Figure 3 as an
example.

Among all sub-basins, the variations in snowmelt pre-
dicted using different elevation configurations (Figure 5)
showed least variation in February and December. How-
ever, there was large scatter for the month of April. The
mean snowmelt for the SWAT default simulation (0 Band
Figure 5) was often high relative to simulations using
elevation bands. The SWAT default elevation takes into
account only the average for each sub-basin therefore, the
model might misrepresent elevation dependent snow pro-
cesses, and lead to an over prediction of snowmelt. For
April, differences in snowmelt predicted using different
elevation configurations increased greatly. The simulated
variability in snowpack distribution within the sub-basins
increased during April as a result of greater variations in

Copyright  2011 John Wiley & Sons, Ltd. Hydrol. Process. 25, 3268–3277 (2011)



3274 S. M. PRADHANANG ET AL.

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100
Mean elevation
3-Elevation bands
5-Elevation bands

Ja
nu

ar
y 

av
er

ag
e 

sn
ow

m
el

t (
m

m
)

Sub-basins

0 2 4 6 8 10 12 14 16 18 20

Sub-basins

0 2 4 6 8 10 12 14 16 18 20

Sub-basins

0 2 4 6 8 10 12 14 16 18 20

Sub-basins

0 2 4 6 8 10 12 14 16 18 20

Sub-basins

0

10

20

30

40

50

60

70

80

90

100
Mean elevation
3-Elevation bands
5-Elevation bands

F
eb

ru
ar

y 
av

er
ag

e 
sn

ow
m

el
t (

m
m

)

0

10

20

30

40

50

60

70

80

90

100
Mean elevation
3-Elevation bands
5-Elevation bands

M
ar

ch
 a

ve
ra

ge
 s

no
w

m
el

t (
m

m
)

0

10

20

30

40

50

60

70

80

90

100
Mean elevation
3-Elevation bands
5-Elevation bands

A
pr

il 
av

er
ag

e 
sn

ow
m

el
t (

m
m

)

0

10

20

30

40

50

60

70

80

90

100
Mean elevation
3-Elevation bands
5-Elevation bands

D
ec

em
be

r 
av

er
ag

e 
sn

ow
m

el
t (

m
m

)

2003 2004 2005 2006 2007 2008 2009

100

150

200

250

300

350

400 Mean elevation
3-Elevation bands
5-Elevation bands

A
nn

ua
l a

ve
ra

ge
 s

no
w

m
el

t (
m

m
)

Year

Figure 5. Scatterplots showing spatial distribution of snowmelt at monthly and annual scale. The simulated variability in snowpack distribution within
the sub-basins increased during April as a result of greater variations in sub-basin melt showing a large scatter in snowmelt

sub-basin melt. This suggests that use of more elevation
bands may more accurately simulate melt when snow-
pack reaches its seasonal low and the extent of snow
cover becomes more spatially variable. Annual snowmelt
showed a trend of increasing snowmelt and variability
in the calculation of snowmelt between 2004 and 2008
(Figure 5).

Total snowpack and snow melt were also compared
at the scale of entire Cannonsville watershed. Snowpack
and snowmelt were higher for the SWAT-default simula-
tion, whereas sublimation decreased for the simulations
that used lower number of elevation bands (Table III).
The snowpack within the study watershed mainly accu-
mulated as a result of the snowfall throughout the winter
and in early spring; over this period, only a small amount
of the snowpack was lost to sublimation (Table III).

DAILY STREAMFLOW COMPARISON

Regardless of the simulation techniques used during the
snowmelt, an essential modelling practice for streamflow
simulation is to make use of field observations to verify
model output, and by doing so gain some insight into
the accuracy of the model’s state variables. The model’s
computation of snowmelt was therefore, also checked by
comparing computed discharge against streamflow obser-
vations. Here we considered the impacts of different snow
and hydrology related parameterisation on estimates of
stream discharge. The best estimate values for parameters
used in calibration (Table I) show that many parameter
values are similar for all model elevation band config-
urations used in this study; however, there are slight
differences in the estimated values for some basin- and
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groundwater-related parameters. Since the additions of
elevation bands make sub-basins more discrete in the
representation of topography, it is to be expected that
model parameter values representing processes affected
by topography will vary between model configurations.
The surface runoff lag time (SURLAG) was relatively
high for the 1Band SWAT model. This allows surface
runoff to have a lag of 1Ð7 days before reaching the chan-
nel. Since, the proxy elevation used for this band was
from the snow survey site; this elevation may have mis-
represented the topography resulting in higher SURLAG
compared to other configuration of elevation bands. The
surface runoff to the main channel delays with decrease
in SURLAG values (Table I for 3 and 5 elevation bands),
resulting in more accurate daily prediction of stream-
flow (White et al., 2009). The threshold depth of shallow
water for revaporisation to occur (REVAPMN) varied for
each configuration of SWAT elevation bands. The min-
imum depth of water in soil for return flow to occur
(GWQMN) value ranged from 0Ð01 to 3Ð591 mm of H2O.
The shallow aquifer contributes baseflow to the main
reach within the sub-basin. Groundwater flow is allowed
only if the depth of water in a shallow aquifer is equal to
or greater than GWQMN parameter value (Neitsch et al.,
2005). The increase in number of bands used may have
contributed to better representation of water table and
shallow aquifers in the sub-basin.

Model performance during calibration period showed
r2 of 0Ð72, NSE of 0Ð72 and RMSE of 13Ð62 for daily
streamflow when using SWAT default elevation for each
sub-basin, i.e. average elevation of the sub-basin. Simi-
larly, during the verification, the daily streamflow predic-
tions were acceptable with performance statistics of (r2:
0Ð53; NSE: 0Ð47 and RMSE: 20Ð88) for default SWAT
runs (Figure 3). The performance statistics was slightly
better when elevation bands were used (Table II). The r2

and NSE values were somewhat higher for the 3-elevation
band SWAT simulation, but showed slight additional
improvements with the 5-band simulation (Table II). The
SWAT default elevation takes into account average ele-
vation for each sub-basin; therefore elevation variability
might not be completely represented. However given the
relatively large number of sub-basins (Figure 1), a rela-
tively large elevation range is covered at the scale of the
entire watershed. The further division of each sub-basin
into 3 or 5 elevation bands while undoubtedly providing
more accurate estimates of snow accumulation (Figure 4)
and melt, lead to only slightly improved streamflow and
winter-spring streamflow prediction at daily time steps.
The computation time for the SWAT simulations almost
doubled when going from the default to 3-band simula-
tions, making runs slower and time consuming. Since,
the elevation difference within this watershed is not
extremely large, using more than a 3-elevation band did
not produce better streamflow predictions. The stream-
flow simulations for the SWAT model using sub-basin
elevations corresponding to the snow survey sites showed
slightly lower model performance. This is a result of the
snow survey sites being biased towards sites at lower

Copyright  2011 John Wiley & Sons, Ltd. Hydrol. Process. 25, 3268–3277 (2011)



3276 S. M. PRADHANANG ET AL.

elevations. Based on these results (Table II) it can be
concluded that choice of snow elevation band configu-
ration greater than three elevation band had little effect
on SWAT 2005 simulation of streamflow in Cannonsville
Watershed.

FUTURE CLIMATE SIMULATIONS

Future climate scenarios used here suggested increases in,
both future temperature and precipitation (Matonse et al.,
2011). The SWAT simulation driven using these climate
scenarios showed that future snowmelt and snowpack
is expected to substantially decrease. The projected
differences are not however, influenced by the use
of 3 elevation band or 5 elevation band simulations
(Table III). The SWE and snowmelt decreased for present
condition (2004–2008) simulations ranged from 287Ð50
to 322Ð12 mm and 266Ð81 to 307Ð94 mm for different
elevation bands. The climate change scenarios for a
future time slice of 2081–2100 showed decrease in both
SWE and snowmelt (Table III) as the climate warms,
despite increasing precipitation, for two reasons. It is
very likely that due to increased temperature, more
precipitation will fall as rain, and that less snowpack will
be developed, which in turn will result in less meltwater.
The change in temperature and precipitation pattern can
also affect the timing of snowpack development and
occurrence of snowmelt. The snowpack may develop
later and melt earlier, as a result, peak streamflow will
very likely come earlier in the spring, and summer flows
may be reduced. Potential impacts of these changes
include an increased stream discharge in winter and
early spring (Zion et al., 2011), a reduced possibility
of large snowmelt peaks later in the spring, and lower
summer flows. With increasing temperature and changes
in precipitation pattern, the amount of precipitation
falling as snow and snow melt will be greatly affected
(Burns et al., 2007).

CONCLUSIONS

Accurate representation of variations in elevation plays an
important role in snowpack and streamflow simulations,
since snow generally melts, first at lower elevations,
and then higher elevations. This can result in a shift
in melting to higher elevations as the season progresses
(USACE, 1991; Debele et al., 2009). Any precipitation
falling during the melt season will encounter a variety
of potential situations: it can fall as fresh snow at higher
elevations, as rain on snow at lower elevations, and as
rain on bare ground (with reduced soil moisture) at low
elevations. As a consequence of the dependence of snow
processes on elevation, model simulations accounting
for variations in elevation are expected to provide more
accurate results. Our simulations with the SWAT 2005
model confirm this.

Snow survey data for 2004 through 2008 compared
satisfactorily (correlation coefficient ranging from 0Ð35

to 0Ð85) with the snowpack that was simulated by the
SWAT model. Simulations of streamflow were improved
when using three elevation bands in each watershed sub-
basin. The NSE of 0Ð73 and r2 of 0Ð74 for daily stream-
flow were obtained for 3 elevation bands simulations.
However, using more than three equally distributed ele-
vation bands in each sub-basin led to little improvement
in streamflow simulations, and since it can be compu-
tationally time consuming when the number of bands
are increased we did not find any advantages to using
a model configuration containing more than three eleva-
tion bands. Streamflow simulations showed slightly lower
model performance using a basin elevation based on snow
survey elevation, due to the snow survey sites being
somewhat biased toward lower elevations and not repre-
senting the watershed elevation appropriately In relations
to water quality, it should also be stressed that the pro-
cesses impacting water quality are simulated at the scale
of the multiple HRUs present in each sub-basin. Spatial
variations in snow melt can, therefore, influence relative
contribution of each HRU to the water quality component
of the SWAT model simulations, and as a result spatial
variations in snowmelt can have a greater influence on
water quality than water quantity, and water quality sim-
ulations may be more strongly impacted by the elevation
band configuration used in the SWAT model.

Under higher air temperature in future climate change
scenarios, SWAT indicate more precipitation falling as
rain and reduced snowpack leading to a change in
streamflow pattern particularly during winter and early
spring.

Data used for conceptual modelling in snow hydrol-
ogy contains many uncertainties associated with model
assumptions as well as in the monitored snow. Some
factors involved are as follows:

1. Snow data sampling is not consistent over a period of
record. The number of sites available for comparison
declined over time.

2. Snow data often have relatively short periods of record
compared with precipitation data.

3. Precipitation and snow monitoring is more difficult
in higher-elevation areas. The high-elevation areas
receive more snow and, therefore, snow survey sites
and data from under-represented high-elevation areas
are important for study of snow hydrology.

4. Orographic effects, aspects, slope, different land use,
and land cover have an effect on snow development
and melt processes. Such processes are, however,
not well represented in the simple temperature-index
method.

Despite the above uncertainties, we found that the simple
snowmelt model in SWAT 2005 can be effectively
used for snowpack and streamflow modelling in the
Cannonsville watershed.

Copyright  2011 John Wiley & Sons, Ltd. Hydrol. Process. 25, 3268–3277 (2011)
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ABSTRACT 

Scaling up sediment transport has been problematic because most sediment loss models (e.g., the 

Universal Soil Loss Equation) are developed using data from small plots where runoff is generated by 

infiltration excess.  However, in most watersheds, runoff is produced by saturation excess processes. 

Therefore, scaling up requires a hydrology model that accurately predicts the location and extent of 

runoff source areas. These runoff predictions can then be used for simulating sediment concentrations.  

We base sediment predictions on a simple, well-tested distributed saturation excess hydrology model, 

which calculates surface runoff, interflow, and baseflow. Surface runoff originates from bottom lands 

that become saturated during the rainy season or from severely degraded lands with little or no storage 

capacity. Baseflow and interflow are generated from the remaining parts of the landscape.  Interflow 

comes from the shallow soils over an impermeable surface and base flow results from percolation 

below the impervious layer. To obtain the sediment concentrations, we assume that during surface 

runoff, there is a linear relationship between runoff velocity and sediment concentration, but baseflow 

and interflow are sediment free. Thus only the runoff component of stream discharge is involved in 

active erosive work compared to baseflow and interflow that contribute minimally to watershed 

sediment yield. To show the general applicability of the Saturation Excess Erosion Model (SEEModel), 

the model was tested for watersheds located 10,000 km apart, in the United States and in Ethiopia. In 

the Ethiopia highlands, we simulated the 113 ha Anjeni watershed, the 400 ha Enkulal watershed and 

the 180,000 km2 the Blue Nile basin. In the Catskill Mountains in New York State, the sediment 

concentrations were simulated in the upper 493 km
2
 Esopus Creek watershed.  Daily discharge and 

sediment concentration were well simulated over the range of scales with comparable parameter sets. 

The Nash Sutcliffe values for the daily stream discharge were greater than 0.80 and the daily sediment 

concentrations had Nash Sutcliffe values of 0.65 using only two calibrated sediment parameters and 

the subsurface and surface runoff discharges calculated by the hydrology model. The model results 

suggest that correctly predicting both amount of surface runoff and subsurface flow is an important 

step in simulating the sediment concentrations. 

KEYWORDS. Variable source areas. partial area hydrology, sediment, monsoon climates, USLE
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Introduction 

The success of soil and water conservation practices depend on the understanding of the processes 

involved in the generation and transport of sediment (Ciesiolka et al, 1995). Many models use the 

Universal Soil Loss Equation for predicting sediment loads, which assumes that rainfall intensity is 

one of the main driving forces for causing erosion. Although this might be a reasonable assumption for 

areas with limited infiltration capacity and/or extremely high intensity storms, it is not applicable for 

humid climates, where soils are well structured and rainfall intensities are usually less than the 

infiltration capacity of the soil. In these areas runoff is generated from saturated areas of the landscape 

and the amount of runoff is a function of the precipitation depth and available soil storage. The 

objective of this research is to develop an alternative to the USLE for humid monsoonal climates and 

test if this method also applies to humid temperate climates.   

SATURATED EXCESS EROSION MODEL(SEEMODEL) DEVELOPMENT   

In this section, the amount of erosion is predicted as a function of the (daily) amounts of surface 

runoff, interflow, and baseflow. These fluxes are obtained from a relatively simple hydrology model 

(Steenhuis et al. 2009; Tesemma et al. 2011). In this simple model, the watershed is divided into three 

zones: two surface runoff zones consisting of areas, one that becomes saturated during the wet 

monsoon period and the other the degraded hillsides. The remaining hillsides are the third zone where 

the rainwater infiltrates and becomes either interflow (zero order reservoir) or base flow (first order 

reservoir) depending on its path to the stream. A daily water balance is kept for each of the zones using 

the Thornthwaite Mather procedure where actual evaporation has a linear relationship with the 

available water storage in the root zone.  At maximum storage, Smax, actual evaporation is equal to the 

potential evaporation (Steenhuis and van der Molen, 1986). More information about the hydrology 

model can be found in Steenhuis et al (2009) and Tesemma et al (2011). Erosion originates from the 

runoff producing zones. Erosion is negligible from the non-degraded hillsides because almost all water 

infiltrates before it would reach the stream.   

In calculating the erosion from runoff producing area, we are assuming that rate of erosion depends on 

the stream power (Ω) per unit area..  The maximum concentration of sediment that a stream can carry 

(called the transport limiting capacity Ct (g/L)) can be derived from the stream power function as 

shown by Hairshine and Rose (1992); Siepel et al. (2002); Ciesiolka et al. (1995) and Yu et al. (1997) 

:                                                    
                                               

Where qr (mm/day) is the runoff rate per unit area from each runoff producing region, at (g L
 
mm

-

n
day

n
) is a variable derived from the stream power. The variable at is a function of the slope, Manning’s 

roughness coefficient, slope length, and the effective depositability (Yu et al 1997).  As water depth 

increases at essentially becomes independent of the runoff rate per unit area and can be taken as a 

constant (Yu et al, 1997). The exponential, n, that takes a value of 0.4 assuming both a wide channel 

and a linear relationship between sediment concentration and velocity (Ciesiolka et al 1995 and Yu et 

al 1997).  In this paper where the smallest watershed considered is 113 ha, the water in the channel is 

sufficiently deep so that at is constant. 

For erosion of cohesive soils, the sediment concentration will not always reach the transport limit.  

Only in cases where, for example, the rills are formed in newly plowed soils, the transport capacity 

will be met. Tebebu et al (2010) found that once the rill network has been fully established, no further 

erosion will take place and the sediment source becomes limited and, the concentration, C, will fall 

below the transport limit.  For the cases when the sediment concentration becomes lower than the 
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transport limit, Ct
,
, Ciesiolka et al. (1995)  found based on the work of Hairsine and Rose  that the 

sediment concentration will not decline below the “source limit”, Cs (g/L): 

                                                                
                                                            

where as is the source limit and is assumed to be independent on the flow rate for a particular 

watershed (as compared to plots). Introducing a new variable, H, defined as the faction of the runoff 

producing area with active rill formation, the concentration of sediment from the runoff producing area 

can then be written as: 

                                                                                                              

Combining Eq. 3 with Eqs. 1 and 2, the concentration from the runoff producing area becomes    

                                                                
                                         

Finally, in the calculation of the daily concentration, baseflow and interflow play an important role. In 

a monsoon climate, baseflow can be at the end of the rainy season a significant portion of the total 

flow. Thus, in the last part of the rainy season the subsurface flow dilutes the peak storm sediment 

concentration from the runoff producing zones when simulated on a daily basis. It is therefore 

important to incorporate the contribution of baseflow in the prediction of sediment concentration. 

Next we will calculate the concentration of the sediment yield in the stream.  Since the interflow and 

baseflow are sediment free the sediment load per unit watershed area, Y (g
 
m

-2
day

-1
), can be obtained 

by multiplying Cr in Eq. 4 by the relative area and the flux per unit area, e.g.,    

                           
                            

                        

where    and     are the runoff rates expressed in depths units for contributing area A1 (fractional 

saturated area) and A2 (fractional degraded area), respectively.  Assuming that the saturated and the 

degraded zones have the same values for transport and source limiting capacities, the concentration of 

sediment in the stream can be obtained by dividing the load Y (Eq. 5) by the total watershed discharge  

  
      

         
                   

                       
                                      

Where qb (mm/day) is the base flow and qi (mm/day) is the interflow per unit area of the non-degraded 

hillside, A3 where the water is being recharged to the subsurface (baseflow) reservoir.  

These equations are only as good as the experimental data. Therefore Eq. 6 is tested in three 

watersheds in the Ethiopian highlands and one in New York State, The areas range from 113 ha 

(Anjeni, Ethiopia ) to 180,000 km
2
 (entire the Blue Nile Basin in  Ethiopia). The other watersheds are 

Enkulal (400 ha) in Ethiopia and Esopus Creek (493 km
2
) in New York state. 

Watershed descriptions 

The Anjeni watershed covers an area of 113 ha with elevations ranging between 2405 and 2507m and 

is cropped. It is located in the sub-humid northwestern part of Ethiopia near Debre Markos 370 km 

NW of Addis Ababa. The mean annual rainfall is 1690 mm, which lasts from the middle of May to the 

middle of October. There is a large active gully in the upper part of the watershed.  Both discharge and 

sediment concentrations were measured during storm events. Daily average discharge and sediment 

concentrations were calculated. Rainfall, potential evaporation, stream discharge and sediment 

concentrations were collected from 1988 to 1997. In 1990 soil and water conservation practices were 

installed resulting in a decrease in soil loss for two years.  Periods in which there is incomplete data) 

were excluded.  The model was calibrated for the years 1988 and 1990 for discharge, and was 
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validated for the years 1989, 1991-1993 and 1997. Only three years were available for sediment 

concentration: The year 1990 was used for calibration and 1992 and 1993 for validation.  

The Enkulal catchment is a small tributary of Gumara watershed, located approximately 80 km 

northeast of Bahir Dar. Enkulal watershed covers an area of 400 ha. Elevation ranges from 2306 to 

2528 m.  The average annual rainfall is 1577 mm. Most of the rainfall is concentrated from June to 

September. More than three quarter of the watershed is in low yielding oxen-plowed agriculture. 

Discharge and sediment concentration data were available twice a day at 6 a.m. and 6 p.m. for the year 

2010. Especially at the end of the rainy season many storms occurred at night and the peak flows were 

not recorded. The rivers in the watershed are stable and in the lower part run over bedrock 

The last watershed modeled in Ethiopia is the entire Blue Nile Basin in Ethiopia. It is 180,000 km
2
 and 

encompasses the Anjeni and the Enkulal watersheds.  It is said that the source of the Blue Nile is a 

spring located about 100 km south of Lake Tana at an elevation of 2,900 m. This spring is the 

beginning of the Gilgil Abbay, which flows into Lake Tana.  After Lake Tana the Nile flows through a 

1 km deep gorge to the Sudanese border mostly over bedrock.  The Blue Nile leaves the highlands near 

the western border of Ethiopia, and enters the Sudan at an elevation of 490 m. The annual rainfall 

varies from less than 1000 mm near the Sudanese border to over 1800 mm in the highlands south of 

Lake Tana. Three years of discharge and sediment data were available at the Sudanese border (1997, 

2003 and 2004).   The year 1997 was used for calibration and 2003 and 2004 for validation.  Tesemma 

et al (2010) found that the degraded soils had increased by 10% during a 25 year time span. For that 

reason the degraded hillslope was increased by 3% from 1997 to 2003 and 2004.   

The final watershed is The Esopus Creek watershed located in the Catskill region of New York State 

drains 493 km2 and is dominated by forests, which occupy more than 90 % of the watershed area. The 

elevation of the watershed ranges from 194 m near the watershed outlet at Coldbrook to 1275 m at the 

headwaters. Widespread stream channel erosion of glacial clay deposits has been identified as the 

primary cause of high levels of turbidity. For the Esopus Creek watershed, measured daily stream 

discharge from the USGS gauging station at the watershed outlet near Coldbrook was used. Turbidity 

measurements were taken at intervals between 15 min and 1 hr using a YSI water quality sonde from 

which flow-weighted average daily values were calculated. The measured stream discharge was 

separated into base flow and surface runoff components using a base flow filter program (Arnold and 

Allen, 1999). The values for surface runoff region (A1 and A2) and hillside recharge region (A3) were 

derived as the long-term (1931-2011) mean proportions of runoff and base flow to total stream flow. 

Observed daily turbidity and daily stream discharge from the March 2003 to March 2004 period were 

used for calibration of the sediment of the SEEModel and a power function and data from March 2007- 

2008 period were employed for validation. The Esopus Creek is at times fed by a diversion tunnel 

operated from the nearby Schoharie reservoir that contributes to stream discharge. Therefore all 

calculations were confined to days when the tunnel contribution of stream discharge was insignificant.  

Results 

The model calibration over a wide range of scales has some remarkable similarities (Table 1). 

Especially the fraction of surface runoff zones in the three watersheds, which is between 0.3 to 0.4.  

Only in the Anjeni watershed the surface runoff area is equal to 15% of the watershed. The size of 

permeable hillside increases with watershed size.  The small watersheds are located in the top of the 

watershed and some of the subsurface water passes under the gaging station and provides water for 

springs below. The hillside area is especially small for the Enkulal watershed, which is in accordance 

with the data from piezometers readings that indicated that the top part of the watershed contributed 

mainly to baseflow. The maximum storage of water in the root zone varies among the watersheds. 

However, the model is relatively insensitive to the Smax values since it only affects the amount of 
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surface runoff in the beginning of the rainfall season. Variations in these values between watersheds are 

therefore not significant with the exception of the maximum storage for the hillside and saturated area 

of the whole Blue Nile Basin that is larger.   

Table 1: Calibrated model parameters and model efficiencies for the four watersheds 

Component Description parameters Unit 
Calibrated Values 

Anjeni Enkulal Blue Nile Esopus 

Hydrology 

Saturated 

area 

Area A1 fraction 0 0.1 0.2 - 

Smax in A1 mm - 50 200 - 

Degraded 

area 

Area A2 fraction 0.15 0.2 0.2 0.32 

Smax in A2 mm 10 10 25 - 

Hillside 
Area A3 fraction 0.5 0.3 0.6 0.68 

Smax in A3 mm 100 50 250 - 

Subsurface 
t½ days 70 120 80 - 

τ* days 10 100 200 - 

Sediment transport limit at see text 4.5 17 6.9 - 

Sediment Source limit as see text 3 5 4 0.63 

Nash 
Sutcliffe 
Efficiencies 

Time step days 1 7 10 1 

Hydrology 
calibration none 0.84 0.75 0.95 - 

validation none 0.80  0.92 - 

Erosion 
calibration none 0.70 0.76 0.86 0.63 

validation none 0.75  0.72 0.66 

There are two parameters that determine the subsurface flow: Interflow and baseflow.  While the 

baseflow contribution to streamflow decreases slowly depending on the amount of water in the aquifer, 

the interflow remains constant for a particular storm and stops after a time,  t*. As expected t* 

increases with watershed size, because more deep flow paths are intercepted by the river.  The larger 

than expected t* for the Enkulal watershed is likely a consequence of missing most of the peak flows 

especially later in the rainy season (due to the sample collection timing).  The half-life, t½, for the 

aquifer system is almost independent of watershed size, indicating that there is not a large aquifer.  

With the Nile flowing over bedrock this should not be a surprise.  Finally, the hydrology model could 

not be fitted very well to the Esopus Creek watershed discharge data, because in a temperate climate 

the snowmelt requires another subroutine and with the large height differences in the watershed, the 

snowmelt is spatial variable. The proportion of surface runoff zone and permeable hillsides were 

derived statistically from the discharge data. The simple SEEM model was able to simulate the 

discharge pattern quite well in the watersheds.  

The Nash Sutcliffe efficiencies in Table 1 for validation for the daily discharge data in the Anjeni 

watershed was 0.80 (Table 1) and for the 10-day average discharge in the entire Blue Nile in Ethiopia 

was 0.92. The simple SEEmodel was able to simulate the discharge pattern quite well in the 

watersheds. The predicted and observed  discharge  for 1989 validation year for the Anjeni watershed 

is shown in  Figure 1a. In Anjeni daily the peak flows were underestimated likely because saturated 

areas were forming near the river for the high flows and they were not included in the model.  The data 
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for the Enkulal watershed was only collected in 

2010 and weekly running averaged discharge in 

2010 is compared in Figure 1b. The fit is not great 

and is partly caused by the uncertainty of the peak 

flows.  The Blue Nile validation is shown for the 

year 2003 in Figure 1c. The NSE values were 

improved over the Collick et al. (2009) 

spreadsheet model and comparable to the SWAT-

WB model in Easton et al (2010) for Anjeni and 

the entire Ethiopian Blue Nile basin. The good fit 

of the hydrology model is a consequence that the 

model recognizes that before the watershed 

discharge can respond to precipitation after the dry 

season, the soils need to be filled to field capacity 

or saturation.   

In simulating the sediment losses, we first define 

the form of the function of H, indicating the 

fraction of plowed land with active gully 

formation. Tebebu et al (2010) and Zegeye et al. 

(2011), found that the erosion is the greatest just 

after plowing and stopped after rills were formed 

in the field. Cultivation begins after the first 

rainfall and then continues for approximately a 

three to four week period. Therefore, in the model 

we assume that the concentration from the runoff 

areas is at the transport limit (i.e., H=1) for the 

first four weeks after the first rainfall event. Then 

for another month a few more fields are being 

prepared and the H decreases from 1 to zero. 

Around August 1 the sediment concentration from 

the runoff areas is at the source limit except for the 

Esopus Creek watershed where the sediment 

remains at its transport limit due to the unstable 

banks.   

The sediment concentration shown in Figure 2 are 

calculated according to Eq 6 by using the H values 

as specified above and the discharges predicted by 

the hydrology model. The value for n was 0.4 as it 

theoretically should be for a wide field (Tilahun et 

al, 2010). The coefficients at and as in Table 1 

were calibrated for first year of data and then 

validated with the remaining years of data.  The 

observed and predicted values for the validation of 

two watershed with multiple years of data  fit well 

(Table 1; Figures 2a and 2c. The transport limiting 

concentration, at , for Anjeni and the Blue Nile, are surprisingly similar (Table 1). The transport 

limiting capacity, at, for Enkulal watershed is the greater than the other two watersheds. Both the 

Figure 1. Predicted (red line) and observed 

(blue line) discharge data for a) Anjeni 

validation for  daily discharge in 1989; b) 

Enkulal calibration  running weekly average 

discharge in 2010; c) Validation for the Blue 

Nile at the Ethiopian-Sudan border in 2003. 

Rainfall amounts expressed in mm/day is the 

solid blue area chart hanging from the top of 

each figure 
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slopes are steeper and the soils in this watershed are sandier than in the Anjeni watershed and the Blue 

Nile Basin. The source limits for all three watersheds spanning a range of scales in Ethiopia are similar.   

For the Esopus Creek we could not use the model 

employed for Ethiopia because of the inability to 

simulate snow melt accurately.  Therefore, based 

on the long-term statistical analysis the average 

area contributing to base and interflow (A3 in Eq 

6) was found to be 0.68 and therefore (A1 + A2) 

was 0.32.  The H value was kept constant at 0.  

We left the exponential term n= 0.4 and calibrated 

the value of the transport limiting capacity, as as 

0.63 (Figure 3). This was much lower than in the 

Nile basin, likely because the watershed was 

completely forested. The Nash Sutcliffe efficiency 

was 0.61 for calibration. A simple power function 

rating curve (using two calibration parameters 

using data from the same period had as expected a 

better NS efficiency of 0.83 . However, during the 

validation period the one parameter model (Eq 6) 

performed better (NS efficiency of 0.66) than the 

rating curve (NS efficiency of 0.40). Unlike the 

rating curve the SEEModel was able to capture 

the variability in stream discharge- turbidity 

relationship to a certain extent (Figure 3). 

CONCLUSIONS  

Sediment concentrations in the stream were 

monitored in four watersheds. The SEEModel 

was developed by assuming that the concentration 

in the stream was the transport limiting capacity 

at the time the fields were plowed and then 

became equal the source limit once the rill 

network in the field were fully developed.  The 

Nash Sutcliffe efficiencies are remarkably good 

for such a simple model over such a wide range of 

scales and better than most values reported in the 

literature for the Blue Nile Basin.  Although the 

hydrology model could not be used in temperate 

climate where most runoff is produced during 

snowmelt, the sediment relationships seemed to 

apply as we 
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Abstract:

Snowfall is an important part of the yearly water balance for the Catskill Mountains in New York State, the location of water
supply reservoirs for New York City. Recent studies have shown that the effects of climate change on the hydrology of the
Catskills will most likely create (1) a decrease in the proportion of precipitation falling as snow, (2) a shift in the timing of
snowmelt that will cause snowmelt-supplemented streamflow events to occur earlier in the fall and winter, and (3) a decrease in
the magnitude of traditionally high April streamflow. The shift in timing of snowmelt-influenced streamflow events is measured
by the winter-early spring centre of volume (WSCV), defined as the Julian Day on which half the total streamflow volume
from January to May occurs. Studies of streamflow, precipitation, and temperature trends in the last 50 years have shown that
the WSCV is already earlier by about 5–10 days. This study investigates the use of watershed-scale snowpack and snowmelt
algorithms that are incorporated in two existing watershed water quality models, Generalized Watershed Loading Functions-
Variable Source Area (GWLF-VSA) and Soil and Water Assessment Tool (SWAT), to capture the potential effects of climate
change on the timing and magnitude of streamflow during the late fall, winter, and early spring for the Catskill Mountain
region. The GWLF-VSA model reasonably simulated the recent shifts in the winter streamflow timing, with simulations over
the previous 50-year period yielding shifts in WSCV of 2–15 days. The SWAT model yielded similar results as the GWLF-
VSA simulations. Scenarios of potential climate change 100 years in the future showed a similar shift in direction of timing
winter streamflow, but at a larger magnitude than observed to date with WSCV occurring 15–20 days earlier. Copyright 
2011 John Wiley & Sons, Ltd.
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INTRODUCTION

Current predictions of climate change in the northeastern
United States (US) suggest increased temperatures over
the next century, including winter increases ranging
from 3 to 7 °C (Frumhoff et al., 2007). Increased winter
temperatures in northern latitudes and mountainous areas
can have a profound effect on the accumulation of snow,
the timing of snowmelt and, in turn, the magnitude and
timing of winter and spring streamflow. Changes in the
timing of winter streamflow can have many implications
for the management of water supplies, flood control, and
water quality.

A number of studies have shown that temperatures
in the northeastern US have risen in the last 50 years
(Trombulak and Wolfson, 2004; Burns et al., 2007).
These temperature increases have already created a shift
in the winter streamflow patterns, with a movement of the
traditional high spring runoff period due to snowmelt to
earlier in the year (Zhang et al., 2001; Hodgkins et al.,

* Correspondence to: Mark S. Zion, Bureau of Water Supply, NYC
Department of Environmental Protection, 71 Smith Ave, Kingston, NY
12401, USA. E-mail: mzion@dep.nyc.gov

2003; Burns et al., 2007; Hodgkins and Dudley, 2006;
Burn, 2008). This phenomenon of shifting streamflow
is more pronounced in northern and more mountainous
catchments due to the greater influence of snow processes
in these areas. (Hodgkins et al., 2003; Hodgkins and
Dudley, 2006; Burns et al., 2007).

The Catskill Mountain region of New York State
supplies water for 9 million residents of New York
City (NYC) and surrounding areas. Winter precipitation
(December–April) accounts for approximately 40% of
the total yearly precipitation. Streamflow during the
winter and early spring (January–May) which is highly
dependent on the December–April precipitation accounts
for about 60% of the total annual flow, based on long-
term stream gage records (USGS, 2009). Much of winter
precipitation currently falls as snow, creating a snowpack
that is an important component of water storage during
the winter, and is a source of streamflow in early spring.

In order to evaluate and plan for the potential impacts
of climate change on the NYC Water Supply, the
New York City Department of Environmental Protection
(NYCDEP) has undertaken a Climate Change Integrated
Modeling Project (CCIMP) to investigate the potential

Copyright  2011 John Wiley & Sons, Ltd.
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Figure 1. Location of study watersheds (shaded) corresponding USGS gauges within Catskill Mountain region. The full area depicts the boundaries
of the West of Hudson watersheds and reservoirs of the NYC water supply system

effects of climate change on the quantity and quality
of the water supply (NYCDEP, 2008). Preliminary mod-
elling efforts undertaken by this project have consistently
shown a major shift in the timing of winter streamflow
(NYCDEP, 2009). This shift in the streamflow has some
potential effects on the patterns of the system’s over-
all storage, with reservoirs filling earlier in the spring
(Matonse et al., 2010) and on the timing and magni-
tude of nutrient and sediment loads to the reservoirs
(NYCDEP, 2009).

As part of the CCIMP, existing watershed water quality
models are being utilized to develop flows and constituent
loads to the reservoir system. The models used within
this program include the Generalized Watershed Loading
Functions-Variable Source Area version (GWLF-VSA)
(Haith and Shoemaker, 1987; Schneiderman et al., 2002;
Schneiderman et al., 2007) and the Soil Water Assess-
ment Tool (SWAT) (Neitsch et al., 2005), since these
models incorporate the necessary water quality algo-
rithms for CCIMP analyses.

Hydrological modelling of snow processes can span
a wide range of spatial and temporal scales, and the
algorithms can also span a wide range of complexity
from methods based only on temperature (e.g. GWLF-
VSA, SWAT), to physically based, data-intensive energy
balance approaches (Walter et al., 2005; Ferguson 1999;
Marks et al. 1999). The models used in this study gener-
ally use the more simple temperature index approaches.
Zhang et al. (2008) compared the use of an energy
balance algorithm versus the default temperature index
algorithm in SWAT and found that the temperature index

method when combined with the multiple elevation bands
performed well for simulating monthly streamflow in the
headwaters of the Yellow River in China which has a
significantly greater range in elevation than the Catskill
region. As the GWLF-VSA and SWAT models are being
used as part of the CCIMP, one goal of this study is to
ascertain if the temperature index approaches embedded
in these models are sufficient to simulate potential shifts
in streamflow due to rising winter temperatures.

This study consists of three parts: (1) quantify trends
for 1952–2008 in winter and early spring streamflow
timing for the Catskill Mountain region; (2) investigate
the ability of GWLF-VSA and SWAT models to capture
any streamflow trends found in part 1; and (3) compare
model estimates of streamflow in the context of potential
future climate change.

METHODS AND DATA

Study area

Four watersheds with long-term historical streamflow
measurements within the Catskill Mountain region of
New York State are used for this study (Figure 1).
These four streams are also major tributaries to four
separate water supply reservoirs for NYC. Each of
the watersheds contains a streamflow gauge operated
by the United States Geologic Survey (USGS). Table I
lists the important features of each of the watersheds.
Generally, the watersheds are largely forested. There is
some agriculture, mainly dairy, within the West Branch
Delaware River (WBDR) watershed and, to a lesser

Copyright  2011 John Wiley & Sons, Ltd. Hydrol. Process. 25, 3289–3301 (2011)
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Table I. Land use, drainage areas and other facts regarding study watersheds

Watershed USGS gauge
no.

Station lat–lon Watershed
area (km2)

Elevation
range and

(mean) (m)

Land use %a forest/
agri-undeveloped

cultural developed

West Branch Delaware
River at Walton

01423000 N 42° 0905800, W 75° 0802500 859Ð25 370–1020 (590) 82 14 3

Schoharie Creek at
Prattsville

01350000 N 42° 1901000, W 74° 2601300 612Ð50 360–1230 (650) 94 3 3

Neversink River near
Claryville

01435000 N 41° 5302400, W 74° 3502500 172Ð48 470–1260 (770) 99 <1 1

Rondout Creek near
Lowes Corners

01365000 N 41° 5105900, W 74° 2901500 99Ð49 270–1270 (630) 98 1 1

a Land use percentages derived from LandSat imagery from 2001. (NYCDEP, 2006a).

extent, within the Schoharie Creek basin. Additionally
the WBDR and Schoharie watersheds contain a number
of small hamlets. The Rondout and Neversink watersheds
contain little or no agriculture and only some scattered
development. The elevation ranges from about 270 to
1270 m, with the higher elevations more dominant in
the Rondout and Neversink watersheds. There has been
little change in land development over the last 50 years,
except for a slight decline in active agricultural activity
in the WBDR basin. None of these watersheds contains
any water diversions, transfers, or flow regulation that
significantly affect the inter- or intra-annual variability
of the streamflow.

Streamflow data

The streamflow data for the 4 watersheds are investi-
gated over a 57-year period for water years 1952–2008.
Figure 2 shows the average monthly streamflow for each
of the study gauges for the study period. Flow tends to
peak in March and April, a period of spring snowmelt
and low potential evapotranspiration. The extent of the
spring peak is magnified in the more mountainous basins
(Neversink and Rondout) as the influence of snow on
streamflow is much stronger in these watersheds than in
the other two basins. Minimum flows occur during the
summer months when canopy interception and evapo-
transpiration are greatest. Snow water equivalent (SWE)
data are collected by NYCDEP at various sites through-
out these watersheds on various dates throughout the
January–April period. Figure 3 displays boxplots of all
SWE measurements collected by NYCDEP during win-
ters of 2004–2008, the period for which data are avail-
able. The snowpack tends to peak during March and is
typically melted away by the end of April. Again, the
Rondout and Neversink watersheds have higher SWE
measurements, especially during March, illustrating the
greater influence of snow in these watersheds.

To analyse the effects of shifts in snowpack devel-
opment and melting two statistics are used throughout
this study: (1) total winter–early spring flow volume; and
(2) the winter–early spring centre of volume (WSCV)
(Hodgkins et al., 2003). In this study, the total

winter–early spring flow is defined as the total volume
of water in the streamflow for the months of January
through May. This period is consistent with that used by
Hodgkins et al. (2003) in a similar study of streamflow
timing in New England and represents the time when
the streamflow is most influenced by snow processes in
the Catskill Region. In most years, the snowpack in the
Catskill Region is completely melted by early May. The
WSCV is the Julian Day by which 50% of the total
winter–early spring flow volume has passed the flow
gauge (Hodgkins et al., 2003). Court (1962) suggested
that this type of half-flow date is more representative of
shifts in the mass of streamflow as opposed to a seasonal
maximum flow which may be more dependent on the
finer details of an individual year’s meteorology.

Trend analyses

To test the trends in the streamflow time series, the
Mann-Kendall test is used (Mann, 1945; Kendall, 1975).
This nonparametric test is applicable for monotonic
increasing or decreasing trends, detects either linear or
nonlinear trends and accounts for outliers. This test has
been widely used to test trends in hydrologic time series
(Zhang et al., 2001; Burn and Hag Elnur, 2002; Hodgkins
et al., 2003; Hodgkins and Dudley, 2006; Burns et al.,
2007; Dery et al., 2009). The results of the Mann-Kendall
test were evaluated at a significance level of p < 0Ð1. To
calculate the slope of the trend, the Sen method (Sen,
1968) was used. The Sen slope is computed as the median
of all possible pair-wise slopes for the data. None of
the trend analyses in this study exhibited any statistically
significant serial correlation.

Modelling analyses

The watershed hydrology and water quality mod-
els tested within this study include the GWLF-VSA
(Haith and Shoemaker, 1987; Schneiderman et al., 2002;
Schneiderman et al., 2007) and the SWAT 2005 (Neitsch
et al., 2005). These models have been used in the past for
analysing the potential effects of land use and agricultural
practices on water quality in the Catskill region (Gitau
et al., 2004; NYCDEP, 2006b; Easton et al., 2008; Rao

Copyright  2011 John Wiley & Sons, Ltd. Hydrol. Process. 25, 3289–3301 (2011)
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Figure 2. Monthly average streamflows for the study period (water years 1952–2008) as measured at USGS gauges for (a) WBDR, (b) Schoharie
Creek, (c) Rondout Creek, and (d) Neversink River. All flow values are in cm/month representing the total monthly flow volume divided by the
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Figure 3. Boxplots of SWE measurements during 2004–2008 at vari-
ous sites within (a) WBDR, (b) Schoharie Creek, (c) Rondout Creek,
and (d) Neversink River watersheds. Boxes show range of 25th–75th
percentile, whiskers show extent of data up to maximum 1.5 times
interquartile range. Outliers represent data values beyond the maximum

whisker extent

et al., 2009). The GWLF-VSA model has been applied in
most of the NYC reservoir watersheds, while application
of the SWAT model has occurred largely in the WBDR
watershed where this model’s agricultural water quality
algorithms are most applicable. Given their past history

of use in the study area, these models are potential can-
didates for use in studies of climate change. Since one
goal of this study is to better understand the differences
in the winter and spring streamflows that are simulated
by these two models, both models were used to simulate
streamflow in the WBDR watershed. To further under-
stand the patterns in the winter spring streamflow shifts,
the GWLF-VSA model was also used for simulations
in the other three study watersheds. The models were
applied for the period 1952–2008 to understand if the
models adequately translated the underlying forcing data
into the winter streamflow timing shifts observed in the
measured data.

The GWLF-VSA watershed loading model is a
lumped-parameter continuous simulation model that sim-
ulates daily streamflow, nutrients, and sediment loads
from non-point and point sources. Model forcing inputs
include daily minimum and maximum air temperatures,
precipitation, incoming solar radiation, and daily average
relative humidity. The original GWLF (Haith and Shoe-
maker, 1987) treats the watershed as a system of different
land areas (Hydrologic Response Units or HRUs) that
produce surface runoff, and a single groundwater reser-
voir that supplies baseflow. GWLF-VSA incorporates a
saturation-excess runoff on variable source areas, which
is considered the primary runoff-generation mechanism
in Catskill watersheds (Walter et al., 2003). The GWLF-
VSA model simulates runoff volumes using the SCS
Curve Number Method, as in the original GWLF model,
but spatially distributes the runoff response according to
a soil wetness index, based on the TOPMODEL soils-
topographic index (Schneiderman et al., 2007). The spa-
tial distribution of runoff by soil wetness index provides
a more realistic identification of runoff generating areas

Copyright  2011 John Wiley & Sons, Ltd. Hydrol. Process. 25, 3289–3301 (2011)



WINTER STREAMFLOW AND CLIMATE CHANGE FOR CATSKILL MOUNTAINS 3293

in the NYC watersheds, with important consequences for
simulation of pollutants that are typically transported by
runoff.

The snowmelt algorithm in GWLF-VSA follows a
temperature degree-day-based methodology, with the
daily updating of a single watershed-wide snowpack:

SNOd D SNOd�1 C Psnowd � Md �1�

where SNOd is the snowpack for day d, SNOd�1 is
the snowpack for day d � 1, Psnowd is the snowfall
for day d and Md is snowmelt for day d. The daily
input precipitation falls as snow when the average daily
temperature (Tavg) is less than 0 °C. The average daily
temperature is defined as:

Tavg D Tmin C Tmax

2
�2�

where Tmin is the minimum daily air temperature and
Tmax is the minimum daily air temperature. When the
Tavg exceeds 0 °C, melt of the snowpack proceeds as:

Md D bmelt Ð �Tavg � 0 °C� �3�

where bmelt is a calibrated constant melt coefficient. The
snowmelt is added to any precipitation that falls as rain
(Tavg > 0 °C), and this total is considered available to be
partitioned between direct runoff and infiltration. Direct
runoff is added to streamflow with a short first-order
delay function to incorporate routing, while infiltrated
water is stored in the groundwater zone and can be
available for either evapotranspiration or slowly released
as baseflow.

The SWAT model is also a continuous simulation
watershed water quality model and is significantly more
complex than the lumped GWLF-VSA model. The model
splits the watershed into sub-basins, with each sub-basin
including HRUs defined by unique land use and soil com-
binations. Model forcing inputs include daily minimum
and maximum air temperatures and precipitation for each
sub-basin. Direct runoff, evapotranspiration and infiltra-
tion are calculated for each HRU and summed for the
sub-basin. Sub-basin flows are routed through a stream
network using a variable storage routing scheme. Infil-
trated water is available for evapotranspiration or stored
in a single sub-basin groundwater reservoir for slow
release as baseflow.

The SWAT snowmelt algorithm (as described in
Neitsch et al. (2005)) uses a temperature degree-day
methodology to calculate a daily snowpack for each sub-
basin. The snowpack in each sub-basin can be further
divided into a maximum of ten elevation bands. For this
study, the model was run twice: once with a single eleva-
tion band (SWAT–1Band), and a second time with three
equal area elevation bands (SWAT–3Band) for each sub-
basin. The input sub-basin temperatures are adjusted for
each elevation band based on a calibrated lapse rate. For
each elevation band within each sub-basin the daily snow-
pack is calculated by:

SNOd D SNOd�1 C Psnowd � Md � Esubd �4�

where Esubd is the daily sublimation which is computed
as the function of potential evapotranspiration. The daily
input precipitation falls as snow when the minimum daily
temperature is less than 1 °C for this application). Melt
of the snowpack proceeds as:

Md D bmelt Ð snocov

(
Tavg C Tmax

2
� Tmlt

)
�5�

where bmelt is a calibrated melt coefficient, Tmlt is a melt
temperature parameter set to 0Ð5 °C for this application,
and snocov is the fraction of the sub-basin with snow
cover and was set to 1 when the SWE of the snowpack
is greater than 1 mm and is set to 0 when the SWE was 0.

Model input data

Both the GWLF-VSA and SWAT models require daily
forcing data, including temperature and precipitation. In
addition the GWLF-VSA model uses input solar radiation
data as part of a Priestley-Taylor evapotranspiration
calculation. SWAT performs a similar calculation, but
estimates the necessary solar radiation based on empirical
relationships to daily temperature values. In addition to
the daily forcing data, both models require information
about the soils, land use/land cover and topographic
information.

The required daily precipitation and daily minimum
and maximum temperature data were from cooperator
stations recognized by the National Climate Data Center
and were obtained from the Northeast Regional Climate
Center. For GWLF-VSA, the daily precipitation station
data is averaged for the entire basin using a Thiessen
polygon method (Burrough, 1987). Any potential biases
of model input precipitation due to spatial averaging
over mountainous terrain were corrected with a constant
multiplicative factor calibrated to the long-term water
balance for input model precipitation.

A basin-wide estimate of daily minimum and maxi-
mum temperatures was calculated based on an inverse
distance weighting to four cooperator stations (Coop-
erstown, Liberty, Slide Mountain, and Walton) and an
environmental lapse rate of 6 °C Ð km�1 was applied to
adjust for the difference in station elevation versus basin
average elevation. The lapse rate was derived based on
the average difference in temperature and the elevation
difference between the four measurement stations used in
this study. For SWAT a 5-km grid of both air temperature
and precipitation data were derived from the cooperator
station data using an inverse distance squared weighting
scheme and again correcting temperature based on the
same environmental lapse rate. The values for the clos-
est grid point to each sub-basin were used as inputs to
the SWAT model. Solar radiation data for GWLF-VSA
was derived as the average of airport stations at Albany
and Binghamton as supplied from the Northeast Regional
Climate Center.

Land cover and land use (LC/LU) data for model input
was derived from a combination of sources including a

Copyright  2011 John Wiley & Sons, Ltd. Hydrol. Process. 25, 3289–3301 (2011)
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Figure 4. Calibration (1991–2000) and validation (2001–2008) results for monthly streamflow for the WBDR watershed using the (a) GWLF-VSA,
(b) SWAT-1Band, and (c) SWAT-3Band watershed models. All flow values are in cm/month representing the total monthly flow volume divided
by the watershed area. The panels on the left show a time series of simulated (solid lines) and observed (dotted lines) monthly streamflow. The
scatterplots show the modelled (y-axis) monthly flows versus the observed (x-axis) monthly flows for calibration and validation periods. The lines

on the scatterplots show the 1 : 1 relationship

supervised LC/LU classification derived from 2001 Land-
Sat imagery, information from the New York City Water-
shed Agricultural Program to refine total agricultural
areas, and New York State Department of Transportation
GIS road data (NYCDEP, 2006a) Sixteen land use classes
are distinguished in the model classification–deciduous
forest, coniferous forest, mixed forest, brushland, non-
agricultural grass, cropland, permanent hayland, pasture,
barnyard, rural roads, residential pervious and impervi-
ous, commercial/industrial pervious and impervious, wet-
land, and water. Soils data, including available water
capacity, saturated hydraulic conductivity and soil depth
are derived from the digital Soil Survey Geographic
(SSURGO) Database (NRCS, 2005). Soils-topographic
index values used in the GWLF-VSA model (Beven and
Kirkby, 1979; Schneiderman et al., 2007) were derived
from the soils data and a 10-m digital elevation model
(USGS, 1998).

Model calibration

Both the GWLF-VSA and the SWAT models were
calibrated for the watersheds of application for the
period of 1991–2000. For GWLF-VSA, the calibration
optimized total streamflow and also the partitioning of
streamflow into direct runoff and baseflow for all events
during the calibration period. For purposes of calibration,
an event period is defined to begin on the first day

of a rise in the hydrograph over a threshold value and
continues until the beginning of the next event period. In
this way, an event period includes both the storm period
with elevated flow and the inter-storm period following
the storm flow. There are seven calibrated parameters
for the hydrology portion of the GWLF-VSA model: a
precipitation factor to calibrate long-term water balance;
two water storage parameters partitioning of rain and melt
into direct runoff and baseflow; two recession coefficients
and a soil drainage coefficient controlling timing of direct
runoff and baseflow at the watershed outlet; and the
melt coefficient, bmelt (Equation (3)), which controls the
rate at which the snowpack melts. Figure 4(a) shows
the results for monthly streamflow for the calibration
period (1991–2000) and for a validation period from
2001 to 2008 for the WBDR watershed. Table II lists
the model performance statistics including the percent
bias (the average difference in simulated minus observed
values for the comparison period divided by the average
observed value in terms of percent), the Nash-Sutcliffe
coefficients (Nash and Sutcliffe, 1970) and the RMSE
expressed as percent. All four watershed simulated with
GWLF-VSA show consistently good results for monthly
streamflow with validation Nash Sutcliff coefficients
above 0Ð76 and average percent errors ranging from �3Ð4
to C3Ð4%.
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for the WBDR watershed for the 1991–2000 calibra-
tion period as described in Pradhanang et al. (2010).
Sixteen model parameters are calibrated which control
all aspects of streamflow simulation including the base-
flow recession, the partitioning of rainfall and snowmelt
into direct runoff and infiltration, streamflow routing,
and the rates of snowpack development and depletion.
Figures 4(b) and (c) show the time series and scatterplots
of SWAT–1Band and SWAT–3Band monthly streamflow
results for the calibration and validation periods. Table II
lists the model performance statistics for the monthly
streamflow results. Overall model results are good with
validation period Nash-Sutcliff coefficients above 0Ð69
and average percent errors ranging from �0Ð7 to C2Ð1%.

Climate change analysis inputs

To place the results of the trends into the context
of potential climate change, the models for WBDR
were further run with input precipitation and temperature
forcing scenarios based on Global Climate Model (GCM)
simulations of future climate.

The future climate forcing scenarios are defined by the
combination of the GCM, an emission scenario based
on the projected greenhouse gas emissions, and a time
slice which defines the time period over which the
prediction applies. Precipitation and average temperatures
at the land surface were obtained from GCM simulations
archived in the World Climate Research Programme’s
Coupled Model Intercomparison Project phase 3 (Meehl
et al., 2007) multi-model dataset. The GCM results from
the region surrounding the study region are extracted
and interpolated to a common 2Ð5° grid using bilinear
interpolation. Two GCMs were used for this study, GFDL
2Ð0 (Geophysical Fluid Dynamics Laboratory) and IPSL
(Institut Pierre Simon Laplace), as both of these GCMs
showed good results using the winter precipitation and
temperature forcings to simulate snowpack using current
conditions (Anandhi et al., 2010). The emission scenarios
used include the A2 and B1 scenarios (Nakicenovic et al.,
2000). These two scenarios represent opposite ends of
the spectrum of possible greenhouse gas emissions with
A2 representing a greater greenhouse gas emissions and
B1 representing lesser emissions. To represent the future
climate the GCM results for the 2080–2100 time slice
are used. In total, four future climate forcing scenarios
(2 GCMs ð 2 emission scenarios ð 1 time slice) are
generated.

To interpret the GCM results into precipitation and
temperature scenarios appropriate for hydrologic model
input, a monthly change factor method (also referred as
delta change factor methodology) (Anandhi et al., 2011)
was used to downscale the GCM results and generate
the four future climate forcing scenarios. The change
factor method for temperature utilizes the difference
between the results of a GCM simulation for a future
time slice and the similar simulation made with the
same GCM model of the current climate (1960–2000).
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This difference is averaged for each month of the GCM
simulation, producing one average change factor for each
month (12 values). These average monthly change factors
represent the monthly difference in temperature between
the two time periods (future minus current) as simulated
by a given GCM for an individual future climate scenario.
The monthly change factors are then added to the long-
term (1952–2008) historically observed temperature time
series used as hydrologic model input to produce a future
climate scenario. The advantage of this method is that
hydrologic model results between future scenarios and
current climate can be easily derived and compared.

A similar procedure is followed for producing future
climate precipitation input scenarios for hydrologic model
simulations, except that instead of the difference in
monthly average values between GCM simulation of
future and current climate, a ratio of future GCM sim-
ulated average monthly precipitation to current climate
GCM simulated results (future simulation precipitation
divided by current climate simulated precipitation) is used
to derive the monthly change factors. These monthly
change factors are then multiplied by the long-term pre-
cipitation inputs to the hydrologic model to produce a
set future climate scenario precipitation inputs for the
hydrologic model.

Figure 5 shows the range of average monthly tempera-
tures and precipitation for the four future climate forcing
scenarios as compared to the baseline historical values.
For temperature, there is a consistent increase of about
2–8 °C throughout the year. For precipitation, the differ-
ence relative to present conditions varies widely across
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Figure 5. Range of climate change forcing scenarios for (a) temperature,
and (b) precipitation shown on a monthly basis for the WBDR watershed.
The solid line represents the monthly average current observed conditions
(1952–2008), and the dotted lines display the four climate change forcing

scenarios with the range of the future scenarios shaded

the scenarios with both increases and decreases in precip-
itation during most months. The range of change for all
months is �2Ð3 to C3Ð4 cm per month. September and
October are notable exceptions, when all four scenarios
predict increases in average precipitation ranging from
C0Ð6 to C3Ð4 cm per month. This wide range of results
for potential future climate precipitation is consistent with
the highly uncertain nature of GCM precipitation predic-
tions (IPCC, 2007).

RESULTS AND DISCUSSION

Trends in winter–spring streamflow

An understanding of the streamflow trends that have
occurred over the last 50 years is the first step in this
study. Burns, et al. (2007) found that there were fairly
significant trends of increasing temperature (0Ð5–2Ð0 °C/
50 years) and increasing precipitation (8–26 cm/50
years) over the last 50 years at about half of the sam-
pling stations in the region. The increased temperature,
especially in the winter generally shifted the timing of
the spring runoff period about 1–2 weeks earlier in the
year. The streamflow shift was more pronounced in the
more mountainous catchments of the study (Burns, et al.,
2007).

This study investigates four of the same watersheds
as in Burns et al. (2007), and analyses these basins for
a slightly longer time period through 2008. The update
of the analysis is performed to allow for consistency
with the modelling portion of this study and to include
more recently available data. Figure 6 shows the winter
early spring flow volume for 1952–2008 for each of
the study streamflow gauges along with the trends and
the Sen slope for each of the time series. Although the
slopes of the trend lines are slightly positive, the Mann-
Kendall significance p-values are much greater than 0Ð1
suggesting that the trends in increasing temperature and
precipitation are not having a significant effect on the
total winter streamflow.

In order to investigate potential changes in the timing
of the winter–spring streamflow, the WSCV is used as
an indicator. Figure 7 shows the WSCV for 1952–2008
for each of the study watersheds. In this case, the Sen
slopes of the trend lines show a fairly high negative
slope, indicating a shift in the WSCV day ranging from
5Ð6 to 10 days earlier over a 50-year period (Table III).
This trend is statistically significant (p < 0Ð10) in two
cases, the Rondout and Neversink watersheds and not
statistically significant in the Schoharie and WBDR
watersheds. This result is consistent with the findings
of Burns, et al. (2007) as the Rondout and Neversink
watersheds are more mountainous and contain the highest
elevations in the Catskill Region where the winter
temperature increases have been greatest.

The shift in winter streamflow is further illustrated in
Figure 8 which shows boxplots of annual fraction of the
winter–spring flow that occurs in each month. The white
boxes show the fractions of winter–spring flow during
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Figure 7. Plot of WSCV in Julian Day for each study watershed. Points show annual WSCV. Sen Slopes are in days per 50 years

each month in the years 1952–1966 and the grey boxes
show the same values for the years 1994–2008. These
two 15-year periods were chosen since they were long
enough to represent some inter-annual variability and
short enough to allow for a 28-year time gap between
the two periods so that changes in the WSCV could
materialize.

For Rondout and Neversink watersheds, about 35–45%
of the winter–spring flow occurred in April for a major-
ity of the years in the earlier 15-year period, while
in the later 15-year period only about 20–30% of the
winter–spring flow occurred in April. The fraction of
winter–spring flow in April seems to shift somewhat to
January. This shift is most likely due to the increased
temperatures during the winter creating a combination

of more precipitation falling as rain during the winter
and more melt of the snowpack prior to the traditional
late March–April snowmelt period. These boxplots also
illustrate the much stronger response to the temperature
changes in the higher elevation watersheds (Rondout and
Neversink) versus the other two study watersheds.

Modelling of streamflow trends

The GWLF-VSA model was run for each of the
study watersheds for the period of 1952–2008 to further
ascertain how well the model could simulate trends in
the changing in timing of winter streamflow. Figure 9
shows the time series of the yearly modelled and observed
WSCV for each of the study watersheds and Table III
summarizes the Sen slope for the trend in WSCV. For
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Table III. Summary of results for Sen slope of trend in WSCV for observed streamflow (data) and for GWLF-VSA, SWAT-1Band
and SWAT-3Band model applications

Sen Slope of trend in WSCV (days/50 years)

Watershed Data GWLF-VSA SWAT–1Band SWAT–3Band

West Branch Delaware River at Walton –5.6 �1Ð8 �4.1 �4.4
Schoharie Creek at Prattsville �7Ð1 �6Ð7 N/A N/A
Neversink River near Claryville �10Ð1 �15Ð0 N/A N/A
Rondout Creek near Lowes Corners �10Ð0 �12Ð5 N/A N/A

WBDR Schoharie Creek

Neversink River Rondout Creek
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Figure 8. Boxplot of fraction of winter–early spring flow volume occurring in each month. The white boxes include data for years 1952–1966,
and the grey boxes are for years 1994–2008. Boxes show range of 25th–75th percentile, whiskers show extent of data up to maximum 1.5 times

interquartile range. Outliers represent data values beyond the maximum whisker extent

all the basins, if the trend in the data was strong, then the
model also simulated a similarly strong trend. In cases
where the trend in the data was not particularly strong,
the model also indicated a weak trend. The data from the
Rondout and the Neversink watersheds showed some of
the strongest and most significant trends leading to an
earlier WSCV, with the WSCV moving back at a rate of
approximately �10 days per 50 years. The models also
showed statistically significant trends (p < 0Ð10) in these
two watersheds, with slopes that showed a slightly higher
rate of reduction (–12 to 15 days per 50 years) than the
observed values. For the Schoharie watershed the trend in
the model was almost exactly the same as that for the data
(a reduction of about �7 days per 50 years) even though
the p-values associated with both trend lines indicated
that they were not statistically significant. Finally for
WBDR, where the observed slope of the trend is the least
and the trend test is least significant, the model slope
of the trend was somewhat less than that of the data
(�1Ð8 days per 50 years for the model versus �5Ð6 days
per 50 years for the data) and the p-value also indicates
statistical non-significance for the trend.

The SWAT model, using both a single elevation band
and three elevation bands, was also run for the WBDR

watershed to test if the less significant trend in this
basin is able to be better simulated using the slightly
more complex snow processes included in this model.
Figure 10 shows the results of the SWAT model for
the simulated WSCV trends versus the observed trends.
Both SWAT model tests produced trend results similar
to the GWLF-VSA runs. The model based trends were
slightly underestimated when compared to the �5Ð6 days
per 50-years shift estimated from the measured data.
The SWAT–1Band model produced a shift in WSCV of
�4Ð1 days per 50 years, and the SWAT–3Band model
produced a shift of �4Ð4 days per 50 years. For the
WBDR basin, where WSCV trends are not strong or
statistically significant in the data, model simulations
yielded similar results for the shift in WSCV when using
either GWLF-VSA or SWAT model applications.

Overall, the GWLF-VSA model captured the shift in
timing of the winter streamflow well, especially for the
basins with the strongest and most significant trends. For
the WBDR basin, where the trends are not strong or
significant in the data, similar results were simulated for
the shift in WSCV in both the GWLF-VSA and the two
SWAT models.
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Climate change and streamflow

The climate change scenarios are modelled in the
WDBR watershed to compare the already occurring shift
in winter streamflow to the changes projected to occur
under future climate conditions. It is important to note
that these results are obtained with a limited number
of climate change scenarios, and therefore, only give a
sampling of potential climate change impacts and do not
encompass the full range potential outcomes. In addition,
the changes in temperature and snowmelt timing may
have considerable impacts on the land cover and canopy
dynamics within the watersheds, providing further feed-
back on streamflow which is not included in this analysis.

Figure 11 shows the monthly average streamflow for
the current conditions and the range of streamflows for
the four climate change scenarios using the GWLF-VSA,
SWAT–1Band and SWAT–3Band models. Each of the
models consistently indicates a shift in streamflow timing
from the spring to the early winter, with the traditional
April peak decreasing and the flows during the early
winter increasing. This is consistent with the direction
of shifts observed in the most recent data (Figure 8). As
expected the magnitude of the shift is much greater in

the climate change runs, as the climate change scenario
temperature shifts are much greater than any observed
to date. Future work in this area could include a more
detailed investigation of climate change on the extreme
precipitation events that impact the magnitude of the
peak spring streamflow. This issue depends greatly on
the prediction of future extreme precipitation which is
not well represented in current GCMs primarily due to
the large spatial resolution used within these climate
prediction models (Wehner, et al., 2010).

Although not the major focus of this study, one area of
difference between the future simulations made with the
three different models occurs during the summer, with
flows decreasing more in the SWAT runs than in the
GWLF-VSA runs. This could point to differences in how
the climate changed forcings affect the evapotranspiration
calculations within each model. Differences in changes in
summer evapotranspiration rates could be an important
factor in further studies of climate change effects on
summer streamflow. As evapotranspiration occurs at a
much slower rate during the winter, any differences in
evapotranspiration should have little effect on the winter
streamflows.
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Figure 11. Monthly average streamflow results for climate change sim-
ulations in WBDR watershed using (a) GWLF-VSA, (b) SWAT–1Band,
and (c) SWAT–3Band models. Solid line shows the mean monthly
streamflow from the baseline simulation (1960–2000) and the shaded
area shows the range in the mean monthly streamflow simulated for the

four climate change scenarios (2080–2100)

Figure 12 further illustrates the result for the winter–
early spring flow volume and the WSCV. The climate
change runs show little change from the current condi-
tions for total winter–early spring volume. In the future
climate scenarios the WSCV seems to shift consistently
in all the models with the median WSCV shifting about
15–20 days earlier from mid-March to late February.
This result is fairly consistent between the three mod-
els. The predicted shift is also reasonably consistent with
the current trend for this watershed (Figure 7), of about
5Ð6 days per 50 years.

CONCLUSIONS

In recent years, the traditionally strong April snowmelt
influenced streamflow peak has lessened in the Catskill
Mountain region with a greater proportion of flow now
occurring during the earlier winter months, as illustrated
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Figure 12. Boxplots showing range of WBDR baseline and future cli-
mate scenarios obtained from data and different watershed model sim-
ulations for (a) winter–early spring flow volume in unit depth (flow
volume/watershed area), and (b) WSCV in Julian Day. Boxes show range
of 25th–75th percentile; whiskers show extent of data up to maximum
1.5 times interquartile range. Outliers represent data values beyond the

maximum whisker extent

by the shift in WSCV to earlier in the year. This phe-
nomenon, which has been shown in other studies (e.g.
Hodgkins et al., 2003; Burns et al., 2007), is most likely
due to increased temperatures creating earlier snowmelt
and more winter precipitation falling as rain instead of
snow. This streamflow timing shift seems to be strongest
in the more mountainous catchments of the region. A test
of the GWLF-VSA has shown that a relatively simple
temperature index method for predicting snow accumu-
lation and melt is able to capture this seasonal shift in
streamflow. Tests of the SWAT model, using either a
single elevation band or three elevation bands in each
simulated sub-basin, yielded similar results to GWLF-
VSA in detecting the streamflow timing trends. Finally,
a preliminary investigation of potential climate change
using both the GWLF-VSA and the SWAT models yield
a significant 15–20 day earlier WSCV for a scenario
100 years into the future. Some potential impacts of this
shift in streamflow timing include changes in the timing
of water supply reservoir filling and spills (Matonse et al.,
2010), and changes in the timing of sediment and nutrient
delivery to reservoirs impacting reservoir water quality.
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