

**Accessible Pedestrian Signals
Program Status Report**

December 2025

Program Overview

The New York City Department of Transportation (NYC DOT) installs Accessible Pedestrian Signals (APS) to assist pedestrians who are blind or have low vision in crossing the street. These devices provide information in non-visual formats, such as audible tones, speech messages, and vibrating surfaces, to alert vision-impaired pedestrians when the “walk” phase is available at a given intersection.

As of December 31, 2024, there were APS units installed at 3,247 intersections citywide. 876 intersections were equipped with APS in 2024. A list of all signalized intersections with APS is available on NYC DOT's Accessible Pedestrian Signals website (<https://www.nyc.gov/html/dot/html/infrastructure/accessiblepedsignals.shtml>) or on New York City's Open Data Portal (<https://opendata.cityofnewyork.us/>). The data on NYC DOT's website and the Open Data Portal are updated monthly.

Pursuant to Local Law 21 of 2012 (as codified in NYC Administrative Code Section 19-188), NYC DOT was installing APS units at each corner of 25 intersections each year. Effective January 1, 2016, Local Law 60 of 2014 required NYC DOT to install APS units at 75 intersections each year. Starting in 2019, DOT worked to double the Local Law commitment to 150 intersections annually. The agency works closely with the Mayor's Office for People with Disabilities (MOPD) and the visually impaired community, such as the group Pedestrians for Accessible and Safe Streets (PASS), to identify intersections which present a crossing difficulty for persons with visual impairments, such as intersections with Leading Pedestrian Intervals (LPI) and Exclusive Pedestrian Phases (EPP). NYC DOT also considers all applicable accessibility laws and regulations as well as locations that are recommended by constituents and elected officials.

On December 27, 2021, the United States District Court, Southern District of New York issued a decision in the case of *American Council of the Blind of New York, Inc. v. City of New York* (18 Civ. 5792) mandating the City of New York (City) to equip at least 10,000 signalized intersections with APS by the end of 2031 as part of Phase I implementation. Specific annual benchmarks for installations, determined by calendar year, were also provided in the decision as follows:

2022: 400 intersections (actual installations: 520)

2023: 500 intersections (actual installations: 888)

2024: 700 intersections (actual installations: 876)

2025: 900 intersections

2026: 900 intersections

2027-2031: install APS at an annual rate that will equip APS at the total of 10,000 intersections by the end of 2031 (approximately 1,100 intersections per year). As part of Phase II implementation from 2032 through 2036, the City must equip all remaining signalized intersections with APS.

As indicated above, NYC DOT has to date exceeded the Court required number of installations annually, with APS installed at 2,284 intersections citywide through calendar year 2024. This is well above the Court target of 1,600 intersections during the first 3 years of the program. NYC DOT is on track to meet its goal of 10,000 intersections with APS by the end of 2031.

Additionally, the court prioritized as follows the installation of APS at certain types of intersections:

- Signalized intersections with outstanding external/public requests
- Signalized intersections with LPs
- Signalized intersections with EPPs
- A group of 424 intersections newly signalized on or after June 27, 2015 which did not include APS

In the past, NYC DOT established a ranked priority list of intersections for the installation of APS based on established criteria, including but not limited to off-peak traffic presence, current traffic-signal patterns and the complexity of the intersection's geometry, including crossing distance. These criteria (also known as the Prioritization Tool) are set forth by the National Cooperative Highway Research Program (NCHRP) and the most recent version of the Federal Manual on Uniform Traffic Control Devices (MUTCD). Final scores were based on the individual crosswalk and intersection scores for each location, which ultimately determined priority for installation.

Going forward, NYC DOT will be prioritizing installation of APS in compliance with the Court's orders in *American Council of the Blind of New York, Inc. v. City of New York* and therefore no longer uses the full Prioritization Tool. Within the Court order's priority categories, NYC DOT chooses locations in a way that avoids other major construction processes, enables construction efficiencies by clustering locations for installation, and ensures a relatively equal ratio of intersections with APS across all Community Districts. In cases where intersections need to be chosen that are not prioritized by the Court Order, NYC DOT intends to select them based on major factors in the Prioritization Tool, such as street geometry and proximity to public transit.

Cost and Funding Sources

The baseline estimated cost to furnish and install an APS unit on an existing pole has historically been about \$1,800. A standard four-legged intersection would require eight units (2 per corner quadrant), meaning that the minimum estimated cost per intersection is at least \$14,400. However, an intersection typically requires additional work that increases the cost of the installation, bringing the average cost per location significantly higher. For example, most intersections do not have pedestrian signal poles at the location required for APS installation (i.e., adjacent to a pedestrian ramp) requiring the construction of new poles at additional cost.

There are many other factors that significantly impact the construction schedule and cost of APS at each intersection, including but not limited to:

- The unique geometric characteristics and complexities of each intersection
- The need to install other associated traffic signal equipment (i.e. vehicular signals, visual pedestrian signals, signal poles, and underground conduit)
- The existing subsurface conditions (i.e., utilities, subway vents, sidewalk vaults, etc.)
- The type of work permits issued to the contractor stipulating when and for how long work can occur at each intersection
- Unforeseen field conditions requiring the additional installation of traffic signal

conduits/cables, traffic signal/street light pole foundations, poles and other existing signal infrastructure equipment

- Stricter and more expensive roadway restoration requirements
- Protected street segments or intersections that have been resurfaced or reconstructed within the last five years
- The extensive coordination of utility companies and agencies (Con Ed, FDNY, National Grid, Verizon, DEP, etc.)
- FDNY fire alarm post relocations
- Coordination with other nearby capital and private development projects
- The removal and restoration of distinctive sidewalk material and pavers
- Holiday embargoes that prohibit construction activity at heavily trafficked intersections and along corridors during the holiday season (primarily between the end of November and January 1st)
- Weather conditions
- Supply chain issues, such as materials availability and delivery challenges
- Tariffs and general increases in the cost of materials and labor.

Taking all these factors into account, the cost of installing APS at any one intersection can range greatly depending on complexity, and thus the average cost of installation for a year is a statistical reflection of the types of intersections where work occurred. For 2024 installations, the cost to retrofit an intersection averaged approximately \$60,800 with a median cost of \$52,000. In 2023, a new 3-year contract to retrofit a total of 420 intersections per borough with APS began. Totaling about \$147,000,000 over the course of the three years, the per-intersection retrofit cost is expected to be about \$70,000. Currently, only city funding is used to procure contracts for the installation of all APS devices. Federal funding is being pursued to fund the installation of APS at approximately 75 intersections and is currently under review with the State of New York.

Recommendations for Improvements and Availability of New Technology

NYC DOT is continuously researching new technologies and instituting updates to enhance the APS program. The agency replaced the last remaining older types of APSs, which provided “birdcalls” from overhead speakers mounted on the pedestrian signal to alert visually impaired pedestrians when it is safe to cross. These older devices were louder, emitted a noise with every walk display regardless of pedestrian demand, and used a different bird call for each crossing, which confused the user. In addition, the older devices did not provide crossing information as new types of APS units do.

The current type of APS unit used by NYC DOT was tested and approved for use in New York City in 2011 and features a distinct rapid ticking tone that can be adjusted based on the needs of a specific intersection. They also feature a raised vibrating tactile arrow at the pedestrian pushbutton location and comply with federal MUTCD guidance.

NYC DOT is also working with its main manufacturers of APS equipment, Polara and PedSafety, to develop both a solar-powered APS assembly as well as next-generation “wireless” APS units

which will have remote monitoring capabilities. A solar-powered APS device would enable construction of APS poles at locations where digging is infeasible, while next-generation “wireless” APS devices would enhance the long-term maintenance needs of the program. Polara expects to have a complete solar-powered APS assembly available for widespread purchase in 2025. Once that occurs, NYC DOT will evaluate the final product and determine if it meets our required specifications before purchasing the units en masse.

Next-generation “wireless” APS units are being developed by both major vendors, though their products are in the experimental stages at this time.

Recommendations for enhancing NYC DOT’s APS program in the future include, but are not limited to:

- Continued evaluation of the structure of the APS program for possible improvements to staffing and funding levels and sources;
- Developing capabilities to complete installations solely using in-house staff and avoiding the need to engage outside contractors;
- Further research of new technologies to enhance user experience;
- Further research and development of new technologies to increase the rate of installation, reduce the cost per intersection, and streamline project management processes; and
- Continued dialogue with blind and low vision advocacy groups.