Thinking (and Building) Outside the MUTCD/AASHTO Box

The 9th Avenue Complete Street and Bicycle Path

Pro-Walk Pro-Bike Seattle, Washington September 5, 2008

NYC Dept. of Transportation Bicycle Program

NYC Bicycle Ridership

- Commuter Bicycle traffic on East River Bridges is at an all time high.
- Bike share of Journey to Work is low:
 - 0.9% Manhattan
 - 0.5% NYC (5 Boroughs)
 - 0.4% US

NYC Bicycle Network Today

• 530+ Lane Miles (As of Aug '08)

Class 1 – Bicycle Path

200 Lane Miles

Class 2 – Bicycle Lane

240 Lane Miles

Class 3 – Bicycle Route

90 Lane Miles

NYC Bicycle Network: Unprecedented Expansion

- 3-Year 200-mile Bicycle Network expansion
- Increase connectivity
- Citywide Backbone of Safe & Convenient Routes.

Designing Streets for Cycling: MUTCD & AASHTO Guidance

- Limited Design Guidance
- Only Simple Roadway Configurations are Addressed
- Much is left to the discretion of the designer

Bicycle-Friendly Street Design in NYC: Challenges

- Intense Traffic
 Wide One-Way Avenues
- Illegal Double Parking Older Narrow Streets

History of Innovative Designs

- Buffered Bike Lanes
- Shared Lanes
- Bike Box
- On-Street Path
- Green Bike Lanes
- Wide Parking Lanes
- Parallel Routes

Shared Lane – 5th Ave, Brooklyn

On-Street Path – Tillary St, Brooklyn

Bike Box - Montgomery Street, Manhattan

Green Bike Lane, Adams Street, Brooklyn

Innovative Design: Buffered Bicycle Lanes

After: Organized & Bike and Pedestrian-Friendly

9th Street, Park Slope, Brooklyn

Innovative Design: Intersection Markings

- AASHTO: "Bike lane striping ...in most cases, should not continue through any street intersections."
- Define Cyclist
 Position through
 Intersections
- Raise awareness to motorists about presence of cyclists

9th Avenue Design Approach

- **1.Study Best Practices**
- 2.Interpret Standards & Guidelines to Constrained NYC Environment
- 3."Complete Streets" Design Philosophy

Project Area

High Demand for More Robust Bike Routes

- 1. Enforcement Problems/Intrusion Rates of Standard Bike Lanes
- 2. Strong Call from NYC Cyclists for "Protected" or "Segregated" or "Separated" Paths
- 3. Success / Popularity of Some European Cycletrack Networks
- 4. Success / Popularity of NYC Greenways Near City Center
- 5. Potential Growth in Cycling / Mode Shift in NYC

Vesterbrogade, Copenhagen

9th Avenue Pre-Project Configuration

<u>Cyclist Experience</u> – **Poor**

- No Bicycle Facility
- Close overtaking by motorists
- Turning conflicts

Pedestrian Experience – Fair

- Pleasant Sidewalks
- Wide Street
- Turning Vehicle Conflicts
- Long Crossing Distance (70')

Motorist Experience – Acceptable

- Congestion is Low
- Turning Vehicles Block Thru Lanes While Yielding

Complete Street Design Objectives

A Safe and Comfortable Street for All Users:

- 1. Higher quality cycling experience for all levels
- 2. Secure and pleasant pedestrian experience
- 3. Safe turning movements

AASHTO Guidance on Bike Lane Placement

- AASHTO: "Bike lanes should never be placed between the parking lane and curb lane. Bike lanes between the curb and parking lane can create obstacles for bicyclists from opening car doors and poor visibility at intersections and driveways and they prohibit bicyclists from making left turns" (p 23).
- Design must address these 3 issues

Additional Challenges in NYC Context

Potential Path Intrusions

- Pedestrians
 - Walking in if sidewalk crowded
 - Queuing in to cross street
- Crossings
 - From loading vehicles, jaywalkers
- Trash Placement/Pickup
- Vendors

Blocked bike lane is frustrating but can be overcome; Blocked path traps cyclists

Curb separated bicycle lane on Sixth Avenue

Ninth Avenue Geometric Design

- Bicycle lane between sidewalk and parked vehicles
- Concrete pedestrian refuge islands at intersections
- Dedicated turn bays where turns cross bicycle path

Standard Bicycle Lane Designs

- Bicycle lane between moving lane and parking lanes
- Susceptible to motor vehicle intrusion
- Little sense of safety and comfort on busy streets
- Few benefits to pedestrians

Fully Protected On-Street Bicycle Path

- Parking Protects Bicycle Lane from Double Parking Intrusion
- Signal Phases Protect Cyclists from Turning Vehicles
- Buffer Area Eliminates Dooring Risk

Fully Protected On-Street Bicycle Path

• Waiting area for safe right turns

Attracting New Cyclists

- 9 months after completion, cycling up **40%**
- 12 hour weekday
 - 780 cyclists before
 - 1,100 cyclists after
- Sidewalk cycling down

2. Secure & Pleasant Pedestrian Experience

- Pedestrian
 Refuges Shorten
 Crosswalks
- Greener
 Streetscape
- Conflict-Free Crosswalks on Side Streets

2. Secure & Pleasant Pedestrian Experience

- 9 in 10 NYC Cyclist Fatalities Occur at Intersections
- Turning Crashes are Major Source of Pedestrian Serious Injuries and Fatalities
- Turning Conflicts are Could be Exacerbated by Bike Lanes Placed Behind Parking Lanes

Ninth Avenue Before

Standard Bike Lane Configuration

- Left Turns Block Bike or Travel Lane
- Buffer Confuses Motorists
- Unpredictable Turns

Protected Bike Path Configuration

- Left Turn Bays
- Clear & Stress-free left turns
- Bicycle & Pedestrian crossings
 conflict-free

Configuration After Project

- Left Turn Bays
- Signal Protected Movements
- Bicycle Signals and Left-Turn Signals separate conflicting movements

Ninth Ave: Complete Street Design

Pedestrian Experience Very Good

Cyclist Experience Excellent

Motorist Experience Very Good

- Shortens crosswalks by 20' or more
- Greener streetscape
- Conflict-Free Crossings
- Fully protected bicycle path
- Bicycle signal phases
- New left turn lanes
- Parking loss at left turn lanes

Project Challenges

- Unfamiliar Configuration & Rapid Installation
- Motorist Compliance
- Sanitation Access
- Emergency Vehicle Access
- Curbside Access & Parking Impacts

Conclusion: Success Worth Replicating

- 9th Avenue Extension (October 2008)
- 8th Avenue, Northbound pair to 9th Ave (November 2008
- Grand Street (October 2008)

3. Safe Turning Movements: 9th Avenue Signalization

Phase 1 - Major: Left turning vehicles held

Phase 2 - Major: Bicyclists & Pedestrians held

Phase 3 - Minor

Delivery Vehicle Compliance

Under Construction

