APPENDIX A.1: PROJECTION OF PERCENT WASTE PRODUCED AT BROOKLYN MRF

Projection on Percent Waste Produced at Brooklyn MRF

Material	% Per DSNY Comp Study (1)	Capture Rate Used for Brooklyn MRF (2)	Assumed Brooklyn Materials for EAS by % (3)	% Per Current Sims Operations (4)	Difference Between Current Ops & EAS Assumption (5)
PET Plastic	6.46%	95%	6.14%	5.38%	0.76%
HDPE Natural Plastic	3.15%	95%	2.99%	2.44%	0.55%
HDPE Color Plastic	3.27%	95%	3.11%	2.73%	0.38%
Mixed Plastic	6.66%	95%	6.33%	4.93%	1.40%
Film Plastic	4.03%	95%	3.83%	0.25%	3.58%
Non-ferrous Metal	1.98%	99%	1.96%	1.53%	0.43%
Ferrous Metal	30.56%	100%	30.56%	28.94%	1.62%
Aseptic Beverage Cartons	1.95%	95%	1.85%	0.00%	1.85%
Other Recyclable Paper	2.45%	95%	2.33%	0.00%	2.33%
Clear Glass	8.15%	97%	7.91%	0.00%	7.91%
Green Glass	4.13%	97%	4.01%	0.00%	4.01%
Amber Glass	1.98%	97%	1.92%	0.00%	1.92%
Mixed-Color Glass	18.66%	97%	18.10%	41.14%	-23.04%
Sub-total Recyclables	93.43%		91.02%	87.34%	3.68%
Non-Recyclables (waste)	6.57%		8.98%	12.66%	
Total	100.00%		100.00%	100.00%	

NOTES:

(1) Composition Study is DSNY 2004/05 Comprehensive Citywide Compostion Study.

(2) Capture rate is based on the fact that, with the exception of steel, 100% of each material type is not recovered. The percentage that is not recovered, along with contaminants, make up the residue, i.e., the waste.

The assumption is that all glass is recovered as mixed-color (not color-sorted).

(3) Percentages of recovered materials used for the EAS are derived from DSNY composition data multiplied by Capture Rate. The EAS assumed 9.47% waste due to the removal of some bulky metal at other Sims facilities prior to shipment of MGP to Brooklyn.

(4) Sims current operations based on processing approximately 50% of DSNY MGP through the Company's Jersey City MRF. This information is provided as a check against Brooklyn EAS assumptions.

Lines highlighted in blue are due to lack of processing capacity at the current MRF; the Brooklyn MRF will have capacity for these materials.

(5) Difference reflects discrepancy between current actual operations and assumed recovery percentages used in the EAS.

APPENDIX B.1: 24-HOUR TRIP GENERATION TABLE

Sims Hugo Neu Hourly Trip Generation (Number of Vehicles) Based on Average Peak Day (Friday) May 2029

			_									Dascal		ige i cui	(Day (i i	iuay) wie	19 2025									
						Day S	Shift							4 PM - 1	2 AM Sł	nift					12	AM - 8	BAM Sh	ift		
		Daily Number																								
		of	8 AM	9 AM	10 AM	11 AM	12 PM	1 PM	2 PM	3 PM	4 PM	5 PM	6 PM	7 PM	8 PM	9 PM	10 PM	11 PM	12 AM	1 AM	2 AM	3 AM	4 AM	5 AM	6 AM	7 AM
	Vehicle	Vehicles by	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Type of Trip	Capacity	Category	9 AM	10 AM	11 AM	12 PM	1 PM	2 PM	3 PM	4 PM	5 PM	6 PM	7 PM	8 PM	9 PM	10 PM	11 PM	12 AM	1 AM	2 AM	3 AM	4 A M	5 AM	6 AM	7 AM	8 AM
DSNY	25 cubic yds.	106	0	0	19	30	19	0	0	0	0	4	4	4	4	3	0	0	0	3	4	4	4	4	0	0
Hugo Neu	42,000 lbs	39	0	0	0	3	6	9	7	0	0	0	0	2	3	6	2	1	0	0	0	0	0	0	0	0
Large Scrap	varies	23	4	1	1	1	2	2	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
Small Scrap	varies	127	21	7	7	7	11	11	21	21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21
Truck Total		295	25	8	27	41	38	22	32	25	0	4	4	6	7	9	2	1	0	3	4	4	4	4	0	25
Employees	na	96	5	0	0	0	0	0	0	20	23	0	0	0	0	0	0	5	20	0	0	0	0	0	0	23
Grand Total		391	30	8	27	41	38	22	32	45	23	4	4	6	7	9	2	6	20	3	4	4	4	4	0	48

											1	Based o	n Avera	ige Peak	c Day (Fr	'iday) Ma	iy 2029									
						Day S	Shift							4 PM - 1	2 AM Sł	nift					12	AM - 8	BAM Sh	ift		
		Daily Number																								
		of	8 AM	9 AM	10 AM	11 AM	12 PM	1 PM	2 PM	3 PM	4 PM	5 PM	6 PM	7 PM	8 PM	9 PM	10 PM	11 PM	12 AM	1 AM	2 AM	3 AM	4 AM	5 AM	6 AM	7 AM
	Vehicle	Vehicles by	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Type of Trip	Capacity	Category	9 AM	10 AM	11 AM	12 PM	1 PM	2 PM	3 PM	4 PM	5 PM	6 PM	7 PM	8 PM	9 PM	10 PM	11 PM	12 AM	1 AM	2 AM	3 AM	4 A M	5 AM	6 AM	7 AM	8 AM
DSNY	25 cubic yds.	212	0	0	38	60	38	0	0	0	0	8	8	8	8	6	0	0	0	6	8	8	8	8	0	0
Hugo Neu	42,000 lbs	78	0	0	0	6	12	18	14	0	0	0	0	4	6	12	4	2	0	0	0	0	0	0	0	0
Large Scrap	varies	46	8	2	2	2	4	4	8	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
Small Scrap	varies	254	42	14	14	14	22	22	42	42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	42
Truck Total		590	50	16	54	82	76	44	64	50	0	8	8	12	14	18	4	2	0	6	8	8	8	8	0	50
Employees	na	96	5	0	0	0	0	0	0	20	23	0	0	0	0	0	0	5	20	0	0	0	0	0	0	23
Grand Total		686	55	16	54	82	76	44	64	70	23	8	8	12	14	18	4	7	20	6	8	8	8	8	0	73

Sims Hugo Neu Hourly Trip Generation (Number of Trips In and Out) Based on Average Peak Day (Friday) May 2029

APPENDIX C.1: MOBILE SOURCE SCREENING

Appendix C.1:

Mobile Source Screening Analysis

As indicated by the New York City Department of Sanitation (DSNY), by the end of 2009, 70 percent of all dual-bin trucks and 45 percent of single-bin trucks are expected to be either retrofit with diesel particle filter (DPF) or of model year 2007 or later (which are manufactured with DPF controls by federal regulation). It was calculated that at the intersection with the highest predicted volume of truck trips, the intersection of Second Avenue, 29th Street, and the BQE ramp, there would be 11 single-bin, 26 dual-bin, and 6 general fleet trucks (Sims trucks, which are assumed to have the same breakdown as the general truck fleet)—a total of 43 trucks.

The level of retrofit required by local law 39 of 2005, along with the levels expected by DSNY, are presented in Table C.1-1. For years later than 2009, since the DSNY data indicates that the 2010 requirement will be exceeded in 2009, it can be assumed that the 2010 emission levels will be lower than the 2009 levels, but it is not known by how much. Since the 2011 requirement exceeds the expected 2009 levels of retrofit, it is conservatively assumed that DSNY will meet the legal requirement as a minimum in 2011 and 2012.

	Fracti	on of Trucks	with DPF
Year	all City trucks (by local law)	DSNY Single-Bin	DSNY Dual-Bin
2009	≥ 30%	45%	70%
2010	≥ 50%	> 45%	> 70%
2011	≥ 70%	≥ 70%	> 70%
2012+	≥ 100%	100%	100%

 Table C.1-1

 Fraction of Trucks with DPF

The DEP truck screening level for the previous $PM_{2.5}$ threshold was 21 trucks at peak hour, based on PART5 emission factors for 2002 fleet-average heavy duty diesel trucks of 0.611 g/VMT, which results in a total of 12.8 g/mile. Multiplying that screening level by 2:5 to account for the change in the 24-hour average $PM_{2.5}$ threshold from 5 µg/m³ to 2 µg/m³, results in a new screening level of 5.1 g/mile.

All heavy trucks in the Sims screening analysis were assumed to be of the heaviest category HDDV8b. The MOBILE6.2 emission factors for these trucks are presented in Table C.1-2, as calculated for the three truck types outlined above: (1) the emission factors for Sims trucks are the factors calculated for the general fleet mix for any given year for that size truck; (2) the emission factor for DSNY trucks without DPF are the 2006 year factors—the year prior to the introduction of DPFs in trucks by federal regulation; (3) the emission factor for DSNY trucks with DPF are calculated as 10 percent of the uncontrolled truck emissions, since DPFs reduce particulate matter emissions from truck engines by approximately 90 percent.

				MUDILE	0.2 EIIIISSI	ons ractor	S IOF HUD VO	D Trucks
	Fleet-Wide	Mix HDDV8b	HDDV8	b w' DPF		w/o DPF nd older)	Total Emission Rate at	
Year	Cruise EF (g PM _{2.5} /mi)	# of Trucks at Intersection	Cruise EF (g PM _{2.5} /mi)	# of Trucks at Intersection	Cruise EF (g PM _{2.5} /mi)	# of Trucks at Intersection	Intersection (g PM _{2.5} /mi)	Pass/Fail
2009	0.2113	6		23		14	6.1	Fail
2010	0.1730	6	0.02986	unknown breakdown	0.2986	unknown breakdown	<6.1	Fail?
2011	0.1333	6		26		11	4.9	Pass
2012+	0.0963	6		37		0	1.7	Pass

Table C.1-2 MOBILE6.2 Emissions Factors for HDDV8b Trucks

The total emission rate at the intersection for any given year is calculated by summing the product of the emission factor and number of trucks for the three truck types. As presented in Table C.1-2, the total rate in 2009 would be 6.1 grams of $PM_{2.5}$ per mile, which exceeds the 5.1 g/mile screening level by 18 percent. Since the expected number of controlled trucks for 2010 is not known, it is possible that the screening level would be exceeded for 2010 as well. If the levels remain unchanged in 2010 the result would be identical to that predicted for 2009; if two more trucks would be retrofit, it would pass. By 2011, even if DSNY only meets the legal requirement, the emission rate for the intersection would be lower than the screening level.

It should be noted that the screening level is determined based on the highest peak-hour traffic increment, which in this case is 43 trucks. However, if detailed modeling were to be performed, the significance determination is based on a 24-hour average concentration increment. The 24-hour average truck increment is 6.3 trucks—15 percent of the peak. Therefore, it is not expected that the 18 percent exceedance of the threshold level would lead to a predicted exceedance of the 24-hour average $PM_{2.5}$ incremental threshold level even for these interim years of 2009-2010. Since meteorological condition would also change by the hour in a detailed analysis, this screening is quite conservative. Thus, detailed dispersion modeling of particulate matter at an intersection is not necessary in order to demonstrate that no significant adverse impacts would be expected from mobile sources even during the interim period of 2009-2010.

APPENDIX C.2: MODEL INPUT PARAMETERS

Sims Hugo Neu South Brooklyn Marine Terminal (SBMT) Material Recycling Facility (MRF)

On-Site Air PM_{2.5} Emissions

Processes Sources												PM _{2.5} Emissio	ns				P	M _{2.5} Emissions		No. of course		
				Operation	(hours/shift))		Usag	le (%)*			Rate	(g/s)				Total Rate (g	/s) from each roo	ftop vent	No. of vents (#) or area of	Mod	lel Source
		Power	Shift 1	Shift 2	Shift 3	Saturday	1			Factor	Shift 1	Shift 2	Shift 3	Saturday			Shift 1	Shift 2	Shift 3	open space		
Source Location	Туре	Rating (hp)	(8a-4p)	(4p-12a)	(12a-8a)	(8a-12a)	Fuel	Idle	Up	(g/hp-hr)	(8a-4p)	(4p-12a)	(12a-8a)	(8a-12a)	Notes	Ventilation Zone	(8a-4p)	(4p-12a)	(12a-8a)	(m^2)	#	name
MGP Tipping Building	Wheel Loader	196	4	4	4	8	ULSD	20%	80%	0.063	1.70E-03	1.70E-03	1.70E-03	3.41E-03		Tipping	6.34E-04	6.34E-04	3.79E-04	9	20	TVENT#
Ferrous Shed/Glass	Wheel Loader	196	8	1	none	7	ULSD	20%	80%	0.063	3.41E-03	4.26E-04	0.00E+00	2.98E-03		Bales	4.89E-04	4.89E-04	4.05E-04	5		BVENT#
Paper Building	Wheel Loader	196	4	4	4	16	ULSD	20%	80%	0.063	1.70E-03	1.70E-03	1.70E-03	6.82E-03		Process	1.71E-04	1.00E-04	8.98E-05	21		PVENT#
MGP Unloading Dock	Material Handler (Crane)	190	8	8	none	none	ULSD	20%	80%	0.044	2.30E-03	2.30E-03	0.00E+00	0.00E+00		MGP Unloading Dock	2.30E-03	2.30E-03		out-door point	17	MGPHNDLR
MGP Tipping Building	Material Handler (Crane)	190	8	8	none	8	ULSD	20%	80%	0.044	2.30E-03	2.30E-03	0.00E+00	2.30E-03		Entire Pier	9.51E-08	9.51E-08	6.495E-09		1	PIER
FE Shed and Dock	Material Handler (Crane)	190	4	4	none	none	ULSD	20%	80%	0.044	1.15E-03	1.15E-03	0.00E+00	0.00E+00		Metal Shed	1.21E-06	5.77E-07	0	2,362.2 m^2	19	SHED
Bale Storage Building	Forklift	65	8	8	none	none	CNG	20%	80%	0.015	2.79E-04	2.79E-04	0.00E+00	0.00E+00								
Bale Storage Building	Forklift	65	8	8	4	16	CNG	20%	80%	0.015	2.79E-04	2.79E-04	1.40E-04	5.59E-04								
MGP Process Building and Bale Area	Skid Steer Loader	80	8	8	8	16	ULSD	20%	80%	0.170	3.77E-03	3.77E-03	3.77E-03	7.55E-03 li	ke small FE	L						
Entire Pier	Tractor (Yard Dog) Truck*		4	4	4	8	ULSD	0%	100%	1.032	1.43E-04	1.43E-04	1.43E-04	2.87E-04 T	ractor Traile	er Truck						
Entire Pier	Roll-off Truck*		4	4	2	8	ULSD	0%	100%	1.032	1.43E-04	1.43E-04	7.17E-05	2.87E-04 T	ractor Traile	er Truck						
Entire Pier	Sweeper	99	5	5	none	16	ULSD	0%	100%	0.167	2.86E-03	2.86E-03	0.00E+00	9.16E-03								
NOTES:																						

NOTES: • Since the NONROAD model produces average emission factors (not idle and runing separetly), usage factor for non-road engies was not applied. The average emission factor was applied for the full duration of operation. All engines are assumed to be new, 2009 model year. All stationary process engines would be electric and would not have any associated air emissions. The indoor process sources were consolidated by ventilation zone and divided equaly among the vents in each zone. Outdoor mobile sources were consolidated to a single area source. MGP material handler was assumed to be stationary and modeled as a point source.

Trucks														Unitary PM _{2.5}	Emissions			Model	Source
		Tellalas		Average Tr	ips (trips/ho	ur)		Idle Time	Distance		Shi	ft Hours		Factor	Rate	Area of Area Source	Unitary Area Source Emission Rate	name	#
Source Location	Vehicle Type	Tailpipe Controls	Shift 1	Shift 2	Shift 3	Saturday	Fuel	(s/trip)	(m/trip)	Shift 1	Shift 2	Shift 3	Saturday	(g/hr-vh) or (g/vh-mi)	(g/s-vh)	(m ²)	(g/s-vh-m ²)		
Scale In DSNY	HDDT8	DPF	22.7	3.8	3.8	8.2	ULSD	55	(ing trip)	10a-1p	5p-10p	1a-6a	same as wkdv	0.1032	4.38E-07	()		DSCALEI	6
cale In Bales	HDDT8	none	6.3	2.8	none	4.3	ULSD	55		11a-3p	7p-12a	none	same as wkdy	1.0322	4.38E-06			BSCALEI	7
Scale Out DSNY	HDDT8	DPF	22.7	3.8	3.8	8.2	ULSD	72		10a-1p	5p-10p	1a-6a	same as wkdy	0.1032	5.73E-07			DSCALEO	8
cale Out Bales	HDDT8	none	6.3	2.8	none	4.3	ULSD	72		11a-3p	7p-12a	none	same as wkdy	1.0322	5.73E-06			BSCALEO	9
Jual-Bin Scale	HDDT8	DPF	6.7	1.0	0.4	2.1	ULSD	55		10a-1p	5p-10p	1a-6a	same as wkd	0.1032	4.38E-07			DBSCALE	10
E Scale (in+out)	LDGT	none	21.3	7.1	10.6	127.5	ULSD	220		9a-12p	12p-2p	2p-4p; 7a-9a	9a-2p	0.0115	1.95E-07			FESCALEL	12
FE Scale (in+out)	HDT	none	3.8	1.3	1.9	22.5	ULSD	220		9a-12p	12p-2p	2p-4p; 7a-9a	9a-2p	0.6711	1.14E-05			FESCALEH	11
Paper / MGP Tipping (DSNY)	HDDT8	none	29.3	4.8	4.2	10.2	ULSD	450		10a-1p	5p-10p	1a-6a	same as wkdy	0.1032	3.58E-06	394.3	9.09E-09	TIPING	15
Bale Loading Dock	HDDT8	none	6.3	2.8	none	4.3	ULSD	60		11a-3p	7p-12a	none	same as wkdy	1.0322	4.78E-06	135.9	3.52E-08	BALEDK	16
E Unloading Docks	LDGT	none	21.3	7.1	10.6	127.5	Gasoline	60		9a-12p	12p-2p	2p-4p; 7a-9a	9a-2p	0.0115	5.32E-08	291.9	1.82E-10	FEDOCKL	13
FE Unloading Docks	HDT	none	3.8	1.3	1.9	22.5	ULSD	60		9a-12p	12p-2p	2p-4p; 7a-9a	9a-2p	0.6711	3.11E-06	291.9		FEDOCKH	14
Paper/MGP/Dual (DSNY) In and Out	HDDT8	DPF	22.7	3.8	3.8	8.2	ULSD		679.7	10a-1p	5p-10p	1a-6a	same as wkdy	0.0340	3.99E-06			DSNY1	2
Bales In and Out	HDDT8	none	6.3	2.8	none	4.3	ULSD		652.7	11a-3p	7p-12a	none	same as wkdy	0.2113	2.38E-05			BALETRCK	4
Dual to Scale return	HDDT8	DPF	6.7	1.0	0.4	2.1	ULSD		257.4	10a-1p	5p-10p	1a-6a	same as wkdy	0.0340	1.51E-06			DSNYDUAL	3
E In and Out	LDGT	none	21.3	7.1	10.6	127.5	Gasoline		347.6	9a-12p	12p-2p	2p-4p; 7a-9a		0.0124	7.43E-07			METALL	5
FE In and Out	HDT	none	3.8	1.3	1.9	22.5	ULSD		347.6	9a-12p	12p-2p	2p-4p; 7a-9a	9a-2p	0.2113	1.27E-05			METALH	18

Uniary emission rate is used (per 1 truck) and an nourry ratio equal to the number of trucks per nour was applied for each hour in the model. Scales were modeled as point sources. Truck docks were modeled as area sources. Truck routes were modeled as line sources, represented as volume sources according to the EPA procedure and implemented using the Lakes interface based on the overall line-source emission rate in gS+vh.

On-Site Air PM_{2.5} Emissions (Continued)

		Total Pov	ver Rating		Docking			PM _{2.5} De Emiss			ocking (per 1,000')	Model So	urce
		Main	Aux Gen	Trips per	Time			Factor	Rate	Factor	Rate		
Source Location	Description	(hp)	(kw)	Peak Day	(min/trip)	Hours	Fuel	(g/trip)	(g/s)	(g/trip)	(g/s)	name	#
	Outbound Bulk and Non-												
	Bulk (combined private and												
Ferrous Loading Dock	public)	2400	65	2	30	Bam-12am	LSD	304	1.06E-02	15.7	5.43E-04		
Glass Loading Dock	Outbound Glass	2400	65	1	30	Bam-12am	LSD	304	5.28E-03	15.7	2.72E-04		
MGP Unloading and Paper Loading Do	ck Inbound MGP	2400	65	4	30	Bam-12am	LSD	304	2.11E-02	15.7	1.09E-03		
Total Worst-Case Peak Day									3.70E-02		1.90E-03	TOWINOUT	24
Total Average Day (for annual analysis	All	2400	65	3.855	30	Bam-12am	LSD	304	2.04E-02	15.7	1.05E-03	10001	24

Notes: All towboat emissions were based on the 'Sea Bull' engines, which was the larges of the 3 potential towboats. Marine diseal will be LSD - 500 ppm sulfur content according to federal regulations by June 2007. Since the available emission factors are based on marine diseal and do not take this regulatory reduction into account, the emissions presented here are conservatively high. Marine diseal may contain 4 to 10 times more sulfur, leading to much higher particulate matter and SO2 emissions. Since bulk and non-bulk are separate, it is assumed that a worst-case day would include one tip of each. These numbers represent a worst-case day assumption. Long term averages would be lower. These numbers represent a worst-case day assumption. Long term averages would be lower. Time per trip includes arrival, placement of a barge, and lying up a new one. Since this analysis conservatively assumed that towboats would each have 1 trip per load (not combined drop-off and pick-up), that is conservatively high. Time for barge involut was calculated for a different peak and average day operations, the annual emissions are calculated separetly based on average day activity. **Dur.Board Trut: Functiones During to Table International Landones During Calculated Separetly based** on average day activity. **Dur.Board Trut: Functiones During to Table International Landones During Calculated Separetly based** on average day activity. **Dur.Board Trut: Functiones During to Table International Landones During Calculated Separetly based** on average day activity.

24	1.69E-05	1.69
23	3.38E-05	3.38
22	1.10E-04	10.95
20	6.16E-05	6.16
20	4.47E-05	4.47
18	1.09E-05	1.09
17 18	0.00E+00 1.09E-05	0.00
16	8.44E-05	8.44
15	2.03E-04	20.27
14	1.94E-04	19.43
13	1.95E-04	19.52
12	1.60E-04	16.03
11	7.97E-05	7.97
10	2.80E-05	2.80
9	8.44E-05	8.44
8	8.44E-05	8.44
7	0.00E+00	0.00
6	1.09E-05	1.09
5	1.09E-05	1.09
3 4	1.09E-05	1.09
2	8.10E-06 1.09E-05	1.09
1 2	0.00E+00 8.16E-06	0.00
mission Factor by hour	g/s	Factor for 1-e5
otal Distance (m):	463.3	

Area Source Area of Docking Emission Rate

(g/s-vh-m²)

5.69E-06

3.13E-06

Area Source (m²)

6501.4

6501.4

Model Source

23

name

TOWBOATS

PM_{2.5} Runs Results and CO and NO_x Estimated Results

		Highes	st			Pri	son		
Pollutant	Annual	24-hour	8-hour	1-hour	Annual	24-hour	8-hour	1-hour	Ratio
PM _{2.5} (μg/m ³)	0.112	2.07	4.4	11.2	0.060	0.74	1.8	7.2	1
CO (ppm)			0.10	0.25			0.04	0.16	26.4
NO _x (µg/m ³)	3.0				1.6				26.9
PM _{2.5} Annual Ne	ighborhood-Sca	le Average	:	0.07	µg/m³				

CO and NO_x concentrations are conservatively estimated based on the highest emissions ratios.

Annual numbers are conservatively high since peak daily activity was modeled.

On-Site Air PM ₁₀ Emissions																						
Processes Sources												PM ₁₀ Emissio	ns					PM ₁₀ Emissions				
				Operation	(hours/shift))		Usag	e (%)*			Rat	e (g/s)				Total Rate	g/s) from each ro	oftop vent	No. of vents (#) or area of	Mo	del Source
		Power	Shift 1	Shift 2	Shift 3	Saturday				Factor (g/hp-	Shift 1	Shift 2	Shift 3	Saturday			Shift 1	Shift 2	Shift 3	open space		
Source Location	Туре	Rating (hp)	(8a-4p)	(4p-12a)	(12a-8a)	(8a-12a)	Fuel	Idle	Up	hr)	(8a-4p)	(4p-12a)	(12a-8a)	(8a-12a)	Notes	Ventilation Zone	(8a-4p)	(4p-12a)	(12a-8a)	(m^2)	#	name
MGP Tipping Building	Wheel Loader (39,000 lb)	196	4	4	4	8	ULSD	20%	80%	0.006	1.76E-04	1.76E-04	1.76E-04	3.51E-04		Tipping	6.54E-05	6.54E-05	3.90E-05		20	TVENT#
Ferrous Shed/Glass	Wheel Loader	196	8	1	none	7	ULSD	20%	80%	0.006	3.51E-04	4.39E-05	0.00E+00	3.08E-04		Bales	1.51E-04	1.51E-04	6.68E-05			BVENT#
Paper Building	Wheel Loader	196	4	4	4	16	ULSD	20%	80%	0.006	1.76E-04	1.76E-04	1.76E-04	7.03E-04		Process	1.76E-05	1.03E-05	9.26E-06	21		PVENT#
MGP Unloading Dock	Material Handler (Crane)	190	8	8	none	none	ULSD	20%	80%	0.004	2.37E-04	2.37E-04	0.00E+00	0.00E+00		MGP Unloading Dock	2.37E-04	2.37E-04		out-door point	17	MGPHNDLR
MGP Tipping Building	Material Handler (Crane)	190	8	8	none	8	ULSD	20%	80%	0.004	2.37E-04	2.37E-04	0.00E+00	2.37E-04		Entire Pier (g/s-m^2)	9.86E-09	9.86E-09	7.06E-10	33,108.8 m^2	1	PIER
FE Shed and Dock	Material Handler (Crane)	190	4	4	none	none	ULSD	20%	80%	0.004	1.19E-04	1.19E-04	0.00E+00	0.00E+00		Metal Shed (g/s-m^2)	1.25E-07	5.95E-08	0	2,362.2 m^2	19	SHED
Bale Storage Building	Forklift	65	8	8	none	none	CNG	20%	80%	0.015	2.79E-04	2.79E-04	0.00E+00	0.00E+00	Dust from	Non-Road (g/s-m^2):	7.59E-08	7.01E-08	4.36E-08			
Bale Storage Building	Forklift	65	8	8	4	16	CNG	20%	80%	0.015	2.79E-04	2.79E-04	1.40E-04	5.59E-04				Average mph	Avg. Weight All (I	b)		
MGP Process Building and Bale Area	Skid Steer Loader (8,000 lb)	80	8	8	8	16	ULSD	20%	80%	0.018	3.89E-04	3.89E-04	3.89E-04	7.78E-04 I	ike small FEL		Loaders:	0.75	20,620	I		
Entire Pier	Tractor (Yard Dog) Truck**		4	4	4	8	ULSD	0%	100%	0.112**	1.56E-05	1.56E-05	1.56E-05	0.00E+00	Tractor Trailer Truck	Forklif	ts and skid Steer:	1.5				
Entire Pier	Roll-off Truck**		4	4	2	8	ULSD	0%	100%	0.112**	1.56E-05	1.56E-05	7.79E-06		Tractor Trailer Truck		Tractor/truck:	2.5		1		
Entire Pier	Sweeper	99	5	5	none	16	ULSD	0%	100%	0.017	2.95E-04	2.95E-04	0.00E+00	9.45E-04								

 Entire Pier
 Sweeper
 Content

 NOTES:
 Notes the NONROAD model produces average emission factors (not idle and runing separetly), usage factor for non-road engies was not applied. The average emission factor was applied for the full duration of operation.

 * Since the NONROAD model produces average emission factors (not idle and runing separetly), usage factor for non-road engies was not applied. The average emission factor was applied for the full duration of operation.

 * These sources are highway engines. estimated using MOBILE6 which does not use hp, so emission factor is in g/hr.

 All engines are assumed to be new, 2009 model year.

 All stationary process engines would be electric and would not have any associated air emissions.

 The indoor process sources were consolidated by ventilation zone and divided equaly among the vents in each zone. Outdoor mobile sources were consolidated to a single area source. MGP material handler was assumed to be stationary and modeled as a point source.

Frucks														Unitary PM	10 Emissions			Model So	arce
				Average Tri	ps (trips/ho	ur)					Shi	ft Hours					Unitary Area	name	#
Source Location	Vehicle Type	Tailpipe Controls	Shift 1	Shift 2	Shift 3	Saturday	Fuel	Idle Time (s/trip)	Distance (m/trip)	Shift 1	Shift 2	Shift 3	Saturday	Factor (g/hr-vh) or (g/vh-mi)	Rate (g/s-vh)	Area of Area Source (m ²)	Source Emission Rate (g/s-vh-m ²)		
cale In DSNY	HDDT8	DPF	22.7	3.8	3.8	8.2	ULSD	55		10a-1p	5p-10p	1a-6a	same as wkdy	0.1122	4.76E-07		DS	CALEI	6
ale In Bales	HDDT8	none	6.3	2.8	none	4.3	ULSD	55		11a-3p	7p-12a	none	same as wkdy	1.1220	4.76E-06		BS0	CALEI	7
ale Out DSNY	HDDT8	DPF	22.7	3.8	3.8	8.2	ULSD	72		10a-1p	5p-10p	1a-6a	same as wkdy	0.1122	6.23E-07			CALEO	8
ale Out Bales	HDDT8	none	6.3	2.8	none	4.3	ULSD	72		11a-3p	7p-12a	none	same as wkdy	1.1220	6.23E-06		BSO	CALEO	9
ual-Bin Scale	HDDT8	DPF	6.7	1.0	0.4	2.1	ULSD	55		10a-1p	5p-10p	1a-6a	same as wkdy	0.1122	4.76E-07			SCALE	10
E Scale (in+out)	LDGT	none	21.3	7.1	10.6	127.5	ULSD	220		9a-12p	12p-2p	2p-4p; 7a-9a	9a-2p	0.0123	2.09E-07		FES	SCALEL	12
Scale (in+out)	HDT	none	3.8	1.3	1.9	22.5	ULSD	220		9a-12p	12p-2p	2p-4p; 7a-9a	9a-2p	0.7350	1.25E-05		FES	SCALEH	11
aper / MGP Tipping (DSNY)	HDDT8	none	29.3	4.8	4.2	10.2	ULSD	450		10a-1p	5p-10p	1a-6a	same as wkdy	0.1122	3.90E-06		9.88E-09 TIP	ING	15
ale Loading Dock	HDDT8	none	6.3	2.8	none	4.3	ULSD	60		11a-3p	7p-12a	none	same as wkdy	1.1220	5.19E-06	135.9	3.82E-08 BAL	EDK	16
E Unloading Docks	LDGT	none	21.3	7.1	10.6	127.5	Gasoline	60		9a-12p	12p-2p	2p-4p; 7a-9a	9a-2p	0.0123	5.70E-08	291.9	1.95E-10 FED	DOCKL	13
Unloading Docks	HDT	none	3.8	1.3	1.9	22.5	ULSD	60		9a-12p	12p-2p	2p-4p; 7a-9a		0.7350	3.40E-06	291.9	1.17E-08 FED		14
aper/MGP/Dual (DSNY) In and Out	HDDT8	DPF	22.7	3.8	3.8	8.2	ULSD		679.7	10a-1p	5p-10p	1a-6a	same as wkdy	9.8614	1.16E-03		DSI		2
ales In and Out	HDDT8	none	6.3	2.8	none	4.3	ULSD		652.7	11a-3p	7p-12a	none	same as wkdy	2.3873	2.69E-04			ETRCK	4
ual to Scale return	HDDT8	DPF	6.7	1.0	0.4	2.1	ULSD		257.4	10a-1p	5p-10p	1a-6a	same as wkdy	9.8614	4.38E-04			VYDUAL	3
E In and Out	LDGT	none	21.3	7.1	10.6	127.5	Gasoline		347.6	9a-12p	12p-2p	2p-4p; 7a-9a		0.0260	1.56E-06			TALL	5
E In and Out	HDT	none	3.8	1.3	1.9	22.5	ULSD		347.6	9a-12p	12p-2p	2p-4p; 7a-9a	9a-2p	2.9612	1.78E-04		ME	TALH	18

Unitary emission rate is used (per 1 truck) and an hourly factor equal to the number of trucks per hour was applied for each hour in the model. Scales were modeled as point sources. Truck docks were modeled as area sources. Truck routes were modeled as line sources, represented as volume sources according to the EPA procedure and implemented using the Lakes interface based on the overall line-source

emission rate in g/s-vh.

On-Site Air PM10 Emissions (Continued)

		Total Powe	er Rating					Docking I	M ₂₅ Docking	Emissions						
			er Rating													
					Docking		Emis	sions	(per 1,	000')	Model S	Source		Area Source	Model Se	ource
		Main	Aux Gen	Trips per	Time		Factor	Rate	Factor	Rate			Area of Docking	Emission Rate		
Source Location	Description	(hp)	(kw)	Peak Day	(min/trip) Hours	Fuel	(g/trip)	(g/s)	(g/trip)	(g/s)	name	#	Area Source (m ²)	(g/s-vh-m ²)	name	#
	utbound Bulk and Non- Ik (combined private and															
	blic)	2400	65	2	30 8am-12am		304	1.06E-02	15.7	5.43E-04						
	utbound Glass	2400	65	1		LSD	304	5.28E-03	15.7	2.72E-04						
GP Unloading and Paper Loading Dock Inb	bound MGP	2400	65	4	30 8am-12am	LSD	304	2.11E-02	15.7	1.09E-03						
otal Worst-Case Peak Day								3.70E-02		1.90E-03	TOWINOUT	24	6501.4	5.69E-06	TOWBOATS	23
otal Average Day (for annual analysis) All		2400	65	3.855	30 8am-12am	LSD	304	2.04E-02	15.7	1.05E-03			6501.4	3.13E-06		

On-Road Truck Emissions (out o	of facility for 1,000 feet fro	om intersection)
Total Distance (m):	463.3	
Emission Factor by hour	g/s	Factor for 1-e4
1	0.00E+00	0.00
2	1.83E-04	1.83
3	2.45E-04	2.45
4	2.45E-04	2.45
5	2.45E-04	2.45
6	2.45E-04	2.45
7	0.00E+00	0.00
8	1.51E-03	15.12
9	1.51E-03	15.12
10	5.02E-04	5.02
11	1.66E-03	16.64
12	2.62E-03	26.17
13	2.48E-03	24.79
14	1.60E-03	15.97
15	2.17E-03	21.66
16	1.51E-03	15.12
17	0.00E+00	0.00
18	2.45E-04	2.45
19	2.45E-04	2.45
20	4.32E-04	4.32
21	5.25E-04	5.25
22	7.44E-04	7.44
23	1.87E-04	1.87
24	9.35E-05	0.93
Source Name	#	
ROAD	25	

MOBILE6 PARTICULATE MATTER EMISSION FACTORS 2009

PM2.5							1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Pol Name	LDGV	LDGT1	LDGT2	LDGT3	LDGT4	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	LDDV	LDDT12	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	MC	GAS BUS	URB BUS	COM BUS	LDDT34
DOT VMT	0.6240	0.0622	0.2083	0.0385	0.0164	0.0048	0.0014	0.0009	0.0008	0.0007	0.0006	0.0007	0.0000	0.0015	0.0020	0.0007	0.0008	0.0013	0.0014	0.0015	0.0022	0.0032	0.0078	0.0030	0.0011	0.0017	0.0094	0.0031
Lead	0	0	0	0	0	0	0	0	0	0	0	0	0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	0	NA	NA	NA
GASPM	0.0037	0.0037	0.0037	0.0036	0.0036	0.0381	0.0437	0.0418	0.0507	0.0869	0.072	0.1025	0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0142	0.0581	NA	NA	NA
ECARBON	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.094	0.0257	0.0335	0.0338	0.032	0.0322	0.0906	0.0815	0.138	0.1489	NA	NA	0.7031	0.1871	0.0208
OCARBON	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0265	0.0369	0.0349	0.0352	0.0333	0.0335	0.0712	0.064	0.1085	0.047	NA	NA	0.5524	0.147	0.0299
SO4	0.0005	0.0006	0.0006	0.0006	0.0006	0.0012	0.0011	0.0009	0.0008	0.0005	0.0006	0.0004	0	0.0002	0.0002	0.0005	0.0006	0.0007	0.0007	0.0008	0.0009	0.001	0.0011	0.0002	0.0007	0.0016	0.0011	0.0003
Brake	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053
Tire	0.002	0.002	0.002	0.002	0.002	0.002	0.003	0.003	0.003	0.003	0.003	0.009	0	0.002	0.002	0.002	0.003	0.003	0.003	0.003	0.003	0.009	0.009	0.001	0.003	0.003	0.003	0.002
SO2	0.0067	0.0087	0.0087	0.0115	0.0115	0.0161	0.0175	0.0177	0.0208	0.0217	0.0229	0.0251	0	0.003	0.0043	0.0073	0.0082	0.0093	0.0096	0.0109	0.0126	0.0145	0.0151	0.0033	0.0258	0.0227	0.0153	0.0056
NH3	0.1017	0.1014	0.1014	0.1014	0.1014	0.0451	0.0451	0.0451	0.0451	0.0451	0.0451	0.0451	0	0.0068	0.0068	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.0113	0.0451	0.027	0.027	0.0068
PM Idle	0.0105	0.01075	0.01075	0.0105	0.0105	0.09825	0.112	0.10675	0.12875	0.2185	0.1815	0.25725	0	0.30175	0.157	0.985	0.9706	0.9506	0.9988	1.0332	1.0053	1.1327	1.0322	0.036	0.147	2.4919	1.0868	0.1275
Weighted VMT:	0.9976	0.1882	0.6303	0.1165	0.0496	0.4848	0.1414	0.0909	0.0808	0.0707	0.0606	0.0707	0.0000	0.0024	0.0061	0.0370	0.0423	0.0688	0.0741	0.0794	0.1164	0.1693	0.4127					0.0094
	1.0000	1.0000				1.0000										1.0000												
Total PM:	0.0115	0.0116	0.0116	0.0115	0.0115	0.0466	0.0531	0.051	0.0598	0.0957	0.0809	0.1172	Ö	0.128	0.0701	0.0762	0.0779	0.0743	0.0747	0.1709	0.1547	0.2618	0.2113		0.01418	0.13401		0.0583

PM10																												
Pol Name	LDGV	LDGT1	LDGT2	LDGT3	LDGT4	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	LDDV	LDDT12	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	MC	GAS BUS	URB BUS	COM BUS	LDDT34
DOT VMT	0.6240	0.0622	0.2083	0.0385	0.0164	0.0048	0.0014	0.0009	0.0008	0.0007	0.0006	0.0007	0.0000	0.0015	0.0020	0.0007	0.0008	0.0013	0.0014	0.0015	0.0022	0.0032	0.0078	0.0030	0.0011	0.0017	0.0094	0.0031
Lead	0	0	0	0	0	0	0	0	0	0	0	0	0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	0	NA	NA	NA
GASPM	0.004	0.004	0.004	0.0039	0.0039	0.043	0.051	0.0503	0.0652	0.1193	0.0958	0.1432	0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0205	0.0753	NA	NA	NA
ECARBON	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.1021	0.0279	0.0364	0.0368	0.0348	0.035	0.0985	0.0886	0.15	0.1619	NA	NA	0.7642	0.2034	0.0226
OCARBON	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0288	0.0401	0.0379	0.0383	0.0362	0.0364	0.0774	0.0696	0.1179	0.0511	NA	NA	0.6005	0.1598	0.0325
SO4	0.0005	0.0006	0.0006	0.0006	0.0006	0.0012	0.0011	0.0009	0.0008	0.0005	0.0006	0.0004	0	0.0002	0.0002	0.0005	0.0006	0.0007	0.0007	0.0008	0.0009	0.001	0.0011	0.0002	0.0007	0.0016	0.0011	0.0003
Brake	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125
Tire	0.008	0.008	0.008	0.008	0.008	0.008	0.012	0.012	0.012	0.012	0.012	0.036	0	0.008	0.008	0.008	0.012	0.012	0.012	0.012	0.012	0.036	0.036	0.004	0.012	0.012	0.012	0.008
SO2	0.0067	0.0087	0.0087	0.0115	0.0115	0.0161	0.0175	0.0177	0.0208	0.0217	0.0229	0.0251	0	0.003	0.0043	0.0073	0.0082	0.0093	0.0096	0.0109	0.0126	0.0145	0.0151	0.0033	0.0258	0.0227	0.0153	0.0056
NH3	0.1017	0.1014	0.1014	0.1014	0.1014	0.0451	0.0451	0.0451	0.0451	0.0451	0.0451	0.0451	0	0.0068	0.0068	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.0113	0.0451	0.027	0.027	0.0068
PM Idle	0.01125	0.0115	0.0115	0.01125	0.01125	0.1105	0.13025	0.128	0.165	0.2995	0.241	0.359	0	0.32775	0.1705	1.0706	1.055	1.0332	1.0857	1.123	1.0927	1.2312	1.122	0.05175	0.19	2.7086	1.1813	0.1385
Weighted VMT:	0.9976	0.1882	0.6303	0.1165	0.0496	0.4848	0.1414	0.0909	0.0808	0.0707	0.0606	0.0707	0.0000	0.002398	0.0061	0.0370	0.0423	0.0688	0.0741	0.0794	0.1164	0.1693	0.4127					0.0093
	1.0000	1.0000				1.0000										1.0000		•										
Total PM:	0.025	0.0251	0.0251	0.025	0.025	0.0647	0.0766	0.0757	0.0905	0.1443	0.1209	0.1921	0	0.1516	0.0887	0.0953	0.1002	0.0962	0.0966	0.2012	0.1836	0.3174	0.2626		0.0321	0.16113		0.0759

Pollutant	Speeds									
Poliutant	opeeus	LDV	LDT	HDGT	HDDT	BUSES	HDDT8b	DSNY	HDT (Gasoline	and Diesel)
PM2.5	Cruise (g/vmt)	0.0118	0.0124	0.0595	0.1799	0.13401	0.2113	0.034	0.1316	
1 11/25	Idle (g/vh-hr)	0.0112	0.0115	0.0806	1.0337	0.24919	1.0322	0.10322	0.6711	
PM ₁₀	Cruise (g/vmt)	0.0253	0.0259	0.0875	0.2210	0.16113	0.2626	0.06991	0.1664	
	Idle (g/vh-hr)	0.0112	0.0123	0.1046	1.1236	0.27086	1.1220	0.1122	0.7350	

90% Engine Emission Reduction

Last updated: 17-Nov-06

CO/PM2.5 ratio = 26.4 Based on 10 mph average speed

MOBILE6 CO EMISSION FACTORS BY SPEED Kings County Mobile 6.2

2009 MOBILE 6.2 Emission Factors (g/vmt)									
<mph></mph>	<txs></txs>	<tbus></tbus>	<hd8b></hd8b>	<ldgt></ldgt>	<hdgt></hdgt>	<hddt></hddt>	<dept></dept>	<arrv></arrv>	<auto></auto>
Idle (g/hr)	45.63	88.40	25.63	63.40	170.55	21.05	84.13	66.70	66.70
10.0	6.94	19.91	5.77	13.27	36.26	4.74	20.04	13.07	13.07
15.0	5.87	14.36	4.16	12.17	25.49	3.42	18.88	11.91	11.91
20.0	5.34	10.85	3.14	11.61	18.93	2.58	18.29	11.33	11.33
25.0	5.04	8.57	2.48	11.32	14.85	2.04	17.98	11.02	11.02
30.0	4.94	7.09	2.06	11.22	12.32	1.69	17.87	10.91	10.91
35.0	4.98	6.14	1.78	11.28	10.79	1.46	17.95	10.98	10.98
40.0	5.30	5.56	1.61	11.63	9.98	1.32	18.31	11.34	11.34

Appendix C.2

NONROAD Model Emission Factors

Model year 2009 emissions in 2009.

Equipment Type	tech type			Emissi		CO/PM _{2.5}	NO _x /PM _{2.5}			
		THC	CO	NOx	CO ₂	SO ₂	PM ₁₀	PM _{2.5}	2.5	- x 2.5
forklift (65 hp)	LGT252	0.032	1.227	0.260	165.412	0.003	0.015	0.015	79.3	16.8
	CNG	0.507	1.227	0.272	143.917	0.003	0.015	0.015	79.3	17.6
material handler (190 hp, diesel)	Т3	0.078	0.327	1.076	228.105	0.002	0.045	0.044	7.5	24.7
wheel loader (196 hp, diesel)	Т3	0.088	0.406	0.637	131.295	0.001	0.065	0.063	6.5	10.2
skid steer loader (80 hp, diesel)	T1	0.252	1.282	1.299	145.357	0.001	0.175	0.170	7.5	7.7
	T3B	0.088	1.284	0.765	145.881	0.001	0.148	0.144	8.9	5.3
sweeper (99 hp, diesel)	T1	0.225	1.031	2.415	253.147	0.002	0.172	0.167	6.2	14.5
	T3B	0.078	1.036	1.291	253.615	0.002	0.130	0.126	8.2	10.3

Towboat Emission Factors

From The New York, Northern New Jersey, Long Island Nonattainment Area Commercial Marine Vessel Emissions Inventory, Table 6.1, PANYNJ, April 2003.

Pollutant	Emission R	ate (g/kW-hr)
	Full Power	Average
NO _x	13.32	9.16
VOC	0.61	0.419
CO	1.69	1.16
PM ₁₀	0.51	0.351
SO ₂	3.92	2.70

The average rate is based on IMO E-3 test cycle 68.75% average power load. This may be conservative for local use in docking, when much of the time may be spent in idle and very low speed.

Reflects year 2000 emissions levels.

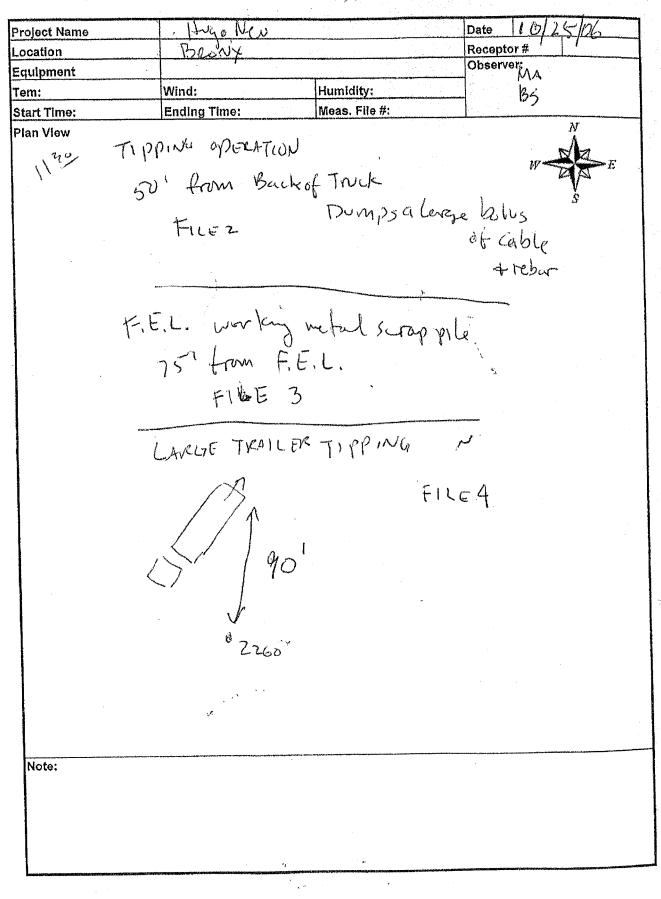
CO/PM _{2.5}	3.42	3.42
NO _x /PM _{2.5}	26.93	26.93

Resuspended Paved Road Dust

Factors:

k10 =	7.3	g/VMT
k2.5 =	1.1	g/VMT
a =	0.65	-
b =	1.5	
C ₁₀ =	0.2119	g/VMT

Vehicle Type	Avg. Vehicle Weight	Silt Loading	Emission Factor (g/VMT)
			24-hr w' Control (no precipitation)
	tons	g/m ²	PM ₁₀
DSNY	36.0	0.030	9.8
Product Trucks	16.8	0.030	2.1
Large Metal	20.0	0.030	2.8
Small Metal	1.8	0.030	0.0
Public Road	2.5	0.120	0.69
Non-Road	10.3	0.600	7.4

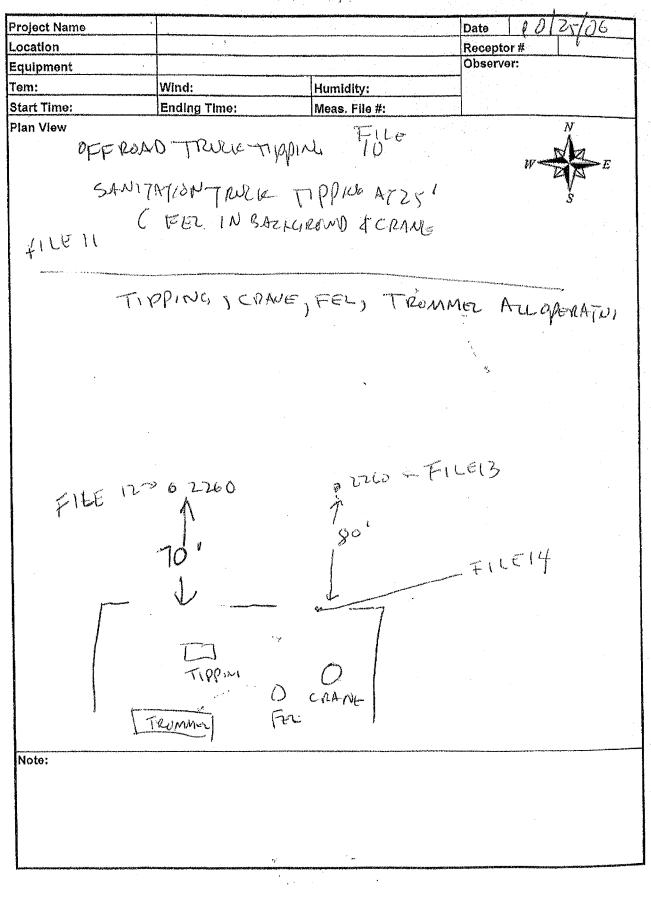

NOTE:

1. According to AP-42 13.2.1.4, the application of controls can be done by substituting controlled silt loading factor. It was assumed that due to the twice daily wet cleaning, silt loading would be similar to a clean highway with 0.03 g/m². For the indoor, nonroad areas, a high silt factor of 0.6 g/m² was assumed.

- 2. 50% Credit used for speed < 5 mph.
- 3. No controls were assumed for public streets.

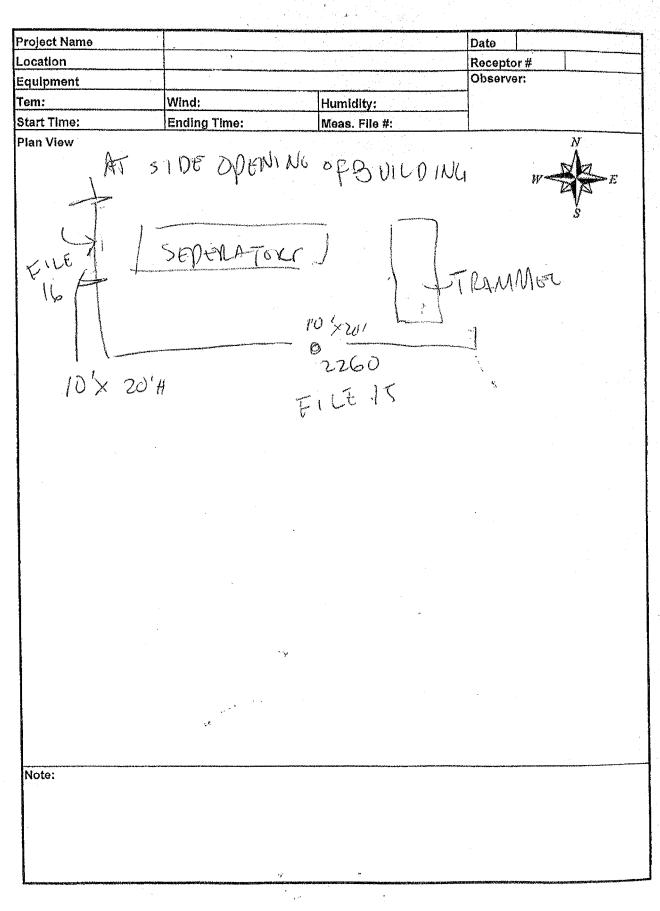
Vehicle Type	Vehicle
DSNY	36.0
Product Trucks	16.8
Large Metal	20.0
Small Metal	1.8

APPENDIX D: NOISE



53

Pagel 2 of 11


HUGO NEV **Project Name** Date 10 25/06 N Location Receptor # **Observer:** Equipment Wind: 4-10mph Tem: Humidity: ロカシ Meas. File #: Start Time: Ending Time: LOADING TRUCK from BARGE (PLASTIC Plan View CRAN MINIMAE NOISE 5 Freduspert TION J υ Δl (L1 represents hypland \$ 100' $\Delta \Delta$ Leg is probably 3dBlaver the mices weal due to 2260 FILES TRUCKIS IDLING contrub. of othe ADDING TO TOTAL sources TI pping IN SHOD & BACKHOE FILE9 -TEUCIE (SANIJATIUN) ASSUME LEVER 30 15 CONSTANT ACROSS OPENINC DOOR IS 55 WIDE NBD'HOM Note: ۰...

Page 3 of 1

in .

Pager 4 of 11

, h

Page Sof 1

						dama 1	
roject Name				PROBLEM LIKE WORKSHOP	Date /	12706	
ocation	1				Receptor #	1	
quipment			<u></u>		Observer:		
em:	Wind:		Humidity:				
start Time:	Ending Time	т я	Meas. File #:				

Plan View

Note:

Acressed Port Liberte indock Most nouse is from Tpke. Plant is only more and and the bargestuge raise builtion 56->607 Wind noise don ty lowber FIGIT

5

Page 6 of 11

l

Project Name	Hugo Nen.		Date 5/10/06
.ocation	Alaa Line Light	Iron Tiste Page	Receptor #
Equipment	Par zzla		Observer:
ľem:	Wind:	Humidity:	Basjamin
Start Time: Plan View Motal Scrap Pile Scrap Pile Scrap Pile Scrap Pile Note: Files: 001,00	Ending Time:	Meas. File #:	S C C C C C C C C C C C C C C C C C C C
		,	•
8			

12.

Page 7 of 11

Location 20 damaging tale los on grant Receptor # Deervor: Equipment Und: Humidity: Benjamin Start Time: Ending Time: Meas. File #: Benjamin Start Time: Ending Time: Meas. File #: Benjamin Scrip ARA C Jumping & Trington & The file #: Scrip ARA C Jumping & Trington & The file #: Scrip ARA C Jumping & Trington & The file #: Scrip ARA C Jumping & Trington & The file #: Scrip ARA C Jumping & Trington & The file #: Scrip ARA C Jumping & Trington & The file #: Scrip ARA C Jumping & Trington & The file #: Scrip ARA C Jumping & Trington & The file #: Scrip ARA C Jumping & Trington & The file #: Scrip ARA C Jumping & Trington & The file #: Scrip ARA C Jumping & Trington & The file #: Scrip ARA C Jumping & Trington & The file #: Scrip ARA C Jumping & Trington & The file #: Note: File: COM 1005,006	Project Name	Hur S AL	nya nya manje dia kana nya mana makaka ina kala kana kana kana kana kana kana ka	Date 5/10/07
Equipment Observor: Tom: Wind: Humidity: Benjemin Start Time: Ending Time: Meas. File #: Plan View Scraph ARA O Noth ARA O ARA O	a state the first state of the	The Alex	har our court	and a second second and the second se
energinente Teni Windi Humidity: Benjamin Start Timo: Ending Timo: Moas. Filo #: Benjamin Plan Viow Scrap Note: Reference	والمتركب والمحاصرة ومحاوره والمحاصر والمحاصر والبران والمحاصر والمحاصر والمحاصر والمحاصر والمحاصر والمحاص	C anonaping till	A-mos and granner	Observer:
Plan View Plan View Plan View Notin Rile Rile Noto: File: 004,005,006 Scip de Scip Scip Scip Scip Scip Scip Scip Scip		A B f Lau at a	The second statistic contraction of the second statistic statistic statistics and second statis	
Plan View Plan View Plan View Notin Rile Rile Noto: File: 004,005,006 Scip de Scip Scip Scip Scip Scip Scip Scip Scip				Blujamin
Scrap Noth Noth Noth Note He Edsewater pand File: 004,005,006	a se		WIGHS, FIIG #.	N
eccentitience 3 Edsewater front File: 004,005,006	-		X IT mices	the free to be a second of the
Note: FFILe: 004,005,006				Tractar Trailer
Note: FFILe: 004,005,006				· · ·
Note: FFILe: 004,005,006				
Note: FFILe: 004,005,006		·** \y		
Note: File: 004,005,006				
Note: FFILe: 004,005,006			Cours man	· .
Note: File: 004,005,006	0.000	1 miles	tenes 2	11 - 1
Note: File: 004,005,006		Ella	aler n i	
File: 004,005,006		E-Sylur	47-1 Koad	SHAN MARKAN MANYA MA
Low Backenhand Nate Frank Edmon phor D. d		005,006		
A OFFICE A A A A A A A A A A A A A A A A A A A	Low Badys	band Nate Fran-	Fleenader	Rowd

Project Name	Ftusis	Men	Date 5/10/07
Location	(3) Mague tic	**************************************	Receptor #
Equipment	BRK 2240	Scino Motal	Observer:
Tem:	Wind:	Humidity:	D P
Start Time:	Ending Time:	Meas, File #:	Bujamin
Plan View			N
SuraPM	etal pir	e Fane	
forth-	•	43'	Dift
and I	Edeo. valer	rence ce	
Note: 151-85: 00	etter - 1 annound annung de part of the contract of the contra		
ng yes yin yang kang kang kang kang kang kang kang k	ĨĸŢĸŢŦĸĸĹŊĨŎŊĬŎĸŔŎĸĬĬĸŎĴŔĿŦĹŔŖĿĊŔŶŎŖŦŎIJĊĹŢĬĸĿĊŎIJŎIJŎŎŎŎŎ	n san san san san san san san san san sa	nye ya katala na katala na katala na katala katala na katala katala katala katala katala katala katala katala k

Page 8 of 11

Project Name

ε,

51 Huso Date ş : Ney

ocation	13) treat End	Load winking MI	Receptor #
Equipment	158.K. 27.60	Scinometal Alle	Observer:
l'em:	Wind:	Scrap Notal Dile Humidity:	Bujamin
Start Time:	Ending Time:	Meas. File #:	
Plan View		۲. ۱	W - E
	(Light) Scraftal Rife	THELET	Metal Giteany
		50'	
Dirt			Dift 1
	1	<u>serres</u>	1-1
shat	Edo	ewater Road	
Note: FIS:	009,010 Tynis is beller		
and the second second second	Tethis is beller	r Na se se menor	a hilling ka ita anya panjanjanyanya nya panja wina panjana na ana ana ana ana ana ana ana an

10 67

1

Page 10 of 11

Project Name	HTMR NºC	Δ	Date 5/10/07
ocation	3 Lange Nortz	r Dailor Thiping	Receptor #
quipment			Observer:
'em:	Wind;	Humidity:	- Bergamin
3tart Time:	Ending Time:	Meas. File #:	Languitte
	craphiles of the state of the s	and marker Day has	Schaffer II
Noto: Files! C			• • •
	· .		

5110/17 Project Name Jen Date 1450 Work my Schap Metro Receptor # Location 1 Section 11 **Observer:** Equipment $\mathbf{D}(o$ >lal PL. Banjamin Tem: Wind: Humidity: Moas. File #: Start Time: **Ending Time:** Plan Vlew Scrap MOARI 2º Crane Dig < Eda 01 ex04 Note: Files: 012,013 in 1

Pagell of 11

Location:	Bronx Scrap Yard		
Description of Event:	Truck Tipping,Operation		
Start Time:	11:23:56 AM		
Elapsed Time:	0:00:52		
Distance:	50 Feet from Back of Truck		
File# 2			

L _{eq}	84.6	dBA
L _{max}	96.5	dBA
L _{min}	69.3	dBA
L ₁	95.7	dBA
L ₅	90.8	dBA
L ₁₀	89.9	dBA
L ₅₀	74.0	dBA
L ₉₀	71.9	dBA
L ₉₅	71.6	dBA
L ₉₉	70.7	dBA

Frequency (Hz)	L _{eq} (dB)	L _{max} (dB)	L _{min} (dB)	L ₁ (dB)	L ₁₀ (dB)
8	77.6	86.5	62.3	86.0	82.2
16	73.4	80.2	67.3	79.0	75.7
31.5	82.0	88.8	73.3	88.4	85.9
63	82.5	88.6	75.2	87.7	84.6
125	79.2	88.4	71.6	87.6	83.5
250	79.5	89.4	67.3	88.7	84.2
500	79.5	91.2	65.9	90.5	84.6
1000	79.4	91.5	65.0	90.7	84.4
2000	78.8	91.0	60.6	90.0	83.9
4000	75.1	87.0	56.8	86.0	80.6
8000	66.5	77.2	45.1	76.2	72.6
16000	54.0	63.7		62.9	60.1
Α	84.6	96.5	69.3	95.7	89.9
L	89.6	98.8	81.3		

£

Bronx Scrap Yard
Large Trailer Tipping Scrap Metal
11:35:48 AM
0:02:09
90 Feet From Back of Trailer
4

L _{eq}	77.2	dBA
L _{max}	90.9	dBA
L _{min}	66.5	dBA

L ₁	89.8	dBA
L ₅	82.2	dBA
L ₁₀	80.2	dBA
L ₅₀	71.6	dBA
L ₉₀	67.5	dBA
	67.1	dBA
L ₉₅ L ₉₉	66.7	dBA

Frequency (Hz)	L _{eq} (dB)	L _{max} (dB)	L _{mIn} (dB)	L ₁ (dB)	L ₁₀ (dB)
8	79.1	90.4	62.5	88.0	83.3
16	76.3	86,6	64.9	84.2	80.6
31.5	78.1	86.5	68.8	85.2	81.0
63	81.3	87.1	75.8	86.7	84.0
125	77.1	91.8	67.5	90.0	78.9
250	74.3	89.6	63.3	87.8	76.0
500	73.8	87.7	63.6	86.3	76.5
1000	71.6	85.3	61.4	84.1	73.8
2000	70.7	84.0	57.3	83.1	.74.2
4000	66.4	79.7	51.3	78.5	70.5
8000	58.9	71.0		69.8	64.1
16000	47.2	57.6		56.8	52.6
Α	77.2	90.9	66.5	89.8	80.2
L,	87.1	96.6	81.2		

Location:	Bronx Scrap Yard
Description of Event:	Truck Tipping and Crane Operations
Start Time:	11:49:51 AM
Elapsed Time:	0:03:21
Distance:	125 Feet
File#	6

L _{eq}	75.9	dBA
L _{max}	85.4	dBA
L _{min}	64.6	dBA
L ₁	84.3	dBA
L ₅	82.0	dBA
L ₁₀	79.6	dBA
L ₅₀	73.3	dBA
L ₉₀	66.8	dBA
L ₉₅	66.0	dBA
L ₉₉	65.1	dBA

Frequency (Hz)	L _{eq} (dB)	L _{max} (dB)	L _{min} (dB)	L ₁ (dB)	L ₁₀ (dB)
8	84.1	97.6	65.1	95.3	87.1
16	80.4	93.3	65.4	91.6	83.6
31.5	77.1	89.7	67.0	88.5	79.4
63	77.5	85.6	67.6	83.9	81.3
125	75.8	84.0	66.9	81.7	79.0
250	72.3	80.7	65.1	79.1	75.4
500	70.2	82.1	61.4	78.3	73.6
1000	71.6	84.6	58.0	83.1	74.8
2000	68.7	80.5	54.7	77.7	72.5
4000	66.5	77.0	50.5	75.2	70.6
8000	59.6	73.0	41.2	68.8	63.3
16000	50.7	70.5		64.5	50.3
А	75.9	85.4	64.6	84.3	79.6
L	88.1	99.9	76.0		

. Дж. -

Location:	Claremont Recylcing Facility
Description of Event:	Crane Loading Plastic Into A Truck From A Barge
Start Time:	4:37:13 PM
Elapsed Time:	0:06:36
Distance:	100 Feet From Crane
File #	8

L.eq	70.1	dBA
L _{max}	83.0	dBA
L _{min}	66.1	dBA

L ₁	76.0	dBA
L ₅	72.5	dBA
L ₁₀	71.6	dBA
L ₅₀	69.3	dBA
L ₉₀	67.9	dBA
L ₉₅	67.5	dBA
L ₉₉	66.8	dBA

Frequency (Hz)	L _{eq} (dB)	L _{max} (dB)	L _{min} (dB)	L ₁ (dB)	L ₁₀ (dB)
8	86.8	102.5	71.2	97.9	89.5
16	82.2	97.7	70.5	94.0	84.6
31.5	78.4	93.5	• 72.4	87.8	79.8
63	73.4	84.2	68.6	80.5	75.4
125	75.4	81.5	69.2	80.8	79.1
250	70.7	80.0	66.9	77,5	71.9
500	67.7	80.1	63.1	73.8	69.2
1000	64.2	77.8	59.8	72.1	66.3
2000	61.5	76.7	56.4	69.8	63.2
4000	55.1	69.9	50.4	62.3	56.7
8000	48.0	59.9	42.5	56.8	50.2
16000		51.1		47.6	42.6
A	70.1	83.0	66.1	76.0	71.6
L	89.7	104.3	80.4		

Location:	Claremont Recylcing Facility
Description of Event:	Tipping of Material in Shed
Start Time:	4:55:03 PM
Elapsed Time: 0:03:12	
Distance:	30 Feet From Truck
File #	9

L _{ea}	84.0	dBA
L _{max}	93.6	dBA
L _{min}	76.8	dBA

L ₁	91.3	dBA
L ₅	88.6	dBA
L ₁₀	87.1	dBA
L ₅₀	82.5	dBA
L ₉₀	78.9	dBA
L ₉₅	77.9	dBA
L ₉₉	77.0	dBA

Frequency (Hz)	L _{eq} (dB)	L _{max} (dB)	L _{min} (dB)	L ₁ (dB)	L ₁₀ (dB)
8	76.1	79.7	72.0	78.8	77.5
16	75.9	86.0	72.0	83.3	77.0
31.5	80.8	89.0	75.4	88.4	84.3
63	85.1	92.2	76.5	90.5	87.0
125	80.8	90.7	72.1	87.8	84.1
250	78.5	90.9	68.8	87.7	82.1
500	78.2	89.8	70.3	86.9	81.1
1000	81.2	89.4	71.8	87.9	84.8
2000	75.7	86.9	67.1	84.2	78.9
4000	71.9	81.4	61.2	79.0	76.0
8000	67.1	79.3	53.1	77.6	70.6
16000	62.5	77.2	41.6	75.1	65.5
A	84.0	93.6	76.8	91.3	87.1
L	89.8	97.2	85.7		

Location:Claremont Recylcing FacilityDescription of Event:Sanitation Truck TippingStart Time:5:06:10 PM		
Description of Event:	Sanitation Truck Tipping	
Start Time:	5:06:10 PM	
Elapsed Time:	0:02:43	
Distance:	25 Feet from Truck	
File #	11	

L _{eq}	86.1	dBA
L _{max}	97,4	dBA
L _{min}	77.0	dBA

L ₁	94.0	dBA
L ₅	90.7	dBA
L ₁₀	88.5	dBA
L ₅₀	84.4	dBA
L ₉₀	81.9	dBA
L ₉₅	80.3	dBA
L ₉₉	77.4	dBA

Frequency (Hz)	L _{-eq} (dB)	L _{max} (dB)	L _{min} (dB)	L ₁ (dB)	L ₁₀ (dB)
8	78.6	83.3	73.0	81.4	79.9
16	80.6	97.7	73.6	94.1	78.9
31.5	83.7	96.2	77.8	93.8	85.9
63	82.4	96.5	75.0	94.0	83.3
125	83.8	97.6	76.3	95.5	83.9
250	80.4	92.3	73.8	90.3	82.3
500	81.2	89.4	75.2	87.8	82.9
1000	80.2	88.3	72.4	86.0	82.6
2000	79.5	92.9	67.6	88.9	81.9
4000	77.7	90.8	60.9	87.2	81.5
8000	74.0	86.2	50.8	83.5	78.3
16000	70.6 ´	81.9	41.5	79.8	75.9
Α	86.1	97.4	77.0	94.0	88.5
L.	91.3	103.7	85.7		

Location:Claremont Recylcing FacilityDescription of Event:Tipping, Crane, Front End Loader, Trommel OperationsStart Time:5:11:36 PMElapsed Time:0:05:04Distance:70 Feet From Truck TippingFile #12

L _{eq}	79.5	dBA
L _{max}	84.5	dBA
L _{min}	74.2	dBA

L	84.0	dBA
L ₅	82.9	dBA
L ₁₀	81.7	dBA
L ₅₀	79.0	dBA
L ₉₀	76.0	dBA
L ₉₅	75.6	dBA
L ₉₉	74.6	dBA

Frequency (Hz)	L _{eq} (dB)	L _{max} (dB)	L _{min} (dB)	L ₁ (dB)	L ₁₀ (dB)
8	79.4	87.5	73.4	85.3	81.8
16	74.9	84.5	69.9	81.1	77.5
31.5	81.1	87.7	75.8	87.2	83.5
63	82.1	95.4	74.0	93.3	83.9
125	81.2	91.1	74.4	89.2	84.7
250	77.2	89.2	69.9	86.2	80.5
500	74.7	86.6	70.7	80.6	77.2
1000	75.5	81.0	69,6	80.2	77.9
2000	72.1	78.0	66.5	76.8	74.6
4000	66.2	76.3	59.6	73.8	68.7
8000	59.3	75.2	47.1	72.1	60.1
16000	51,4	70.6		64.9	51.9
A	79.5	84.5	74.2	84.0	81.7
L	88.3	96.6	83.9	. and that had	

Location:	Claremont Recylcing Facility	
Description of Event:	Tipping, Crane, Front End Loader, Ti	ommel Operations
Start Time:	5:18:53 PM	
Elapsed Time:	, 0:01:30	
Distance:	80 Feet From Crane	
File#	13	

L _{eq}	74.8	dBA
L _{max}	79.6	dBA
L _{min}	71.8	dBA

L ₁	78.6	dBA
L ₋₅	77.7	dBA
L ₁₀	77.4	dBA
L ₅₀	73.5	dBA
L ₉₀	72.4	dBA
	72.2	dBA
L ₉₅ L ₉₉	71.9	dBA

Frequency (Hz)	L _{eq} (dB)	L _{max} (dB)	L _{min} (dB)	L ₁ (dB)	L ₁₀ (dB)
8	79.6	82.7	75.8	82.7	81.2
16	73.9	77.9	70,3	77.4	75.6
31.5	78.4	81.1	76.0	80.8	79,8
63	77.5	83.3	74.4	82.7	80.1
125	77.3	86.3	72.8	85.9	79.6
250	72.6	76.9	69.0	76.9	76.0
500	70.8	74.7	67.7	74.8	73.2
1000	70.6	77.1	67.0	75.9	73.0
2000	67.7	72.9	64.7	71.8	69.9
4000	60.5	67.3	57.3	65.3	62.6
8000	50.7	58.7	46.2	57.8	53.3
16000		50.3		49.5	
Α	74.8	79.6	71.8	78.6	77.4
L	85.3	89.2	83.0		

.

. Santaria Santaria Location:Claremont Recylcing FacilityDescription of Event:Tipping, Crane, Front End Loader, Trommel OperationsStart Time:5:22:29 PMElapsed Time:0:03:02Distance:At Entrance to Front End Loader and CraneFile #14

L _{eq}	80.3	dBA
L _{max}	86.6	dBA
L _{min}	77.9	dBA

L ₁	85.2	dBA
L ₅	83.8	dBA
L ₁₀	82.1	dBA
L ₅₀	79.6	dBA
L ₉₀	78.5	dBA
	78.3	dBA
L ₉₅ L ₉₉	78.1	dBA

Frequency (Hz)	L _{eq} (dB)	L _{max} (dB)	L _{min} (dB)	L ₁ (dB)	L ₁₀ (dB)
8	78.1	81.5	74.7	80.5	79.3
16	75.6	87.1	71.9	82.9	76.6
31.5	77.1	82.3	73.3	81.6	79.3
63	78.1	91.0	74.4	86.4	80.6
125	78.2	89.4	73.2	87.1	80.6
250	76.6	86.0	72.9	85.0	76.9
500	76.4	83.4	73.8	81.4	77.9
1000	76.3	82.8	73.5	81.7	78.2
2000	73.2	79.5	70.7	78.2	74.9
4000	67.3	74.5	63.9	73.4	69.5
8000	56.7	68.4	52.2	64.2	58.7
16000		56.1		52.2	42.6
A	80.3	86.6	77.9	85.2	82.1
• L'	86.3	94.2	84.1		

Location:Claremont Recylcing FacilityDescription of Event:Trummel at Side Opening of BuildingStart Time:5:28:52 AMBlapsed Time:0:03:03Distance:At Side Entrance OpeningFile #15

L _{eq}	85.5	dBA
L _{max}	87.2	dBA
L _{min}	84.0	dBA

	86.9	dBA
L ₅	86.4	dBA
L ₁₀	86.2	dBA
L ₅₀	85.4	dBA
L ₉₀	84.7	dBA
	84.5	dBA
L ₉₅ L ₉₉	84.3	dBA

Frequency (Hz)	L _{eq} (dB)	L _{max} (dB)	L _{min} (dB)	L ₁ (dB)	L ₁₀ (dB)
8	86.1	94.1	76.5	92.8	89.9
16	84.0	89.9	80.0	88.8	86.9
31.5	92.8	94.5	91.0	94.8	93.8
63	81.6	85.1	79.6	84.0	82.7
125	84.2	86.8	81.8	86.1	85.3
250	81.3	83.5	79.6	83.0	82.1
500	82.9	84.6	81.5	84.0	83.7
1000	81.2	84.9	79.5	83.7	82.4
2000	78.1	81.1	76.5	80.6	78.9
4000	72.4	76.8	70.5	75.9	73.5
8000	62.9	66.3	61.2	65.5	63.9
16000	50.5	55.6	48.1	53.9	52.3
A	85.5	87.2	84.0	86.9	86.2
L	95.6	98.7	94.2		

Location:Claremont Recylcing FacilityDescription of Event:Separators and Balers at Side Opening of BuildingStart Time:5:33:26 PMElapsed Time:0:03:03Distance:At Side Entrance OpeningFile #16

L _{eq}	81.3	dBA
L _{max}	84.0	dBA
L _{min}	78.5	dBA

L ₁	83.4	dBA
L ₅	82.8	dBA
L ₁₀	82.5	dBA
L ₅₀	81.5	dBA
L ₉₀	79.2	dBA
L ₉₅	78.9	dBA
L ₉₉	78.6	dBA

Frequency (Hz)	L _{eq} (dB)	L _{max} (dB)	L _{min} (dB)	L ₁ (dB)	L ₁₀ (dB)
8	82.6	91.8	74.2	89.8	85.9
16	80.5	87.2	71.6	85.0	82.8
31.5	79.6	89.5	74.3	85.8	81.7
63	83.3	94.5	74.3	92.1	87.3
125	77.8	86.4	72.1	84.9	80.8
250	75.3	79.0	71.7	78.5	76.9
500	77.6	80.2	74.5	79.9	78.9
1000	77.0	82.6	74.2	81.5	78.0
2000	74.2	. 77.0	71.3	76.5	75.6
4000	69.9	72.9	65.5	72.6	71.5
8000	64.9	68.7	58.2	67.8	66.7
16000	56.9	62.4	48.9	59.9	58.8
А	81.3	84.0	78.5	* 83.4	82.5
L	89.6	96.2	85.7		

Location:	Claremont Recylcing Facility
Description of Event:	Total Plant Noise
Start Time:	6:08:27 PM
Elapsed Time:	0:10:12
Distance:	At Port Liberte Across Water From Recylcling Plant
File #	17

L _{eq}	56.8	dBA
L _{max}	64.7	dBA
L _{min}	53.7	dBA

L ₁	62.1	dBA
L ₅	59.9	dBA
L ₁₀	58.4	dBA -
L ₅₀	55.9	dBA
L ₉₀	54.7	dBA
L ₉₅	54.5	dBA
L ₉₉	54.2	dBA

Frequency (Hz)	L _{eq} (dB)	L _{max} (dB)	L _{min} (dB)	L ₁ (dB)	L ₁₀ (dB)
8 ·	88.3	97.4	70.8	95.9	92.7
16	83.7	95.2	66.3	92.3	88.1
31.5	77.7	92.1	63.1	87.4	81.8
63	70.8	86.4	61.6	79.7	74.2
125	63.6	77.1	58.0	72.6	66.1
250	56.2	65.8	51.6	62.8	58.1
500	54.1	63.7	50.7	62.1	55.5
1000	52.5	56.9	49.9	55.8	53.9
2000	45.3	56.1	41.7	50.6	47.3
4000	38.0	54.1	29.8	47.4	40.8
8000	29.4	45.4		40.3	32.8
16000		39.2		29.6	22.0
А	56.8	64.7	53.7	62.1	58.4
L	91.1	99,9	75.1		

Location:	Bronx Scrap Yard		
Description of Event:	Loading Light Iron Into Barge		
Start Time:	10:36:19 A'M		
Elapsed Time:	0:03:23		
Distance:	93 Feet		
File #	1		

L _{eq}	72.2	dBA
L _{max}	78.9	dBA
L _{min}	64.5	dBA

L ₁	77.5	dBA
L ₅	76.3	dBA
L ₁₀	75.2	dBA
L ₅₀	71.3	dBA
L. ₉₀	67.2	dBA
L ₉₅	- 66.4	dBA
L ₉₅ L ₉₉	64.9	dBA

Frequency (Hz)	L _{eq} (dB)	L _{max} (dB)	L _{min} (dB)	L ₁ (dB)	L ₁₀ (dB)
. 8	65.2	71.8	60.1	69,6	67.3
16	68.4	73.7	63.5	72.0	70.2
31.5	70.8	76.0	66,8	75.6	72.4
63	73.1	78.9	66.7	78.1	76.0
125	74.7	78.8	70.6	78.7	76.7
250	73.6	79.2	65.3	78.3	76.0
500	67.8	74.1	57.3	73.6	71.0
1000	66.2	73.5	57.3	72.3	69.3
2000	64.5	72.9	54.7	70.7	67.9
4000	60.7	71.4	47.3	68.6	64,9
8000	55.5	64.8		63.8	60.1
16000	46.3	56.2		55.4	51.3
А	72.2	78.9	64.5	77.5	75.2
L	80.5	83.7	76.5		

Location:	
Description of Event:	Dur
Start Time:	
Elapsed Time:	
Distance:	
File #	

, Bronx Scrap Yard Dumping Light Iron On Ground 11:00:12 AM 0:02:03 40 Feet 6

L _{eq}	62.3	dBA
L _{max}	77.3	dBA
L _{min}	50.8	dBA

L ₁	75.1	dBA
L ₅	67.2	dBA
L ₁₀	63.2	dBA
L ₅₀	56.6	dBA
L ₉₀	53.1	dBA
L ₉₅	52.3	dBA
L ₉₉	51.4	dBA

Frequency (Hz)	L _{eq} (dB)	L _{max} (dB)	L _{min} (dB)	L ₁ (dB)	L ₁₀ (dB)
8	66.6	74.7	60.9	73.0	69.0
16	70.1	77.4	65.0	75.6	73.0
31.5	74.2	81.7	67.5	80,6	77.6
63	74.7	84.4	66.2	82.8	79.1
125	71.3	88.7	57.8	85.7	68.3
250	60.1	74.3	48.3	73.1	62.2
500	56.6	70.7	46.3	68.8	59.2
1000	55.3	70.3	43.7	68.2	56.7
2000	53.9	69.4	41.1	65.9	54.5
4000	53.0	69,5	37.8	65.9	53.4
8000	52.5	68.9	,	66.1	52.5
16000	47.4	63.4		61.5	47.0
А	62.3	77.3	50,8	75.1	63.2
L.	79.3	90.2	73.4		

Location:	Bronx Scrap Yard
Description of Event:	Magnetic Crane Working Scrap Metal Pile
Start Time:	11:34:55 ÅM
Elapsed Time:	0:02:46
Distance:	43 Feet
File #	7

L _{eq}	75.3	dBA
L _{max}	79.8	dBA
L _{min}	71.3	dBA
L ₁	78.7	dBA
L ₅	77.5	dBA
L ₁₀	76.9	dBA
L ₅₀	75.2	dBA
L ₉₀	72.7	dBA
L ₉₅	72.2	dBA
L ₉₉	71.8	dBA

Frequency (Hz)	L _{eq} (dB)	L _{max} (dB)	L _{min} (dB)	L ₁ (dB)	L ₁₀ (dB)
8	63.9	70.3	58.5	69.3	65.9
16	67.0	72.7	62.1	71.9	68.9
31.5	69.9	74.8	66.4	72.9	71.5
63	82.7	87.7	73.8	87.3	85.5
125	80.4	83.3	77.4	82.9	82.0
250	76.2	79.4	70.2	79.5	78.2
500	73.4	77.0	68.0	76.8	75.5
1000	68.5	73.3	64.4	72.0	70.4
2000	65.5	72.8	60.7	71.4	67.6
4000	63.4	73.7	55.9	71.8	66.0
8000	59.6	73.0	47.7	69.1	62.4
16000	56.1	66.4	36.7	65.5	61.5
A	75.3	79.8	71.3	78.7	76.9
L	86.1	89.6	82.0		

Location:	Bronx Scrap Yard		
Description of Event:	Front End Loader Working Scrap Metal Pile		
Start Time:	12:02:44 PM		
Elapsed Time:	0:00:54		
Distance:	50 Feet		
File #	10		

L _{eq}	76.0	dBA
L _{max}	80.8	dBA
L _{min}	60.7	dBA
	······	
L ₁	80.5	dBA
L ₆	79.9	dBA
L ₁₀	79.4	dBA
L ₅₀	75.5	dBA
L ₉₀	68.2	dBA
L ₉₅	64.5	dBA
L ₉₉	61.1	dBA

Frequency (Hz)	L _{eq} (dB)	L _{max} (dB)	L _{min} (dB)	L ₁ (dB)	L ₁₀ (dB)
8	65.6	74.8	58.7	74.7	67.6
16	70.3	78.3	65.4	78.2 _	72.5
31.5	75.2	79.8	73.4	79.7	76.4
63	77.2	81.5	70.4	81.7	80.4
125	72.0	77.1	61.6	76.9	75.2
250	70.5	76.4	57,8	75.9	73.7
500	65.8	70.5	55.4	70.4	68.7
1000	73.3	79.2	56.1	78.8	77.3
2000	69.0	76.6	53.9	75.5	71.9
4000	62.2	69.1	47.9	68.1	65.4
8000	55.0	63,6	40.1	63.1	58.5
16000	44.6	54.9		54.1	47.2
A	76.0	80.8	60.7	80.5	79.4
L	, 82.0	84.6	77.1		

Location:	Bronx Scrap Yard		
Description of Event:	Large Tractor Trailer Tipping Scrap Metal		
Start Time:	12:15:13 PM		
Elapsed Time:	0:01:18		
Distance:	49 Feet		
File #	11		

L _{eq}	80.2	dBA
L _{max}	95,6	dBA
L _{min}	65.2	dBA

L ₁	94.5	dBA
L ₅	85.0	dBA
L ₁₀	79.7	dBA
L ₅₀	66.6	dBA
L ₉₀	65.7	dBA
L ₉₅	65.5	dBA
L ₉₉	65.3	dBA

Frequency (Hz)	L _{eq} (dB)	L _{max} (dB)	L _{min} (dB)	L ₁ (dB)	L ₁₀ (dB)
8	67.0	74.4	59.0	73.8	69.6
16	69.7	77.4	66.0	76.9	72.2
31.5	79.9	85.3	71.9	84.5	81.4
63	77.5	91.7	69.0	90.5	78,9
125	76.1	90.2	67.6	89.0	78.8
250	74.4	89.5	62.6	88.0	75.9
500	74.2	89.3	60.3	88.2	75.2
1000	74.7	90.2	59.7	89.2	73.9
2000	74.6	90.2	57.6	89.0	73.7
4000	71.1	86.3	54.3	85.2	72.1
8000	64.7	79.6	46.8	78.5	。65.9
16000	53.3	68.2		67.0	55.0
А	80.2	95.6	65.2	94.5	79.7
L	85.3	98.6	79.0	x	

Location:	Bronx Scrap Yard
Description of Event:	Crane Working Scrap Metal Pile
Start Time:	12:24:21 PM
Elapsed Time:	0:02:48
Distance:	64 Feet
File #	13

L _{eq}	70.2	dBA
L _{max}	76.0	dBA
L _{min}	64.0	dBA
L ₁	74.9	dBA
L ₅	74.1	dBA
L ₁₀	73.2	dBA
L ₅₀	69.0	dBA

 L₉₀
 66.8
 dBA

 L₉₅
 66.0
 dBA

 L₉₉
 64.2
 dBA

Frequency (Hz)	L _{eq} (dB)	L _{max} (dB)	L _{min} (dB)	L ₁ (dB)	L ₁₀ (dB)
8	65.8	. 75.2	58.9	73.5	68.2
16	68.7	73.6	65.4	72.5	70.4
31.5	71.1	75.1	68.6	74.0	72.0
63	78.3	85.6	71.0	82.9	81.4
125	69.2	74.4	65.1	73.6	70.8
250	65.3	70.5	61.4	69.3	66.8
500	64.9	72.0	57.9	70.9	68.0
1000	64.5	70.9	59.1	69.7	67.6
2000	63.7	69.7	55.9	68.9	67.0
4000	61.1	67.0	50.5	66.4	64.4
8000	58.1	65.1	44.0	63.7	61.6
16000	45.6	56.6	30.7	54.4	49.6
A	70.2	76.0	64.0	74.9	73.2
L	80.6	86.3	76.5		

FIELD NOISE MONITORING DATA SHEET AKRF Inc.

11120/06 **Project Name** Date Location 616 290 **Receptor**# 2 on **Observer:** Equipment 15400 (AA 450F Tem: Wind: Benjamin moth Humidity: Start Time: 5 PM-15h Ending Time: Meas. File #: Plan Vlew 72-Sheet 2 80 Feet Guards Booth "Spoke with guard a prism, he said I could park in the ferred tot. The car would be safe, no takets, etc. His name was Tip. "Notced clock on meter is not set to pareto Note: & Noticed dock meter is not Prograph Savings Time

Page / of /

Start Time	L _{eq}	L ₁	L ₁₀	L ₅₀	L ₉₀	L _{min}	L _{max}
5:00:00 PM	62.5	70.8	63.9	59.2	57.7	56.5	89.0
6:00:00 PM	60.1	67.3	61.5	58.8	57.8	56.7	74.4
7:00:00 PM	63.1	70.5	64.3	62.3	60.6	58.0	76.4
8:00:00 PM	61.4	66.6	64.1	59.9	58.4	57.1	74.5
9:00:00 PM	58.6	64.8	59.5	57.8	57.1	56.2	73.1
10:00:00 PM	58.4	65.6	59.6	57.2	56.6	55.8	71.5
11:00:00 PM	58.1	63.1	58.9	57.7	56.9	56.0	68.0
12:00:00 AM	57.1	60.2	57.8	56.8	56.1	55.0	68.5
1:00:00 AM	60.0	67.1	60.3	59.4	57.5	55.4	76.0
2:00:00 AM	59.6	60.9	60.0	59.5	59.0	58.4	64.8
3:00:00 AM	59.7	61.7	60.2	59.6	59.1	58.2	67.2
4:00:00 AM	65.1	71.8	70.1	60.7	59.3	58.5	74.2
5:00:00 AM	62.5	71.3	63.4	60.6	59.3	58.6	80.6
6:00:00 AM	64.5	72.8	66.5	61.7	60.3	58.6	78.6
7:00:00 AM	70.5	74.3	72.5	71.3	63.6	59.3	77.8
8:00:00 AM	64.8	71.5	67.4	63.1	61.2	59.3	81.5
9:00:00 AM	67.0	74.8	70.4	64.6	61.9	59.1	81.2
10:00:00 AM	63.7	72.9	65.9	61.4	60.0	58.8	78.2
11:00:00 AM	62.9	69.4	64.2	62.0	60.7	59.6	79.2
12:00:00 PM	62.1	69.5	64.2	60.7	58.9	57.7	78.0
1:00:00 PM	62.4	70.4	64.6	60.6	59.2	57.9	78.8
2:00:00 PM	63.1	73.0	65.0	60.3	58.8	56.8	79.5
3:00:00 PM	62.5	70.3	64.3	60.4	59.1	58.1	80.9
4:00:00 PM	65.0	75.1	67.0	61.7	59.0	57.8	83.5
5:00:00 PM	63.3	73.4	64.6	60.2	59.1	58.0	82.0
6:00:00 PM	60.0	67.0	61.3	59.0	57.3	56.4	75.9
7:00:00 PM	60.2	67.6	60.0	58.4	57.5	56.7	82.0
8:00:00 PM	59.0	62.4	59.5	58.7	58.1	57.2	70.8
9:00:00 PM	58.7	62.8	59.4	58.4	57.8	57.1	69.7
Note: Field measurements	s were pe	rformed b	y AKRF, I	nc. on No	vember 20) and 21,	2006.

Receptor 1 (Correctional Facility), Continuous Measurement Results (in dBA)

Screening Analysis for 39th Street between 3rd and 4th Avenues

		E	xisting				Να	o Build			Increase in Leq (NB vs. Ex)			Build			Increase in Leq (B vs. NB)
HOUR	Auto	Medium Truck	Heavy Truck	Bus	PCE	Auto	Medium Truck	Heavy Truck	Bus	PCE	dBA	Auto	Medium Truck	Heavy Truck	Bus	PCE	dBA
Mid-1	70	9	5	8	564	73	9	5	9	584	0.2	93	9	5	9	604	0.1
1-2	40	5	3	5	323	42	5	3	5	335	0.2	42	5	3	5	335	0.0
2-3	30	4	2	4	237	31	4	2	4	245	0.2	31	4	2	4	245	0.0
3-4	24	3	2	3	192	25	3	2	3	198	0.2	25	3	2	3	198	0.0
4-5	27	4	2	3	217	28	4	2	3	225	0.2	28	4	2	3	225	0.0
5-6	38	5	3	5	303	39	5	3	5	314	0.2	39	5	3	5	314	0.0
6-7 am	173	22	12	21	1383	179	23	12	22	1432	0.2	179	23	12	22	1432	0.0
7-8	303	39	20	36	2427	314	41	21	38	2513	0.2	347	41	23	38	2641	0.2
8-9	385	50	26	46	3081	399	52	27	48	3191	0.2	414	52	29	48	3301	0.1
9-10	405	53	27	49	3246	420	54	28	51	3361	0.2	422	54	29	51	3379	0.0
10-11	373	51	22	26	2553	386	53	23	27	2645	0.2	388	53	44	27	3650	1.4
11-12	320	44	19	23	2190	331	45	20	23	2269	0.2	333	45	44	23	3415	1.8
12-1	308	42	18	22	2110	319	44	19	23	2186	0.2	324	44	47	23	3507	2.1
1-2	295	40	18	21	2019	305	42	18	22	2092	0.2	311	42	31	22	2709	1.1
2-3	295	40	18	21	2018	305	42	18	22	2091	0.2	316	42	31	22	2713	1.1
3-4	323	44	19	23	2213	335	46	20	24	2293	0.2	365	46	26	24	2605	0.6
4-5	380	52	23	27	2602	393	54	23	28	2696	0.2	416	54	27	28	2907	0.3
5-6	436	60	26	31	2987	452	62	27	32	3095	0.2	452	62	31	32	3283	0.3
6-7 pm	416	57	25	29	2851	431	59	26	31	2954	0.2	431	59	30	31	3142	0.3
7-8	323	44	19	23	2214	335	46	20	24	2294	0.2	335	46	26	24	2576	0.5
8-9	208	28	12	15	1428	216	30	13	15	1480	0.2	216	30	20	15	1809	0.9
9-10	135	18	8	10	926	140	19	8	10	959	0.2	140	19	17	10	1382	1.6
10-11	105	14	6	7	717	108	15	6	8	743	0.2	108	15	8	8	837	0.5
11-Mid	91	12	5	6	621	94	13	6	7	643	0.2	99	13	7	7	695	0.3

Screening Analysis for 2nd Avenue between 29th and 30th Streets

		E	cisting				No	o Build			Increase in Leq (NB vs. Ex)			Build			Increase in Leq (B vs. NB)
HOUR	Auto	Medium Truck	Heavy Truck	Bus	PCE	Auto	Medium Truck	Heavy Truck	Bus	PCE	dBA	Auto	Medium Truck	Heavy Truck	Bus	PCE	dBA
Mid-1	80	5	4	3	387	87	6	4	4	429	0.4	127	6	4	4	469	0.4
1-2	46	3	2	2	221	50	4	2	2	246	0.4	50	4	2	2	246	0.0
2-3	33	2	2	1	162	36	3	2	2	180	0.4	36	3	2	2	180	0.0
3-4	27	2	1	1	131	30	2	1	1	146	0.4	30	2	1	1	146	0.0
4-5	31	2	1	1	149	33	2	2	1	165	0.4	33	2	2	1	165	0.0
<u>5-6</u> am	43	3	2	2	208	47	3	2	2	231	0.4	47	3	2	2	231	0.0
6-7 am	195	13	9	9	948	213	15	10	10	1051	0.4	213	15	10	10	1051	0.0
7-8	343	23	16	15	1664	374	26	18	17	1844	0.4	441	26	22	17	2099	0.6
8-9	435	30	20	19	2112	475	34	22	21	2342	0.4	506	34	26	21	2561	0.4
9-10	458	31	21	20	2225	500	35	24	22	2467	0.4	505	35	24	22	2503	0.1
10-11	585	71	41	17	3754	629	76	44	18	4033	0.3	634	76	87	18	6043	1.8
11-12	502	61	35	14	3220	540	66	38	16	3460	0.3	544	66	87	16	5752	2.2
12-1	483	59	34	14	3102	520	63	37	15	3334	0.3	531	63	93	15	5977	2.5
1-2	463	56	33	13	2969	498	60	35	14	3191	0.3	509	60	61	14	4424	1.4
2-3	462	56	33	13	2968	497	60	35	14	3189	0.3	518	60	61	14	4432	1.4
3-4	507	61	36	15	3254	545	66	38	16	3497	0.3	606	66	50	16	4122	0.7
4-5	596	72	42	17	3826	641	78	45	19	4112	0.3	687	78	53	19	4534	0.4
5-6 nm	684	83	48	20	4392	736	89	52	21	4720	0.3	736	89	60	21	5096	0.3
6-7 pm	653	79	46	19	4193	703	85	50	20	4505	0.3	703	85	58	20	4881	0.3
7-8	507	62	36	15	3256	546	66	38	16	3498	0.3	546	66	50	16	4062	0.6
8-9	327	40	23	9	2100	352	43	25	10	2257	0.3	352	43	39	10	2915	1.1
9-10	212	26	15	6	1361	228	28	16	7	1462	0.3	228	28	34	7	2308	2.0
10-11	164	20	12	5	1055	177	21	12	5	1133	0.3	177	21	16	5	1321	0.7
11-Mid	142	17	10	4	912	153	19	11	4	981	0.3	163	19	13	4	1085	0.4

Existing TNM Results at Correctional Facility Receptor

								Existi	ng L _{eq} (in c	IBA)						
Receptor Description	TNM Receptor ID	Measured Mid-1 AM		Adj Factor	Measured 1-2 AM	TNM 1-2 AM	Adj Factor	Measured 2-3 AM	TNM 2-3 AM	Adj Factor	Measured 3-4 AM	TNM 3-4 AM	Adj Factor	Measured 4-5 AM	TNM 4-5 AM	Adj Factor
Continuous Measurement @ Correctional Facility	R1(24 Hour Continuous Measurement)	57.1	55.6	1.5	60.0	52.4	7.6	59.6	50.8	8.8	59.7	49.4	10.3	65.1	49.6	15.5

								Existi	ng L _{eq} (in c	BA)						
Receptor Description		Measured 5-6 AM	TNM 5-6 AM	Adj Factor	Measured 6-7 AM	TNM 6-7 AM	Adj Factor	Measured 7-8 AM	TNM 7-8 AM	Adj Factor	Measured 8-9 AM	TNM 8-9 AM	Adj Factor	Measured 9-10 AM	TNM 9-10 AM	Adj Factor
Continuous Measurement @ Correctional Facility	R1(24 Hour Continuous Measurement)	62.5	52.3	10.2	64.5	59.4	5.1	70.5	61.7	8.8	64.8	62.8	2.0	67.0	63.0	4.0

								Exist	ing L _{eq} (in c	IBA)						
Receptor Description		Measured 10-11 AM		Adj Factor	Measured 11 AM - 12 PM		Adj Factor	Measured 12-1 PM	TNM 12-1 PM	Adj Factor	Measured 1-2 PM	TNM 1-2 PM	Adj Factor	Measured 2-3 PM	TNM 2-3 PM	Adj Factor
Continuous Measurement @ Correctional Facility	R1(24 Hour Continuous Measurement)	63.7	65.2	-1.5	62.9	64.6	-1.7	62.1	64.5	-2.4	62.4	64.2	-1.8	63.1	64.2	-1.1

								Exist	ing L _{eq} (in d	dBA)						
Receptor Description		Measured 3-4 PM	TNM 3-4 PM	Adj Factor	Measured 4-5 PM	TNM 4-5 PM	Adj Factor	Measured 5-6 PM	TNM 5-6 PM	Adj Factor	Measured 6-7 PM	TNM 6-7 PM	Adj Factor	Measured 7-8 PM	TNM 7-8 PM	Adj Factor
Continuous Measurement @ Correctional Facility	R1(24 Hour Continuous Measurement)	62.5	64.6	-2.1	65.0	65.3	-0.3	63.3	65.9	-2.6	60.1	65.7	-5.6	63.1	64.7	-1.6

							Existing L	_{eq} (in dBA)					
Receptor Description	TNM Receptor ID	Measured 8-9 PM	TNM 8-9 PM	Adj Factor	Measured 9-10 PM	TNM 9-10 PM	Adj Factor	Measured 10-11 PM	TNM 10- 11 PM	Adj Factor	Measured 11 PM - Mid	TNM 11 PM - Mid	Adj Factor
Continuous Measurement @ Correctional Facility	R1(24 Hour Continuous Measurement)	61.4	62.7	-1.3	58.6	60.8	-2.2	58.4	59.8	-1.4	58.1	59.1	-1.0

No Build 2009 TNM Results at Correctional Facility Receptor

									No Build L _e	_{eq} (in dBA)							
				Adj. No								Adj. No				Adj. No	
			No Build	Build	Increase			Adj. No	Increase		No Build	Build	Increase		No Build		Increase
		Existing	TNM Mid-	TNM Mid-	Over	Existing	TNM 1-2	Build TNM	Over	Existing	TNM 2-3	TNM 2-3	Over	Existing	TNM 3-4	TNM 3-4	Over
Receptor Description	TNM Receptor ID	TNM	1 AM	1 AM	Existing	TNM	AM	1-2 AM	Existing	TNM	AM	AM	Existing	TNM	AM	AM	Existing
Continuous	R1(24 Hour																
Measurement @	Continuous																
Correctional Facility	Measurement)	57.1	56.0	57.5	0.4	60.0	52.8	60.4	0.4	59.6	52.2	61.0	1.4	59.7	49.6	59.9	0.2

									No Build L	_{eq} (in dBA)							
			No Build	Adj. No Build			No Build	Adi. No	Increase		No Build	Adj. No Build	Increase		No Build	Adj. No Build	Increase
		Existing	TNM 4-5	TNM 4-5	Increase Over	Existing		Build TNM	Increase Over	Existing		TNM 6-7	Increase Over	Existing	TNM 7-8		Increase Over
Receptor Description	TNM Receptor ID	TNM	AM	AM	Existing	TNM	AM	5-6 AM	Existing	TNM	AM	AM	Existing	TNM	AM	AM	Existing
Continuous	R1(24 Hour																
Measurement @	Continuous																
Correctional Facility	Measurement)	65.1	50.8	66.3	1.2	62.5	52.4	62.6	0.1	64.5	59.9	65.0	0.5	70.5	62.2	71.0	0.5

									No Build L	_{₀q} (in dBA)							
Receptor Description	TNM Receptor ID	Existing	No Build TNM 8-9 AM	Adj. No Build TNM 8-9 AM	Increase Over Existing	Existing TNM	No Build TNM 9-10 AM	Adj. No Build TNM 9-10 AM	Increase Over Existing	Existing TNM	No Build TNM 10-11 AM	Adj. No Build TNM 10- 11 AM	Increase Over Existing	Existing TNM	No Build TNM 11AM - 12PM	Adj. No Build TNM 11AM - 12PM	Increase Over Existing
Continuous Measurement @ Correctional Facility	R1(24 Hour Continuous Measurement)	64.8	63.2	65.2	0.4	67.0	63.5	67.5	0.5	63.7	65.6	64.1	0.4	62.9	64.9	63.2	0.3

									No Build L	_{eq} (in dBA)							
				Adj. No								Adj. No				Adj. No	
			No Build		Increase		No Build		Increase		No Build	Build	Increase		No Build		Increase
			TNM 12 -	TNM 12 -	Over	Existing	TNM 1 - 2	Build TNM	Over	Existing		TNM 2-3	Over	Existing	TNM 3-4	TNM 3-4	Over
Receptor Description	TNM Receptor ID	TNM	1 PM	1 PM	Existing	TNM	PM	1 - 2 PM	Existing	TNM	PM	PM	Existing	TNM	PM	PM	Existing
Continuous	R1(24 Hour																
Measurement @	Continuous																
Correctional Facility	Measurement)	62.1	64.7	62.3	0.2	62.4	64.6	62.8	0.4	63.1	64.6	63.5	0.4	62.5	65.0	62.9	0.4

									No Build L	_{əq} (in dBA)							
Receptor Description	TNM Receptor ID	Existing TNM	No Build TNM 4-5 PM	Adj. No Build TNM 4-5 PM	Increase Over Existing	Existing TNM	No Build TNM 5-6 PM	Adj. No Build TNM 5-6 PM	Increase Over Existing	Existing TNM	No Build TNM 6-7 PM	Adj. No Build TNM 6-7 PM	Increase Over Existing	Existing	No Build TNM 7-8 PM		Increase Over Existing
Continuous Measurement @ Correctional Facility	R1(24 Hour Continuous Measurement)	65.0	65.7	65.4	0.4	63.3	66.3	63.7	0.4	60.1	66.1	60.5	0.4	63.1	65.0	63.4	0.3

									No Build L	_{eq} (in dBA)							
			No Build	Adj. No Build	Increase		No Build	Adi. No	Increase		No Build	Adj. No Build	Increase		No Build	Adj. No Build	Increase
		Existing	TNM 8-9	TNM 8-9	Over	Existing	TNM 9-10	Build TNM	Over	Existing	TNM 10-11	TNM 10-	Over	Existing	TNM 11	TNM 11	Over
Receptor Description	TNM Receptor ID	TNM	PM	PM	Existing	TNM	PM	9-10 PM	Existing	TNM	PM	11 PM	Existing	TNM	PM - Mid	PM - Mid	Existing
Continuous	R1(24 Hour																
Measurement @	Continuous																
Correctional Facility	Measurement)	61.4	63.1	61.8	0.4	58.6	61.2	59.0	0.4	58.4	59.9	58.5	0.1	58.1	59.5	58.5	0.4

Build 2009 TNM Results at Correctional Facility Receptor

									Build L _{eq}	(in dBA)							
Receptor Description	TNM Receptor ID			Adj. Build TNM Mid- 1 AM	Increase Over No Build			Adj. Build TNM 1-2 AM			Build TNM 2-3 AM	Adj. Build TNM 2-3 AM				Adj. Build TNM 3-4 AM	
Continuous Measurement @ Correctional Facility	R1(24 Hour Continuous Measurement)	57.5	56.0	57.5	0.0	60.4	52.8	60.4	0.0	61.0	52.2	61.0	0.0	59.9	49.6	59.9	0.0

									Build L _{eq}	(in dBA)							
Receptor Description	TNM Receptor ID	No Build TNM		Adj. Build TNM 4-5 AM		No Build TNM		Adj. Build TNM 5-6 AM				Adj. Build TNM 6-7 AM				Adj. Build TNM 7-8 AM	Increase Over No Build
Continuous Measurement @ Correctional Facility	R1(24 Hour Continuous Measurement)	66.3	50.8	66.3	0.0	62.6	52.4	62.6	0.0	65.0	59.9	65.0	0.0	71.0	62.5	71.3	0.3

									Build L _{eq}	(in dBA)							
Receptor Description	TNM Receptor ID	No Build TNM	Build TNM 8-9 AM	Adj. Build TNM 8-9 AM		No Build TNM		Adj. Build TNM 9-10 AM				Adj. Build TNM 10- 11 AM		No Build TNM	Build TNM 11AM - 12PM	Adj. Build TNM 11AM - 12PM	Increase Over No Build
Continuous Measurement @ Correctional Facility	R1(24 Hour Continuous Measurement)	65.2	63.4	65.4	0.2	67.5	63.6	67.6	0.1	64.1	67.0	65.5	1.4	63.2	66.6	64.9	1.7

									Build L _{eq}	(in dBA)							
			Build	Adj. Build	Increase		Build	Adj. Build	Increase			Adj. Build	Increase		Build	Adj. Build	Increase
		No Build	TNM 12 -	TNM 12 -	Over No	No Build	TNM 1-2	TNM 1-2	Over No	No Build	Build TNM	TNM 2-3	Over No	No Build	TNM 3-4	TNM 3-4	Over No
Receptor Description	TNM Receptor ID	TNM	1 PM	1 PM	Build	TNM	PM	PM	Build	TNM	2-3 PM	PM	Build	TNM	PM	PM	Build
Continuous	R1(24 Hour																
Measurement @	Continuous																
Correctional Facility	Measurement)	62.3	66.6	64.2	1.9	62.8	65.5	63.7	0.9	63.5	65.5	64.4	0.9	62.9	65.4	63.3	0.4

									Build L _{eq}	(in dBA)							
Receptor Description		No Build TNM		Adj. Build TNM 4-5 PM		No Build TNM		Adj. Build TNM 5-6 PM			Build TNM 6-7 PM	Adj. Build TNM 6-7 PM		No Build TNM			Increase Over No Build
Continuous Measurement @ Correctional Facility	R1(24 Hour Continuous Measurement)	65.4	65.9	65.6	0.2	63.7	66.5	63.9	0.2	60.5	66.3	60.7	0.2	63.4	65.3	63.7	0.3

									Build L _{eq}	(in dBA)							,
Receptor Description	TNM Receptor ID	No Build TNM		Adj. Build TNM 8-9 PM		No Build TNM		Adj. Build TNM 9-10 PM				Adj. Build TNM 10- 11 PM		No Build TNM			Increase Over No Build
Continuous Measurement @ Correctional Facility	R1(24 Hour Continuous Measurement)	61.8	63.8	62.5	0.7	59.0	62.6	60.4	1.4	58.5	60.3	58.9	0.4	58.5	59.7	58.7	0.2

Calculations of Prison Wall TL to assess with regard to NYC Noise Regulation. Assumes 2x2 window, closed.

Hz		50	63	80	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300
Wall TL Closed Window TL	Brick Construction TL Laminated 1/4 inch glass	33 0	31 0	31 0	26 30	29 35	38 42	44 43	40 42	42 38	50 31	55 38	57 37	61 35	64 37	67 40	69 40	71 40	70 39	72 39	77 41	82 42	0
Composite TL					26	29	38	44	40	42	42	49	48	47	49	52	52	52	51	51	53	54	
To get Octave TL Assume 100 dB in ead Reduced by TL Add third octaves and	ch octave I subtract total from 100				95 69	95 66 29	95 57	95 51	95 55 42	95 53	95 53	95 46 46	95 47	95 48	95 46 49	95 43	95 43	95 43 52	95 44	95 44	95 42 53	95 41	
Assumed sizes		Wall Area 2x2 window	60 4																				

	31.5	63	125	250	500	1000	2000	4000	8000
Octave TL			29	42	46	49	52	53	
Noise Reduction			25	38	42	45	48	49	

NR=TL-10*log(.25+(Sw/R)	
Sw radiating wall	64
R is room constant	30
live room of 500 ft.3	

						0	Octave Ban	d			
Activity	Receiver	Description	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz
			dB	dB	dB	dB	dB	dB	dB	dB	dB
		L ₁ Level	49.6	49.5	48	48.4	42.4	39.2	35.8	25.6	-0.9
	NYC Noise Code		13.0	19.0	25.5	38.1	41.9	45.2	48.1	49.0	55.0
Crane Loading Scrap Metal Into Barge		Resulting L ₁ Level	36.6	30.5	22.5	10.3	0.5	0.0	0.0	0.0	0.0
		L ₁ Level	57.1	54.1	51.7	54.4	55.4	54.3	51.9	39.4	-0.4
	NYC Noise Code	Building Attenuation Level	13.0	19.0	25.5	38.1	41.9	45.2	48.1	49.0	55.0
Truck Tipping Metal Operations		Resulting L ₁ Level	44.1	35.1	26.2	16.3	13.5	9.1	3.8	0.0	0.0
		L ₁ Level	49.5	50.3	46.3	43.5	35.4	41.5	35.6	23.2	-11.6
	NYC Noise Code	Building Attenuation Level	13.0	19.0	25.5	38.1	41.9	45.2	48.1	49.0	55.0
Front End Loader Working Scrap Metal Pile		Resulting L ₁ Level	36.5	31.3	20.8	5.4	0.0	0.0	0.0	0.0	0.0
		L ₁ Level	54.9	59.5	55.6	54.9	54.5	54.1	50.4	38.9	2.6
	NYC Noise Code	Building Attenuation Level	13.0	19.0	25.5	38.1	41.9	45.2	48.1	49.0	55.0
Large Trailer Tipping Scrap Metal		Resulting L ₁ Level	41.9	40.5	30.1	16.8	12.6	8.9	2.3	0.0	0.0
		L ₁ Level	40.6	54.5	49.7	45	39.8	33.1	30.3	27.9	-5.4
	NYC Noise Code	Building Attenuation Level	13.0	19.0	25.5	38.1	41.9	45.2	48.1	49.0	55.0
Magnetic Crane Separating Scrap Metal Pile		Resulting L ₁ Level	27.6	35.5	24.2	6.9	0.0	0.0	0.0	0.0	0.0
		L ₁ Level	65.2	60.1	57.2	53.6	50.4	53.7	44.9	40.5	3.3
	NYC Noise Code	Building Attenuation Level	13.0	19.0	25.5	38.1	41.9	45.2	48.1	49.0	55.0
Truck Tipping Scrap Metal and Crane Working Metal		Resulting L ₁ Level	52.2	41.1	31.7	15.5	8.5	8.5	0.0	0.0	0.0
		L ₁ Level	46.3	54.2	44.3	38.6	38.5	34.8	32	26.6	-6.7
	NYC Noise Code	Building Attenuation Level	13.0	19.0	25.5	38.1	41.9	45.2	48.1	49.0	55.0
Crane Metal Operations		Resulting L ₁ Level	33.3	35.2	18.8	0.5	0.0	0.0	0.0	0.0	0.0
		L ₁ Level	58.1	56.7	51	48.2	39.8	41.6	35.2	18.7	-26.1
	NYC Noise Code	Building Attenuation Level	13.0	19.0	25.5	38.1	41.9	45.2	48.1	49.0	55.0
Non-Metal Operations - All Operations Simultaneously Running		Resulting L ₁ Level	45.1	37.7	25.5	10.1	0.0	0.0	0.0	0.0	0.0
		L ₁ Level	47.6	46.3	40	36.6	32.2	38.4	29.3	10.7	-32.4
Non Metal Tipping Operations	NYC Noise Code	Building Attenuation Level	13.0	19.0	25.5	38.1	41.9	45.2	48.1	49.0	55.0
		Resulting L ₁ Level	34.6	27.3	14.5	0.0	0.0	0.0	0.0	0.0	0.0
		L ₁ Level	37.7	39.5	37.1	35.7	28.3	32.7	24.6	5.9	-45.1
Off Road Truck Tipping	NYC Noise Code	Building Attenuation Level	13.0	19.0	25.5	38.1	41.9	45.2	48.1	49.0	55.0
		Resulting L ₁ Level	24.7	20.5	11.6	0.0	0.0	0.0	0.0	0.0	0.0
		L ₁ Level	50	47.7	45.4	37	30.6	35	32.8	17.2	-28.8
Sanitation Truck Tipping	NYC Noise Code	Building Attenuation Level	13.0	19.0	25.5	38.1	41.9	45.2	48.1	49.0	55.0
		Resulting L ₁ Level	37.0	28.7	19.9	0.0	0.0	0.0	0.0	0.0	0.0
		L ₁ Level	52.2	55	47.8	46.9	37.2	33.3	23.4	7.5	-33
Crane and FEL and Trommel	NYC Noise Code	Building Attenuation Level	13.0	19.0	25.5	38.1	41.9	45.2	48.1	49.0	55.0
		Resulting L ₁ Level	39.2	36.0	22.3	8.8	0.0	0.0	0.0	0.0	0.0
		L ₁ Level	55	45	42	35.7	28.4	26.2	18.1	-1.5	-48.3
Loading Plastics From Barge To Truck	NYC Noise Code	Building Attenuation Level	13.0	19.0	25.5	38.1	41.9	45.2	48.1	49.0	55.0
		Resulting L ₁ Level	42.0	26.0	16.5	0.0	0.0	0.0	0.0	0.0	0.0

Name	Ю	Tuno				Octav	- Spect	rum, Hz,	in dB			A 14/4	Linear	Data Course
Nairie		Туре	31.5	63	125	250	500	1000	2000	4000	8000	A-W.	Linear	Data Source
Non Metal Tipping Operations	Non_Metal_Tip	Lw	116	118	115	115	114	115	111	106	105	118.6	123.8	Field Measured Data on 10-25-06
Off Road Truck Tipping	OffRoadTruckTip	Lw .	107	112	113	115	111	110	107	102	93	114.7	120.1	Field Measured Data on 10-25-06
Sanitation Truck Tipping	Sani_Truck_Tip	Lw	119	120	121	116	113	112	115	113	109	120.3	126.4	Field Measured Data on 10-25-06
Loading Plastics From Barge To Truck	Pl_BargetoTruck	Lw	125	118	118	115	111	110	107	100	94	114.8	127	Field Measured Data on 10-25-06
Crane and FEL and Trommel	Miscellaneous	Lw	122	128	124	121	115	115	111	108	107	120	131	Field Measured Data on 10-25-06
Truck Tipping Metal Operations	Metal_Tip	Lw.	120	119	119	120	122	122	122	118	108	127.4	129.6	Field Measured Data on 10-25-06
Truck Tipping Scrap Metal and Crane Working Metal	MetalTruckCrane	Lw	128	124	121	119	118	123	117	115	108	125.5	131.6	Field Measured Data on 10-25-06
Loading Light Iron Into Barge	Crane_LightIron	Lw	113	115	116	115	111	109	108	106	101	115.3	121.9	Field Measured Data on 5-10-07
Magnetic Crane Working Metal	MagCraneMetal_Q	Lw	103	118	113	110	107	102	102	102	- 99	110.3	120.2	Field Measured Data on 5-10-07
Front End Loader Working Scrap Metal Pile	FELWrkingMetal	Lw	1 11	113	109	108	102	110	107	100	95	113	118.1	Field Measured Data on 5-10-07
Large Tractor Trailor Tipping Scrap Metal	TractorTrMetal	Lw	116	122	120	119	120	121	120	117	110	125.9	128.8	Field Measured Data on 5-10-07
Crane Working Scrap Metal Pile	CraneScrpMetal	Lw	108	117	107	103	105	103	103	100	97	109.2	118.6	Field Measured Data on 5-10-07
Dumping Light Iron on Ground	DumpLightIron	L.w	110	113	115	103	99	98	96	96	96	105.4	118.2	Field Measured Data on 5-10-07

Non Metal Operations - All Operations Simultaneously Running

Receiver		NYC PS	6 M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Excee
Name	ID,	31.5 Hz	31.5 Hz	31.5 Hz	63 Hz	63 Hz	63 Hz	125 Hz	125 Hz	125 Hz	250 Hz	250 Hz	250 Hz	500 Hz	500 Hz	500 Hz	1000 Hz	1000 Hz	1000 Hz	2000 Hz	2000 Hz	2000 Hz	4000 Hz	4000 Hz	4000 Hz	8000 Hz	8000 Hz	8000 F
		dB	dB	dB	фВ	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
Receiver_01	R_01	55.7	80	-	56.9	80	-	54.6	75	-	51.2	70	-	46.7	64		45.5	58	-	40.1	53		22.7	49	-	-32.3	46	
Receiver_02	R02	55.7	80	~	57	80		55.1	75	-	51	70	1	46.6	64	-	45.4	58	- · ·	39.8	53	-	22.2	49	-	-33.6	46	
Receiver_03	R_03	55	80	-	56.3	80	· +	54	75	-	50.5	70	-	46.1	64	-	45	58	-	.39.5	53		21.5	49	-	-35.6	46	<u></u>
Receiver_04	R_04	54.5	80	-	55. <u>8</u>	80	-	53.5	75	-	50.1	70	-	48.3	64	-	47.1	58	-	41.4	53	1	22.6	49	-	-38.1	46	
Receiver_05	R_05	55	80	-	56.3	80		54.9	75	-	51.4	70	-	47.1	64	-	45.5	58	. 1	42.2	53	-	22.8	49	-	-42.3	46	
Receiver_06	R_06	57.1	80	-	60	80	· -	58.5	75	-	55.6	70	-	50.8	64	-	49.1	58	. 1	41.9	53		21.8	49	-	-41.4	46	-
Receiver_07	<u>R_07</u>	58.2	80		60.9	80	+	57.2	75	-	53.9	70	-	47.7	64		45.5	58	-	39,3	53	-	21.1	49		-30.1	46	-
Receiver_08	R08	58.6	80	-	59.9	-80		58.4	75	-	53.2	70	-	47.4	64	~	45.7	58	-	40.4	53	-	24.4	49	· -	-23	46	-
Receiver_09	R09	65.1	80	.,	61	80		65.3	75	-	61.5	70	·	56.1	64	-	54.9	58	-	49,7	53	-	33.1	49	-	-14.3	46	-
Receiver_10	R_10	61.1	80	-	59,6	80	-	59.3	75	-	54.3	70	-	48.8	64	-	47	58	-	41.5	53	-	26.3	49	-	-9.4	46	-
Receiver_11	<u>R_11</u>	58.1	80	-	56.8	80	-	55	75	-	49.2	70	-	43.9	64	-	42	58	· _	38	.53	~	22.7	49	-	-11.5	46	-
Receiver_12	R12	57.7	80		55.7	80	-	52.1	75	-	47.2	70		42.7	64	-	40.5	58	~	34.7	53	-	18.5	49		-17.4	46	-
Receiver_13	R_13	59.4	80	-	56.2	80	-	52.2	75	-	47.5	70		39.8	64	-	, 36	58	-	29.4	53	-	14,9	49	-	-16	46	-
Receiver_14	R14	57.6	80	-	56.6	80	-	55	75	-	48	70	-	40.5	64	-	37.2	58	-	30.9	53	-	20.6	49	-	-9.3	46	-
Receiver_15	R15	58,2	80	-	59.1	80	-	58.2	75	-	50.7	70	-	43.9	64	· -	44	58		38.7	53	-	28.8	49	~	2.1	46	-
Receiver_16	R_16	50.4	80	-	49.9	80	-	48.6	75	**	39	70	-	31.7	64	-	35.1	58	-	29.2	53		16.1	49	-	-20.3	46	-
Receiver_Prison	R_P	58.6	80	~	58	80		55.9	75		49,1	70	-	41.7	64		42.5	58	-	36.6	53	75 -	24.6	49	-	0	46	-

Crane Loading Scrap Metal Into Barge

Receiver		NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed.	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Excee
Name	ID	31.5 Hz	31.5 Hz	31.5 Hz	63 Hz	63 Hz	63 Hz	125 Hz	125 Hz	125 Hz	250 Hz	250 Hz	250 Hz	500 Hz	500 Hz	500 Hz	1000 Hz	1000 Hz	1000 Hz	2000 Hz	2000 Hz	2000 Hz	4000 Hz	4000 Hz	4000 Hz	8000 Hz	8000 Hz	8000 I-
		dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
Receiver_01	R_01	41.6	-80		43.6	80	-	44.5	75	-	43.2	70	-	38.9	64	-	36.3	58		32.7	53	-	20.3	49	-	-33.1	46	-
Receiver_02	R_02	41.7	80	-	43,7	80	-	44.5	75	-	43,2	70		38.7	64	-	35.7	58	ч	31.4	53	μ.	16.5	49	-	-36	46	~
Receiver_03	03	41.6	80		43.6	80		44.5	75	-	43,3	70	r	- 39	64	-	36.5	58	-	33.4	53	-	20.5	49	-	-32.8	46	
Receiver_04	R_04	41.4	80	н	43.4	80	-	44.3	75	. #	43.1	70	-	38.9	64	I	36.7	58	-	34.4	53	-	21.6	49	-	-34.4	46	
Receiver_05	R_05	41	80	-	43	80	-	43.9	75	-	47.1	70	-	42.9	64	-	40.9	58	-	38.6	53	<u>.</u>	22,1	49	-	-36.5	46	-
Receiver_06	R_06	41.5	80	-	43.5	80	-	46.6	75	-	45.4	70	-	41.2	64	-	39	58	-	36.6	53	-	21.1	49	+	-34.4	46	-
Receiver_07	R07	43	80		45	80	a	46	75	-	45.1	70		41.3	64		40.4	58	±.	37.9	53	-	24.5	49	1	-22	46	-
Receiver_08	R_08	53.8	80	-	55.8	80	-	57	75	-	55,7	70	-	51.4	64	- .	48,6	58	-	45.1	53	-	33.2	49		-7.9	46	-
Receiver_09	R_09	45,7	80	-	47.7	80	-	48.6	75		50	70	-	45.8	64	-	43.5	58	-	41.4	53	-	31.5	49	-	-5.4	46	-
Receiver_10	R_10	46.9	80	-	51.4	80		52.3	75	-	51.3	70	-	47.3	64	1	45.4	58	-	44.2	53	-	36.3	49	-	3.8	46	-
Receiver_11	R11	48	80	-	50	80	-	51.1	75	-	51.8	70	-	47.9	64	-	46,3	58		45.9	53	-	37.3	49	-	8.3	46	1 N 🖬
Receiver_12	R_12	48,5	80	- [50.5	80	-	51.5	75	-	50.3	70	-	46.1	64	-	43.8	58	-	41.4	53	-	33.8	49	-	8.1	46	
Receiver_13		52.8	80	-	54.6	80	-	55,4	75	-	54.2	70	-	49.9	64	-	47.2	58	-	44.4	53	-	35.7	49	-	7,5	46	-
Receiver_14	R_14	50.7	80	-	50.9	80	-	49.8	75	-	46.2	70	-	39.4	64	-	34.3	58	-	29	53	-	18	49		-13.6	46	-
Receiver_15	R_15	49.1	80	-	48.9	. 80	-	50.6	75	-	47.9	70	•	42	64	-	38.9	58	-	35.9	53	-	26.2	49	-	-8.2	46	-
Receiver_16	R_16	41	80	-	40.2	80	~	44.9	75	-	41.1	70	-	33.6	64	-	/ 28.9	58		23.3	53	-	10.2	49	-	-29.4	46	
eceiver_Prisor	ι R_P	49.6	80	-	49.5	80		48	75	. –	48.4	70	······································	42,4	64		39.2	58		35.8	53 (·?. =	25.6	49	alahti dikerinjikan symmetrik M	0	46	-

Truck Tipping Metal Operations

Receiver	[NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed
Name	ID	31.5 Hz	31.5 Hz	31.5 Hz	63 Hz	63 Hz	63 Hz	125 Hz	125 Hz	125 Hz	250 Hz	250 Hz	250 Hz	500 Hz	500 Hz	500 Hz	1000 Hz	1000 Hz	1000 Hz	2000 Hz	2000 Hz	2000 Hz	4000 Hz	4000 Hz	4000 Hz	8000 Hz	8000 Hz	8000 Hz
		dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
Receiver_01	R_01	56,5	80	-	55.4	80	-	55,3	75	-	55.9	70	-	57.3	64	-	56.3	58	-	52.6	53		34.6	49	-	-26.6	46	-
Receiver_02	R_02	54.3	80	-	53,2	80	-	53,1	75	. –	53.7	70		55.2	64	-	54.1	58		50.5	53	-	32.7	49		-27.6	46	-
Receiver_03	R_03	48.8	80	-	47.8	80	-	47.6	75	-	48.2	70		49.7	64	-	48.7	58	-	45.2	53	-	27.6	49	-	-32.6	46	-
Receiver_04	<u>R_04</u>	51.2	80		50,1	80	-	50	75	-	50.6	70	-	52	64	-	51	58		47.3	53	Ţ	28.9	49	-	-33.2	46	·
Receiver_05	R_05		80	-	47.2	80	-	47.1	75	-	50.3	70	-	51.8	64	-	50.8	58	<u> </u>	47	53	~	28.2	49	-	-35.7	46	
Receiver_06	R_06	48.7	80	-	47.7	80	-	49.8	75		50.4	70	-	51.9	64	-	50.8	58	-	47.1	53	-	28.8	49	н [.]	-32	46	
Receiver_07	R_07	55	80	-	54	80	-	53.8	75	_	54	70	-	54.6	64		52.2	58	-	47.2	53	-	29	49	~	-26.6	46	-
Receiver_08	R_08	55.3	80	-	52.8	80	-	50.8	75	-	49.2	70	-	48.2	64	-	44.7	58	-	39.4	53	-	23.1	.49		-26.2	46	-
Receiver_09	R_09	51.4	80	-	47.6	80	-	44,8	75	-	42.8	70	·	41.9	64	-	38.9	58	-	34.8	53	-	20.9	49	+	-21	46	-
Receiver_10	R_10	56.2	80	-	53	80	-	50.5	75	-	48.7	70	-	47.8	64	-	44.7	58	-	40.5	53	н	27.1	49	-	-11,8	46	-
	R_11	55.6	80	-	52.1	80	-	49.3	75	·	53.2	70	-	53.4	64	-	52.6	58	-	50.8	53	-	39.5	49	-	1.5	46	-
Receiver_12	R_12	51.5	80	· -	47.8	80		45	75	н	43.3	70	-	42.9	64	-	40.6	58	-	37.8	53	-	27.3	49		-4	46	-
Receiver_13	R_13	54.2	80	-	50.6	80	-	47.8	75	4	45.9	70	-	45.2	64	-	42.5	58	· •	39.3	53	-	28.3	-49	-	-3.1	46	-
	R_14	56.4	80	. =	53.1	80	-	50.6	75	-	48.8	70	-	47.9	64	-	45.1	58	-	50.4	53	-	38.2	49	-	-0.1	46	
Receiver_15	R_15	56.9	80	-	54	80	-	51.7	75	-	54.3	70	-	55.2	64	-	54	58	-	51.6	53	-	38.8	49	-	-2	46	
Receiver_16	R_16	44.1	80	-	40.5	80	-	. 38 .	75	-	36.8	70		37	64	-	43.1	58	-	38.7	53	-	24.1	49	-	-17.9	46	-
Receiver_Prison	R_P	57.1	80	-	54.1	80	-	51.7	75		54.4	70		55.4	64	· •	54.3	58		51.9	53	- <u>-</u>	39,4	49		0	46	and the second se

Front End Loader Working Scrap Metal Pile

Receiver		NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed
Name	ID	31.5 Hz	31.5 Hz	31.5 Hz	63 Hz	63 Hz	63 Hz	125 Hz	125 Hz	125 Hz	250 Hz	250 Hz	250 Hz	500 Hz	500 Hz	500 Hz	1000 Hz	1000 Hz	1000 Hz	2000 Hz	2000 Hz	2000 Hz	4000 Hz	4000 Hz	4000 Hz	8000 Hz	8000 Hz	8000 Hz
		dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
Receiver_01	R_01	39	80		40.9	80	-	36.8	75	-	35.4	70	-	29	64	· · · ·	36.1	58	-	29.9	53	· –	10	49	-	-42.5.	46	-
and a second sec	R_02	46,8	80		48.7	80	-	44.5	75	-	43.1	70	-	36.6	64	-	43.6	58	-	37	53		16.4	49	-	-38.4	46	-
Receiver_03	R_03	39	80	-	40.9	80	ri	36.8	75	-	35.4	70	-	29	64	1	36.1	58	-	29.7	53	ı	9.5	49	~	-44.3	46	H
tut.	R_04	38.7	80	-	40.7	-80	-	36.5	75	-	35.2	70	-	28.7	64	-	35.8	58	-	29.5	53	-	10.9	49	. .	-44.6	46	~
	R_05	38.3	80	-	40.3	80	-	36,2	75	-	39.2	70	-	32,7	64		39.7	58		33.2	53	-	11.9	49	-	-45.6	46	-
and the second se	R_06		80		40.8	80		38.9	75	-	37.5	70	-	31	.64	-	38.1	58	-	31.5	53	-	10.7	49	-	-43.5	46	-
and the second se	R_07		80	н	42.3	80		38.2	75	-	36,9	70	-	30.6	64	÷	38	58	-	32.5	53	-	15.3	49	-	-31	46	-
	R_08	46.3	80	-	48.3	80	→	44.1	75	-	43.9	70	-	36.8	64	-	43.3	58	-	36.9	53	-	18.9	49	_	-24.6	46	-
	R_09	/ · · · · · · · · · · · · · · · · · · ·	80	-	49.5	80	-	44.4	75	-	42.1	70	4	34.8	64	-	41.5	58	H	35.8	53	-	19.7	49	-	-17.2	46	-
Receiver_10	R_10	44.2	80		48.7	80	_	44.6	75	-	43.4	70	-	37.1	64	-	44.6	58	-	39.7	53		25.2	. 49	-	-7.1	46	-
Receiver_11	<u>R_11</u>	50	80	-	51.2	80	-	46.1	75	-	44.8	70		36.8	64	-	43	58		37.3	53 -	-	23.2	49	-	-9.4	46	-
Receiver_12	R_12	47.7	80	-	47.4	80	· _	40.8	75	-	36.9	70	· •	27.9	64	-	32.8	58	w	25.8	53	-	10.6	. 49		-18.1	46	· •
	R_13	46.9	80	-	46.3	80	·	39.6	75	-	35.6	70	-	26.7	.64	μ.	31.6	58		24.8	53	-	9.8	49	-	-18.5	46	
	R_14	48.5	80	-	48.7	80	-	44.9	75	-	42.1	70	-	34	64		40.6	58		35.1	53	-	22.5	49	-	-12.1	46	
Receiver_15	R 15	49.5	80	-	51.2	80	-	46.3	75	-	44	70	-	36.1	64	-	41.5	58	-	39.5	53	-	24	49	-	-10.6	46	-
Receiver_16	<u>R_16</u>	42.7	80	-	43.7	80	~	40.4	75	-	37.2	70	-	28.5	64	-	40.5	58		34.5	53	-	17.6	49	-	-21.9	46	-
Receiver_Prison	R_P	49.5	80		50,3	80	-	46.3	75		43.5	70	-	35,4	64		41.5	58	-	35.6	53	24	23.2	49		0	46	-

Large Trailer Tipping Scrap Metal

Edige Hanor H	pping .	orup mot	41															100 B 100 B							1 A A A A A A A A A A A A A A A A A A A			
Receiver			M3 Limit		NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed
Name	ID	31.5 Hz	31.5 Hz	31.5 Hz	63 Hz	63 Hz	63 Hz	125 Hz	125 Hz	125 Hz																	8000 Hz	
		dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
Receiver_01	R_01	52,5	80	-	58.5	80	-	56.3	75	÷ .	54.9	70	-	55.4	64	~	55.3	58	- `	50.6	53	-	33.5	49	-	-25,1	46	-
Receiver_02	R_02	50.3	80	+	56.3	80	-	54.1	75	- ·	52.7	70	-	53.2	64	-	53.2	58	~	48.5	53	-	31.6	49		-26	46	-
Receiver_03	R_03	44.9	80	-	50.8	80	-	48.6	75	-	47.3	70	-	47.8	64	-	47.8	58	-	43.2	53	-	26.5	49		-31	46	-
Receiver_04	04	47.2	80	-	53.2	80		51	75	-	49.6	70	· m	50.1	64		50	58	-	45.3	53	-	27.9	49	r	-31.6	46	-
Receiver_05	R_05	49.1	80	-	55	80	_	52.8	75	-	52.5	70	1	52.9	64	-	52.8	58	-	47.9	53	÷	29.4	49	-	-33,4	46	-
Receiver_06	R_06	49.6	80		55.5	80	-	54,2	75	-	52.8	70	-	53	64	-	52.1	58	-	46.2	53	· •	27	49	×	-34.7	46	-
Receiver_07	R_07	51.1	80	-	56.8	80	- ·	53.6	75	-	50.8	70	-	49.5	64	H	47.2	58	-	40.6	53	·	23	49	-	-30	46	-
Receiver_08	R_08	50.9	80	-	55.1	80	-	50.9	75	-	47.1	70	-	45.1	64	-	42.6	58		36.2	53	-	21.1	49	-	-25,4	46	
Receiver_09	R_09	47.7	80	-	50.9	80	-	46	75	-	42.1	70	-	40.1	64	-	38.1	58	-	32,9	53	-	19.9	49	-	-19.3	46	-
Receiver_10	R_10	51.6	80	-	55.2	80	-	50.6	75		46.7	70	-	44.8	64	-	42.8	58	-	37.7	53	-	25,4	49		-10.5	46	
Receiver_11	R_11	51.4	80	- v	54,7	80	-	49.9	75	-	52.1	70	-	51.3	64	-	51.4	58	-	48.2	53	-	37	49		0.7	46	· · -
Receiver_12	R12	47	80	-	50.3	80	-	45.6	75	-	41.9	70	-	40.5	64	-	39.4	58		35.7	53	-	26.2	49	~	2.1	46	-
Receiver_13	R_13	51.2	80	1	54,7	80	-	49.9	75	-	46	70	-	44.2	64	-	42,4	58		38	53	-	27.9	49		-0.6	46	·
Receiver_14	R_14	54.2	80	-	58.4	80	-	54,1	75	-	54.2	70	-	54.1	64		53.9	58		50.5	53		41.5	49	-	5	46	
Receiver_15	R_15	54.2	80	-	58.7	80	-	54.6	75	-	54.3	70	-	53.9	64	-	53.6	- 58	· -	50	53	-	38.2	49	-	0.8	46	
Receiver_16	R_16	40.3	80	-	43.6	80	-	39.2	75	-	35.9	70	-	35.1	64	-	42.2	58	-	36.8	53	-	23.3	49	-	-15.4	46	
Receiver_Prisor	1 R_P	54.9	80		59.5	80	-	55.6	75		54.9	70		54.5	64		54.1	58	-	50.4	53		38.9	49		2.6	46	

Magnetic Crane Separating Scrap Metal Pile

Receiver	1	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	1 M3 Limit	Exceed	NYC PS	M3 Limit	Exceed
Name	ID	31.5 Hz	31.5 Hz	31.5 Hz	63 Hz	63 Hz	63 Hz	125 Hz	125 Hz	125 Hz	250 Hz	250 Hz	250 Hz	500 Hz	500 Hz	500 Hz	1000 Hz	1000 Hz	1000 Hz	2000 Hz	2000 Hz	2000 Hz	4000 Hz	4000 Hz	4000 Hz	8000 Hz		
		dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
Receiver_01	R_01	40.8	80	-	55.7	80	-	50.5	75	-	47.1	70	-	43.6	64	-	37.6	58	-	34	53	-	20.1	49	-	-33.4	46	-
Receiver_02	R_02	30.9	80	-	45.8	80	-	40.6	75		37.3	70	-	33.8	64	1	27.8	58	-	24.3	53	-	10.7	49	-	-41.9	46	-
Receiver_03	R_03	30.8	80	м	45.8	80	-	40.6	75	-	37.4	70	-	34	64	-	28.4	58	-	25.8	53		14.9	49	-	-38.4	46	-
Receiver_04	R_04	30.6	80	-	45.5	80	-	40.4	75		37,2	70	1	33.9	64	-	28.5	58	-	26.6	53	-	16	49		-39.9	46	-
	R_05	-30:2	80		45.2	80	-	40.1	75	-	41.2	70	-	38	64	-	32.7	58	۲	31.1	53	· -	16.7	49	-	-41.7	46	-
	R_06	30.7	80		45.6	80	-	42.8	75	-	39.5	70	-	36.3	64	-	30.9	58	~	29.2	53	-	15.6	49	-	-39.7	46	-
Receiver_07	R_07	32.1	80	-	47.2	80	H	42.1	75	-	39	70		36.1	64	1	31.6	58		30.9	53		19	49	-	-27.2	46	-
Receiver_08	R_08	38.1	80	-	53.1	80	-	47.9	75	-	45.5	70	<u>.</u>	41.4	64	-	34.9	58		31.6	53	· -	20.7	49	-	-20.8	46	-
Receiver_09	R_09	39.6	80		54	80	· _	47.9	75	-	43,7	70	-	39.5	64		33.3	58	-	30.6	53	-	21.8	49	-	-12.9	46	-
Receiver_10	R_10	36	80	-	53.5	80	-	48.5	75	-	45.4	70	-	42.3	64	-	37.2	58	-	36.5	53	-	31	49	en ·	-0.6	46	-
Receiver_11	R_11	41.2	80	-	55.4	80	-	49.2	75	-	46.2	70	-	41.4	64	-	35	58	÷.	34	53	-	26.2	49	-	-5.8	46	
Receiver_12	R_12	38.8	80	-	51.5	80	-	43.9	75	-	38	70	-	32.1	64	-	24	58		20	53	-	12	49	-	-14.6	.46	-
Receiver_13	R 13	38	80	-	50.5	80	-	42.7	75	-	36.8	70	-	30.8	64	t	22.9	58	-	. 19,1	53	-	11.3	49	-	-15	46	- 、
Receiver_14	R_14	39.7	80	-	52.8	80	-	48.4	75	1	43.7	70	-	38.6	64	-	32.4	58	-	30	53		26.9	49	-	-6.6	46	-
Receiver_15	R_15	41	80	-	55.4	80	-	49.6	75	-	45.2	70	-	40.3	64	-	32.7	58	-	34.9	53	-	27.6	49	-	-3.3	46	-
Receiver_16	R_16	34.5	80		48.6	80		44.4	75	-	39,2	70	-	33.6	64	-	32.5	58	-	29.6	53	-	19.9	. 49	-	-17.2	46	-
Receiver_Prison	R_P	40.6	80	43	54.5	80		49.7	75	P	45	70 -		39.8	64	-	33.1	58		30.3	53		27.9	49	and and the second s	0	46	Antonio de la composicio de antese de la composicio de la composicio de la composicio de la composicio de la co

Truck Tipping Scrap Metal and Crane Working Metal

Receiver		NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Excee
Name	ID	31.5 Hz	31.5 Hz	31.5 Hz	63 Hz	63 Hz	63 Hz	125 Hz	125 Hz	125 Hz	250 Hz	250 Hz	250 Hz	500 Hz	500 Hz	500 Hz	1000 Hz	1000 Hz	1000 Hz	2000 Hz	2000 Hz	2000 Hz	4000 Hz	4000 Hz	4000 Hz		8000 Hz	
		dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
Receiver_01	R_01	55.3	80	-	51,3	80	-	48.2	75	~	45.9	70		44.5	64	-	48.7	58	-	39.8	53	-	25.6	49	-	-30.1	46	a (MANU Aliqui Imperyonana
Receiver_02	R_02	55.5	80	. ·	51.4	80	_ ·	48.2	75	-	45.9	70	-	44.4	64	-	48.4	58	-	38.9	53	-	23.3	49	-	-33.4	46	-
Receiver_03	R_03	55.4	80	-	51.4	80 .	-	48.2	75	4	45.9	70	-	44.6	64	-	49	58	-	40.4	53	- .	27.5	49	-	-29,8	46	-
Receiver_04	R_04	55.2	80		51.1	80	-	48	75	- ·	45,8	70	. 1	44.5	64	-	49.1	58		41.2	53	~	28.6	49		-31.3	46	-
Receiver_05	R_05	54.8	80	<u> </u>	50.8	80	-	47.7	75	-	49.8	70	-	48.6	64	-	53.3	58	_	45.8	53		29.3	49	-	-33.1	46	
Receiver_06	R_06	55.3	80	-	51.2	80	-	50.4	75	·	48.1	70	-	46.8	64	-	51.5	58	-	43.8	53	- ·	28.2	49	-	-31.1	46	-
Receiver_07	R_07		80	-	52.8	80		49.7	75	-	47.6	70	-	46.7	64	-	52.2	58	-	45.5	53	-	31.6	49	-	-18.6	46	-
Receiver_08	R_08	62.7	80	-	58.7	80	-	55.5	75	-	54	70	-	51,9	64	-	55.4	58	-	46.1	53		33.2	49	-	-12.2	46	-
Receiver_09	R_09	64.2	80	-	59.7	80	-	55.6	75	-	52.4	70	-	50.2	64	-	53.9	58	-	45.3	53	-	34.4	49		-4.3	46	
Receiver_10	R_10	60.6	80	-	56.6	80	-	53,6	75	-	51.5	70		50.5	64	F F	55.4	58	-	48.8	53	-	41.6	49	-	6.9	46	-
Receiver_11	R_11	65.5	80	-	60.5	80	. .	56	75	-	54.1	70	-	51.2	64	-	55	58	-	48.3	53		38.6	49	-	2.4	46	-
Receiver_12	R_12	63.2	80	. ·	56.8	80	-	51.2	75	**	46.3	70	-	42.3	64	-	44.3	58		34.4	53	- *	24.4	49		-6	46	-
Receiver_13	R_13	62.6	80	-	56	80	-	50.3	75	_	45.3	70	-	41.4	64	1	43,4	58	-	33.7	53	۳.	23.9	49	-	-6.2	46	
Receiver_14	<u>R_14</u>	64.3	80	_	58.4	80	-	56	75	-	52.3	70	-	49.2	64	_	53	58	-	44.6	53	~	39.5	49	-	2	46	-
Receiver_15	R_15	65.6	80	-	61	80	-	57.1	75	-	53.7	70	-	50.8	64	-	53.2	58		49.5	53	-	40.2	49	-	5.4	46	-
Receiver_16	R_16	59.1	80	-	54.2	80	-	52	75	-	47.8	70	-	44.2	64	-	53.1	58	-	44.2	53	-	32.6	49	-	-8.5	46	-
Receiver_Prison	R_P	65.2	80	-	60.1	80		57.2	75	· =	53.6	70	-	50.4	64	-	53.7	58	-	44.9	53		40.5	49		3.3	46	

Crane Metal Operations

Receiver		NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exceed	NYC PS	M3 Limit	Exce
Name	ID	31.5 Hz	31.5 Hz	31.5 Hz	63 Hz	63 Hz	63 Hz	125 Hz	125 Hz	125 Hz	250 Hz	250 Hz	250 Hz	500 Hz	500 Hz	500 Hz	1000 Hz			2000 Hz						8000 Hz		
		dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dE
Receiver_01	R_01	46.5	80	-	55.4	80	-	45.2	75	-	40.8	70	-	42.3	64	-	39.3	58	-	35.7	53	-	18,8	49	-	-34.7	46	-
Receiver_02	R_02	36.6	80	<u> </u>	45.5	80	~	35.3	75	-	31	70	-	32.5	64		29.5	58	-	26	53	-	9.4	49	-	-43.2	46	1.
Receiver_03	R_03	36.5	80	-	45.5	80	-	35,3	75	-	31.1	70	1	32.7	64	· -	30,1	58	-	27.5	53	-	13.7	49	•	-39.7	46	
Receiver_04	<u>R_04</u>		80		45.2	80	-	35.1	75	-	30,9	70	·	32.6	64		30.2	58	-	28.3	53		14.7	49	-	-41.2	46	1
Receiver_05	R_05	35.9	80	-	44.9	80	-	34.8	75	-	34.9	70	~	36.7	64		34.4	58	1	32.8	53	-	15.4	49		-43	46	T
Receiver_06	R_06		80	-	45.3	80	-	37.5	75	-	33.2	70	-	35	64	. .	32.6	58	-	30.9	53	-	14.3	49	-	-40.9	46	
Receiver_07	R_07		80	· <u>-</u>	46.9	80	-	36.8	75	-	32.7	70		34.8	64		33.3	58	H	32.6	53	-	17.7	49	-	-28,5	46	
Receiver_08	R_08	43.8	80	-	52.8	80		42.6	75	-	39.2	70	-	40.1	64	-	36.6	58	-	33.3	53		19.4	49	-	-22.1	46	
Receiver_09	R_09	45.3	80	4	53,7	80		42.6	75		37.4	70	-	38.2	64	-	35	58	-	32.4	-53	-	20.5	49	-	-14.2	46	
Receiver_10	R_10	41.7	80	-	53.2	80	-	43.2	75	••	39.1	70	-	. 41	64		38.9	58	-	38.2	53	-	29.7	49	-	-1.9	46	
Receiver_11	<u>R_11</u>	46.9	80	7.	55.1	80	-	43.9	75	-	39.9	70		40	64	-	36.7	58	-	35.7	53	3	24.9	49		-7.1	46	
Receiver_12	R_12	44.5	80		51.2	80		38,6	75		31.7	70	-	30,8	64		25.7	58	-	21.7	53	-	10.7	_ 49	-	-15.9	46	
Receiver_13	R_13	43.7	80		50,1	80		37.4	75	-	30.5	70	-	29.5	64	<u> </u>	24.6	58	н ·	20.8	53		. 10	49	÷	-16.2	46	
Receiver_14	R_14	45.4	80	-	52.5	80	-	43.1	75	-	37,3	70	-	37.3	64	-	34.1	58	-	31.7	53	· _	25.6	49	-	-7.9	46	
Receiver_15	R_15	46.7	80		55.1	80	-	44.2	75		38.8	70	-	38,9	64		34.3	58	-	36.6	53	-	26.3	49	-	-4.6	46	
Receiver_16	R_16	40.2	80	-	48.3	80	-	39.1	. 75	-	32.9	70	-	32.3	64	-	34.2	58	-	31.3	53	-	18.6	49		-18.5	46	
eceiver_Prison	R_P	46,3	80	~	54.2	80		44.3	75	-	38.6	70		38,5	64	-	34.8	58	. .	32	53		26.6	49		0	46	(Constanting of the second

APPENDIX E: LITERATURE CITED

Appendix E:

Literature Cited

- Able, K.W., A.L. Studholme, and J.P. Manderson. 1995. Habitat quality in the New York/New Jersey Harbor Estuary: An evaluation of pier effects on fishes. Final Report. Hudson River Foundation, New York, NY.
- Able, K.W., J.P. Manderson, A.L. Studholme. 1998. The distribution of shallow water juvenile fishes in an urban estuary: the effects of manmade structures in the Lower Hudson River. *Estuaries* 21(4B):731-744.
- Able, K.W., J.P. Manderson, and A.L. Studholme. 1999. Habitat quality for shallow water fishes in an urban estuary: the effects of man-made structures on growth. Marine Ecology Progress Series 187:227-235
- Adams, D.A., J.S. O'Connor, and S.B. Weisberg. 1998. Final Report: Sediment Quality of the NY/NJ Harbor System. An Investigation under the Regional Environmental Monitoring and Assessment Program (R-EMAP). EPA/902-R-98-001.
- Bain, M.B. 1997. Atlantic and shortnose sturgeons of the Hudson River: common and divergent life history attributes. *Environmental Biology of Fishes* 48: 347-358.
- Bain, M.B. 2004. Personal communication of Mark Bain (Cornell University, Ithaca, NY) with Jennifer Wallin (AKRF, Hanover, MD), April 2, 2004.
- Barnard, W.D. 1978. Prediction and control of dredged material dispersal around dredging and open-water pipeline disposal operations. US Army Engineer Waterways Experiment Station, Environmental Laboratory, Vicksburg, Miss, Technical Report DS-78-13.
- Birtwell, I.K., M.D. Nassichuk, H. Beune, and M. Gang. 1987. Deas Slough, Fraser River Estuary, British Columbia: General description and some aquatic characteristics. Can. Fish. Mar. Serv. Man. Rep. No. 1464.
- Brosnan, T.M., and M.L. O'Shea. 1995. New York Harbor Water Quality Survey: 1994. New York City Department of Environmental Protection, Marine Sciences Section, Wards Island, NY.
- Burdick, D.M., and F.T. Short. 1995. The effects of boat docks on eelgrass beds in Massachusetts coastal waters, Waquoit Bay National Research reserve, Boston, MA.
- Clarke, D.G., and D.H. Wilber. 2000. Assessment of potential impacts of dredging operations due to sediment resuspension. DOER Technical Notes Collection (ERDC TN-DOER-E9), US Army Engineer Research and Development Center, Vicksburg, MS.
- Colligan, M.A. 2007. Personal communication dated July 9, 2007, from Mary A. Colligan, Assistant Regional Administrator for Protected Resources, National Marine Fisheries Service (NMFS), to Sandra Collins, AKRF.

- Dolat, S.W. 1997. Acoustic measurements during the Baldwin Bridge demolition (final, dated March 4, 1997). Waterford, CT. 34 pp + appendices. Prepared for White Oak Construction by Sonalysts, Inc.
- Dunford, W.E. 1975. Space and food utilization by salmonids in marsh habitats of the Fraser River estuary. University of British Columbia.
- EA Engineering, Science, and Technology. 1990. Phase I feasibility study of the aquatic ecology along the Hudson River in Manhattan. Final Report. Prepared for New York City Public Development Corporation, New York, NY. Newburgh, NY.
- EEA. 1988. Hudson River Center Site Aquatic Environmental Study. Final Report. Garden City, NY.
- EEA, Inc. 2004. Appendix C: Essential Fish Habitat Assessment For DSNY Eight MTS. In: Final Environmental Impact Statement for the New York City Comprehensive Solid Waste Management Plan, 2005, Prepared by the New York City Department of Sanitation.
- Enger, P.S., H.E. Karsen, F.R. Knudsen, O. Sand. 1993. Detection and reaction of fish to infrasound: fish behaviour in relation to fishing Ooperations. ICES Marine Science Symposia 196:108-112.
- Fresh, K.L., B. Williams, and D. Penttila. 1995. Overwater structures and impacts on eelgrass in Puget Sound, WA. Puget Sound Research '95 Proceedings. Seattle, WA: Puget Sound Water Quality Authority.
- Fresh, K.L., B.W. Williams, S. Wyllie-Echeverria, and T. Wyllie-Echeverria. 2000. Mitigating impacts of overwater floats on eelgrass Zostera marina in Puget Sound, Washington, using light permeable deck grating, Draft.
- Gregory, R.S. 1990. Effects of turbidity on benthic foraging and predation risk in juvenile Chinook salmon. PP 64-73. In: C.A. Simenstad (ed.) Effects of dredging on anadromous Pacific coast fishes. 1988. Washington Sea Grant. Seattle, WA.
- Hanson, J., M.Helvey, R. Strach, eds. 2003. Non-Fishing Impacts to Essential Fish Habitat and Recommended Conservation Measures. National Marine Fisheries Service (NOAA Fisheries), Alaska Region, Northwest Region, Southwest Region.
- Hayes, D.F. 1986. Guide to selecting a dredge for minimizing resuspension of sediment. Environmental Effects of Dredging Technical Notes EEDP-09-1, US Army Engineer Waterways Experimental Station, Environmental Laboratory.
- Hirsch, N.D., L.H. DiSalvo, R. Peddicord. 1978. Effects of dredging and disposal on aquatic organisms. Prepared by the Naval Biosciences Laboratory, University of California, Naval Supply Center, Oakland, California. Prepared for the US Army Engineer Waterways Experiment Station, Environmental laboratory, Vicksburg, MS. Technical Report DS-78-5.
- Hoff, T.B., R.J., Klauda, and J.R. Young. 1988. Contribution to the biology of shortnose sturgeon in the Hudson River estuary. pp. 171-189. In: C.L. Smith (ed.) Fisheries Research in the Hudson River, State Univ. New York Press, Albany.
- Interstate Environmental Commission (IEC). 2000. 1999. 305(b) water quality management report update to USEPA. New York, NY.

- Interstate Environmental Commission (IEC). 2001. 2000 305(b) water quality management report update to USEPA. New York, NY.
- Iocco, L.E., P. Wilber, J.J. Diaz, D.G. Clarke, and R.J. Will. 2000. Benthic Habitats of New York/New Jersey Harbor: 1995 Survey of Jamaica, Upper, Newark, Bowery, and Flushing Bays.
- Knudsen, F.R., S.B. Schreck, S.M. Knapp, P.S. Enger, O.Sand 1997. Infrasound produces flight and avoidance responses in Pacific juvenile salmonids. J. of Fish Biology 51:824-829.
- LaSalle, M.W., D.G. Clarke, J. Homziak, J.D. Lunz, and T.J. Fredette. 1991. A framework for assessing the need for seasonal restrictions on dredging and disposal operations. Department of the Army, Environmental laboratory, Waterways Experiment Station, Corps of Engineers, Vicksburg, Mississippi.
- Lauer, G. 1971. Preliminary Studies Concerning Effects of Cooling System Transport Upon Planktonic Organisms at the Astoria Power Station, Queens, NY. Report prepared for Consolidated Edison Company of New York, Inc.
- Lawler, Matusky and Skelly Engineers (LMS). 1994. World Trade Center impingement and entrainment report. March 1991 – February 1993. Prepared for the Port Authority of New York and New Jersey by LMS, Pearl River, NY.
- Lawler, Matusky and Skelly Engineers (LMS). 1999. New York and New Jersey Harbor Navigation Study, Biological Monitoring Program 1998 to 1999, Volume I of II. Prepared for the U.S. Army Corps of Engineers, New York District, Planning Division.
- Lawler, Matusky and Skelly Engineers (LMS). 2002. New York and New Jersey Harbor Navigation Project. Supplemental Sampling Program 2000-2001. Final Report. Prepared for U.S. Army Corps of Engineers, New York District by LMS, Pearl River, NY.
- Lawler, Matusky and Skelly Engineers, LLP (LMS). 2003a. New York and New Jersey Harbor Navigation Project, Aquatic Biological Sampling Program 2001-2002, Final Report. Prepared for the US Army Corps of Engineers, New York District, Environmental Review Section, Jacob K. Javits Federal Building, 26 Federal Plaza, NY, NY 10278.
- Lawler, Matusky and Skelly Engineers, LLP (LMS). 2003b. New York and New Jersey Harbor Navigation Project, Aquatic Biological Survey Report 2002-2003, Draft Report. Prepared for the US Army Corps of Engineers, New York District, Environmental Review Section, Jacob K. Javits Federal Building, 26 Federal Plaza, NY, NY 10278.
- Lawler, Matusky and Skelly Engineers, LLP (LMS). 2004. Gowanus Bay and Canal Ecosystem Restoration Studies: Fish and Epibenthic Invertebrate Sampling Program. Prepared for David Miller & Associates, Inc.
- Levy, D.A., and T.G. Northcote. 1982. Juvenile salmon residency in a marsh area of the Fraser River estuary. Can. J. Fish. Aquat. Sci. 39:270-276.
- National Marine Fisheries Service (NMFS). 2001. Biological Opinion for the San Francisco-Oakland Bay Bridge East Span Seismic Safety Project. Santa Rosa, CA: Southwest Region. Admin Rec. 151422SWR02SR6292.
- New York City Department of Environmental Protection (DEP). 2002. New York Harbor Water Quality Survey Report for 2001.

- New York City Department of Environmental Protection (DEP). 2003. New York Harbor Water Quality Survey Report for 2002.
- New York City Department of Environmental Protection (DEP). 2004a. New York Harbor Water Quality Survey Data for 1999-2003.
- New York City Department of Environmental Protection (DEP). 2004b. New York Harbor Water Quality Survey Report for 2003.
- New York City Department of Sanitation (DSNY). 2005. Final Environmental Impact Statement for the New York City Comprehensive Solid Waste Management Plan, CEQR No: 03-DOS-004Y.
- New York State Department of Environmental Conservation (DEP). 2004. Technical Operational Guidance Series (TOGS), 5.1.9, In-Water and Riparian Management of Sediment and Dredged Material, New York State Department of Environmental Conservation, Division of Water, Bureau of Water Assessment and Management, 625 Broadway, Albany, NY 12233.
- New York State Department of State (NYSDOS). 1992. Significant Coastal Fish and Wildlife Habitats Program: A part of the New York Coastal Management Program and New York City's approved Waterfront Revitalization Program.
- Nightingale, B, and C.A. Simenstad, University of Washington. 2001a. Dredging Activities: Marine Issues. White Paper, Research Project T1803, Task 35. Prepared by the Washington State Transportation Center (TRAC), University of Washington. Prepared for Washington State Transportation Commission, Department of Transportation and in cooperation with the US Department of Transportation, Federal highway Administration.
- Nightingale, B, and C. Simenstad. 2001b. Overwater Structures: Marine Issues. Prepared by Washington State Transportation Center (TRAC), University of Washington; and Washington State Department of Transportation. Research Project T1803, Task 35, Overwater Whitepaper. Prepared for Washington State Transportation Commission, Department of Transportation and in cooperation with the US Department of Transportation, Federal Highway Administration,
- Ocean Surveys, Inc. 1987. Final Report, Field Investigations of the Hudson River Center Site, NY. Prepared for EEA, Inc., Garden City, NY. Prepared by Ocean Surveys, Inc., Old Saybrook, CT.
- Olson, A.M., E.G. Doyle, and S.D. Visconty. 1996. Light requirements of eelgrass: A literature survey.
- Olson, A.M., S.D. Visconty, and C.M. Sweeney. 1997. Modeling the shade cast by overwater structures.
- Papa, S.T. 2007. Personal communication dated July 16, 2007, from Mr. Steven T. Papa, Senior Fish and Wildlife Biologist, US Fish and Wildlife Service (USFWS), to Sandra Collins, AKRF.
- PBS&J. "The Hudson River Park. Natural Resources Appendix to Final Environmental Impact Statement." Prepared for the Empire State Development Corporation and the Hudson
- Pennekamp, J.G., R.J.C. Epskamp, W.F. Rosenbrand, A. Mullie, G.L. Wessel, T. Arts, and I.K. Deibel. 1996. Turbidity caused by dredging; viewed in perspective. Terra et aqua 64:10-17.

- Peterson, D., and M. Bain. 2002. Sturgeon of the Hudson River: current status and recent trends of Atlantic and shortnose sturgeon. Annual Meeting of the American Fisheries Society, Baltimore, MD.
- Rogers, P.H., and M. Cox. 1988. Underwater sound as a biological stimulus. P. 131-149 In: J.Atema, R.R. Fay, A.N. Popper, W.N. Tavolga, eds. Sensory biology of aquatic animals. New York:
- Sand, O., P.S. Enger, H.E. Karlsen, F.R. Knudsen, T. Kvernstuen. 2000. Avoidance responses to infrasound in downstream migrating European silver eels, *Anguilla anguilla*. Environmental Biology of fishes 57(327-336).
- Smith, C.L. 1985. The Inland Fishes of New York State. The New York State Department of Environmental Conservation.
- Seoane, T. 2007. Personal communication dated July 11, 2007, from Ms. Tara Seoane, Information Services, NY Natural Heritage Program, to Sandra Collins, AKRF.
- Stegemann, E.C. 1999. New York's Sturgeon. NY State Department of Environmental Conservation, Division of Fish, Wildlife and Marine Resources, www.dec.state.ny.us/website/dfwmr/fish/ fishspecs/sturtex.html.
- Steinberg, N., D.J. Suszkowski, L. Clark, and J. Way. 2004. Health of the Harbor: The First Comprehensive Look at the State of the NY/NJ Harbor Estuary. Prepared for the New York/New Jersey Harbor Estuary Program by the Hudson River Foundation, New York, NY.
- Steinberg, N., J. Way, and D.J. Suszkowski. 2002. Harbor Health/Human Health: an Analysis of Environmental Indicators for the NY/NJ Harbor Estuary. Prepared for the New York/New Jersey Harbor Estuary Program by the Hudson River Foundation for Science and Environmental Research. Produced under a cooperative agreement between the Hudson River Foundation and US EPA Region II.
- Stepien, J.C., Malone, T.C. and Chervin, M.B. "Copepod communities in the estuary and coastal plume of the Hudson River." *Estuarine, Coastal and Shelf Science* 13:185-194. 1981.
- Stickland, J.D. 1958. Solar radiation penetrating the ocean.A review of requirements, data, and methods of measurement with particular reference to photosynthetic productivity. J. of Fish. Res. Brd. Can. 15:453-93.
- U.S. Army Corps of Engineers New York District (USACE). 1998. Existing Biological Data for the New York and New Jersey Harbor: 1998
- U.S. Army Corps of Engineers New York District (USACE). 1999a. New York and New Jersey Harbor Navigation Study. Draft Environmental Impact Statement.
- U.S. Army Corps of Engineers (USACE). 1999b. New York and New Jersey Harbor Navigation Study: Biological Monitoring Program 1998-1999. U.S. Army Corps of Engineers, New York District, Planning Division, Jacob K. Javits Federal Building, 26 Federal Plaza, NY, NY 10278.
- U.S. Army Corps of Engineers (USACE). 2001. Dredge bucket comparison demonstration at Boson Harbor. Coastal and Hydraulic Engineering Technical Note (CHETN) VI-35, Engineering Research and Development, March 2001.
- Woodhead, P.M. 1990. The Fish Community of New York Harbor: Spatial and temporal Distribution of major Species. Report to the New York—New Jersey Harbor Estuary Program, New York, NY.