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Executive Summary 
 

The New York City Department of Environmental Protection (DEP) has maintained a 

program of water quality modeling for its water supply system for over 20 years.  The general 

goal of this program is to develop and apply quantitative tools, supporting data, and data 

analyses in order to evaluate effects of land use change, watershed management, reservoir 

operations, ecosystem health, and climate change on water supply quantity and quality.  The 

quantitative tools include models that simulate future climate conditions in the watersheds of the 

water supply reservoirs (weather generators), terrestrial/watershed models that simulate the 

quantity and quality of runoff from the watersheds entering the reservoirs, reservoir models that 

simulate mixing, fate and transport of water, heat and pollutants within the reservoirs themselves, 

and operations models that consider alternative operations of DEP’s system of reservoirs in the 

delivery of high quality water in sufficient quantities to meet demand.  This linked collection of 

models is DEP’s “multi-tiered” modeling system.  This report describes the activities in DEP’s 

water quality modeling group in the development and application of models and supporting data 

during 2015. 

As in past years, DEP’s reservoir turbidity model was used to evaluate the impact of 

runoff events on turbidity in Kensico Reservoir.  Simulations were made during one period in 

late March, 2015 in anticipation of a snowmelt and runoff event and associated potential 

increases in turbitiy.  This model was also used to evaluate the impact of the closure of the 

Rondout-West Branch tunnel on turbidity in Kensico.  Closure of that major aqueduct for a 

period of several months is planned to occur in 2022.    

DEP has reliable turbidity models for Schoharie, Ashokan and Kensico Reservoirs; that 

same model framework has recently been extended to Rondout Reservoir.  In July 2015, DEP 

began the process of rapid drawdown of Cannonsville Reservoir in response to a turbid 

groundwater discharge occurring at the base of the Cannonsville dam; plans to continue the 

drawdown for as much as 10 weeks were considered.  Shortly after the drawdown began, the 

Rondout turbidity model was used to evaluate the impact of potential increases in the turbidity of 

Cannonsville associated with sustained drawdown of that reservoir on the downstream Rondout 

Reservoir.  The simulations showed that, due to dilution and settling of turbidity-causing 

particles in Rondout, the Cannonsville drawdown would not increase turbidity levels in the water 

supply from Rondout to levels of concern.  The actual drawdown of Cannonsville proceeded for 

about 3 weeks, resulting in a drawdown of only about 20 feet in this 150-foot deep reservoir.  

The modeling exercise demonstrated that Rondout Reservoir has the ability to withstand a 10-

week period of sustained turbid inflow from an upstream reservoir without significantly affecting 

the turbidity of the withdrawal from Rondout. 
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The Schoharie, Ashokan, and Kensico turbidity models have been integragted into the 

Operations Support Tool (OST), DEP’s reservoir operations model.  Integration into OST allows 

these models to be operated using “position analysis”.  This feature allows forecasts of water 

supply quantity and quality to be made for a range of future weather conditions.  While DEP has 

plans for integrating the Rondout model into OST, as an interim measure the capability to make 

position analysis simulations was added to the Rondout turbidity model in 2015.  The utility of 

turbidity forecasts for Rondout using position analysis is demonstrated. 

Research was conducted in 2015 on the development of stochastic weather generators for 

the application to the watersheds of the West of Hudson reservoirs.   These models generate 

synthetic time series of weather variables such as precipitation and air temperature that have 

statistical properties which closely resemble observations, but contain extreme events that may 

not be captured in historical weather records.  Significant analyses were conducted to evaluate 

and compare various alternative approaches to develop these generators, and a specific generator 

for precipitation occurrence and magnitude was developed.  In future, DEP will use this and 

other generators in the application of so-called “bottom-up” evaluations of the impact of extreme 

events on the quantity and quality of the water supply.  The weather generators will be used to 

generate time series of weather conditions, and evaluate the impact of extrement events, for both 

current and future climate conditions. 

Also in 2015, DEP made significant progress in the application and testing of two 

terrestrial/watershed models.  The Soil Water Assessment Tool (SWAT) was applied to the 

Town Brook watershed which drains to Cannonsville Reservoir, and the Regional Hydro-

Ecologic Simlation System (RHESSys) was applied to the Biscuit Brook and Shelter Creek 

watersheds draining to Neversink Reservoir.  These two models are distributed-parameter 

watershed models which consider spatial variations in watershed characteristics such as slope, 

soil type, and land use in simulating runoff quantity and quality.  These model applications 

represent a significant advancement in watershed modeling at DEP, where previous work 

involved use of the General Watershed Loading Function (GWLF) model which uses a simpler 

lumped parameter approach.  The availability of detailed geographical information system (GIS) 

data at DEP to provide detailed characterization of spatial variability in the watersheds supports 

the application of SWAT and RHESSys. These models offer the promise of increased accuracy 

in simulating both current conditions and in the evaluation of changes in land use and climate 

change. 

A major new modeling initiative at DEP is the development of watershed and reservoir 

models to predict the origins, fate and trasport of the organic compounds that are precursors of 

disinfection byproducts (DBPs).  DEP has begun to apply the linked General Lake Model - 

Aquatic Eco-Dynamics (GLM-AED) model as a part of this effort.  As a first step in that project, 

the hydrothermal model GLM was applied, tested and validated for Cannonsville and Neversink 

Reservoirs for observed historical conditions occurring in 2007 and 2008.  Using this physical 
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model as a foundation, the AED framework will be applied and tested in simulating the cycling 

of organic carbon and associated disinfection byproduct precursors.  

DEP continued to develop and organize data to support model development, testing, and 

applications in 2015.  This data includes GIS, meteorology, hydrology, and stream, reservoir and 

aqueduct water quality.  Field work to measure bathymetry of the West of Hudson reservoir 

basins was completed in 2015.   DEP continued its collaboration with various outside groups in 

activities associated with the modeling program.  These outside groups and activities include 

participation in several Water Research Federation (WRF) research projects, acting as a 

participating utility in the Water Utility Climate Alliance (WUCA), active cooperation with the 

Global Lake Ecological Observatory Network (GLEON) including attending meetings and 

sharing data, and working with the faculty advisors who are an important component of DEP’s 

agreement with the City University of New York (CUNY) to support the water quality modeling 

program. 
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1. Introduction 
 

This status report describes work completed as a part of DEP’s Multi-Tiered Water 

Quality Modeling program for the period January through December, 2015.  This report was 

prepared in accordance with Section 5.2 of the 2007 Revised Filtration Avoidance Determination 

(NYSDOH, 2014). 

The Water Quality Modeling program at DEP consists of development, testing, 

validation, and application of an integrated suite of models which allow evaluation of a range of 

water quality issues (Figure 1.1).  The overarching water supply issue is the delivery of high 

quality water in a sufficient quantity to meet demand, under both normal and infrequently-

occurring environmental conditions, both now and in the future.  Particular water quality issues 

are eutrophication, disinfection byproducts, and turbidity.  These issues are evaluated under 

changing conditions in the watersheds, including land use, population, and wastewater and 

stormwater management.  The effect of changing climate conditions on water quantity and 

quality are also evaluated in the water quality modeling program.   

DEP uses a suite of weather, watershed/terrestrial, reservoir, and system operations 

models in the water quality modeling program.  In 2015, development of weather generators was 

initiated.  Weather generators are models that generate a synthetic time series of weather 

conditions, the statistics of which are similar to observed historical time series, but which contain 

a more complete representation of extreme or infrequently-occurring conditions than historical 

records.  Synthetic time series which represent both current and future climate conditions are 

generated.   

Both historical and generated weather data are used in driving three watershed/terrestrial 

models.   These models are used to predict the quantity and quality of watershed runoff and 

streamflow entering the various reservoirs.  The Generalized Watershed Loading Function 

(GWLF) model has been tested and validated for the West of Hudson watersheds, and has been 

applied in a variety of evaluations.  DEP is currently testing two watershed models that have a 

stronger physical basis compared to GWLF, these being the Soil Water Assessment Tool 

(SWAT) and the Regional Hydro-Ecologic Simlation System (RHESSys).  Historical or 

generated weather data, and streamflow quantity and quality predictions from watershed models 

are then used as inputs to reservoir models.  DEP’s reservoir models are all capable of predicting 

thermal structure and hydrodynamics and mixing in the water column, and selective withdrawal 

characteristics associated with reservoir outflows.  The two-dimensional (vertical/longitudinal) 

model CE-QUAL-W2 (W2) has been extensively tested and validated for simulation of turbidity, 

and is used to evaluate the impact of reservoir operations on water supply turbidity.   One-

dimensional eutrophication models (UFI-1D and Protbas) have also been extensively tested and 
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validated.  The one-dimensional model GLM-AED is currently being tested with in the 

simulation of organic carbon cycling and precursors of disinfection byproducts in the reservoirs.  

The W2 turbidity model has been linked with the OASIS water supply system model in DEP’s 

Operations Support Tool (OST), which simulates the operation of the multiple reservoirs that 

comprise the water supply system. 

 

 

Figure 1.1. Overview of DEP’s Water Quality Modeling Program. 

 

 

 

This report focuses on activities in the Water Quality Modeling group at DEP in 2015, 

which includes the following:  

 Use of reservoir turbidity models to support the operation of the City’s water supply 

system during times of challenging turbidity conditions 

 

 Developing model applications that simulate the impacts of future climate change on 

reservoir water quality and quantity; in particular, to develop and apply the “bottom-up”  

approach to investigate and identify potential vulnerabilities in the water supply system 
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 Continuing model development and testing based on ongoing model simulations, data 

analyses, and research results  

 

 Development and testing of models which simulate the fate and transport of organic 

carbon and disinfection byproduct precursors in watersheds and reservoirs 

 

 Updating and organizing of land use, watershed protection programs, and time-series data 

to support modeling 

 

 Development and testing of models to support watershed management and long-term 

planning 

 

 Continuing development of data analysis tools to support modeling 

 

 Collaboration and outreach activities by DEP’s Water Quality Modeling group 
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2. Use of Models for Support of Operational Decisions 
 

In 2015, three separate CE-QUAL-W2 (W2) modeling analyses of turbidity were 

conducted, with all three involving simulations for Kensico Reservoir.  Table 2.1 summarizes the 

model runs performed during this period.  One model run in late spring was done in anticipation 

of a snowmelt and runoff event. The remaining model runs were carried out to aid in long-term 

planning in anticipation of a shutdown for repairs and bypass connection in the Rondout – West 

Branch Tunnel (RWBT) portion of the Delaware Aqueduct. The shutdown is scheduled for late 

2022, and consequently, the normal method of reducing flow from the Catskill Aqueduct to 

mitigate the effects of elevated turbidity will not be available. The RWBT W-2 model runs in 

2015 are a small part of the steps taken over the past few years in the analysis of Kensico 

effluent turbidity under a range of scenarios in preparation for the aqueduct shutdown. 

 

 

 

Table 2.1.  List of modeling analyses performed during the reporting period 

(January 1–December 31, 2015) including descriptions of each analysis. 

Date Background Modeling Description Results 

01/23/2015 Planning for the future 

Rondout – West Branch 

Tunnel Shutdown 

necessitated W-2 model 

runs under a range of 

turbidity and flow 

scenarios. These 

modeling results are 

intended for discussion 

purposes. 

Kensico reservoir 

positional analysis 

simulations were done to 

give insights on reservoir 

responses to low turbidity 

levels reduced by alum 

treatment. The simulation 

time period was 8 months 

(1 Oct – 31 May) and 

Catskill influent turbidity 

was set at 2.5, 3.0, and 4.0 

NTU, and a flow of 636 

MGD; Delaware influent 

turbidity was simulated at 

1.5 NTU, and a flow of 

175 MGD. 

No exceedances of a 2.5 

NTU internal guidance 

value threshold for the 

Kensico effluent 

occurred for the 

simulation period when 

the Catskill influent was 

at 3.0 NTU or less. 
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Date Background Modeling Description Results 

3/19/2015 Ongoing planning for 

the future Rondout – 

West Branch Tunnel 

Shutdown necessitated 

additional W-2 model 

runs. These modeling 

results are intended for 

discussion purposes. 

Kensico Reservoir 

positional analysis 

simulations spanned an 8-

month period (1 Oct – 31 

May) and Catskill influent 

turbidity was set at 2.0, 2.5, 

3.0, and 4.0 NTU, and a 

flow of 636 MGD; 

Delaware influent turbidity 

was simulated at 2.0 and 

2.5 NTU, and a flow of 

175 MGD. 

For a constant Catskill 

input of 2.0 – 2.5 NTU, 

no exceedances are 

predicted for the entire 

shutdown period when 

the Delaware influent 

turbidity ranges from 1.5 

– 2.5 NTU. 

03/26/2015 Ashokan West Basin 

turbidity had risen to 

about 3 NTU due to 

spring snowmelt/rain 

events.  Delaware 

System turbidity was 

less than 1 NTU.  

Kensico Reservoir 

turbidity ranged from 

0.8 – 1.2 NTU in the 

reservoir on 3/11/15 

based on 

transmissometer data 

and ranged from 1.1 – 

1.4 NTU on 3/25/15 at 

the effluent. The 

reservoir was isothermal 

at this time. 

Kensico Reservoir 

positional analysis 

simulations were run to 

provide guidance for 

aqueduct flow rates into 

Kensico Reservoir for the 

given current and possible 

future Ashokan effluent 

turbidity.  The tested 

Catskill inflow rates were 

400, 500, and 600 MGD 

with a Catskill Aqueduct 

turbidity of 4, 5, and 6 

NTU for the period from 

March 25 – April 23. 

The simulations indicated 

that Kensico effluent 

turbidity would remain 

below 2.5 NTU over a 

30-day simulation period 

with input turbidity and 

flow in the following 

combinations: 4 NTU at 

400, 500, and 600 MGD; 

5 NTU at 400 and 500 

MGD; and 6 NTU at 400 

MGD. The maximum 

turbidity level of 2.5 

NTU at the end of the 

simulation period 

occurred with a Catskill 

influent load of about 

2700 NTU*MGD. 
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3. Modeling Applications of Climate Change Impacts 
 

3.1. Climate Change Integrated Modeling Project 

 

 

The Climate Change Integrated Modeling Project (CCIMP) encompasses the DEP Water 

Quality Modeling Section’s effort to evaluate the effects of future climate change on the quantity 

and quality of water in the NYC water supply.  The CCIMP is designed to address the following 

major issues: (1) overall quantity of water in the entire water supply; (2) turbidity in the Catskill 

System of reservoirs, including Kensico; (3) eutrophication in Delaware System reservoirs; and 

(4) disinfection byproducts in the West of Hudson reservoirs.  The first phase of CCIMP was 

completed in 2013, so that 2015 was the second full year of work on Phase II.   

Work completed in 2015 was mainly in two areas.  First, research has been completed in 

the development and application of stochastic weather generators for the West of Hudson 

reservoir watersheds.  This work is described in Section 3.2, and will be the basis for the 

application of the “bottom-up” approach to evaluation of climate change impacts.  Application of 

the terrestrial model RHESSys to watersheds draining to Neversink Reservoir also continued in 

2015, and is described in Section 4.5. 

 

3.2. Evaluation of Stochastic Weather Generators (SWGs) for use in 

Simulating Precipitation 

3.2.1. Introduction 

 

Extreme hydrological events are in general responsible for a disproportionate loading of 

nutrients and sediment into the streams and reservoirs. Past studies suggest increasing trends in 

total precipitation and in the frequency and magnitude of extreme precipitation events in the 

watersheds of New York City’s West of Hudson (WOH) reservoirs. Burns et al. (2007) analyzed 

precipitation trends for the period 1952 to 2005 and found that the regional mean precipitation 

for the Catskill Mountain region increased by 136 mm over the study period. Matonse and Frei 

(2013) found that warm season extreme precipitation events have been more frequent between 

2002 and 2012 than any time during the 20th century. DeGaetano and Castellano (2013) found 

that the annual frequency of extreme Catskills precipitation (number of events that produce 

≥50.8 mm precipitation per year) has an increasing trend over the last 60 years, with the time 

series dominated by year-to-year and decade-to-decade variability. They also analyzed the 
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climate model projections from the North American Regional Climate Change Assessment 

Program (NARCCAP) which suggests that extreme precipitation will increase at a rate of 2–3% 

per decade through 2069. The potential effects of these changes in precipitation include 

increased sediment erosion, increased nutrient loads, modifications to thermal stratification, and 

other factors that may pose challenges for water management.  

As a part of the NYCDEP’s ongoing program on Climate Change Integrated Modeling 

Project (CCIMP), a series of studies (Anandhi et al., 2011a; Anandhi et al., 2011b; Pradhanang et 

al. 2011; Anandhi et al., 2013; Matonse et al., 2013; Pradhanang et al., 2013) have examined the 

potential impacts of climate change on the availability of high quality water in the WOH 

reservoirs.  These studies have followed the “top-down” approach, using downscaled climate 

scenarios from Global Climate Models (GCMs), to incorporate climate change into vulnerability 

analyses. The Change Factor Methodology (CFM), sometimes referred as a delta change factor, 

has been used to downscale the GCM’s scenarios (baseline and future) which was further used as 

inputs to the NYCDEP’s integrated suite of hydrological models including watershed hydrology, 

water quality, water system operations, and reservoir hydrothermal models (Anandhi et al., 

2011a). The monthly change factor was calculated as the difference for air temperature or ratio 

for precipitation and wind speed between baseline and future simulation of GCM. This 

difference or ratio is then applied to local meteorological data to create future local climate 

scenarios (Anandhi et al., 2011a). 

“Bottom-up” or vulnerability-based methods to climate change adaptation have recently 

been applied to water resources (Wilby and Desai, 2010; Brown et al., 2011). Such approaches 

can explore the climate vulnerabilities of a system over a wider range of plausible climate 

change scenarios than the more traditional “top-down” approaches in which GCM projections 

completely define the parameter space of future scenarios (Wiley and Palmer, 2008; 

Steinschneider and Brown, 2013). The bottom-up approach first determines the system 

vulnerabilities and then assesses different adaptation measures to find the most robust measure 

under future uncertainty (Steinschneider and Brown, 2013). While the bottom-up approach 

includes the results of GCM simulations, it also enables more quantifiable and flexible definition 

of uncertainty. An integral component of the bottom-up approach includes stochastic weather 

generators (SWGs). 

SWGs are statistical models that produce synthetic weather time series based on observed 

statistical properties at a particular location. SWGs are often employed in bottom-up risk 

assessments to generate several scenarios of daily climate within which a water resource system 

can be tested (Ray and Brown, 2015). A SWG coupled with a single or series of response models 

facilitates a more complete identification of system vulnerabilities, and flexible, quantitative 

definitions of uncertainty, which can aid in the selection of robust adaption measures 

(Steinschneider and Brown, 2013). There has been limited application of SWGs for vulnerability 

assessments of the WOH supply system. Rossi et al. (2015) used a multivariate, multisite 
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weather generator for introducing incremental changes in mean precipitation and temperature to 

simulate a range of climate change scenarios to study the turbidity levels in Ashokan reservoir. 

However, the skill (accuracy) of weather generators to simulate the observed precipitation 

characteristic is not discussed. As there are a number of categories and types of SWGs available 

in the literature with different levels of complexity (number of model parameter), and their skill 

in simulating observed precipitation characteristics is very location specific (Chen and Brissette, 

2015), there is a need to assess different SWGs for the WOH supply system prior to using them 

to generate future scenarios. 

This section describes application of a variety of SWGs, including selections from 

different categories, for each of the WOH watersheds in order to assess their skill in simulating 

the overall statistical characteristics, as well as the extreme statistical characteristics, of daily 

precipitation. 

3.2.2. Data  

 

Observed daily precipitation data were obtained from Northeast Regional Climate Center 

(NRCC) at Cornell University. A total of 18 National Climate Data Center (NCDC) rain gage 

stations are non-uniformly distributed across the WOH watersheds (Figure 3.1). To ensure a 

uniform comparison period for each station, the precipitation data for the period of 1950 to 2009 

were used. As the focus of the study is to analyze the average precipitation over each watershed, 

the weighted mean of nearby stations was calculated to get a single time series for each 

watershed. The Thiessen polygon method, a graphical technique, was used to estimate the 

weights based on the relative areas of each measurement station in the Thiessen polygon 

network. Individual weights were multiplied by the station observation and the values are 

summed to obtain the areal average precipitation. Table 3.1 describes the nearest stations and 

their corresponding weights for each watershed. Anandhi et al (2011) gives details about the 

construction of the area average precipitation data for WOH watersheds. 
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Figure 3.1. Precipitation gage stations over the study region. 

 

Table 3.1. Description of the nearest stations and associated weights for estimating 

weighted mean precipitation for each of WOH watersheds 

Watershed Stations  

Schoharie Windham 3E (0.4434), Prattsville (0.2992), Manorkill 

(0.1694), Stamford (0.0468), Phoenicia (0.0389), Shokan 

Brown (0.0024). 

Ashokan Phoenicia (0.4985), Shokan Brown (0.3401), Slide Mountain 

(0.1413), Windham 3E (0.02) 

Cannonsville Walton (0.3526), Delhi 2SE (0.2948), Kortright 2 (0.1143), 

Stamford (0.1532), Arkville 2W(0.0068),Bainbridge 2E 

(0.0085),Deposit (0.0568), Fish Eddy (0.0013), Unadilla 2N 

(0.0118),  

Pepacton Arkville 2W(0.5564), Delhi 2SE (0.1876), Prattsville 

(0.1282), Stamford (0.0523), Phoenicia (0.0397), Slide 

Mountain (0.0181), Walton (0.0175), Fish Eddy (0.0002) 

Neversink Slide Mountain (0.5013), Grahamsville (0.3640), Liberty 1 

NE (0.1347),  

Rondout Grahamsville (0.5796), Merriman Dam (0.2118), Slide 

Mountain (0.2084),Shokan Brown (0.0002),  

Weights corresponding each station are in parentheses. All the weights add up to 1 

for each watershed. 
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3.2.3. Stochastic Weather Generators 

 

Stochastic weather generators (SWGs) are statistical models that produce synthetic time 

series of any desired length of weather variables. These time series have statistical properties 

(example mean, standard deviation, skewness coefficient etc.) resembling those of a specified 

station record. SWGs have wide applications in the modeling of weather and climate-sensitive 

systems such as crop growth and development, hydrological process and ecological systems 

where the observed climate records are inadequate in terms of length or completeness (Wilks and 

Wilby, 1999).  A plethora of early studies dedicated to the development and advancement of 

SWGs (Gabriel and Neumann, 1962; Todorovic and Woolhiser, 1975; Katz, 1977; Richardson, 

1981) have been summarized in several review articles (Wilks and Wilby, 1999; Srikanthan et 

al., 2001; Alliot et al., 2015). SWGs can be broadly classified into four groups: two-part model 

(first part is dedicated to precipitation while the second part deals with other meteorological 

variables such as temperature or solar radiation), resampling model, transition probability model 

and auto regressive moving average (ARMA) model (Srikanthan et al., 2001).  The first two 

approaches are most popular in the literature. In this study, we only discuss the precipitation 

generation in two-part model, and the resampling model. 

Precipitation can be measured as both a discrete (occurrence) and continuous (amount) 

variable, has always been a key variable of interest in the construction of SWGs (Wilks and 

Wilby, 1999). In the two-part model, SWGs analyze precipitation as a chain-dependent model, 

first simulating precipitation occurrence (wet or dry day) and then precipitation amount. 

Occurrence is usually simulated using either a Markov Chain (MC) based model or a renewal 

process, sometimes referred to as a spell - length model. Two-state (i.e., precipitation occurs or 

does not occur) MC models  based on the occurrence or non-occurrence of precipitation relate 

the state of the current day to the states of preceding days, where the number of preceding days 

considered as the order of the MC (Boulanger et al., 2007).  Although, the first-order MC model 

(depends only on the previous day) has been found satisfactory in most of the cases (Katz, 1977; 

Richardson, 1981, Wilks, 1992), the higher order is better to simulate long wet and dry spells 

(Wilks, 1999; Chen and Brissette, 2014). The alternating renewal process, rather than simulating 

occurrence for each day, fits a probability distribution to the sequence of alternating wet and dry 

spells which are assumed to be independent (Buishad, 1978; Roldan and Woolhiser, 1982; 

Semenov and Barrow, 2002). Various probability distributions have been evaluated for the best 

fit of wet and dry spells such as logarithmic series, truncated negative binomial distribution, 

truncated geometric distribution, and semi-empirical distribution (Wilks and Wilby, 1999).  

Given the occurrence of a wet day, the daily precipitation amount is then modeled, 

typically using a parametric distribution. The distributional pattern of daily precipitation is 

strongly skewed to the right as very small daily precipitation events occur frequently, while 

heavy daily precipitation events are relatively rare (Wilks and Wilby, 1999; Chen and Brissette, 
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2014). Numerous studies have compared several probability distributions for simulating daily 

precipitation, including both single and compound distributions such as exponential (Todorovic 

and Woolhiser, 1975; Roldan and Woolhiser, 1982), gamma (Ison et al., 1971; Richardson and 

Wright, 1984), Weibull (Stöckle et al., 1999), skewed normal (Nicks and Gander, 1994), mixed 

exponential distribution (Roldan and Woolhiser, 1982; Wilks, 1999b) and hybrid exponential 

and Pareto distributions (Li et al., 2012; Chen and Brissette, 2014). In addition to the probability 

distribution, some other theoretical constructs have been applied to generate precipitation 

amount. For example, Boulanger et al (2007) introduced multi-layer perceptron-based neural 

network to generate synthetic time series of precipitation. Chen et al (2015) proposed the use of a 

2nd degree polynomial curve fitting approach to fit a Weibull experimental frequency distribution 

of observed daily precipitation constrained on the probable maximum precipitation (PMP) for the 

generation of precipitation amount. 

The resampling model, a data driven method, provides an alternative to the above 

discussed two-part model. The k-nearest-neighbor (k-NN) conditional bootstrap approach, the 

most popular resampling scheme for SWG, generates daily weather variables by resampling 

(with replacement) historical records associated with the wet-dry day series (Rajagopalan and 

Lall; 1999). The “k - nearest neighbors” for each date are chosen by considering all historical 

dates within a specified time window. Subsequently, the k – nearest neighbor with a higher 

probability to closer neighbors is chosen (King et al., 2015). After the pioneering work by Young 

(1994) and Sharma and Lall (1997), a number of studies extended and improved the k-NN 

approach (Rajagopalan and Lall; 1999; Buishand and Brandsma, 2001; Yates et al., 2003; Sharif 

and Burn, 2007; Apipattanavis et al., 2007, Steinschneider and Brown, 2013; King et al., 2015).  

Following the aforementioned concepts, several SWGs have been developed and widely used for 

precipitation generation over the last few decades (Table 3.2). 

 

3.2.4. Implementation of SWGs 

 

In this study, we applied a chain-dependent model which first generate precipitation 

occurrence and then simulate precipitation amount in wet days.  We used MC based model to 

generate precipitation occurrence, while parametric probability distributions, resampling method 

and curve fitting techniques are used to generate precipitation amount. The overall methodology 

to implement SWG in this study is shown in Figure 3.2. 

To generate precipitation occurrence, we adopted a first-order two-state (i.e., wet or dry 

day) MC model which has advantage over alternating renewal process to handle the seasonality 

in the rainfall occurrence process (Sirkanthan and McMahon, 2001). As discussed in earlier 

section, MC based on the relationship between the states of the present day with previous days. 
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While MC models of orders 1, 2 and 3 (MC1, MC2 and MC3) were applied, in this study, wet 

and dry day are discriminated by a precipitation threshold of 0.1 mm. 

To generate precipitation amount, seven distribution models including five parametric 

distributions, one resampling method (k-NN), and one curve fitting method, were investigated. 

Parametric distributions include three single distributions: exponential (1-parameter), gamma (2-

parameter), and skewed-normal (3-parameter) - and two compound distributions - mixed 

exponential distribution (3-parameter) and a hybrid exponential and generalized Pareto (3-

parameter) distribution. The 2nd order polynomial-based curve fitting method used in this study, 

fit a Weibull experimental frequency distribution of observed daily without constrained on the 

PMP. More details of each model are found in Table 1.3. 

 

 

 

Table 3.2. Description of some popular SWG with their precipitation occurrence and amount 

components and respective reference. 

Name Precipitation occurrence and amount component Reference  

WGEN  First-order MC for Precipitation occurrence and 

Gamma distribution for precipitation amount 

Richardson, 1981; 

Richardson and 

Wright, 1984 

SIMMETEO  Same as WGEN but use monthly data as input 

instead of daily 

Geng et al., 1988; 

Soltani and 

Hoogenboom, 2003; 

Elshamy et al., 2006 

CLIGEN  First-order MC for Precipitation occurrence and 

skew-normal distribution for precipitation amount 

Nicks & Gander 

(1994) 

GEM  First-order MC for Precipitation occurrence and 

mixed exponential distribution for precipitation 

amount 

Hanson and Johnson, 

1998 

CLIMGEN Second-order MC for Precipitation occurrence and 

Weibull distribution for precipitation amount  

Stockle et al., 1999 

WGENK Modification of WGEN by introducing seasonality Kuchar, 2004 

WeaGETS Third-order MC for Precipitation occurrence and 

mixed exponential distribution for precipitation 

amount 

Chen et al., 2012b 

LARSWG semi-empirical distribution to simulate 

precipitation occurrence and daily precipitation 

amounts 

Semenov and Barrow, 

2002 

KnnCAD Precipitation occurrence and amount generated by 

Resampling the historical data based on k-NN 

method. 

Prodanovic and 

Simonovic,2008; 

King et al., 2015 
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Figure 3.2. Flow chart showing the methodology of calibration of SWG. 

 

 

 

 

 

 

Table 3.3. Seven models evaluated for generating daily precipitation amounts. 

Model Name Abbreviation Reference  

Parametric Exponential 

 

EXP Todorovic & 

Woolhiser (1975) 

Gamma 

 

GAM Ison et al. (1971), 

Richardson & Wright 

(1984) 

Skewed-normal 

 

SN Nicks & Gander 

(1994) 

Mixed exponential 

 

MEXP Woolhiser & Roldán 

(1982), 

Wilks (1999b) 

Hybrid exponential 

and generalized 

Pareto 

EXPP Li et al. (2012) 

Resampling k-nearest-neighbor  

conditional bootstrap 

k-NN Rajagopalan and Lall 

(1999) 

Curve-fitting 2nd  order polynomial PN Chen et al. (2015) 
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3.2.5. Statistical Evaluation of SWGs for daily precipitation characteristic 

 

In this section, we examined the skill of SWGs, in terms of simulating the statistical 

characteristics of the full distribution of daily precipitation. To simulate daily precipitation, A 

SWG has to simulate both the occurrence and then the amount, each of which is evaluated 

independently. 

3.2.5.1. Precipitation Occurrence  

 

As discussed above, we discriminated wet and dry day using a precipitation threshold of 

0.1 mm. Markov chain models of first order (MC1), second order (MC2) and third order (MC3), 

were compared with observations with respect to reproducing the frequency of wet days per 

month and the distribution of wet and dry spells.  

To estimate the frequency of wet days per month, we first calculate the number of days 

which is equal or greater than the threshold (0.1 mm/day) for each month, and determine the 

mean and standard deviation for all twelve months (Figure 3.3). To calculate the distribution of 

wet and dry spells, we first define wet (dry) spells as the consecutive days with precipitation 

more (less) than threshold values.  The mean and standard deviation of the number of wet days, 

and wet and dry spells, were  predicted equally well by all three models (Figure 3.3, Figure 3.4, 

Figure 3.5). The models also performed well for extreme values (Figure 3.4, Figure 3.5). 
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Figure 3.3. Mean and standard deviation of the observed and generated counter part of 

wet days per month from MC1, MC2 and MC3. 
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Figure 3.4. Mean, standard deviation and extreme (Q99) of wet spells of the observed and 

generated counterpart from MC1, MC2 and MC3. 
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Figure 3.5. Mean, standard deviation and extreme (Q99) of dry spells of the observed and 

generated counterpart from MC1, MC2 and MC3. 
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3.2.5.2. Precipitation Amount 

 

Daily precipitation amounts simulated by the seven models described in the methodology 

section were evaluated. The mean, standard deviation and skewness coefficients of daily 

precipitation amount (precipitation equal to or more than 0.01 mm/day) was calculated for 

observation and generated counterpart for each watersheds (Figure 3.6). All seven models 

simulate the mean of daily precipitation very well for all watersheds. However, the skills of the 

models in reproducing the observed standard deviation and skewness coefficients vary. The EXP 

and GAM distributions (for abbreviations, see Table 3.3) consistently underestimate the standard 

deviation, while the SN, MEXP and k-NN-based models perform well. EXPP and PN 

considerably overestimates the standard deviation for most watersheds. 

The skewness coefficient of daily observed precipitation exceeds 3.0 for most of the 

watershed, implying the distribution of daily precipitation is extremely skewed to the left. EXP 

and GAM consistently underestimate the skewness coefficient while SN, k-NN, and MEXP 

adequately simulate the skewness. EXPP and PN overestimate the skewness coefficient for all 

six watersheds especially for the Schoharie watershed. Similar results for these distributions have 

been reported on for other watersheds (e.g. Chen and Brissette, 2014). Moreover, skewness 

coefficients are poorly simulated by the EXP, GAM, EXPP and PN models, indicating that they 

poorly preserve the shape of the daily precipitation distribution. To understand this issue in more 

detail, we plotted the probability density function (pdf) for observed data along with each of the 

seven models to understand the probabilistic structure of the daily precipitation. Figure 3.7 

shows the result for the Ashokan watershed, where it is seen that SN, MEXP and k-NN’s are 

very close to the observed pdf. The pdf plot of EXPP and PN indicates that these two approaches 

generate unreasonably high values which is likely the reason for their overestimation of the 

statistical characteristics of the entire time series.   This results are very similar for the remaining 

watersheds. 
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Figure 3.6. Mean, standard deviation and skewness coefficients of observed and 

generated daily precipitations from seven models (EXP, GAM, SN, 

MEXP, EXPP, k-NN and PN). 
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Figure 3.7. Probability distribution functions  of observed and generated daily 

precipitations from seven models (EXP, GAM, SN, MEXP, EXPP, k-NN 

and PN) for Ashokan watersheds. 

 

 

3.2.6. Performance of SWGs for Extreme Precipitation Events 

In addition to the metrics considered above, it is important to evaluate the SWGs 

regarding their capacity to represent extreme event probabilities. In the present section, we 

examined each seven precipitation amount models with respect to their capacity to reproduce the 

observed extremes.  To define the extreme events, both non-parametric and parametric 

approaches are employed.         
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3.2.6.1. Non-parametric Approach 

 

A set of 27 climate extremes indices based on daily temperature and precipitation has 

been proposed by The Expert Team on Climate Change Detection and Indices (ETCCDI) (Klein 

Tank et al., 2009). Due to their robustness and fairly straightforward calculation and 

interpretation, these indices have become popular in recent decade for multiple applications in 

climate research. A complete description of the indices, including definitions and computation 

methods, is provided by Zhang et al. (2011). Following this work, the four extreme event indices 

associated with large precipitation events were computed.  These indices are: 

 RX1day: Maximum 1-day precipitation per year. 

 RX5day: Maximum consecutive 5-day precipitation per year. 

 R95p: Annual total precipitation due to events exceeding the 95th percentile of the 

entire data period (1950-2009). 

 R99p: Annual total precipitation due to events exceeding the 99th percentile of the 

entire data period (1950-2009). 

The indices were computed each year both for the observation and generated counter part 

by using “RClimDex”, an R-based software application which was developed by Xuebin Zhang 

and Feng Yang at the Climate Research Branch of Meteorological Service of Canada. The mean 

of each index over the study period is shown in Figure 3.8. All seven models overestimate R95p 

and R99p for the Cannonsville and Rondout watersheds. For the Neversink and Pepacton 

watersheds, all models overestimate R95p and R99p except EXP and GAM (whose simulations 

are reasonable). For Ashokan and Schoharie, SN, MEXP, EXPP and k-NN adequately reproduce 

R95p and R99p, while EXP and GAM underestimate and PN overestimate R95p and R99p. 

3.2.6.2. Parametric Approach 

 

In order to evaluate the abilities of SWGs to simulate the probabilistic structure of 

observed extreme precipitation events, extreme value theory (EVT) was applied. The general 

extreme value (GEV)  distribution was fitted to the annual maximum precipitation to estimate 

precipitation values associated with return periods of 50, 75, and 100 years of observed and 

generated counterpart by the seven models for each watershed (Figure 3.9). In GEV, the return 

level associated with the extreme events can be calculated by the quantiles of GEV (Coles, 

2001). The detailed procedure of such technique consists of three steps: 1) calculate the annual 

maximum rainfall; 2) fit the GEV distribution; and 3) estimate the return level by calculating the 

quantiles of GEV distribution (Figure 3.9). SN, MEXP and k-NN are superior to the other 

distributions in simulating extreme value statistics, though their skills also not perfect. EXP and 

GAM models consistently underestimate precipitation amount corresponding to all return 
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periods. EXPP and PN do not accurately reproduce the upper tail of the observed daily 

precipitation. 

 

 

 

 

Figure 3.8. RX1day, RX5day, R95p and R99p of observed and generated daily precipitations 

from seven models (EXP, GAM, SN, MEXP, EXPP, k-NN and PN). 
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Figure 3.9. Annual maximum daily precipitation levels at the 50, 75 and 100 year return 

periods of observed and generated daily precipitations from seven models (EXP, GAM, SN, 

MEXP, EXPP, k-NN and PN). The error bars refers the 95% confidence interval for each 

return levels. 
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3.2.7. Discussion 

 

This work compares the skill of three models for generating precipitation occurrence and 

seven models for simulating precipitation amount for six watersheds. Precipitation occurrence is 

adequately simulated by each of the three MC (MC1, MC2 and MC3) models for all watersheds. 

Considering the fact that the number of parameters in an MC model increases exponentially with 

each increase in order (Wilks, 1999), under the principle of parsimony the first order MC model 

(MC1) is chosen to simulate precipitation occurrence. 

Of the seven models evaluated for generating daily precipitation amount, 5 are based on 

parametric distributions, one is based on a semi-parametric k-nearest neighbor bootstrapping 

technique, and one is based on a 2nd degree polynomial curve-fitting approach. Parametric 

distribution models include 3 single distributions (1-parameter EXP, 2-parameter GAM and 3-

parameter SN), 1 compound distribution (3-parameter MEXP) and 1 hybrid distribution (3-

parameter EXP-GP). While all these models reasonably reproduce mean daily precipitation for 

all the watersheds, their skills differ with regard to the standard deviation, skewness coefficient 

and extreme characteristics of daily precipitation. With the exception of SN, all the other single 

distributions (EXP and GAM) consistently underestimate the standard deviation and skewness 

coefficient of daily precipitation for all watersheds, suggesting that these 2 distributions 

underrated the high frequency variability of precipitation and are unable to preserve the shape of 

the daily precipitation distribution. These 2 distributions also underestimate the extreme indices 

and return values of annual maxima. The performance of SN is consistently better than the other 

single distributions in all respects. Such better performance may be partly due to the inclusion of 

additional parameters which increases the model’s flexibility and use of method of moment 

rather than maximum likelihood to estimate model parameters (Chen and Brissette, 2014). The 

compound distribution MEXP also performed better than the single distributions except SN. This 

result is consistent with earlier studies (Wilks,1999; Chen and Brissette, 2014) where it is found 

that the MEXP is generally better represent the daily precipitation distribution than the EXP and 

GAM as the compound distribution specifically takes the entire range of precipitation 

distribution into account, not just the bulk. As the hybrid distribution includes heavy-tailed 

functions (such as the Pareto distribution) which explicitly take into account the upper tail of 

precipitation distributions, it is expected that it will do better at representing extreme 

precipitation. 

The EXPP distribution has the unfortunate tendency to overestimate extremes, sometimes 

by an order of magnitude. This is due to the fact that when the generalized Pareto distribution is 

used to simulate the tail of the daily precipitation distribution, a few cases of unreasonably large 

values are typically generated (Li et al., 2013). Chen and Brissette (2014) described this issue in 

detail in their study. The resampling k-NN consistently performs better in terms of reproducing 

the observed precipitation characteristics for all the watersheds. However, as the k-NN method is 
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based on a resampling technique, the distributional properties of the generated series are exactly 

the same as those of the observations, limiting extrapolation ability of this method to generate the 

new extremes outside the observed range; this limits its applicability in climate change impact 

studies (Chen and Brissette; 2014). PN methods also overestimate the precipitation amount in 

terms of standard deviation, skewness and extreme events. The likely reason is that the fitting of 

2nd degree polynomial is not the perfect choice to fit the Weibull experimental frequency 

distribution of observed daily precipitation for this study location.   

3.2.8. Conclusions and Future Work 

The results of SWGs model evaluations for the WOH watersheds are fairly typical in the 

sense that some models perform better with regard to some metrics, while others are superior 

with regard to other metrics; no one model performs best for all metrics. Overall, it is our 

preliminary conclusion that MC1 model along with the three models perform best in our region: 

SN, MEXP, and k-NN. The basis for this conclusion, its preliminary nature, and how this 

information will be used in the next phase of the analysis, are explained in the following 

paragraphs. 

The most important criteria is that a model adequately simulate mean hydrological 

conditions. All models evaluated here adequately reproduce mean daily precipitation in all 

basins, indicating that with regard to this metric, all models are potential candidates for use in 

simulating the mean or background precipitation regime. This is also critical for simulating 

hydrological extremes because large streamflow events are determined by both the precipitation 

amount during an event as well as by antecedent conditions. During the cold season this is 

related to snow accumulation, which subsequently causes floods during melt and/or rain-on-

snow events. During the warm season this is related to antecedent soil moisture conditions, 

which subsequently determine the flooding potential of large precipitation events. 

During the warm season (when snow is not a factor) large precipitation events are 

important factors in flooding. Many of the metrics evaluated in this analysis reflect some aspect 

of the ability of these models to simulate extreme daily events. For precipitation occurrence, this 

includes the number of wet days and wet / dry spell lengths. For daily amount this includes 

standard deviation, skewness, a suite of extreme precipitation indices, as well as the magnitudes 

of the 50, 75, and 100 year recurrence intervals. The results discussed in the previous section all 

suggest that the three models such as SN, MEXP, and k-NN combine with MC1 model chosen 

more consistently (between basins and between indices) reproduce the observed statistics of 

extreme daily precipitation, though k-NN can’t be a good choice for climate change impact 

studies due to its inability to generate the new extremes. 

The next steps in evaluating the abilities of these models to reproduce extreme 

hydrological events include: (1) evaluation of the models’ abilities to reproduce the interannual 

variability on the monthly time scales, for event lengths up to five days; and (2) the evaluation of 
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extreme streamflow statistics simulated by a hydrological model forced by the simulated 

precipitation time series. Ultimately, these models will be used to develop tools such as response 

surfaces (e.g. Prudhomme et al 2010, Brown et al 2011) that will support NYCDEP efforts to 

evaluate the vulnerability of the water supply system to extreme events (and to drought as well as 

to other changes in hydrology) during the coming decades. 
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4. Model Development and Applications 
 

4.1. Realistically predicting saturation-excess runoff with SWAT-

Hillslope 

4.1.1. Introduction 

 

The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) is a widely used 

watershed model for predicting flow and pollutant loads from watershed nonpoint sources to 

receiving waters under varying scenarios of land use, management, and climate change (Arnold 

et al., 2010; Bosch et al., 2010; Gassman et al., 2007). However, its usefulness is limited because 

SWAT does not simulate saturation-excess runoff (Easton et al., 2008;White et al., 2011; 

Woodbury et al., 2014). SWAT simulates surface runoff essentially as an infiltration-runoff 

process by the SCS curve number (CN) method (USDA-SCS, 1972), using curve numbers that 

relate land use, soil and slope characteristics of hydrologic response units (HRUs) to soil 

infiltration rates (Neitsch et al., 2011). Infiltration-excess runoff occurs when precipitation 

intensity exceeds soil infiltration capacity and occurs in areas where soil crust forms in soils with 

low organic matter (Horton, 1933, 1940). In contrast, saturation-excess runoff is common in 

humid, well-vegetated areas (Dunne and Leopold, 1978) where soils are well structured and 

infiltration capacity is high. Saturation-excess runoff is generated in “variable source areas” 

(VSAs) where a perched groundwater table rise to the ground surface (USDA-SCS, 1972). The 

location of VSAs depends on topographic position in the landscape and soil transmissivity, and 

varies over time with landscape wetness (Dunne and Black, 1970).  Since surface runoff is the 

primary mechanism to transport sediments and materials that accumulate on or near the ground 

surface to receiving waters, it is essential to identify appropriate runoff processes in the 

landscape in order to correctly estimate pollutant fluxes and properly apply conservation 

practices to improve water quality (Rode et al., 2010).  

Several efforts have been carried out to add saturation-excess runoff to SWAT. In 

SWAT-VSA, Easton et al. (2008) used topographic wetness index to redefine HRUs, which 

distributed overland flow in ways consistent with VSA hydrology by modifying the definition of 

Curve number and available water content. White et al. (2011), in SWAT-WB, defined 

saturation deficit based on soil wetness classes classified by the values of soil topographic index, 

and applied a water balance instead of the Curve Number method to calculate runoff as water in 

excess of local soil water storage. While both SWAT-VSA and SWAT-WB were found to 

capture the spatial distribution of saturation excess runoff, the underlying mechanism of a 

perched water table that rises to the surface creating saturated conditions and saturation-excess 

runoff was not incorporated in either model.  
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Recent attempts to incorporate landscape routing into SWAT in order to represent 

realistic transport processes in the watershed may improve SWAT’s ability to simulate VSA 

hydrology. Arnold et al. (2010) introduced a hillslope approach for SWAT which allows flow 

routing between three landscape units, i.e. divide, hillslope and valley bottom, from the furthest 

to the nearest one to the streams. Bosch et al. (2010) tested this SWAT landscape model in a 

low-gradient coastal plain watershed and showed that average annual surface runoff agreed 

satisfactorily with observations, but monthly simulated results differed significantly from 

measurements; and estimates of groundwater flow were greater than what would be expected. 

Therefore, it was concluded that the landscape model may require additional details to properly 

describe the interactions between the soil surface, vadose zone and groundwater. Currently, the 

SWAT landscape model is undergoing development and testing. Recently, Rathjens et al. (2015) 

introduced a fully distributed grid-based version of the SWAT landscape model, which 

incorporated the hillslope approach by Arnold et al. (2010) in simulating landscape flow routing 

between grids. The model testing in Little River Watershed near Tifton, Georgia showed good 

agreement between simulated results and flow observations both at daily and monthly time steps 

and reasonable spatial distribution of different flow types over the watershed. However, due to 

the large number of spatial units, the grid-based SWAT model is not computationally efficient, 

which limits its application to small-scale watersheds and impedes the ability of auto-calibration. 

A modification to the SWAT model so that it can be used realistically for management 

purposes in humid areas where saturation excess runoff is common is described here.  The 

modified SWAT version, referred as SWAT-Hillslope, redefines HRUs to include landscape 

position; replaces the SCS curve number method for predicting surface runoff with a variable 

bucket approach of Sivapalan et al. (1997) and Boughton (2004) for simulating saturation-excess 

runoff; and introduces a perched water table with the ability to route interflow from “dryer” to 

“wetter” HRU wetness classes.  The SWAT-Hillslope model is tested in application to the Town 

Brook watershed in the upper reaches of the West Branch of the Delaware River in the Catskill 

Mountains, where rainfall intensities rarely exceed infiltration rates and saturation-excess runoff 

is common (Walter et al., 2003). The sensitivity of Digital Elevation model (DEM) resolution on 

SWAT-Hillslope modeled results was tested to select the appropriate DEM resolution. Then the 

model performance was evaluated by comparing with temporal and spatial observations. 

 

4.1.2. Methodology 

4.1.2.1. The modified version of SWAT for simulating saturation excess runoff (SWAT-

Hillslope) 

Three main modifications have been made to SWAT to simulate saturation-excess runoff. 

First, HRUs are redefined by classifying them according to a wetness index based on a statistical 

distribution of soil water storage capacity.  In SWAT-Hillslope, the wetness index is user-
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defined, and can be based on any suitable method for classifying moisture storage capacity 

across the catchment. A variety of methods are used in hillslope hydrology models to define the 

statistical distribution of soil water storage capacity, including the topographic index (TI) of 

TOPMODEL (Beven and Kirkby, 1979); a pareto distribution as in the Variable Infiltration 

Capacity (VIC) model (Liang and Lettenmaier, 1994; Wood et al., 1992), the Probability 

Distributed Model (PDM) (Moore, 2007) and the XINANJIANG model (Zhao et al., 1995); a 

statistical soil moisture distribution based on the USDA Curve Number equation interpreted as a 

saturation excess runoff process (Steenhuis et al., 1995; White et al., 2011); or an empirical 

distribution as in the AWBM model (Boughton, 2004). In the example model application 

presented, the TI distribution is used. The TI is the quotient of the amount of water delivered to a 

point in the landscape and the ability to transmit through the soil at that point (Beven, 1986; 

Beven and Kirkby, 1979) 

 
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where λ is the soil topographic index (STI) [unit: ln(d m -1)], α is upslope contributing area per 

unit contour length (unit: m), )tan(  is the local surface topographic slope, sK  is the mean 

saturated hydraulic conductivity of the soil (unit: m d-1), and D is the soil depth (unit: m). 

Second, the SCS curve number method for predicting surface runoff is replaced by the 

variable bucket approach of Sivapalan et al. (1997) and Boughton (2004) that generates runoff 

when the storage capacity of a wetness class is exceeded. The ability to calculate infiltration-

excess runoff using the Green-Ampt method is retained. Additional information is provided 

below. 

Last, a perched aquifer is introduced to control soil saturation which generates saturation 

excess runoff as the perched water table rises above the soil surface; and laterally route interflow 

from “dryer” to “wetter” wetness classes. Water not lost is stored the wettest wetness classes, 

thereby distributing upslope water downstream.  The modifications made in SWAT2012 to 

obtain SWAT-Hillslope are described below. SWAT2012 was used as the basis for all 

modifications.  

 

Calculating runoff with the perched water table 

Up to 10 wetness classes of increasing storage capacity can be taken into account in 

SWAT-Hillslope. The maximum storage capacity (before surface runoff occurs) in each wetness 

class is referred as Effective Depth Coefficient edc(i) where i is the wetness class number. Figure 

4.1 presents two simple examples of storage capacity distribution of a watershed covering 5 

wetness classes with increasing soil water storage capacity. The x axis shows areal proportion 

while the y axis specifies the maximum storage capacity of wetness classes. Wetness 1, which 

has the greatest likelihood of producing surface runoff during a rainfall event, has very small 

value of edc, while Wetness 5 which has a high value of edc and will be very rarely be saturated 
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unless there is extreme rainfall. Example (a) in Figure 4.1 presents a watershed dominated by dry 

areas while example (b) illustrates a watershed dominated by perennial wetlands with large areas 

of small storage capacity.  Figure 4.2 summarizes the hydrology of an HRU the original SWAT 

and the SWAT-Hillslope models. Flows from all HRUs within a sub-basin are summed in order 

to obtain the total flow of the sub-basin. 

 

 

 

 

 

 

 

 

(a)                                                                                 (b) 

 

Figure 4.1. Examples of storage capacity distribution of a watershed: (a) watershed dominated by 

dry areas, and (b) watershed dominated by perennial wetlands.  

 

In the original SWAT, the water moves through three aquifers: soil profile, shallow 

aquifer and deep aquifer. When there are precipitation and snowmelt inputs, surface runoff is 

calculated by SCS curve number based on the current soil moisture. The amount of water that is 

not surface runoff becomes infiltration to the soil profile. The water goes through soil layers 

from which lateral flow is generated. The seepage from the bottom of soil profile enters shallow 

aquifer from which groundwater flow is generated. A small amount of water may enter the deep 

aquifer and then contributes to streamflow somewhere outside of the watershed.  

SWAT-Hillslope adds a perched aquifer between the soil profile and shallow aquifer. The 

perched aquifer represents a part of the soil profile above an impervious layer that transmits 

subsurface flow laterally through the hillslope, controls soil saturation as the perched water table 

approaches the surface, provides water for plant use and influences biogeochemical 

transformation related to saturated soil conditions.  With this modification, SWAT-Hillslope 

creates a pathway for hillslope processes to transport water and pollutants from the upslope areas 

corresponding to “dryer” wetness classes to downslope areas with “wetter” wetness classes. For 

simplicity, it is assumed that the depth of perched aquifer from soil surface equals to the depth of 

the soil profile. The seepage from the bottom of soil profile contributes to both perched aquifer 

and shallow aquifer based on a recharge fraction parameter (rchrg_paf). The amount of water 

entering the perched aquifer raises the water table which rise into the root zone making the 

Wetness class 

1               2                   3                  4    5 

Wetness class 
1  2   3                 4                      5 

(a) (b) 
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aquifer available for plant use, and may rise above soil surface causing saturated areas and 

producing saturated excess runoff. 

Mathematically, the perched aquifer is treated as a non-linear reservoir that can generate 

rapid subsurface stormflow as the water table rises, with return flow occurring at the saturated 

areas.   

                                                            

 

                                                

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Difference in hydrological processes between the original SWAT and SWAT-

Hillslope 

Original SWAT 

SWAT-Hillslope 
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New parameters added to SWAT-Hillslope 

The runoff calculation with a perched aquifer in SWAT-Hillslope requires an addition of 

a number of parameters. Table 4.1 presents the added new parameters and the corresponding 

processes, their definitions and value ranges. Weti is the wetness class index for each HRU. Edc 

and edc_factor define the water storage capacity for wetness classes. Rchrg_paf defines the 

recharge of perched aquifer while effporfactor affects the rise of water table in perched aquifer. 

Perchst_datum defines the depth of perched aquifer from where the lateral flow starts to 

contribute to streamflow whereas latA and latB are coefficient for generating lateral flow based 

on non-linear reservoir concept. 

 

Table 4.1. New parameters added to SWAT-Hillslope 

Name Unit Definition Range 

edc(weti)  mm Effective Depth Coefficient: Maximum drainable 

water storage capacity defined at wetness class 

level 

0-1000 

edc_factor   - Calibration factor adjusts all edc values 0 - 10 

effporfactor    - Fraction of effective porosity that can hold water 

under saturated conditions 

0 - 1 

latA  Perched aquifer non-linear reservoir coefficient 0 - 1 

latB  Perched aquifer non-linear reservoir coefficient 1 - 3 

perchst_datu

m 

mm Mean depth of perched aquifer drawn down just to 

point where lateral flow from aquifer ceases 

 

rchrg_paf - Fraction of root zone percolation that recharges the 

perched aquifer 

0 - 1 

weti(i) - Wetness class (1-10) assigned to HRU i 1-10 

 

4.1.2.2. Study area: Town Brook watershed, Delaware County, New York 

The Town Brook watershed covers an area of 37 km2 and is located in the Catskill 

Mountains of New York State. The climate in this area is humid with average temperature of 8oC 

and average annual precipitation of 1123mm/year. The region is characterized by steep to 

moderate hillslopes of glacial origins with shallow permeable soils. Elevation ranges from 493 to 

989 m. The majority of soil is silty loam and silty clay loam belonging to soil hydrologic group 

C ratings (USDA-NRCS, 2000). The upper terrain of the watershed is characterized by shallow 

soil (average thickness 80 cm) overlaying fractured bedrock, steep slope (average slope 29%) 

and deciduous and mixed forests (60% of the watershed). The lowland areas of the watershed 

have deeper soils (average thickness 180 cm) underlain by a dense fragipan restricting layer, 
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more gentle slope (average slope 14%) and are predominantly occupied by pasture and row crops 

(20%) and shrub land (18%). Water and wetland comprise only 2% of the watershed and 

impervious surface is insignificant. Dairy farming is the main agricultural land use.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Town Brook watershed, Delaware County, New York 

 

4.1.2.3. SWAT-Hillslope model set up for the Town Brook watershed  

Watershed delineation 

A 10-meter DEM (digital elevation model) was used to delineate the watershed and for 

calculating slopes and flow paths. The 10m resolution was chosen based on a sensitivity analysis 

on DEM resolution suggesting that courser resolution (30m) resulted in unusual representation of 

saturated conditions, while very fine resolution (1m, 3m) gave a very broad distribution of highly 

disconnected saturated areas and diminished the importance of topography in the calculation of 

topographic index.  The 37 km2 Town Brook watershed is quite small, thus the watershed was 

not split into sub basins. Instead, the watershed was split into multiple HRUs based on soil, land 

use and wetness maps.  

 

 

 

 

Delaware County, 

New York 
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HRU definition 

Wetness map 

A wetness map was created based on soil topographic index (STI) defined in Equation 

(4.1). The upslope contributing area, α, was determined by the Terrain Analysis Using Digital 

Elevation Models (TAUDEM) (Tarboton, 1997; Tarboton and Mohammed, 2010). The saturated 

conductivity and soil depth were respectively extracted from two variables: saturated hydraulic 

conductivity and depth to restricted layer in soil SSURGO database. 

Based on the results from the Soil Moisture Routing (SMR) model of the Town Brook 

watershed, Agnew et al. (2006) developed a relationship between STI and probability of 

saturation (P
sat

) for April, August and October representing spring, summer and fall conditions. 

The study found that STI is a reliable parameter to identify and quantify the risk of saturation 

excess runoff due to the clear, regionally consistent relationship between STI and P
sat

 with strong 

correlation throughout the year. Based on the average results in the 3 seasonal conditions, Figure 

4.4 shows that the areas with STI < 7.6 have almost no chance to be saturated; the areas with STI 

> 17.7 are always saturated.  

 

Figure 4.4. Relationship between topographic index (λ) and probability of saturation (P
sat

) in April, 

August and October (Agnew et al., 2006). The symbol are the average P
sat

 for corresponding λ. 

The dashed lines correspond to 25th and 75th percentiles. 

 

The Town Brook watershed was broken up into 5 wetness classes. Based on the results 

from Agnew et al. (2006), we grouped the areas with STI < 7.6 as the “driest” wetness class 

(wetness 5) with very high water storage capacity (1000mm) and the areas with STI > 17.7 as the 

“wettest” wetness class (wetness 1) with no water storage capacity (0 mm). This means that 

when there is hydrological input, the wetness 1 is always saturated while wetness 5 is constantly 

dry. The rest of the watershed was classified into wetness class 2, 3 and 4 and their water storage 

capacity were assigned by a trial method while running the model and comparing the results of 
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saturated areas with our available observations in 28-30 April 2006 which is shown in Figure 

4.10a. The final classification of 5 wetness classes in the Town Brook watershed is shown in 

Figure 4.5. With this classification, only wetness 1, 2 and 3 can be saturated while wetness 4 and 

5 are always dry. The maximum area of saturation is the summation of wetness 1, 2 and 3 which 

equals to approximately 10% of the watershed. Harpold et al. (2010), from 6 field surveys in 

2007, also reported 9.9% as the maximum saturated areas in a small study watershed in the 

southwest corner of the Town Brook watershed.  

 

Table 4.2. Classification of wetness classes for the Town Brook watershed. 

STI Wetness 
% of watershed 

area 

Water storage 

capacity 
Characteristics 

< 7.6 5 5.1 1000 Dry 

 

 

 

 

Wet 

7.6 – 12.2 4 84.98 50 

12.2 – 14.5 3 8.2 6 

14.5 – 17.7 2 1.12 3 

> 17.7 1 0.59 0 

 

 

Figure 4.5. Wetness map for the Town Brook watershed 
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Soil 

The soil map of Town Brook watershed was extracted from the SSURGO soil database. 

There are 17 soil types in the watershed. The data of soil properties that are necessary for the 

SWAT model are taken from the SSURGO database and the soil survey of Delaware County 

(USDA, 2006).  The soil map is then combined with the wetness map to redefine soil types in 

different wetness classes in order to include wetness class assignment for each HRU in the final 

discretization, which is an essential step for running SWAT-Hillslope.  

 

                   

Figure 4.6. Soil types in the Town Brook watershed (Source: SSURGO soil database) 

 

Land use 

The land use map was derived from classified 2009 aerial photography data obtained 

from NYCDEP. The watershed was divided into 11 land use types which are shown in Figure 4.6 

and Table 4.3. The main land use types are forest (54%), agriculture (32%) and brushland (9%). 

Residential area covers a very small part of the watershed (4%). 
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Table 4.3. Land use types in the Town Brook watershed 

 No. Land use type Percentage of area (%) 

1 Forest - Coniferous 3.55 

2 Forest - Deciduous 44.39 

3 Forest - Mixed 5.83 

4 Agriculture 32.10 

5 Pasture 0.87 

6 Brushland 8.94 

7 Industrial 0.35 

8 Commercial - Low density 0.02 

9 Residential - Low density 3.73 

10 Transportation 0.01 

11 Water 0.21 

 

 

Meteorological inputs 

Daily precipitation and temperature data are available in a 4km x 4km gridded climate 

dataset from the Applied Climate Information System (ACIS) which was developed using the 

Parameter-Elevation Relationships on Independent Slopes Model (PRISM) interpolation method 

(Daly et al., 2008). Thiessen polygons were created based on the available grid points to choose 

the grid points that would be used for Town Brook watershed (Figure 4.7). As the Town Brook 

watershed was setup as a single subbasin, precipitation and temperature data was assumed to be 

taken at the centroid of the watershed by interpolating from data of surrounding PRISM grid 

points by inverse distance weighting method. 

Solar radiation was averaged from the data at the Albany and Binghamton airport 

locations is available from 1926 to 2012. Relative humidity and wind speed were generated from 

the weather generation method built in SWAT. 
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Figure 4.7. Meteorological grid points used for the Town Brook watershed 

 

4.1.2.4. Model calibration and validation 

Calibration was carried out at the outlet of the Town Brook watershed for the period 

1998–2007 in which the first 3 years served as warming up period. The period of 2008–2012 was 

the validation period. To evaluate the SWAT-Hillslope performance for the simulated flow, we 

used three following criteria, each of which was calculated for daily and monthly time steps: 

 

a. Nash Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970): ranges between -∞ and 1.0, with 

NSE = 1 being the optimal value.  
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where obs

iY  is the ith observation, sim

iY  is ith simulated value, sim

iY  is the mean of observed data and 

n is the total number of observations. 

 

b. Percent bias (PBIAS): the optimal value of PBIAS is 0.0, with low magnitude values indicating 

accurate model simulation. Positive values specify underestimation bias and negative values 

indicate overestimation bias (Gupta et al., 1999). 
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c. RMSE – observations standard deviation ratio (RSR): RSR standardizes RMSE using the 

observations standard deviation (Singh et al., 2004). It varies from the optimal value of 0, which 

indicates zero RMSE to +∞. The lower RSR, the lower RMSE, the better the model performance. 
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The SWAT-Hillslope model was calibrated by applying the Monte Carlo sampling 

method. We randomly generated 10,000 parameter sets within the ranges of the chosen 

parameters for calibration. Then 10,000 simulations were run with SWAT-Hillslope. Finally, the 

best performance parameter sets were chosen.  Table 4.4 shows the detailed parameters that were 

used for calibration and their values that were used to evaluate SWAT-Hillslope performance by 

comparing with observations.  The calibration is performed in the following 3 steps, with steps 2 

and 3 iterated: 
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1. Snow melt calibration: Five parameters related to snowmelt simulation were calibrated. 

In the Town Brook watershed, snowmelt is a very important process. The snow melt 

calibration helped to adjust the timing of flow peak when snow melt occurs. 

2. Flow calibration: The best parameter set from the snowmelt calibration was used. Then 

eleven flow parameter were taken into account in the Monte Carlo calibration (Table 

4.4). The flow calibration affected the partition of flow components and flow magnitude.  

3. Adjust storage capacity of wetness classes: The best parameter sets from snowmelt and 

flow calibration were applied. Then the values of edc for wetness classes were calibrated 

manually. This step influences the distribution of saturated areas caused by saturation 

excess runoff. 

 

4.1.3. Results 

4.1.3.1. Performance of SWAT-Hillslope on flow simulation 

The performance of SWAT-Hillslope on flow simulation was evaluated for simulation of 

the hydrograph at the watershed outlet; flow components (runoff, lateral flow, baseflow); and the 

spatial distribution of simulated runoff. The simulated results from the SWAT-Hillslope model 

were compared with observations as well as the results from the original SWAT2012 model. 

4.1.3.1.1. Comparison with measured hydrograph data at watershed outlet 

The statistical evaluation of SWAT-Hillslope daily predictions versus measurements at 

the outlet of Town Brook watershed (Table 4.5) resulted in NSE values at 0.68 and 0.52, PBIAS 

values at 7.17 and -3.61, and RSR at 0.57 and 0.69 for calibration and validation periods, 

respectively. These values are all within the range of “good” model performance for the 

calibration period while NSE is rated as “satisfactory”, PBIAS as “very good” and RSR as 

“satisfactory” performance in the validation period, based on Moriasi et al. (2007) guidelines for 

evaluation of model performance. NSE improved significantly to 0.6 in the validation period if 

we excluded the year 2011 in which an extreme flood occurred in August that could not be 

captured very well by SWAT-Hillslope. The SWAT-Hillslope monthly predictions obtained 

better fit to measurements with significantly improved NSE value at 0.87 and 0.78 for calibration 

and validation periods, respectively. Monthly PBIAS values were comparable to daily ones while 

monthly RSR values has improvement from daily values to be ranked as “very good”. Based on 

statistical results on monthly streamflow, the performance of the SWAT-Hillslope model is 

classified as “very good”, “good” and “very good” respectively corresponding to NSE, PBIAS 

and RSR while it is classified as “very good” for all three indices in the validation period 

whether the year 2011 was excluded or not. 
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Table 4.4. Parameters for calibration using Monte Carlo sampling method 

Name Unit Definition Range 
Calibrated 

value 

Snowmelt calibration  

SFTMP oC Snowfall temperature -5 - 5 -0.58 

SMTMP oC Snowmelt temperature -5 - 5 1.10 

SMFMX mm/ oC Maximum snowmelt factor 5 - 10 7.62 

SMFMN mm/ oC Minimum snowmelt factor 0 - 5 2.68 

TIMP - Snow pack temperature lag factor 0 – 1 0.022 

Flow calibration  

RCHRG_PAF mm Fraction of root zone percolation 

that recharges the perched aquifer 

0-1000 0.626 

latA  Perched aquifer non-linear reservoir 

coefficient 

0 - 1 0.022 

latB  Perched aquifer non-linear reservoir 

coefficient 

1 - 3 1.72 

ALPHA_BF - Baseflow alpha factor  0 - 1 0.23 

GW_DELAY days Groundwater delay 0 - 200 28 

EFFPORFACTOR mm Fraction of effective porosity that 

can hold water under saturated 

conditions 

0 - 1 0.718 

EDC_FACTOR - Calibration factor for adjusting edc 

values 

0.5 - 5 1.78 

EPCO  Plant water uptake compensation 

factor 

0 - 1 0.567 

ESCO  Soil evaporation compensation 

factor 

0 - 1 0.102 

CANMX mm Maximum canopy storage 0 - 5 4.73 

SURLAG days Surface runoff lag time 0.05 - 24 8.79 

Storage capacity of wetness classes (5 wetness classes were defined in this case study 

EDC01 mm Storage capacity of wetness class 1 0-1000 0 

EDC02 mm Storage capacity of wetness class 2 0-1000 3 

EDC03 mm Storage capacity of wetness class 3 0-1000 6 

EDC04 mm Storage capacity of wetness class 4 0-1000 50 

EDC05 mm Storage capacity of wetness class 5 0-1000 1000 
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Table 4.5. Performance criteria for SWAT-Hillslope in daily and monthly time step 

Period Time 

steps 

Criteria 

NSE PBIAS RSR Average streamflow (mm/a) 

     Simulated Observed 

Calibration Daily 0.68 7.17 0.57 302.76 326.14 

 Monthly 0.87 7.25 0.36   

Validation Daily 0.52 -3.61 0.69 331.61 320.05 

 Monthly 0.78 -3.38 0.46   

Validation 

(excluding 2011) 

Daily 0.60 0.73 0.63 238.49 252.84 

Monthly 0.82 1.03 0.43   

 

The comparison between the SWAT-Hillslope and the original SWAT2012 models was 

based on two calibrated models for Town Brook watershed. Figure 4.8 shows the comparison on 

daily and monthly discharge values simulated by SWAT-Hillslope and SWAT2012 versus 

observations for the period 2001-2003 which is within the calibration period. It is clearly 

observed that SWAT-Hillslope was able to capture the variation of streamflow in both summer 

(May – October) and winter (November to April) periods. However, SWAT-Hillslope 

underestimated the flow in winter where snow melt occurred frequently and did not capture the 

winter flow peaks excellently while it gave relatively comparable predictions of summer flows. 

Compared to SWAT-Hillslope, although SWAT2012 was better in capturing the winter peaks, it 

over-predicted the summer flows with simulated flow fluctuations in summers which had not 

been observed during these periods. Moreover, it can be seen from month flow comparisons in 

Figure 4.8 that SWAT2012 did not capture the flow trend as well as the SWAT-Hillslope model. 

Figure 4.9 presents the scatter plots of the streamflow simulated by SWAT2012 and 

SWAT-Hillslope versus measurements in daily and monthly time steps, relative to a 1:1 line plot. 

It again shows the closer fit of both daily and monthly simulated streamflow from SWAT-

Hillslope to observed flow compared to SWAT2012. For daily time steps, SWAT-Hillslope 

particularly showed better prediction for low flows. Generally, both models did not capture the 

peak flows very well although SWAT2012 gave closer prediction to some extremely high flows. 

Both models gave better performance for monthly predictions than daily ones. However, for all 

the simulated months, SWAT-Hillslope gave closer fit to observations. 

 



4. Model Development and Applications 

 

45 

 

 

 

Figure 4.8. Comparison of simulated daily and monthly discharge values between SWAT-

Hillslope, SWAT2012 and measured data 
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(a) Daily                                                                    (b) Monthly 

Figure 4.9. Scatter plot of daily and monthly simulated flow by SWAT-HS and SWAT2012 versus 

observed flow 

 

4.1.3.1.2. Comparison of simulated flow components  

 

The estimated time series of three flow components: surface runoff, lateral flow and 

groundwater flow by SWAT-Hillslope and SWAT2012 for the year 2003 are illustrated in Figure 

4.10. Surface runoff was the dominant flow in SWAT2012 while lateral flow dominated in 

SWAT-Hillslope. For the Town Brook watershed, SWAT-Hillslope predicted all surface runoff 

coming from saturation excess process, the infiltration-excess runoff was estimated at 0, which is 

reasonable for the Catskill Mountains area with infiltration rates often exceeding the medium 

rainfall intensity. Lateral flow deriving from the perched aquifer in SWAT-Hillslope occurred 

most of the time of the year except the period of snowfall (Jan – Feb). SWAT-Hillslope 

estimated very stable groundwater flow which contributed to streamflow throughout the year, but 

with small contribution at the beginning of the year when snowpack was accumulated. Different 

from SWAT-Hillslope, surface runoff in SWAT2012 which is implicitly considered as 

infiltration-excess runoff occurred in high rainfall except the snowfall period (Jan – Feb). Lateral 

flow in SWAT2012 which derived from soil moisture excess from field capacity, occurred 

throughout the year whenever there was rainfall. Groundwater flow had the same trend in the 

two models with slightly more fluctuation in the SWAT2012 model because of high volume and 

the difference in calibrated values for the groundwater-related parameters. 
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(a) SWAT-Hillslope 

 

(b) SWAT2012 

Figure 4.10. Time series of flow components simulated by SWAT-Hillslope in comparison with 

SWAT2012 
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(a) Wetness map                                                              (b) Land use 

  

 

 

 

 

 

 

 

 

 

   

  (c) Annual surface runoff in SWAT-Hillslope       (d) Annual surface runoff in SWAT2012 

Figure 4.11. Spatial distribution of annual surface runoff simulated by SWAT-Hillslope and 

SWAT2012. 

 

4.1.3.1.3. Comparison of Spatial Distribution of Runoff  

The spatial distribution of annual surface runoff during the calibration period generated 

by SWAT-Hillslope and SWAT2012 model was compared in Figure 4.11. Figure 4.11a and 

Figure 4.11b depict the wetness and land use map of the Town Brook watershed while Figure 

4.11c and Figure 4.11d present a striking difference in the spatial locations of surface runoff 

production between SWAT-Hillslope and SWAT2012. The distribution of surface runoff 

Wetness class 
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predicted by SWAT2012 followed the distribution of land use in which forest contributed the 

least runoff and agriculture was the most significant contribution. Residential areas had high 

amount of surface runoff, however they covered very small area in the watershed. Surface runoff 

was generated all over the watershed in SWAT2012 because it closely depended on land use due 

to the concept of Curve number. Unlike SWAT2012, runoff predicted by SWAT-Hillslope was 

only found in the areas corresponding to wetness class 1, 2 and 3 which were considered to be 

prone to saturation and were set with low water storage capacity.  

Moreover, the spatial distribution of simulated saturated areas by SWAT-Hillslope was 

compared with available observations in 28-30/4/2006 in a small area in Town Brook watershed 

(Figure 4.12). Figure 4.12a and Figure 4.12b respectively show the observed and simulated 

saturated areas by SWAT-Hillslope in the three observed days while Figure 4.12b presents the 

variation of rainfall in April, 2006. From Figure 4.12c, no rainfall was observed from 28-

30/4/2006 while there was a big storm happening on 23/04/2006. Due to no rainfall event, 

SWAT2012 predicted no surface runoff from 28-30/04/2006. In contrast, SWAT-Hillslope 

predicted the presence of saturation areas in these three days which is compatible with the 

observations. The saturation was caused by the high water level in perched aquifer resulting from 

the big storm event on 23/04/2006 and lateral flow contribution from the upslope areas to the 

downslope areas which are prone to saturation. 

 

4.1.4. Discussion 

Correctly identifying surface runoff source areas is particularly important for SWAT 

model applications to support watershed management. An effective watershed management 

strategy for pollution control is to target areas on the landscape where surface runoff and 

transportable pollutants co-occur (Gburek et al., 2002; Walter et al., 2000; Zollweg et al., 1996). 

Two runoff generation mechanisms - infiltration excess runoff and saturation excess runoff - can 

produce very different spatial distributions of runoff (Easton et al., 2008; Schneiderman et al., 

2007). Infiltration excess runoff occurs where rainfall rates exceed infiltration capacity of the 

soil, while saturation-excess runoff occurs on variable source areas (VSAs) that saturate from 

below. Overland flow is generated at VSAs by a combination of rainfall and return flow (lateral 

flow in SWAT terminology), and return flow may be the dominant source of stormflow in 

catchments where VSAs occur but are limited in extent (Walter et al., 2000). Different areas in 

the same catchment may exhibit infiltration excess runoff, saturation excess runoff, and return 

flow in various combinations. It is thus important in watershed pollutant export modeling 

applications to explicitly account for these hydrological processes. 

SWAT-Hillslope improves upon SWAT's ability to identify runoff source areas and 

hydrologic flow paths by replacing the runoff curve number method with explicit calculation of 

infiltration excess runoff, saturation excess runoff, and return flow at saturated areas. The curve 

number equation represents an empirical relationship between rainfall and runoff on a watershed 
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scale but does not account for the underlying processes of runoff generation. SWAT-Hillslope 

proceeds in the following order for each HRU: i) estimate infiltration-excess runoff and 

infiltration using Green-Ampt method (Green and Ampt, 1911; Mein and Larson, 1973; Neitsch 

et al., 2011), ii) determine saturation-excess runoff and saturated areas using a statistical-

dynamical approach to simulating the perched aquifer, and 3) estimate return flow at saturated 

areas as a non-linear function of perched aquifer storage. 

 

 

  

 

 

 

          

              

 

 

                                                                                                             

 

 

 

 

 

 

Figure 4.12. Saturated areas simulated by SWAT-Hillslope compared with observations. 

 

 

 

The statistical-dynamical (SD) approach to simulating the behavior of a perched aquifer 

(Wigmosta and Lettenmaier, 1999) treats the mean height of a perched water table as a time-

varying dynamic process while the shape of the water table (i.e., the spatial distribution of depth 

(a) Observations of saturated areas in 

28-30/04/2006 

(b) Saturated areas by SWAT-Hillslope 

(c) Rainfall in April 2006 
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to water table) within the hillslope is based on a statistical distribution of soil water storage 

capacity. The water table as a whole moves up and down as the average depth of water in the 

perched aquifer changes, while the shape of the water table remains constant over time (Figure 

4.13). A number of models utilize this approach, including TOPMODEL (Beven and Kirkby, 

1979; Sivapalan et al., 1997), the Variable Infiltration Capacity (VIC) model (Liang and 

Lettenmaier, 1994; Wood et al., 1992), the Probability Distributed Model (PDM) (Moore, 2007), 

the XINANJIANG model (Zhao et al., 1995), and the Australian Water Balance Model (AWBM) 

(Boughton, 2004). The efficiency of this approach has been studied most for TOPMODEL. The 

topographic wetness index (TWI) which defines the soil water storage capacity distribution in 

TOPMODEL has been shown to be fairly well correlated with observed soil moisture patterns in 

a number of studies including for the Town Brook watershed (Agnew et al., 2006; Buchanan et 

al., 2014; Grabs et al., 2009; Harpold et al., 2010; Lyon et al., 2004; Moore and Thompson, 

1996; Troch et al., 1993), but others have found that the TWI may not fully describe the 

observed soil moisture patterns and that other factors not captured by the index may significantly 

influence wetness distributions (Buttle et al., 2001; Güntner et al., 2004; Hjerdt et al., 2004; 

Iorgulescu and Jordan, 1994; Seibert et al., 2003). 

 

Figure 4.13  Idealized hillslope profile according to statistical dynamic approach.  Water table 

saturates at location 1, intersects the root zone at location 2, and is below the root zone at 

location 3. 

 

SWAT-Hillslope adopts the variable bucket approach of Sivapalan et al. (1997) and 

Boughton (2004) and others for defining the distribution of soil water storage capacity. A user-

defined distribution is input by dividing the catchment into a set of subareas of increasing storage 

capacity and specifying the area and maximum storage capacity of each areal wetness class.  The 

moisture distribution may be parametric, as in TOPMODEL, VIC, PDM and XINANJIANG 

models; or empirically derived as in AWBM model. In the application of SWAT-Hillslope in the 
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Town Brook watershed, the latter approach was taken. A previous analysis of observed soil 

moisture distribution in relation to the TWI was used to define 5 wetness classes and associated 

maximum soil moisture storage capacity distribution (Table 4.2). The resultant model performed 

well in simulating VSAs with a maximum extent of ~10% in accordance with observations as 

well as the hydrograph at the basin outlet, with hydrograph peaks being composed of substantial 

return flow. 

For catchments where soil moisture data is not available to inform the storage capacity 

distribution, it may be useful to consider defining catchment wetness classes at least initially 

according to a basic wetness classification scheme (from wet to dry), for example: 1) perennial 

stream channel; 2) perennial wetlands; 3) seasonally-saturated wetlands; 4) intermittently 

saturated areas; 5) rarely or never saturated. A basic wetness classification may be parametrized 

using a variety of information, including soil survey hydrologic data, wetland maps, 

farmer/landowner observation knowledgebase. It may also be useful to consider the shape of a 

storage capacity distribution developed from soft data as falling between two extreme cases 

(Figure 4.14): (a) a catchment with limited benches and floodplains, limited maximum extent of 

VSAs, and characterized by a TWI storage capacity distribution, vs. (b) one with extensive 

floodplains, extensive extent of VSAs, and characterized by a pareto distribution with b>1 

(Moore 2007). Alternatively, the moisture capacity distribution can be derived directly from the 

TWI distribution as in the variable bucket representation of TOPMODEL of Sivapalan (1997). 

The TWI distribution is transformed to a storage capacity distribution (S) by: 

 

 )(*_ max TWITWIfactoredcS   (4.5) 

 

where TWImax is the maximum TWI value for the catchment, and edc_factor serves as the 

TOPMODEL’s 1/f hydrogeological parameter, a measure of the assumed exponential decrease of 

soil hydrologic conductivity with depth. Use of distribution (x) effectively equates the saturation-

excess runoff algorithm in SWAT-Hillslope with a TOPMODEL application. 
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Figure 4.14. Water capacity distribution functions for two different topographic regimes. a) with 

limited benches and floodplains, limited maximum extent of VSAs, and characterized by a TWI 

storage capacity distribution. b) catchment with extensive floodplains, extensive extent of VSAs, 

and characterized by a pareto distribution with b>1 (Moore 2007). 

 

4.1.5. Conclusions 

 

When applied to the Town Brook watershed, the modified version of SWAT, SWAT-

Hillslope, successfully separates the infiltration excess runoff and saturation excess runoff. 

SWAT-Hillslope performed well in flow simulation for both daily and monthly time steps. 

Moreover, the comparison on spatial distribution of saturated areas with available observation in 

the three days with no precipitation showed that SWAT-Hillslope model was able to correctly 

predict the locations of saturated areas while the original SWAT could not predict any surface 

runoff in these dry days. SWAT-Hillslope allows the transportation of interflow laterally from 

upslope to downslope areas, providing water to saturate the wet HRUs. In addition, the perched 

aquifer has close interaction with the soil profile, which keeps the water level stay high in wet 

HRUs. Based on the good performance of SWAT-Hillslope both on streamflow simulation and 

spatial runoff distribution, it can be confidently concluded that with the incorporation of 

topography characteristics and the adding of the perched aquifer, SWAT-Hillslope gives a 

realistic representation of hydrological processes and is expected to lead to better water quality 

models where the source of the surface runoff matters. 

 

  

b)  a) 
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4.2. Application of the General Lake Model (GLM) to Cannonsville and 

Neversink Reservoirs 

 

A major new modeling initiative at DEP involves disinfection byproducts (DBPs) in the 

water supply.  DBPs are formed when chlorine is added to water as a disinfectant in order to 

inactivate bacteria, viruses, and other pathogens.  A portion of the naturally-occurring organic 

compounds found in tributary streams and water supply reservoirs reacts with chlorine to form 

DBPs; this group of compounds which form DBPs are collectively known as the DBP precursors 

(DBPP).  DEP seeks to better understand the role of both external watershed loading and internal 

reservoir production of dissolved organic carbon (DOC) and DBPPs, and the effect of watershed, 

terrestrial, and reservoir processes which act as sources and sinks for these chemicals.  The role 

of climate change on levels of DOC and DBPPs in the water supply is also of significant interest.  

A goal of this work is to develop a predictive model for DOC and DBPP that may be used in 

guiding watershed protection activities, evaluating impacts of climate change, and integrated into 

DEP’s Operations Support Tool (OST) to guide operations to minimize DBPPs in the water 

supply and DBPs in the distribution system.   

The General Lake Model (GLM), linked with the Aquatic Ecodynamics model (AED), 

has been selected for application and testing in predicting DOC and DBPPs in DEP reservoirs.  

GLM/AED is an open source community lake and reservoir model that has been developed as an 

initiative of the University of Western Australia and the Global Lake Ecological Observatory 

Network (GLEON), and has been applied to numerous lakes and reservoir within the GLEON 

network and beyond.  In its current form, GLM/AED is capable of simulating the organic carbon 

cycle, but is not capable of predicting DBPP.  Working with postdoctoral researchers and 

associated university faculty advisors, DEP modeling staff will be developing enhancements to 

this model to allow prediction of DBPP.  Cannonsville and Neversink Reservoirs have been 

selected for initial development and testing of this model. 

Here the application and testing of the hydrothermal component of GLM to Cannonsville 

and Neversink is described.  Hydrothermal testing and validation is a critical first step in the 

process of model application and testing, as the predictions of water temperature and internal 

reservoir mixing and transport that are a part of the hydrothermal predictions affect the 

subsequent predictions of all water quality parameters.  
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4.2.1. Methods 

4.2.1.1. Study sites 

 

Cannonsville and Neversink Reservoirs, two NYC reservoirs with different catchment 

characteristics, were chosen to test if GLM is capable of simulating in NYC reservoirs (Figure 

4.15). The Neversink Reservoir watershed is 91% forested with very little agriculture (1.4%) and 

developed land (3%). In contrast, land use in the Cannonsville Reservoir watershed is about 19% 

agricultural with an additional 7% categorized as developed. The GLM model was applied to 

these two reservoirs for the historical conditions that occurred in 2007 and 2008. 

 

 

                                  (a) Cannonsville                                                           (b) Neversink 

 

Figure 4.15. Land use within the watersheds of (a) Cannonsville Reservoir, and (b) Neversink 

Reservoir. 

 

 

4.2.1.2. GLM Model set up 

 

Bathymetric curves relating reservoir surface area and storage volume to water surface 

elevation are required for operation of GLM.   The bathymetric curves for Cannonsville (Figure 

4.16) and Neversink Reservoirs (Figure 4.17) contained in The New York City Water Supply 

Atlas were used in GLM simulations. In addition, the elevation of the spillway, and elevations of 

drinking water intakes as used in the GLM model are given in Table 4.6. 
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Figure 4.16. Bathymetric curves for Cannonsville Reservoir. 

 

 

 

 

                                   

Figure 4.17. Bathymetric curves for Neversink Reservoir. 
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4.2.1.3. Meteorological inputs 

 

The GLM model requires daily values of various meteorological data, including solar 

radiation, air temperature, relative humidity, wind speed, rain and snow.  Daily values of these 

quantities for 2007 and 2008 taken from DEP records, are shown in Figure 4.18 for Cannonsville 

Reservoir, and Figure 4.19 for Neversink Reservoir. 

 

4.2.1.4. Water budget calculation 

 

A water budget calculation was performed independently and prior to GLM simulations.  

The goal of the water budget calculation was to determine daily values of the ungaged inflow to 

a reservoir, so that, when used as a model input for a historical period, the predicted reservoir 

water surface elevation closely matches the observed elevation.  The water balance or budget 

equation used was:  

 

 OIUIG QQQ
dt

dV
  (4.6) 

 

where V is reservoir volume, t is time, QIG is the gaged surface inflow, QIU is the ungaged 

surface inflow, and QO is the total outflow.  This is the same water budget equation described in 

Section 5.1 of this report.  For Cannonsville Reservoir, USGS streamflow records for the West 

Branch of the Delaware River at Beerston, and for Trout Creek at Trout Creek, represented the 

gaged inflows.  For Neversink, USGS observations of the Neversink River at Claryville was the 

single gaged inflow to the reservoir.  For both reservoirs, the outflow QO is the sum of drinking 

water withdrawal, dam release, and spill.  Using these observations and Equation (4.6), daily 

values of the ungaged inflow QIU were determined as described in Section 5.1.  The reservoir 

inflows and outflows for Cannonsville Reservoir for 2007-2008 are shown in Figure 4.20, while 

the inflows and outflow for the same years for Neversink Reservoir are shown in Figure 4.21. 
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Table 4.6. Spillway and Intake Elevations of Cannonsville Reservoir and Neversink Reservoir. 

Site 
Elevation 

(ft) (m) 

Cannonsville 

Cannonsville Reservoir Spillway Elevation 1150.00 350.52 

Cannonsville Reservoir Elevation Tap 1 (CR1) 1032.00 314.55 

Cannonsville Reservoir Elevation Tap 2 (CR2) 1077.75 328.50 

Cannonsville Reservoir Elevation Tap 3 (CR3) 1113.65 339.44 

Neversink 

Neversink Reservoir Spillway Elevation 1440.00 438.91 

Neversink Reservoir Elevation Tap 1 (NR1) 1314.00 400.51 

Neversink Reservoir Elevation Tap 2 (NR2) 1344.00 409.65 

Neversink Reservoir Elevation Tap 3 (NR3) 1374.00 418.80 

Neversink Reservoir Elevation Tap 4 (NR4) 1404.00 427.94 

Note: elevations use Bureau of Water Supply (BWS) datum 
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Figure 4.18. Meteorological data for Cannonsville Reservoir, 2007-08. 
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Figure 4.19. Meteorological data for Neversink Reservoir, 2007-08. 
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Figure 4.20. Components of the water budget for Cannonsville Reservoir, 2007-2008: (a) 

inflows, and (b) outflows. 
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Figure 4.21. Components of the water budget for Neversink Reservoir 2007-2008: (a) 

inflows, and (b) outflows. 
 

 

 

4.2.1.5. Tributary Stream Temperature 

 

The temperature of tributary streams is a required input for GLM.  Using DEP records, 

the temperature of stream inflows to for Cannonsville and Neversink Reservoirs in 2007 and 

2008 are shown in Figure 4.22. 
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Figure 4.22. Inflow temperatures of Cannonsville Reservoir (a) and Neversink Reservoir (b). 

 

4.2.1.6. Model calibration and validation 

 

The primary goal in this application of the GLM hydrothermal model is the accurate 

simulation of the temperature of the entire water column, including the surface temperature (0-

3m) and the bottom water layer (at variable depth) for the entire whole simulation period.  Model 

simulations began on first date of water column temperature measurements in each of two years, 

for each reservoir, and continued to the end of year (Table 4.7). The predicted water column 

temperatures were compared to routine DEP temperature observations. The whole water column 

was first manually calibrated and then an auto calibration procedure was applied to reduce root 

mean square errors (RMSE) in the predicted water column temperature. The key hydrothermal 

model parameters coefficients that were adjusted as a part of the calibration process are given in 

Table 4.8. 

 

Table 4.7. The simulation period for Cannonsville Reservoir and Neversink Reservoir. 

 Cannonsville Neversink 

Calibration 
Start 4 April 2007 24 April 2007 

End 31 December 2007 31 December 2007 

Validation 
Start 4 April 2008 14 April 2008 

End 31 December 2008 31 December 2008 
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Table 4.8. GLM hydrothermal model coefficients that were adjusted during model calibration. 

Symbol Parameter Description Default Cannonsville Neversink 

hmin Minimum layer thickness (m) 0.5 0.25 0.25 

hmax Maximum layer thickness (m) 1.5 0.5 0.5 

CK Mixing efficiency – convective 

overturn 

0.2 0.125 0.125 

CW Mixing efficiency – wind stirring 0.23 0.1033 0.1033 

CS Mixing efficiency – shear 

production 

0.3 0.0407 0.4868 

CT Mixing efficiency – unsteady 

turbulence 

0.5 0.51 0.51 

CKH Mixing efficiency – Kelvin-

Helmholtz turbulent billows 

0.3 0.285 0.285 

CHYP Mixing efficiency – hypolimnetic 

turbulence 

0.5 0.52 0.47 

KW Extinction coefficient for PAR 

Radiation (m−1) 

0.2 0.7396 0.5023 

AC  Critical area below which wind 

sheltering may occur (m2) 

107 107 107 

   Wind factor Wind multiplication factor 1.0 1.2676 1.0648 

   CE Bulk aerodynamic coefficient for 

latent heat transfer 

0.0013 0.0014 0.0022 

  CM Bulk aerodynamic coefficient for 

transfer of momentum 

0.0013 0.0013 0.0013 

  CH Bulk aerodynamic coefficient for 

sensible heat transfer 

0.0013 0.0013 0.0013 

𝜆 Latent heat of evaporation (J/Kg) 2.453×106 2.453×106 2.453×106 

𝜎 Stefan-Boltzmann constant 

(W/m2/K4) 

5.67×10-8 5.67×10-8 5.67×10-8 

𝜀a Emissivity of the water surface 0.985 0.985 0.985 

CD Streambed drag 0.016 0.016 0.016 

G Seepage rate (m/d) 0 0 0 
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4.2.2. Results and Discussion 

4.2.2.1.  Water balance 

 

The GLM simulated water surface elevation for Cannonsville Reservoir is shown in 

Figure 4.23.  The good agreement between predictions and observations reflects the accurate 

calculation of ungaged inflows, and the accuracy of the bathymetric curves.  The results for 

Neversink Reservoir (Figure 4.24) as similarly good.  During the calibration and validation 

period, the simulated water surface elevation was generally highest in the spring and lowest in 

the fall both in Cannonsville Reservoir and Neversink Reservoir, which reflected the observed 

water surface elevation. 

 

 

 
 

 

 

 
 

Figure 4.23. Simulated water level (grey) and observed water level (black) of Cannonsville 

Reservoir (dash line is the spillway elevation). 
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Figure 4.24. Simulated water level (grey) and observed water level (black) of Neversink 

Reservoir (dash line is the spillway elevation). 

 

4.2.2.2. Temperature simulation 

 

Calibration on the hydrothermal component of GLM was based comparison on predicted 

and observed temperatures for 2007 only.  Once the calibration step was completed, the 

calibrated model was then applied to each reservoir for 2008, in order to separately validate the 

calibrated model. 

The thermal structure of Cannonsville and Neversink Reservoirs as simulated by GLM is 

shown in Figure 4.25 and Figure 4.26, respectively.  Comparison of predicted and observed 

temperatures in the surface and the bottom water layers of Cannonsville and Neversink 

Reservoirs are shown in Figure 4.27 and Figure 4.28, respectively. The seasonal variation in the 

temperatures of both water layers was captured well.  The RMSE values for simulated 

temperatures over the entire water column for each reservoir for 2007 (calibration) and 2008 

(validation) are summarized in Table 4.9.  As expected, the temperature errors were modestly 

larger for the validation period (2008) relative to the calibration period (2007).  Moreover, the 

accurate prediction of bottom water temperature is an indication that vertical mixing between the 

surface and bottom waters is simulated accurately. 
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Figure 4.25. GLM simulated temperature in Cannonsville Reservoir. 

 

 

 
Figure 4.26. GLM simulated temperature in Neversink Reservoir. 
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Figure 4.27. GLM simulated temperature for the surface water layer (a) and the bottom water 

layer (b) in Cannonsville Reservoir. 

 

 

 

 

Figure 4.28. GLM simulated temperature for the surface water layer (a) and the bottom water 

layer (b) in Neversink Reservoir. 
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Table 4.9. The average root mean square error (RMSE) in predicted water column 

temperatures (oC). 

 Cannonsville Neversink 

Calibration_2007 1.77  1.84 

Validation_2008 1.95 2.56 

 

 

 

For Cannonsville Reservoir, observed water column temperatures at site 4 were used for 

model calibration and validation.  The one dimensional (1D) GLM model has a good model 

performance for predicting water column temperatures with the observed data at all sites in NYC 

reservoirs. During the calibration period (2007), the GLM simulated temperature profiles not 

only matched the field data at Site 4 well in Cannonsville Reservoir (Figure 4.29) but also 

matched well the observed data at all sites of Cannonsville Reservoir (Figure 4.30). During the 

validation period of 2008, the predicted temperature profiles matched the observed temperature 

profiles at all sites of Cannonsville Reservoir (Figure 4.31).  GLM model predictions for 

Neversink for the calibration year (2007) are shown in Figure 4.32 and Figure 4.33, and 

validation results depicted in Figure 4.34.  For Neversink Reservoir, observations for Site 1 were 

the basis for model calibration and validation.  The observed temperature profiles in 

Cannonsville (Figure 4.30 and Figure 4.31) and Neversink (Figure 4.33 and Figure 4.34) indicate 

that there is little horizontal variation in water temperature from site to site. This indicates that, at 

least with respect to simulation of temperature, the one dimensional assumption is valid.  The 

features of thermal stratification in both reservoirs were reproduced well in summer. This 

modeling feature is very important for simulating algal blooms and other water quality features. 

In the epilimnion, the interannual variation (2007 relative to 2008) of temperature was simulated 

well, which indicates that the GLM model has the ability of predicting the surface heat transfer 

and wind mixing. However, in the metalimnion and hypolimnion, the simulated temperatures on 

some specific dates were modestly lower than observations. Although some simulated 

thermocline depths did not always match the observed depths accurately, the simulated 

thermocline depth increased from summer to fall, which matched the observed pattern. These 

results are generally similar to that obtained the previous application of a one dimensional 

hydrothermal model to Cannonsville (Owens, 1998).  Overall, the GLM model succeeded in 

tracking the seasonal changes of temperature in these two reservoirs. 
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Figure 4.29. Simulated temperature profiles and field data at Site 4 in Cannonsville Reservoir 

in 2007. 

 

 

 

Figure 4.30. Simulated temperature profiles and field data at all sites of Cannonsville 

Reservoir in 2007. 
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Figure 4.31. Simulated temperature profiles and field data at all sites of Cannonsville 

Reservoir in 2008. 
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Figure 4.32.  Simulated temperature profiles and field data at Site 1 in Neversink Reservoir 

in 2007. 

 

 

 

Figure 4.33. Simulated temperature profiles and field data at all sites of Neversink Reservoir 

in 2007. 
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Figure 4.34. Simulated temperature profiles and field data at all sites of Neversink for 2008. 

 

 

DEP observations of the temperature of the drinking water withdrawal were also 

compared with model predictions.  This comparison not only tests the ability of the model to 

simulate water column temperature, but also tests the simulation of selective withdrawal 
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algorithms in the model.  Although there was under prediction of withdrawal temperatures in the 

spring and early summer, the simulated trend of withdrawal temperatures was generally 

consistent with the observation in Cannonsville Reservoir (Figure 4.35). The blank area in the 

withdrawal temperature in Figure 4.35 indicates that there was no withdrawal.  There was a 

consistently large difference between simulated and observed withdrawal temperatures in 

Neversink Reservoir (Figure 4.36).  Additional calibration of selective withdrawal model 

coefficients (Hipsey et al., 2014) will be pursued for Neversink Reservoir in the future. 

 

 

                               (a)                                                                    (b)

 

Figure 4.35. Simulated withdrawal temperatures (lines) and observed withdrawal 

temperatures (circles) of Cannonsville Reservoir: (a) 2007, and (b) 2008. 

 

 

                               (a)                                                                    (b)

 
Figure 4.36. Simulated withdrawal temperatures (lines) and observed withdrawal 

temperatures (circles) of Neversink Reservoir: (a) 2007, and (b) 2008.. 
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4.3. Development and Testing of a Probabilistic Turbidity Model for 

Rondout Reservoir 

 

4.3.1. Background 

 

NYCDEP now routinely uses the Operations Support Tool (OST) software (Hazen and 

Sawyer 2013) to help guide reservoir operating decisions involving both the quantity and quality 

of water. An important water quality parameter of concern for the City’s water supply is 

turbidity. To address this, OST employs a two-dimensional (longitudinal-vertical) multiple size-

class turbidity model (Gelda and Effler 2007, Gelda et al. 2009, 2012, 2013) based on the mass 

transport framework of CE-QUAL-W2 (W2; Cole and Wells 2013). For managing water 

quantity, OST includes the entire Delaware River Basin, the Catskill subsystem, and the Croton 

subsystem, though water quality (turbidity) models that have been integrated into OST are for 

Schoharie, Ashokan, and Kensico reservoirs only.  

In the current version of OST, models for Schoharie and Ashokan reservoirs provide 

input of turbidity from the Catskill Basin to the Kensico Reservoir model, while input of 

turbidity from the Delaware Basin (mostly Rondout Reservoir water) is specified at historical 

median values.  Here we develop a tool to forecast more realistic simulations of turbidity in 

Rondout Reservoir withdrawal which can then be specified as input to Kensico Reservoir 

turbidity model in OST thus making the forecasts of turbidity in the Kensico Reservoir 

withdrawal more accurate. 

The proposed modeling tool is based on a separate turbidity model for Rondout 

Reservoir, which was developed and validated earlier (Gelda et al. 2013). With the added 

capability of using short-term ensemble forecasts of hydrological inputs, turbidity, and 

climatology as the model drivers, it can generate probabilistic forecasts of turbidity. The tool is 

expected to help guide operations of Rondout Reservoir during storm events in the watershed as 

well as provide realistic estimates of turbidity inputs for the Kensico Reservoir model in OST. 

 

4.3.2. Approach 

 

The central feature of the overall probabilistic modeling framework is the deterministic 

hydrodynamic-water quality model, W2 (Figure 4.37). It is capable of simulating transport 

within the reservoir, features of the thermal stratification regime, temperature in the withdrawal, 

patterns of turbidity within the reservoir, and in the withdrawal. The model drivers are 

meteorological conditions, inflows, inflow-temperatures, and inflow-turbidity from Rondout 

Creek, Chestnut Creek, and Cannonsville, Pepacton, and Neversink tunnels (Figure 4.38). 
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With the best forecasts of the model drivers, W2 can generate a single best forecast of 

turbidity. However, such forecast has limited management value because there is no probability 

associated with it. Further, the forecasts of model drivers have natural variability and uncertainty, 

which is not represented in the model if only best estimates are used. The probability approach 

presented here incorporates variability and uncertainty in the model inputs, including 

meteorological, hydrological, and water quality data (Figure 4.37). The model output generated 

from this approach is analyzed in a probabilistic format, allowing managers to make risk-based 

operations decisions. The details of this approach are discussed next. 

 

 

 

Figure 4.37. Conceptual framework of a probabilistic turbidity model for Rondout Reservoir. 

(NOAA: National Oceanic and Atmospheric Administration, HEFS: 

Hydrologic Ensemble Forecast System, OST: Operations Support Tool) 

 

 

Definitions: Multiple time series of forecast are known collectively as an ensemble of 

forecast and an individual time series in an ensemble is referred to as an ensemble member. The 

values in a time series (or an ensemble member) when used in a model as an input can be called 

a trace. Linked input traces of meteorology, hydrology, and water quality together with the 

corresponding model output trace will form a complete model simulation trace. Such multiple 

simulation traces form the basis of ensemble reservoir water quality forecasts which are then 

used to construct probabilistic predictions.   
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Figure 4.38. CE-QUAL-W2 model segmentation of Rondout Reservoir, including monitoring 

location on the tributaries, and in the reservoir. Inputs from the upstream 

Cannonsville, Pepacton, and Neversink reservoirs are indicated by WBDT, 

EDT, and NST, respectively. 

 

Method: Ensemble forecasts of atmospheric conditions (e.g., temperature, precipitation) 

by National Oceanic and Atmospheric Administration (NOAA) are used by National Weather 

Service’s (NWS) hydrologic models to generate hydrologic ensemble forecasts. These forecasts 

are accessed and post-processed by OST. The post-processing step corrects any statistical bias in 

the forecasts, formats data according to the input requirements of OST, and develops flow inputs 

for the locations in the model (Figure 4.37).  

The modeling tool developed here, obtains from OST, traces (n = 47) of total inflow to 

Rondout Reservoir and divides into inflow from Rondout Creek, Chestnut Creek, and ungaged 

area (Figure 4.38), as required by W2 model. Corresponding to each of these hydrologic traces, a 

time series trace of turbidity is estimated from the empirical relationships developed between 

flow and turbidity (UFI 2013).  

Site-specific short-term (e.g., days–weeks) forecasts of hourly meteorological data (air 

temperature, dew point temperature, wind speed and direction, and solar radiation) 

corresponding to the hydrologic traces are not available presently. Therefore, historical data 

available for the 1987-2012 (m = 25) interval were used. To combine the variability present in 

the hydrological data with the variability present in the meteorological data, m W2 model runs 

were made for each hydrological and water quality trace input, for a total of m × n (25 × 47 = 



 2015 Water Quality Modeling Annual Report 

80 

 

1125) runs (Figure 4.37). Additional inputs required by W2 model are initial state (i.e., 

temperature, water surface elevation and turbidity) of the reservoir and reservoir operations 

(inflows from the three upstream reservoirs, and withdrawal). The following section describes an 

example application of the approach and compares the predicted turbidities in the withdrawal, in 

a probabilistic context, with the actual observations.    

 

4.3.3. Model Specifications for an Example Application 

 

The model was applied to forecast turbidity in the withdrawal from Rondout Reservoir 

during a period of 11/13/2015–12/1/2015 (18 days). All hydrodynamic and water quality model 

parameters were adopted from the previously validated model (Gelda et al. 2013). 

 

Future boundary conditions: Hydrologic ensemble forecast included 47 traces of total 

inflow, which was processed into three separate inflows from Rondout Creek, Chestnut Creek, 

and ungaged area represented in the model as distributed along the shoreline, according to the 

respective watershed areas. Turbidity associated with each hydrologic trace and source input was 

estimated according to the empirical relationships developed by UFI (2013). The contribution to 

the total turbidity from the three size classes of particles was estimated as specified by UFI 

(2013). Meteorology was obtained from the historical database developed for the reservoir site 

for 1987–2012 (25 year-long individual traces). Inflow temperatures were also obtained from the 

historical observations for the same interval.  A trace of inflow temperature corresponded to the 

same time trace of meteorology. 

 

Reservoir Operations: Inputs from the three upstream reservoirs – Cannonsville, 

Pepacton, and Neversink reservoirs – were specified as listed in Table 4.10. Neversink Tunnel 

was not in operations during the study period. Withdrawal and downstream release from 

Rondout Reservoir were set at 700 MGD, and 10 MGD, respectively. The elevation of the intake 

in use was 784 feet.  

 

Initial conditions: The observed water surface elevation at the beginning of the forecast 

period was 836 feet. Initial values of the temperature and turbidity in the reservoir were obtained 

by linearly interpolating observations, from 3 sites and 3–4 depths at each site, made during a 

routine field survey on 11/10/2015 (Table 4.11).  

 

 

 



4. Model Development and Applications 

 

81 

 

Table 4.10. Specifications of operations of upstream reservoirs for the forecast 

interval of 11/13/2015–12/1/2015. 

Source Flow+ Temperature* Turbidity* 

Pepacton 500 MGD 
historical median daily; 

daily values 

historical 10th percentile 

daily; daily values 

Cannonsville 200 MGD 
historical median daily; 

daily values 

historical median daily; 

daily values 

Neversink 0 - - 
+option for choosing any time series will be added; specified flows were approximately equal to 

the actual operations and were projected to continue for the forecast period. 
*option for choosing historical 5th, 10th, 25th, 75th, 90th, 95th percentile values or any time 

series is available. 

 

 

Table 4.11. Observed temperature and turbidity depth 

profiles at sites 1, 2, and 3 in Rondout 

Reservoir on 11/10/2015. 

Site 
Depth 

(m) 

Temperature 

(°C) 

Turbidity 

(NTU) 

1 3 12.7 0.8 

1 20 12.1 0.85 

1 36 8.8 0.85 

1 47 7.5 1.6 

2 3 12.5 0.7 

2 17 12.4 0.6 

2 32 11.3 1.5 

3 3 12.3 0.9 

3 14 12.3 0.6 

3 25 11.1 1.4 

 

 

4.3.4. Results and Discussion 

 

Substantial variability was forecasted in the Rondout Creek inflow for the study period 

by Hydrologic Ensemble Forecast Service (HEFS) as depicted in Figure 4.39 by the 47 

individual traces of inflow time series. The variability in the flow existed both from day to day 

and amongst the traces, however, the median forecast was nearly steady at about 1.25 m3 s−1 for 
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the duration of the study. Observations, which became available after the study, generally 

tracked the 90th percentile of the ensemble (Figure 4.39).  

 

The full combined variability in the model output arising from the variability in the 

model drivers (hydrology, meteorology, and water quality, i.e., turbidity) is evaluated here for 

the predictions of turbidity in the withdrawal, a key point of water quality concern (Figure 4.40). 

Out of 1175 individual traces (47 hydrology traces × 25 meteorology traces) of predictions, only 

100 are shown in Figure 4.40, however, the median, 10th and 90th percentiles depicted are 

obtained from all 1175 traces.  

 

 

Figure 4.39. Ensemble forecast of Rondout Creek inflow for 11/13/2015–12/1/2015. Forty 

seven individual traces, median, 10th and 90th percentile traces are shown along with the 

observations from USGS. 

 

 

The median forecast of turbidity indicated a modest downward trend during the study 

period, from ~ 0.85 NTU on 11/13/2015 to ~ 0.65 NTU at the end of the period on 12/1/2015 

(Figure 4.40). Some of the individual traces predicted turbidity > 1.5 NTU after 11/26/2015 due 

to a couple of inflow traces that included a forecast of high runoff, and correspondingly high 

turbidity, on that day. Two such inflow traces combined with 25 meteorological traces resulted in 

50 traces of anomalous withdrawal turbidity, which did not affect the median forecast (Figure 

4.40).   

 

The observations of turbidity for the same time interval provided the opportunity to 

validate the model forecasts (Figure 4.41). The modest decreasing trend in the turbidity as 

observed was well represented by the median forecast, and the intra-day variability in the 

Rondout Creek

11/13/2015 11/17/2015 11/21/2015 11/25/2015 11/29/2015

F
lo

w
 (

m
3
 s

-1
)

0

5

10

15

20

all traces (n=47)

median
10th percentile
90th percentile

observed (USGS)



4. Model Development and Applications 

 

83 

 

observations was approximately within the bounds of 10th and 90th percentile predictions (Figure 

4.41). Additional applications of the model are planned in the current year to further validate the 

model for a wide range of hydrological and meteorological conditions. 

 

 

 

Figure 4.40. Ensemble forecast of turbidity in the withdrawal from Rondout Reservoir 

(RDRR) for 11/13/2015–12/1/2015. One Hundred of the 1175 individual traces, 

median, 10th and 90th percentile traces are shown. 

 

 

Figure 4.41. Predictions of turbidity in the withdrawal from Rondout Reservoir for 

11/13/2015–12/1/2015 interval. Predicted median, 10th and 90th percentiles 

values are compared with historical median values and actual observations. 

RDRR

11/13/2015 11/17/2015 11/21/2015 11/25/2015 11/29/2015

T
u
rb

id
it
y
 (

N
T

U
)

0.4

0.6

0.8

1.0

1.2

1.4

10th percentile
90th percentile
median

RDRR

11/13/2015 11/17/2015 11/21/2015 11/25/2015 11/29/2015

T
u

rb
id

it
y
 (

N
T

U
)

0.4

0.6

0.8

1.0

1.2

1.4

median
10th percentile
90th percentile
historical median
observed



 2015 Water Quality Modeling Annual Report 

84 

 

Probabilistic analysis: Uncertainty in the model predictions is evaluated by estimating 

the probabilities of exceedances of certain turbidity levels. For example, as shown in Figure 4.42, 

in 85% of the traces, turbidity never exceeded 1 NTU, which can be interpreted as that the 

probability of exceedance of 1 NTU is only 15%. Four other turbidity levels analyzed for the 

probability of exceedance were 0.5, 0.75, 2, and 2.5 NTU, which indicated that the probabilities 

of exceeding 0.5 and 0.75 NTU were 100% while it was < 1% for exceeding 2 and 2.5 NTU 

(Figure 4.42).  

 

 

Figure 4.42. Predictions of turbidity in the withdrawal from Rondout Reservoir for 

11/13/2015–12/1/2015 interval. Percentages of simulation traces that predict 

turbidity less than the specified levels (0.5, 0.75, 1, 2, and 2.5 NTU) and 

probability of exceedance (= 100 − percent of traces less than) are shown.  

 

In addition to the probability of exceedance, the other important feature of the analysis is 

to compute the duration or severity of exceedance. In other words, in the simulation traces with 

exceedances, what is the average number of days when the turbidity is exceeded by a specified 

value? This is illustrated in Figure 4.43 for the same levels of turbidity as chosen for the 

probability calculation. For example, when turbidity exceeded 1 NTU, it exceeded on 4 days on 

average (out of 18 days of forecast period; 22%; Figure 4.43). Such analyses would enable 

managers to make risk-based decisions and adjust water supply operations accordingly as 

compared to deterministic forecasts which provide no information on uncertainty. 
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Figure 4.43. Predictions of turbidity in the withdrawal from Rondout Reservoir for 

11/13/2015–12/1/2015 interval. Average number and percentages of the days 

the turbidity exceeds the specified levels (0.5, 0.75, 1, 2, and 2.5 NTU). 

 

 

Sources of uncertainty: The relative importance of variability in the model drivers 

(hydrology versus meteorology) was examined by conducting simulation runs where variability 

in only one driver was considered while the other being held constant. The variability in the 

output was quantified in terms of standard deviation of withdrawal turbidity (σTn,w) for the two 

cases of: (1) variable hydrology (47 traces) but constant meteorology (1 trace), and (2) variable 

meteorology (25 traces) but constant hydrology (1 trace). Trace 1 was chosen as the constant 

trace for both the cases from the respective groups of meteorological and hydrological traces. 

The overall magnitude of σTn,w was found to be similar for both of these cases implying that it 

was equally important to consider the variability in both the hydrological and meteorological 

drivers (Figure 4.44). Generally rising magnitude of σTn,w for Case 1 is due to the greater 

uncertainty associated with the hydrologic forecasts farther in the future. Uneven magnitude of 

σTn,w for Case 2 may just be a reflection of the variability in the historical meteorological 

conditions. Additional simulation tests need to be conducted to fully explain the nature of 

variability in this metric of evaluation. 
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Figure 4.44. Time series of standard deviation of withdrawal turbidity computed from multiple 

traces of predictions due to variations in meteorology and hydrology.  

 

 

Sensitivity of combinations of hydrology and meteorology: In the example discussed here, 

a complete factorial design of input variables (i.e., n hydrology traces × m meteorology traces, 

representing full interaction of input variables) was adopted. For n = 47 and m = 25, a total of 

1175 simulation runs were conducted making it a computationally intensive method. In order to 

reduce the run time requirement, alternative partial factorial sampling was evaluated. The partial 

sampling included 25 groups (or, experiments) of 100 randomly selected combinations of 

hydrological and meteorological traces. The results of these simulation experiments are 

represented by the median turbidity in the withdrawal (Figure 4.45). In each of these simulations, 

the median turbidity was almost identical to the median turbidity obtained from the full 1175 

simulations. This finding suggests that if management decisions are to be based on the forecasts 

of only median values, then a partial combination of input variables may be adequate.  
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Figure 4.45. Predictions of median turbidity in the withdrawal from Rondout Reservoir for 

11/13/2015–12/1/2015 interval. Median values as computed from 1175 traces 

are compared with values from 100 randomly selected traces in 25 of such 

sampling experiments.  

 

4.3.5. Future Work 

 

Future work related to the forecasting and modeling of uncertainty will likely involve the 

following tasks: (i) evaluation and validation of the hydrologic forecasts, (ii) acquisition and use 

of near-term site-specific forecasts of meteorological conditions, (iii) exploration of approaches 

to address uncertainty in turbidity loading from Rondout Creek, (iv) conducting additional tests 

of the approach discussed here and validate the turbidity model for a wide range of hydrological 

and meteorological conditions, (v) improving predictive skill of the turbidity model 

(recalibration, if necessary), and (vi) preparing a plan for issuing turbidity forecast reports 

routinely. 
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4.4. Simulation of the Impact of Drawdown of Cannonsville Reservoir on 

Turbidity in Rondout Reservoir 

 

On July 9, 2015, a turbid discharge was discovered during a geotechnical investigation at 

the Cannonsville Dam.  Out of an abundance of caution, DEP began to lower the elevation of 

Cannonsville Reservoir.  Drinking water diversion (withdrawal) to Rondout Reservoir, and 

releases to the river downstream of the dam, were maximized.  

The Operations Support Tool (OST), DEP’s reservoir system operations model, was used 

to forecast reservoir operations during the planned drawdown of Cannonsville.  Observations up 

to July 29 and forecasts of future conditions made on that date are the basis for the analysis 

described here.  The drawdown of Cannonsville was forecast to continue until Sept. 23, when the 

reservoir water surface would approach the elevation of the lowest of 3 drinking water intakes 

(Figure 4.46). 

While predictive turbidity models have been developed and validated for Schoharie, 

Ashokan, Rondout, and Kensico Reservoirs, DEP does not have a reliable, validated turbidity 

model for Cannonsville.  As a result, historical turbidity observations were used in order to 

estimate the turbidity of the Cannonsville withdrawal to Rondout in response to drawdown.  

Simply looking at historical water surface elevations in Cannonsville, Figure 4.47 shows 

cumulative probability distributions for water surface elevation, considering 3 sets of water 

surface elevation observations: 

1. All historical data 1966-2015 

2. All data during period of reservoir water quality monitoring, 1988-2015 

3. All data from periods when withdrawal or tap turbidity was measured 

It is clear from Figure 4.47 that, while the reservoir has been drawn down to a water surface 

elevation of nearly 1050 feet, very little turbidity data is available for Cannonsville when it has 

been drawn down roughly to the elevation of intake 2 (1092 feet), which the July 29 OST 

forecast said would occur on Sept. 2.  An additional 45 feet of drawdown was forecast to occur 

after Sept. 2, conditions for which there are no observations of turbidity. 
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Figure 4.46. Cannonsville water surface elevation, observations and OST forecast, July 

through September, 2015. 

 

 

 

Figure 4.47. Frequency of occurrence of Cannonsville water surface elevation. 

 

All Cannonsville withdrawal and tap turbidity data (from 1988 to present) was assembled 

to attempt to identify a relationship between withdrawal turbidity and reservoir drawdown.  The 
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paired turbidity-reservoir elevation data was divided into 12 groups based on reservoir elevation, 

and cumulative probability statistics were computed for each group.  The results are shown in 

Figure 4.48.  For the example shown on Figure 4.48, for days when the Cannonsville water 

surface elevation was between 1127.5 and 1132.5 (plotted as 1130.0), 95% of the observations 

were less than 5.7 NTU, based on 545 observations of turbidity when the water surface elevation 

was in this range. The curves for 50, 90, 95 and 99th percentiles all show that turbidity generally 

increases with decreasing elevation.  The occurrence of runoff events, which certainly has a 

greater influence on turbidity than reservoir elevation, contributes to the scatter in this figure.  

The apparent increase in turbidity when the reservoir elevation is around the elevation of Intake 

3 is curious but may simply be due to the occurrence of runoff events when the reservoir 

elevation happened to be in this range.  Note that the number of observations used to compute 

these statistics decreases as the water surface elevation drops; below a water surface elevation of 

1100 feet, prediction of turbidity from the data alone becomes uncertain. 

 

 

 

Figure 4.48. Statistics of Cannonsville withdrawal turbidity as a function of reservoir 

drawdown. 

 

Figure 4.49 shows observations of Cannonsville withdrawal turbidity since early July, 

2015.  From July 8 to 29, there is an apparent modest increasing trend in turbidity that may be 
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related to the increasing drawdown.  A turbidity of 3.0 NTU was observed in the withdrawal on 

July 29, when the reservoir elevation was 1136 feet.  Using this turbidity as a starting point, the 

following predictive equation was used: 

 

 TnW = 3.0 + S (1136 – WSE) (4.7) 

 

where TnW is withdrawal turbidity (NTU), WSE is reservoir elevation (feet), and S is an empirical 

coefficient which determines the effect of WSE on TnW.  Using least-squares regression a value 

of S was determined from the 95 and 99% statistics shown in Figure 4.48.  The results are  

 

95th percentile: 

 TnW = 3.0 + 0.15 (1136 – WSE) (4.8) 

 

99th percentile: 

 TnW = 3.0 + 0.23 (1136 – WSE) (4.9) 

 

These two alternative relationships were used to forecast the Cannonsville withdrawal turbidity 

for August and September of 2015, based on the OST forecast for WSE for this period shown in 

Figure 4.46.  The resulting turbidity forecasts are shown in Figure 4.49.  When Cannonsville 

withdrawal is greatly reduced on Sept. 23, the 95th and 99th percentile forecasts of withdrawal 

turbidity are 16.2 and 23.2 NTU, respectively.  The red line in Figure 4.49 shows the turbidity 

for which 99% of the observations are less, based on the OST forecast reservoir elevation.  Since 

there is no data for the elevations that are forecast to occur after Sept. 2, Equations (4.8) and 

(4.9) are simply extended.  The underlying turbidity data represents periods when turbidity was 

high due to runoff events, and dry periods when the turbidity was lower.  The use of 95 and 99th 

percentiles for the entire 2-month period effectively assumes that wet weather, that is the primary 

cause of unusually high turbidity, occurs throughout this period, a very conservative assumption. 
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Figure 4.49. Forecast of Cannonsville withdrawal turbidity for the entire drawdown period, 

August and September, 2015, and measurements in July 2015. 

 

 

The July 29 OST forecast of withdrawals from Cannonsville, Pepacton, and Neversink 

into Rondout are shown in Figure 4.50.  The observed Rondout and Chestnut Creek hydrographs 

for August and September of 2012 were used in the simulations presented here.  The Rondout 

Creek hydrograph for this period of 2012 is shown in Figure 4.50; this year was selected because 

a runoff event occurred on Sept. 19, 2012.  As a result, the simulations shown here not only 

including the impact of elevated turbidity in the large inflow from Cannonsville (Figure 4.50), 

but also included a runoff event from the Rondout Reservoir watershed occurring during the later 

stages of the Cannonsville drawdown. 

Observations of turbidity in the Pepacton and Neversink withdrawal flows into Rondout 

in July, 2015 were generally around 1 NTU (Figure 4.51).  For forecasting, two conditions were 

considered: 

1. Pepacton and Neversink turbidity constant at 1.0 and 0.9 NTU (median historical August-

September values)  

2. Pepacton and Neversink turbidity constant at 2.8 and 2.3 NTU, 95th percentile values for 

August-September based on historical data.  Turbidity at these levels is due to runoff 

events; this effectively assumes that a series of runoff events occur over the entire 

drawdown period.   

These Pepacton and Neversink turbidities are shown in Figure 4.51. 

Temperatures of the Pepacton and Neversink inflow to Rondout Reservoir were taken as 

average values for a particular date, based on historical data.  The temperature of Rondout and 

Chestnut Creeks were taken from 2012 observations (consistent with the assumed creek flow).  

The temperature of the Cannonsville inflow would certainly be affected by drawdown and its 
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likely effect on thermal stratification in the reservoir.  The one-dimensional hydrothermal model 

of Cannonsville (Owens, 1998b), was used to forecast the temperature of the Cannonsville 

withdrawal, given the OST forecasts for Cannonsville inflow, withdrawal, release, and 

drawdown.  The inflow temperatures shown in Figure 4.52 were used in the model predictions 

for Rondout Reservoir. 

 

       

 

Figure 4.50. Forecasts of inflows to Rondout from upstream reservoirs for the August-

September drawdown period, and the Rondout Creek hydrograph for August-

September 2012. 

          

 

Figure 4.51. Observed and assumed turbidity in the Pepacton and Neversink inflows to 

Rondout for August-September, 2015. 
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Figure 4.52. Temperatures of the inflows to Rondout for August-September 2015 period used 

in the model forecast.  Cannonsville temperature determined from 1D 

hydrothermal model based on OST forecast of inflow and outflow.  Pepacton 

and Neversink temperatures are average historical values, while Rondout Creek 

temperature is the observed time series for 2012. 

 

Weather conditions (solar radiation, air temperature and humidity, wind) observed at 

Rondout in Aug.-Sept. 2012 were used in the forecasts for Rondout Reservoir.  The initial 

condition for temperature and turbidity in the water column of Rondout was based on observed 

profiles from July 29, 2015, when turbidity ~0.2 NTU at the surface to ~0.7 NTU near the 

bottom.  Drinking water withdrawal from Rondout was set to values from the July 29 OST 

forecast. 

The Rondout W2 turbidity model was then used to predict temperature and turbidity in 

the water column and withdrawal of Rondout Reservoir for the period July 29 to September 30, 

2015.  Two separate predictions were made: 

Case 1: Conservative forecast:  

 Cannonsville withdrawal turbidity given by black (95th percentile) curve in Figure 4.49 

 Pepacton and Neversink withdrawal turbidity at 1.0 and 0.9 NTU, respectively (historical 

median, solid curves median in Figure 4.51). 

Case 2: Ultra-conservative forecast:  

 Cannonsville withdrawal turbidity given by red (99th percentile) curve in Figure 4.49 

 Pepacton and Neversink withdrawal turbidity at 2.8 and 2.3 NTU, respectively (historical 

95th percentile, dash curves in Figure 4.51). 

Predicted turbidity in the withdrawal for Rondout for these two cases is shown in Figure 

4.53.  Peak turbidities for the two cases are 1.79 and 2.70 NTU, both occurring on Sept. 27, 3 

days after the withdrawal from Cannonsville was to be reduced due to drawdown approaching 
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the elevation of Intake 1 (1040 feet).  These results show that Rondout Reservoir has the ability 

to withstand a 2-month period of significant turbid inflow.  This is largely due to two factors: 

1. For these conditions, the hydraulic residence time of Rondout is 63 days, assuming plug 

flow through the entire reservoir volume.  Given its relatively warm temperature, the time 

of travel of the turbid Cannonsville inflow to the Rondout Dam is likely less.  

Nonetheless, it takes some time to displace the low turbidity (~0.3 NTU) water that 

resided in the reservoir on July 29. 

2. Settling of particles contributing to turbidity within the reservoir, especially for the 

Cannonsville withdrawal, which was found in earlier studies by UFI to contain a 

relatively large fraction of fast-settling particles. 

 

 

 

              

 

Figure 4.53. Predicted turbidity in the withdrawal from Rondout Reservoir during the period of 

drawdown of Cannonsville Reservoir. 

 

 

 

On July 31, repair work at the Cannonsville Dam eliminated the turbid discharge, and the 

rapid drawdown of Cannonsville was halted.  The actual water surface elevation of Cannonsville 

through August and September is shown in Figure 4.54.  Even so, this episode demonstrates the 

utility of monitoring and modeling programs in forecasting and evaluating the potential future 

impacts of unusual or unforeseen events, and in planning appropriate responses. 
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Figure 4.54. Actual drawdown of Cannonsville Reservoir, and July 29 OST forecast, for 

period July 8 through September 30, 2015. 
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4.5. Ecohydrologic Modeling 

4.5.1. Introduction 

 

Forests play a key role in regulating water quality in streams, and forest disturbances and 

climate change can affect the water quality through major changes in hydrologic function and 

ecosystem.  Therefore, improving the understanding how these changes impact water quality is 

critical in managing water quality for forested watersheds.  However, the use of models to 

predict water quality following forest disturbance and climate change is a challenge given the 

complex interactions among climate, hydrology, and biogeochemistry.  

To accurately predict the impact of these disturbances on the water quality, models 

should be able to represent the current state of physical processes and incorporate the feedback 

processes (e.g. vegetation responses) to changing environmental conditions. In this study, an 

ecohydrologic model, Regional Hydrologic-Ecologic Simulation System (RHESSys) (Tague and 

Band, 2004) is used to study the impact of climate change and forest disturbance on 

ecohydrologic processes, including flow, evapotranspiration, nitrogen fluxes, and dissolved 

organic carbon fluxes.  Previous applications of RHESSys showed the capacity to represent 

coupled hydrologic and vegetation fluxes, and ecohydrologic responses to climate change and 

vegetation change (Band et al., 1996; Baron et al., 1998; Hwang et al., 2012; Zierl et al., 2007). 

The study sites are located in the Neversink River basin, the least developed New York 

City water supply watershed.  Due to climate change and introduced insects and diseases, the 

forest and stream have experienced changes in hydrologic processes, the quality of soil and 

stream waters, and the forest species. Due to recent hemlock decline caused by the hemlock 

woolly adelgid, decreased winter transpiration and degraded riparian habit is expected (Brantley 

et al., 2013).  Forest harvesting in Shelter Creek watersheds increases the streamflow, nitrogen, 

and dissolved carbon concentrations. As well, recent climate impact studies in Catskill Mountain 

watersheds predicted an increase in winter streamflow, and decrease in summer flow using 

watershed models (SWAT and GWLF-VSA) and future climate scenarios based on General 

Circulation Models (GCM) (Anandhi et al., 2011; Matonse et al., 2011; Zion et al., 2011). The 

Catskill Mountains have high levels of nitrogen depositions, and this deposition modifies the 

biogeochemistry of soils, and increases the acidification in streams (Lawrence et al., 2000). 

Therefore, accurately quantifying hydrologic change and biogeochemistry in soils and streams 

and vegetation change in our study sites is essential step for preparing for the guideline to 

mitigate these changes, and maintain high quality water in streams.  

To conduct this study, the framework shown in Figure 4.55 is used to test the impact of 

climate change and forest disturbance on ecohydrologic processes using RHESSys. Various 

remote sensing data including Landsat, MODIS and LIDAR are used to initialize the model state 

of vegetation, and validate the model prediction of forest recovery after forest harvest, and forest 
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responses to climate variability. Observed streamflow, nitrogen fluxes, and dissolved carbon 

(DOC) fluxes measured at the outlet of each watershed are used to calibrate and validate the 

watershed responses of ecohydrologic processes to climate variability and forest disturbance at 

multiple scales. The impacts of forest disturbance vary with scale; for example, the impacts may 

decrease with watershed size, and increase with the extent of disturbance and forest harvesting. 

However, the impact of climate change may occur over large areas (Blöschl et al., 2007). 

Application of this framework is described at three different scales: a headwater catchment, a 

medium size catchment and a large river basin. The combined effects of forest disturbance and 

climate change on ecohydrologic processes is investigated. This study is presently under 

development, and preliminary results of model calibrations and remote sensing data analysis are 

presented.  

 

 

 

 

Figure 4.55. The framework for studying the impact of disturbance on ecohydrologic 

processes using RHESSys. 
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4.5.2. Study sites 

 

The study sites are three watersheds of varying size located in Catskill Mountain region: 

Shelter Creek watershed, Biscuit Brook watershed, and Neversink watershed. Table 4.12 

summarizes each watershed, and Figure 4.56 shows the geographic extent and boundary of each 

watershed.  The Neversink watershed is the largest watershed (245.6 km2), and it includes the 

Shelter Creek (1.6km2) and Biscuit Brook (9.2 km2) watersheds. The two smaller watersheds 

drain into the Neversink reservoir. The major landcover type is forest for all watersheds, and 

mixed northern hardwood forest is the dominant forest type, consisting of American beech, red 

maple, sugar maple and yellow birch (Harpold et al., 2010). Balsam fir is found above 1000 m 

elevation, and hemlock is found at the ridge and near streams.  

The major soil type is Inceptisols, and its depths range from 0.5 - 1 m.  Soils have coarse 

texture, and are well drained. Major surface geologic type is sandstone (60%). Underlying 

bedrock type is sedimentary rock, and the bedrock has high percentages of fractures. Bedrock 

mineralogy is spatially uniform. The till depth is shallow (<1 m), and in the valley bottoms, the 

coarse sand and gravel is formed by the glacial outwash and recent alluvium deposits. The 

average precipitation (based on Slide Mountain climate station, located in the summit of 

Neversink basin) is 1570mm, and mean air temperature is 5.2 ̊C.  The proportion in snow of the 

total precipitation ranges from 20 to 35% (Harpold et al., 2010). Shelter Creek watershed 

experienced forest harvesting in the winters of 1995-96 and 1996-97. Figure 4.57 and Table 4.13 

show the area of forest harvesting and the different harvesting history for each watershed.  NS25 

is ‘light selective harvest’ watershed, and 7% basal area decreases after the harvests.  SC20 is 

‘heavy selective harvest’ watershed, and have 8% decrease basal area after the harvest. DC57 is 

‘clear cut harvest’ watershed, and have the 80% decrease in the basal area. C25 is used as a 

control watershed. A detailed description of the forest harvesting history is available (McHale et 

al., 2008). The collected data, including stream-water and soil chemistry at the Shelter Creek 

before and after the harvests will be used to test the impact of forest harvesting on ecohydrologic 

processes using RHESSys. 
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Figure 4.56. The study sites: (a) Neversink, (b) Biscuit Brook, and (c) Shelter Creek. 

 

 

 

 

Table 4.12. Watershed descriptions  

Watershed 
Size 

(km2) 

Elevation 

(m) 

Major soil 

type 
Major land cover 

Neversink 245.6 437-1276 Inceptisols  Mixed hardwood forest 

Biscuit Brook 9.2 618-1124 Inceptisols Mixed hardwood forest 

Shelter Creek 1.6 652-921 Inceptisols Mixed hardwood forest 
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Figure 4.57. The Shelter Creek watershed with different forest harvest regimes. 

 

 

Table 4.13. Shelter Creek watersheds with different forest harvest regimes 

Watershed 
Size 

(km2) 

Harvesting 

Period 
Intensity 

CL25  0.52 NAN Control (0%) 

NS25 0.34 Winter, 1995-96 Light harvest (2% decrease in basal area) 

SS20 0.43 Fall, 1996 Heavy harvest (8% decrease of basal area) 

DC57 0.1 Winter, 1996-97 Clear Cut (97% cut, 90% decrease of basal area) 

 

 

4.5.3. RHESSys model 

The RHESSys model was applied to the two small watersheds, Shelter Creek and Biscuit 

Brook In future study, the RHESSys model will also be applied to the overall Neversink 

watershed. RHESSys requires various input data; climate inputs (e.g. daily precipitation and 

daily minimum and maximum temperature data), topography (i.e. Digital Elevation Model), soil 

and vegetation data. For climate input data, this study used meteorological data from the Slide 



 2015 Water Quality Modeling Annual Report 

102 

 

Mountain climate station, located about 6km and 9km from Shelter Creek and Biscuit Brook, 

respectively. Other climate variables (e.g. solar radiation, saturation vapor pressure, and relative 

humidity) are computed using a climate interpolation model (MT-CLIM, Running et al., 1987). 

NYCDEP produced 1m Digital Elevation Model (DEM) using LIDAR point data. This study 

used resampled 10m DEM to generate the topographic parameters (elevation, slope, aspect, flow 

drainage maps, watershed boundary maps, etc.). Soils parameters are estimated based on Soil 

Survey Geographic (SSURGO, USDA Natural Resources Conservation Service) and existing 

RHESSys parameter library (available at https:www.github.com/RHESSys/ParamDB).  NYC 

DEP landcover data were used to define the different vegetation functional types, and associate 

vegetation parameters for each vegetation type was based on the RHESSys parameter library. 

Current model setups assume a spatially uniform value of 4 for Leaf Area Index (LAI) for the 

two watersheds.  

 

4.5.4. Estimates of vegetation indices using Landsat TM imagery   

 

In the RHESSys model, LAI is a key biophysical parameter for modeling the spatial 

distribution of vegetation productivity, evapotranspiration and surface energy balance. The field 

measurement of LAI using LAI-2000 Plant Canopy Analyzer (PCA, Li-Cor, Lincoln, NE, USA) 

over the large area is difficult, especially for mountain areas. To overcome this difficulty, LAI 

over large areas is estimated using the relationship between field-measured LAI and remote 

sensed derived vegetation indices. 

In this study, a Landsat-TM image (06/21/1991) was used to derive several vegetation 

indices: simple ratio (SR), normalized difference vegetation index (NDVI), enhanced vegetation 

index (EVI), infrared simple ratio (ISR). Images analysis has been conducted using GRASS GIS 

imagery tools (i,landsat.toar and i.landsat.acca).  i.landsat.toar calculates the surface 

reflectance, and i.landsat.acca calculates the extent of cloud, and removes the cloud. Figure 4.58 

shows the calculated vegetation indices for the Shelter Creek watershed. All vegetation indices 

show similar pattern of vegetation coverage at the coarse scale, but have different variability at 

the fine-scale.  

Additionally, LAI values are estimated using the two empirical calibrated equation 

developed in other studies (Hwang, unpublished data and Fernandes et al., 2003) because the 

measured LAI data are not available in our sites.  Using the two empirical calculations, data 

show similar pattern of vegetation but the range of LAI varies. The LAI values using the 

equation of Hwang are higher than the LAI value of Fernades et al., (2003).  Uncertainty of LAI 

estimates leads to error in estimating evapotranspiration, net primary productivity and 

streamflow, etc.  In order to improve the estimate of LAI, the field measurement of LAI will be 

necessary. Recent studies (Ganguly et al., 2012, 2008) show the potential of using radiative 
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transfer theory of canopy spectral invariant to estimate the LAI at the Landsat TM scale (30 m). 

Using LIDAR data, LIDAR data (Richardson et al., 2009), we can generate finer resolution (<30 

m) LAI values over large areas. 

 

 

Figure 4.58.  Derived vegetation indices using Landsat-TM: (a) SR, (b) EVI, (c) NDVI, (d) 

LAI using the calibrated equation (Hwang, unpublished data), (e) ISR, and (f) LAI 

using the calibrated equation (Fernandes et al., 2003). 
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4.5.5. RHESSys calibration  

 

The RHESSys model requires various data to calibrate model parameters and validate 

model predictions. In this study, the model calibration is limited to streamflow, but in the future 

study, additional data sets, such as nitrate and dissolved organic carbon (DOC) fluxes will be 

included to evaluate the model performance. To quantify the predictive uncertainty of model 

estimates, Generalized Likelihood Uncertainty Estimation (GLUE) approach (Beven and Freer, 

2001) will also be used. 

The calibration was conducted by adjusting the soil parameters to match the predicted 

streamflow with measured streamflow, and the calibrated soil parameters are saturated hydraulic 

conductivity (Ksat), decay of Ksat with depth (m), the fraction of infiltrated soil water that 

directly drains to deep soil parameter (gw1), linear coefficient of deep groundwater storage 

(gw2), air entry pressure (ae) and pore size index (psi).  Streamflow data from 2 USGS gages 

(01434092 and 01434025) were used to compare with the predicted streamflows for Shelter 

Creek and Biscuit Brook respectively. The first two years of climate data were used to initialize 

soil and groundwater storage for the two watersheds. Measured streamflow data in the period 

1992-1994 for Shelter Creek are used for calibrating soil parameters because forest harvesting 

was conducted in the period 1995-97. For Biscuit Brook, data in the period 1996- 2000 were 

used for the calibration. 

To quantify the model accuracy of streamflow prediction, several measures of model 

accuracy were used as given in Equations (4.10) through (4.13). Reff (Nash and Sutcliffe, 1970) 

tends to emphasize the peak flow, and Rlogeff emphasizes the low flows, and percentage of error 

(PerErr) focus on the total volume of flow. By combining the three accuracies, errors in the 

different aspects of flow predictions is quantified: 

𝑅𝑒𝑓𝑓 = 1 −
∑ (𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑠𝑖𝑚,𝑖)

2
𝑖

∑ (𝑄𝑠𝑖𝑚,𝑖 − 𝑄̅𝑜𝑏𝑠,𝑖)
2

𝑖

 (4.10) 

𝑅𝑙𝑜𝑔𝑒𝑓𝑓 = 1 −
∑ (log⁡(𝑄𝑜𝑏𝑠,𝑖) − log(𝑄𝑠𝑖𝑚,𝑖))

2
𝑖

∑ (log⁡(𝑄𝑠𝑖𝑚,𝑖) − log⁡(𝑄̅𝑜𝑏𝑠))2𝑖

 (4.11) 

  

𝑃𝑒𝑟𝐸𝑟𝑟 =
(⁡𝑄̅𝑠𝑖𝑚 − 𝑄̅𝑜𝑏𝑠)

𝑄̅𝑜𝑏𝑠

× 100 (4.12) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑅𝑒𝑓𝑓 × 𝑅𝑙𝑜𝑔𝑒𝑓𝑓 × (1 − |
𝑃𝑒𝑟𝐸𝑟𝑟

100
|) (4.13) 
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where Qobs,i is the observed streamflow and Qsim,i is the simulated flow at any given time step (i), 

and   and  are the average of daily streamflow.  

Figure 4.59 shows the preliminary calibration results for Shelter Creek and Biscuit 

Brook. For Shelter Creek, the model underestimated the peak flow, and failed to reproduce some 

small peaks.  However, the model successfully captured the observed flow recession. The flow 

accuracy measures using Equations (4.10) through (4.13) reflect this pattern; Reff had lower value 

(0.46) than Rlogeff  (0.65) (Table 4.14). For Biscuit Brook, the model had lower flow accuracy 

compared with those for Shelter Creek. The model also underestimated peak flow, and showed 

better prediction of low flows (Rlogeff =0.54) that those of high flows (Reff  =036).  For the two 

watersheds, the high error in peak flow may be related to the uncertainty of precipitation input 

data and snow prediction.  Tang et al. 2014 showed that using the data from 10 Cooperative 

Observer Program stations (COOP) has better streamflow prediction for Biscuit Brook; Reff 

values range from 0.58 to 0.61. The uncertainty of soil depth data may be a potential source for 

error in the peak flow prediction.  Compared with Shelter Creek, Biscuit Brook had higher 

percentage error in flow. The assumption that LAI is spatially uniform may also contribute to 

this error.  
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Figure 4.59. Streamflow calibration for Shelter Creek and Biscuit Brook watershed: (a) Shelter 

Creek watershed, and (b) Biscuit Brook watershed 
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Table 4.14. Accuracy of Streamflow predictions for the Shelter Creek Watershed and 

the Biscuit Brook watershed 

Watershed  Reff Rlogeff PerErr Accuracy 

Shelter Creek  0.46 0.65 -11.9 0.26 

Biscuit Brook 0.36 0.54 -5.6 0.19 

  

 

4.5.6. Conclusions and future plans 

 

This study shows the initial results of streamflow predictions using RHESSys, and the 

estimates of vegetation indices (SR, NDVI, ISR and LAI) using Landsat TM imagery. Simulated 

streamflow results suggest a necessity for improving climate inputs, soil parameters and 

vegetation parameters.  In future work, various remote sensing data (Landsat-TM, LIDAR and 

MODIS) will be included to improve the vegetation parameters (LAI, vegetation species, and 

phenology parameters of deciduous forests). In addition, the current model used the daily 

precipitation and air temperature data from the Slide Mountain climate station that is far from 

Shelter Creek and Biscuit Creek.  Using these data results in higher uncertainty in the climate 

input for RHESSys modeling. Future work will improve the climate input data by combining the 

available climate station data with PRISM data.  Current model calibration is limited to 

measured streamflow data. Soil and stream biogeochemistry data (nitrate and DOC) will be 

included in future model calibration.  The predictability of forest recovery in the Shelter Creek 

watershed after the forest harvesting will be tested.  Forest recovery data can be estimated using 

the vegetation indices (NDVI, LAI, etc.) derived from Landsat imagery data. The predicted LAI 

using the calibrated model will be compared with the estimated forest recovery data. It is 

expected that using these additional data will improve model parameterizations and predictions. 

The improved model will be used to test the impact of climate change and forest disturbance on 

flow, ET, and nitrate and DOC fluxes. 
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5. Data Analysis to Support Modeling 
 

5.1. West of Hudson Reservoir Water Budgets, 2000-2015 

 

In order to form a basis for data analysis and water quality modeling of the West of 

Hudson (WOH) reservoirs for the entire period of water quality monitoring, DEP has been 

working to compute water budgets for all of the WOH reservoirs.  Here we describe the general 

procedure used to compute these water budgets, and the results for Delaware system reservoirs 

(Cannonsville, Pepacton, Neversink, and Rondout) for the period 2000 through 2015 are 

presented. 

 

A water volume conservation equation for a reservoir may be expressed as 

 

 
 EPAQQQQ

dt

dV
SOGIUIG   (5.1) 

 

where V is the reservoir volume (storage), t is time, QIG is the gaged surface inflow, QIU is the 

ungaged surface inflow, QO is the total outflow (sum of drinking water withdrawal, spill, and 

dam releases), AS is the surface area of the reservoir, and P and E are the precipitation directly 

onto and evaporation from the surface of the reservoir.   

 

All of the reservoirs have at least one gaged tributary, with discharge measurements 

available from USGS.  A list of USGS stream gages in the WOH watersheds are shown in Table 

5.1; note that this table does not list gages that are upstream of other gages in a particular 

watershed.  For Ashokan and Neversink, one USGS gage determines the gaged reservoir inflow; 

there are two gages for Cannonsville and Rondout, three for Schoharie, and four for Pepacton.  

The ungaged watershed areas as a percentage of the total watershed area is in the range of 22 to 

38 percent for WOH, with the exception being Schoharie, where only 6% of the watershed is 

ungaged. 
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Table 5.1. U.S. Geological Survey (USGS) stream gaging and reservoir elevation stations in the 

West of Hudson reservoirs. Stream gaging stations that are upstream of other stations are not 

included.  USGS gage remarks refer to accuracy of stream gaging observations.    

  Drainage Average USGS % of  

Reservoir and USGS Gage Area Flow Gage area 

  mile2 MGD Remarks ungaged 

Ashokan Reservoir (AS= 7800 acres)     

 Esopus Creek at Coldbrook 192  Good  

 Ashokan Reservoir 256 -  25.0 

 Esopus Creek near Lomontville 279  Fair  

Cannonsville Reservoir (AS= 5260 acres)     

 W.Branch Delaware R. at Walton 332 394 Good  

 Trout Creek at Trout Cr. 20.2 24 Fair  

 Cannonsville Reservoir 454 -  22.4 

 W. Branch Delaware R. at Stilesville 456 407 Fair  

Neversink Reservoir (AS= 1430 acres)     

 Neversink River at Claryville 66.6 127 Fair  

 Neversink Reservoir 92.5 -  28.0 

 Neversink River at Neversink 92.6 44 Good  

Pepacton Reservoir (AS= 4940 acres)     

 E. Branch Delaware R. at Margaretville 163 205 Good  

 Mill Brook 25.2 37 Fair  

 Tremper Kill 33.2 39 Fair  

 Platte Kill 34.9 45 Good  

 Pepacton Reservoir 372 -  31.1 

 E. Branch Delaware R. at Downsville 372 156 Good  

Rondout Reservoir (AS= 2060 acres)     

 Rondout Creek near Lowes Corners 38.3 67 Fair  

 Chestnut Creek at Grahamsville 20.9  Fair  

 Rondout Reservoir 95.4 -  37.9 

 Rondout Creek at Rosendale  383  Good  

Schoharie Reservoir (AS= 1140 acres)     

 Schoharie Creek at Prattsville 237 366 Fair  

 Manor Kill at W. Conesville 32.4 35 Fair  

 Bear Kill near Prattsville 25.7 30 Fair  

 Schoharie Reservoir 315 -  6.3 

 Schoharie Creek at Gilboa 316 304 Fair  

 

 

 

 



5. Data Analysis to Support Modeling 

 

111 

 

Similarly, QO is the total reservoir outflow, which is the sum of drinking water 

withdrawal, release of water through the base of the dam to the stream channel downstream, and 

spill.  The precipitation term P is the rate of precipitation (depth/time) falling directly onto the 

water surface of the reservoir, while E is a similar term representing evaporation from the 

reservoir water surface. 

The magnitude of the precipitation and evaporation terms can be estimated using 

Cannonsville Reservoir (surface area AS=5260 acres) as an example.   Using annual average 

precipitation and evaporation rates of 45 and 30 inches per year yields the following estimates 

for corresponding terms in Equation (5.1): P AS 17 MGD, E AS 12 MGD, and net                         

(P – E) AS 7 MGD, which is about 2% of the average annual gaged inflow at Cannonsville 

(418 MGD; Table 5.1).  Given the accuracy of the streamflow gaging measurements for gages 

classified as fair or good (Table 5.2), the magnitude of the precipitation/evaporation term is 

smaller than errors likely to be present in QIG.  Regarding the net groundwater inflow/outflow 

term QG, there is little basis for estimating this term individually for any of the WOH basins, and 

it is assumed to be negligibly small relative to QIG and QO. As a result, the precipitation, 

evaporation, and groundwater terms in Equation (5.1) are neglected, so that their value is 

effectively lumped into the calculation of QIU. The resulting water balance equation used here is 

then 

 
OIUIG QQQ

dt

dV
  (5.2) 

This equation was applied to Cannonsville Reservoir by Owens (1998) in order to determine the 

ungaged inflow QIU from observations of QIG, QO, and reservoir water surface elevation for 

1995, and is used here.   

 

Table 5.2 Descriptors of accuracy of USGS streamflow measurements (included 

in USGS documents in “Remarks” section). 

USGS Gage 

Description 

                   Accuracy  

Excellent 95% if data within 5% of true value 

Good 95% if data within 10% of true value 

Fair 95% if data within 15% of true value 

Poor Less than Fair 
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This calculation procedure is based on daily average observations of QIG and QO, and 

daily observations of the reservoir water surface elevation.  From bathymetric curves or tables, 

values of the reservoir storage volume V are determined from water surface elevation, or vice 

versa.  The subscript i associated with V, QIG, QIU, and QO represents the value on day i.  Using 

daily values of the reservoir storage volume, there are three simple alternative ways to 

approximate the time derivative in Equations (5.1) and (5.2).  These are: 

Forward difference: 

 

t

VV

dt

dV ii

i 










 1  (5.3) 

Centered difference: 

 

t

VV

dt

dV ii

i 










 

2

11  (5.4) 

Backward difference: 

 

t

VV

dt

dV ii

i 










 1  (5.5) 

where the time interval t is the time interval of calculations, which here is 1 day.  Water 

volume calculations were performed for each of these 3 alternative approximations.  With these 

alternative approximations for dV/dt, the following Equation (5.2) is used to solve for daily 

values of the ungaged inflow QIU.   

 
     

iOiIG

i

iIU QQ
dt

dV
Q 








  (5.6) 

Application of Equation (5.6) to a dataset of observations intermittently leads to the result that 

 
iIUQ is negative. This occurs due to errors in the quantities on the right side of Equation (5.6).  

Since we are describing this quantity as an ungaged inflow, a negative value is not realistic.  As a 

result, a modified version of Equation (5.6) is used.  An error term is introduced into the water 

balance, where errors occur due to the constraint that  
iIUQ  0.  The following procedure is 

used: 
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if           

















1iiOiIG

i

EQQ
dt

dV
   0 then: 

        
















 1iiOiIG

i

iUI EQQ
dt

dV
Q  , and  

Ei = 0 

_________________________________________________ 

else if     
















1iiOiIG

i

EQQ
dt

dV
 < 0 then: 

    0
iUIQ  , and  

    
















 1iiOiIG

i

i EQQ
dt

dV
E  

(5.7) 

 

 

This computational procedure begins with the initial error E0=0.  When applied, this 

procedure may lead to the result that   0
iUIQ and the error is non-zero for a single isolated day.  

In other cases,  
iUIQ may be set to zero for a number of consecutive days, and the error in the 

water balance that results will accumulate over that period.  For all cases for which the procedure 

was applied here, (Cannonsville, Neversink, Pepacton, and Rondout for 2000 through 2015), a 

water balance with nonzero error persists for no more than a week or two, and the impact of the 

accumulated error on the water surface elevation is small.   

 

An example of the application of this procedure is shown in Figure 5.1, where 

components of the water budget equations are shown for the period of February 20 through 

March 20, 2000 at Cannonsville.  For the period Feb. 20 through 27, nonzero values of the 

ungaged inflow (blue line) are computed and the error is zero.  On Feb. 28, a negative value of 

ungaged inflow is computed from the basic water balance; this ungaged inflow is set to zero and 

a nonzero error is computed.  Zero values of ungaged inflow, and nonzero error continues until 

March 11, when a balance without error is established.   
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Figure 5.1. Example of water budget calculation for Cannonsville for Feb. 21 to March 20, 

2000: (a) components of the budget calculation, and (b) resulting error in water 

surface elevation.  

 

 

To investigate the effect of errors, the computed time series of ungaged inflow is then 

used together with the observed time series of gaged inflow and total outflow in a prediction of 

storage volume, using the following predictive form of the water budget equation: 
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       
iOiIUiIGii QQQtVV 1  (5.8) 

During periods when there is no error in the balance (Ei = 0), the volume computed from 

Equation (5.8), and the associated water surface elevation exactly match observations; the use of 

the water balance equation to compute the ungaged inflow ensures this result.  However, when 

nonzero errors exist, the volume from Equation (5.8), and the associated water surface elevation, 

are greater than the observations.  The maximum value of the error in water surface elevation 

and summarized below.  

 Regarding the three alternatives for approximating the dV/dt term in the water balance 

equation (Equations (5.3) through (5.5), the forward difference approximation gave the smallest 

errors, only slightly smaller than the centered difference approximation, while the backward 

difference approximation produced substantially larger errors.  As a result, the forward 

difference approximation (5.3) was used in all water budget calculations presented here. 

The application of this procedure to Cannonsville for the 16-year period of 2000 through 

2015 is summarized in Table 5.3.  On average, the annual computed ungaged volume was 15.5% 

of the total (gaged and ungaged) volume.  There were periods during each of the 16 years where 

the errors in the water balance were introduced as described above.  However, the resulting 

maximum error in predicted water surface elevation during any individual year was generally 

less than 0.1 feet, with a maximum for the 16-year period of 0.13 feet.  The time series of 

observed gage inflow (sum of West Branch Delaware River and Trout Creek) and computed 

ungaged inflow for 2015, and the error in computed reservoir water surface elevation determined 

from application of Equation (5.8), are shown in Figure 5.2. 

Similar tabular summaries of the application of this water balance procedure for 2000-

2015, and predictions and water surface elevation errors for 2015, are presented for Neversink 

(Table 5.4 and Figure 5.3), Pepacton (Table 5.5 and Figure 5.4), and Rondout Reservoirs (Table 

5.6 and Figure 5.5).  Note that the total gaged inflow at Rondout is the sum of USGS discharge 

measurements for Rondout and Chestnut Creeks, and DEP observations of aqueduct flows from 

Cannonsville, Neversink, and Pepacton. 

The ungaged watershed area as a percentage of the total (gaged plus ungaged) watershed 

area for each of the 4 reservoir watersheds is shown in Table 5.7 together with the ungaged 

reservoir inflow as a percentage of the total (gaged plus ungaged) inflow for 2000-2015.  In all 

cases, the ungaged percentage of total inflow is less than the ungaged percentage of total 

watershed area.  This leads to the conclusion that in terms of streamflow generated per unit 

watershed area, ungaged areas generate less streamflow that the gaged portions of the watershed.  
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Table 5.3.  Annual water balance calculations for Cannonsville Reservoir, 2000 

through 2015.  Change in storage over the year and total annual inflow and 

outflow volumes are in billion gallons (BG). 

 

 

Year 

 

Change in 

Storage 

 

Gaged 

Inflow 

 

 

Outflow 

 

Ungaged 

Inflow 

Ungaged 

% of Total 

Inflow 

Max. Error 

Water Surf. 

Elev., feet  

2000 27 195 198 31.1 13.8 0.07 

2001 -87 94 202 21.1 18.4 0.06 

2002 75 159 117 33.6 17.5 0.03 

2003 15 245 264 32.3 11.7 0.08 

2004 -1 190 224 32.6 14.6 0.05 

2005 -9 180 235 46.4 20.6 0.02 

2006 4 243 305 65.2 21.3 0.08 

2007 2 202 233 32.6 13.9 0.08 

2008 2 216 250 35.7 14.2 0.09 

2009 -9 178 221 34.2 16.2 0.07 

2010 -1 192 219 26.0 11.9 0.13 

2011 4 300 340 43.9 12.8 0.13 

2012 -9 127 158 22.3 15.0 0.02 

2013 5 178 196 22.7 11.4 0.08 

2014 -24 145 206 36.4 20.1 0.02 

2015 16 136 151 30.8 18.5 0.01 

2000-15 4 2972 3515 547 15.5 0.13 

 

 

Figure 5.2. Cannonsville water budget results, 2015: (a) error in predicted water surface 

elevation, and (b) gaged and ungaged inflows.  
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Table 5.4. Annual water balance calculations for Neversink Reservoir, 2000 

through 2015.  Change in storage over the year and total annual inflow and 

outflow volumes in billion gallons (BG). 

 

 

Year 

 

Change in 

Storage 

 

Gaged 

Inflow 

 

 

Outflow 

 

Ungaged 

Inflow 

Ungaged 

% of Total 

Inflow 

Max. Error 

Water Surf. 

Elev. meter  

2000 14 56 54 12.1 17.7 0.007 

2001 -17 33 57 6.7 17.2 0.017 

2002 15 41 35 8.1 16.4 0.013 

2003 7 74 86 20.1 21.5 0.011 

2004 -3 59 78 17.0 22.4 0.031 

2005 1 60 77 19.0 24.1 0.024 

2006 0 62 77 13.9 18.2 0.016 

2007 -4 50 64 10.9 17.9 0.015 

2008 5 63 71 13.5 17.7 0.015 

2009 -3 57 73 12.6 18.0 0.009 

2010 -1 57 68 9.8 14.7 0.051 

2011 5 82 105 28.9 26.1 0.018 

2012 -1 48 65 16.5 25.6 0.006 

2013 -1 43 58 13.2 23.4 0.010 

2014 -4 50 62 7.4 12.9 0.011 

2015 4 45 48 6.9 13.1 0.009 

2000-15 17 880 1079 216 19.7 0.051 

 

 

Figure 5.3. Neversink water budget results, 2015: (a) error in predicted water surface 

elevation, and (b) gaged and ungaged inflows.  
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Table 5.5. Annual water balance calculations for Pepacton Reservoir, 2000 

through 2015.  Change in storage over the year and total annual inflow and 

outflow volumes in billion gallons (BG). 

 

 

Year 

 

Change in 

Storage 

 

Gaged 

Inflow 

 

 

Outflow 

 

Ungaged 

Inflow 

Ungaged 

% of Total 

Inflow 

Max. Error 

Water Surf. 

Elev. meter  

2000 16 157 177 35.6 18.5 0.005 

2001 -65 85 172 20.9 19.7 0.014 

2002 61 126 96 31.1 19.8 0.012 

2003 25 219 243 50.3 18.7 0.002 

2004 0 162 183 30.0 15.6 0.055 

2005 -14 160 203 19.2 10.7 0.036 

2006 4 195 240 48.6 19.9 0.014 

2007 -3 172 216 41.4 19.4 0.002 

2008 12 183 209 37.6 17.0 0.005 

2009 -10 131 183 41.9 24.2 0.001 

2010 -4 166 205 35.8 17.7 0.007 

2011 13 245 285 52.4 17.6 0.006 

2012 -26 108 167 32.6 23.2 0.002 

2013 6 135 161 32.2 19.2 0.003 

2014 -19 132 184 33.6 20.3 0.003 

2015 11 106 117 21.1 16.6 0.003 

2000-15 7 2483 3040 564 18.5 0.055 

 

 

Figure 5.4. Pepacton water budget results, 2015: (a) error in predicted water surface elevation, 

and (b) gaged and ungaged inflows.  
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Table 5.6. Annual water balance calculations for Rondout Reservoir, 2000 

through 2015.  Change in storage over the year and total annual inflow and 

outflow volumes in billion gallons (BG). 

 

 

Year 

 

Change in 

Storage 

 

Gaged 

Inflow 

 

 

Outflow 

 

Ungaged 

Inflow 

Ungaged 

% of Total 

Inflow 

Max. Error 

Water Surf. 

Elev. meter  

2000 -1 256 283 26.1 9.2 0.008 

2001 1 261 271 11.3 4.2 0.018 

2002 1 210 226 16.9 7.5 0.019 

2003 1 215 238 23.9 10.0 0.011 

2004 1 239 260 22.3 8.5 0.003 

2005 -1 240 262 21.5 8.2 0.018 

2006 0 192 212 18.9 8.9 0.039 

2007 -2 241 258 14.9 5.8 0.019 

2008 1 197 217 20.8 9.6 0.009 

2009 0 219 234 15.2 6.5 0.027 

2010 1 248 262 14.8 5.6 0.015 

2011 0 261 289 28.7 9.9 0.009 

2012 -1 261 277 14.7 5.3 0.011 

2013 1 255 268 13.6 5.1 0.014 

2014 -1 226 239 11.4 4.8 0.032 

2015 1 210 221 12.0 5.4 0.010 

2000-15 1 3731 4016 287 7.1 0.039 

 

 

Figure 5.5. Rondout water budget results, 2015: (a) error in predicted water surface elevation, 

and (b) gaged and ungaged inflows.  
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Table 5.7. Comparison of computed ungaged inflow as a percentage of total 

(gaged plus ungaged) inflow for the 16-year period, and the ungaged watershed 

area as a percentage of the total (gaged plus ungaged) watershed area. 

                 

Reservoir 

Ungaged % of 

Total Inflow 

Ungaged % of Total 

Watershed Area 

Cannonsville 15.5 22.4 

Neversink 19.7 28.0 

Pepacton 18.5 31.1 

Rondout 7.1 37.9 

 

 

 

 

 

 

 

5.2. Hydraulic Residence Time in West of Hudson Reservoirs 

 

The hydraulic residence time in a reservoir is defined as the time period that a parcel of 

water resides within the reservoir basin, beginning at inflow from a tributary stream until leaving 

the basin through either drinking water withdrawal, dam release, or spill.  The hydraulic 

residence time is generally expected to be a function of the shape and bathymetry of the reservoir 

basin, rates of inflow to and outflow from the reservoir, weather conditions, and thermal 

stratification and mixing within the reservoir. 

Even under steady inflow and outflow conditions and invariant weather, the residence 

time experienced by individual parcels of water is variable due to turbulent transport and mixing 

within the reservoir basin, and the variety in pathways by which a parcel can move through the 

reservoir.  These effects can be observed in a tracer experiment, where a quantity of a 

conservative tracer (such as rhodamine dye) is released quickly into a reservoir inflow.  If the 

concentration of tracer is then measured over time in a reservoir outflow, such as drinking water 

withdrawal, a curve generally like that shown in Figure 5.6 would be observed.  This curve 

generally indicates that some parcels of water are transported relatively quickly to the outflow 

point, while other parcels travel more slowly.  The hydraulic residence time identified from this 

experiment would be equal to the elapsed time after release required for one-half of the tracer 

mass to arrive at the outflow.  For the NYC reservoirs that have multiple tributaries and 

generally three different types and locations of outflow, the residence time varies for each pair of 

inflow and outflow. 
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Figure 5.6. Typical or expected observation of dye tracer concentration in a reservoir outflow 

in response to a quick release of tracer in a reservoir inflow. 

 

Conducting such a dye tracer experiment is the only way to physically measure hydraulic 

residence time.  However, mathematical model simulations can be made to replicate this field 

experiment.  Model application to determine residence time is much more economical and 

flexible, in that a range of environmental conditions (inflow and outflow rates, weather, reservoir 

stratification) can be considered.  However, the model must be validated under a range of such 

conditions to ensure that predictions are a good representation of field conditions.   

In the absence of such simulations, the residence time for a reservoir can be estimated by 

assuming that the reservoir is completely mixed, and that plug flow occurs from reservoir inflow 

to the outflow.  Completely mixed conditions exist in the reservoirs only during spring and fall 

turnover, when thermal stratification is absent.  Plug flow assumes that individual parcels of 

water entering the reservoir move from inflow to outflow like the individual cars that make up a 

railroad train moving down the tracks; the parcels remain in the order at which they entered as 

they move through the reservoir.  The assumption of plug flow neglects dispersion in the 

reservoir. 

Under these assumptions, the reservoir residence time is equal to equal to V / QO, where 

V is the reservoir volume and QO is the total rate of reservoir outflow.  Of course, these quantities 
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vary with time.  In order to reduce the variability in the quantities, 1-year moving averages of V 

and QO were computed from records of daily records of these quantities.  For example, a 1-year 

average of V for March 25, 2015 was computed by averaging daily values of V for March 26, 

2014 through March 25, 2015.   

Values of the 1-year moving average reservoir storage for the Catskill and Delaware 

system reservoirs are shown in Figure 5.7 and Figure 5.8.  Periods of significant reservoir 

drawdown for both systems occurred in 1980-1981, 1985, and 2001-2002.  Similarly, the 1-year 

moving average values of reservoir outflow are shown in Figure 5.9 and Figure 5.10.  Periods of 

significant low flow are generally consistent with the noted drawdown periods.  Unusually high 

outflows occur when the spill is large, as occurred in the wet periods in 1976, 2006-2007, and 

2011.  The residence time, this being the quotient of volume and outflow, for the Catskill and 

Delaware reservoirs is shown in Figure 5.11 and Figure 5.12.  Statistics for the hydraulic 

residence time for each reservoir over the entire 40 year record are given in Table 5.8.  Despite 

the relatively small variability in volume and particularly inflow, Rondout Reservoir displays a 

coefficient of variation (ratio of standard deviation to the mean) that is similar to the other 

reservoirs. 

 

 

Table 5.8. Statistics for hydraulic residence time for Catskill and Delaware system reservoirs, 

1966 through 2015.  Mean and standard deviation in days. 

 

Reservoir 

 

Mean 

Standard 

Deviation 

Coeff. of 

Variation 

Schoharie 39 8.5 0.22 

Ashokan West 78 16 0.21 

Ashokan East 123 26 0.21 

Cannonsville 143 25 0.18 

Neversink 162 29 0.18 

Pepacton 250 40 0.16 

Rondout 61 10 0.17 
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Figure 5.7. Storage in Catskill System Reservoirs, 1966 through 2015. 

 

 

Figure 5.8. Storage in Delaware System Reservoirs, 1966 through 2015. 
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Figure 5.9. Reservoir outflow for Catskill system reservoirs, 1966 through 2015. 

 

 

Figure 5.10. Reservoir outflow for Delaware system reservoirs, 1966 through 2015. 
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Figure 5.11. Hydraulic residence time for Catskill System Reservoirs, 1966 through 2015. 

 

 

Figure 5.12. Hydraulic residence time for Delaware system reservoirs, 1966-2015. 
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6. Model Data Acquisition and Organization 
 

6.1. GIS Data Development for Modeling 

6.1.1. Water Quality Monitoring Sites 

 

In 2015, the Water Quality Modeling Section’s GIS data library was updated with 

additions to water quality monitoring sites and biomonitoring sites.  These locations were 

georeferenced from site descriptions provided by data samplers as part of the DEP’s LIMS 

database entry.  DEP snow monitoring and snow pillow locations data were updated with revised 

information provided by DEP’s Operations Directorate. 

6.1.2. Support for modeling projects 

 

GIS support was provided to Water Quality Modeling Section staff, CUNY Postdoctoral 

researchers, as well as other DEP staff in the Division of Water Quality Science and Research.  

This support included the production and revision of maps included in the 2015 FAD Summary 

and Assessment Report, the 2015 update to the Watershed Water Quality Monitoring Plan, and 

conference presentations and posters.   

Table 6.1 lists the types of GIS data used by the Water Quality Modeling Section.  While 

GIS data is used in virtually all DEP reservoir and watershed models, a particular area of use in 

2015 was the support of application of two terrestrial (watershed) models: RHESSys and SWAT.  

RHESSys applications include information derived from LiDAR data collected by DEP.  The 

LiDAR data, along with remote sensing images, are being compiled and analyzed for the 

Neversink watershed to identify the spatial variation of canopy height and leaf area index (LAI) 

that is used by RHESSys.  

DEP’s Operations Directorate has been involved in application of the Army Corps of 

Engineers HEC-RAS (River Analysis System) model to address questions related to cold water 

releases from Cannonsville Reservoir to the downstream West Branch Delaware River.  The 

HEC-RAS model has been applied to this river channel to simulate the effect of channel 

morphology changes on downstream river temperatures.  To generate a geometric description of 

the river channel for use in this model, input data were generated using HEC-GeoRAS using 

available stream networks, elevation and cross section data.  This work will continue to 2016 to 

inform planning decisions. 
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Table 6.1. Inventory of GIS data used in water quality modeling.  

Data Type Data Source Data Description Dates Modeling Needs 

LiDAR DEP 
Tree height, canopy fraction  

and LAI 
2009 

RHESSys Model 

Input 

DEM  

(1 meter) 
DEP 

Watershed delineation, 

topographic parameters 
2009 

Watershed 

delineation 

Land Use/ 

Land Cover 
DEP 

Spatial extent of types of land use 

and land cover 
2009 

SWAT Model 

Input 

SSURGO2 

Soil Survey 
USDA 

Soil Characteristics, Percent Clay, 

Ksat, Ksattop, Available Water 

Content, Depth to Water Table,  

2012 
SWAT Model 

Input 

Aerial 

Imagery 

USGS 
Landsat TM multispectral 

imagery 

1990-

current 

Leaf area index 

(LAI) values and 

tree phenology  

NASA MODIS multispectral imagery 
2002-

current 

LAI, and tree 

phenology 

Forest Stands DEP, USFS Forest spatial extent 2009 
RHESSys  

Model Input 

Vegetation 

Cary Institute 

of Ecosystem 

Studies 

Spatial extent of 11 vegetation 

species 
1986-1993 

RHESSys  

Model Input 

  

 

6.2. Ongoing Modeling/GIS Projects 

6.2.1. Reservoir Bathymetry Surveys 

 

Accurate, current bathymetry data are required for modeling water quantity and quality of 

NYC reservoirs.  Last surveyed in the late 1990’s, the 6 WOH reservoirs are being re-surveyed 

by the USGS through an Intergovernmental Agreement signed in 2013.  The USGS will produce 

GIS surface models of the reservoir bottoms, 2-foot elevation contours and an updated elevation-

area-capacity table for each reservoir.  Work continued in 2015 on the processing of data 

collected for the 6 WOH reservoirs.  All fieldwork had been completed, and select draft data 

were delivered to DEP in 2014.  The USGS contractors have been processing all reservoir data in 

parallel in order to deliver a complete set of draft data for review in early 2016.  
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To further improve reservoir data and provide additional information to the Modeling 

Section, DEP is reviewing a proposed scope of work to conduct new bathymetric surveys for the 

13 EOH reservoirs and 3 controlled lakes.  The draft scope of work was submitted by the USGS, 

and will provide the same level of detail as the data being created for WOH.  If approved, the 

project will provide all data deliverables, including surface models, 2-foot elevation contours and 

elevation-area-capacity tables to DEP no later than 2020. 

6.2.2. Modeling Database Design 

Historically, data used by the Water Quality Modeling Section are primarily stored and 

classified by individual staff members to suit the needs of the specific models.  An effort is 

currently underway to centralize and standardize the storage of datasets to improve data 

interoperability between all staff and associated researchers.  Multiple software programs are 

being evaluated to determine an optimal solution that will allow all modelers to access datasets.  

The resulting database will include the capability to properly document the data, including the 

data source, collection date, and identification of data used in models.   

This effort will improve data access and reduce duplication of effort in the central 

compilation of data with customized queries to provide appropriately formatted data files for 

each staff member.  An additional goal of the project is to create a warehouse to store and 

document the data used to calibrate each model, and the results of model runs, including all key 

datasets and parameters used.  Maintaining these data will ultimately detail the lineage of the 

models, and can aide in the interpretation of results.  In some cases, data may be appropriately 

stored in a relational database structure internally, but in others, such as time-series monitoring 

data owned by other agencies, they will only be accessed as needed.  A data curation solution 

will be designed to support the variety of data access and management requirements as described 

by the modeling group.   

6.3. Time Series Data Development 

An inventory of the necessary raw time series data for watershed and reservoir model 

input and calibration is presented in Table 6.2 and Table 6.3, respectively.  The time series data 

includes meteorology, streamflow, water quality, and point source loads for watershed models.  

For reservoir models the data includes meteorology, streamflow, stream, reservoir and key point 

water quality and reservoir operations.  Data sets are updated as new data become available.  Lag 

times between the current date and the dataset end dates are the result of QA/QC processes at the 

data source and/or procurement timelines driving the acquisition of any purchased data. 

In this reporting period, existing meteorological datasets being supplemented with 

climate data from the PRISM climate model.  PRISM data are calculated with 4 km2 resolution 

grid cells, with variables including precipitation, min/max temperature and dew point.  Data are 
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available from 1981-present, and were downloaded directly from the PRISM website 

(http://prism.oregonstate.edu). 

 

Table 6.2. Inventory of time-series data used for watershed modeling.  

Data Type Data Source Data Description Dates* 
Modeling 

Needs 

Meteorology  

Northeast 

Regional 

Climate Center 

Daily Precipitation and 

Max/Min Temperature  

Pre 1960-

2013  
Model Input  

PRISM Climate Data 2004 Model Input 

Wastewater 

Treatment 

Plants  

DEP 
Monthly WWTP Nutrient 

Loads  
1990-2009  Model Input  

Streamflow  USGS 
Daily and Instantaneous 

Streamflow  

Period of 

record 

available 

online via 

USGS  

Hydrology 

Calibration / 

Nutrient and 

Sediment Loads  

Water Quality  DEP 
Routine and Storm Stream 

Monitoring  

Period of 

record 

avail. via 

LIMS  

Nutrient and 

Sediment Loads 

for Water 

Quality 

Calibration  

 NYSDEC** 
Stream Monitoring at West 

Branch Delaware River  

1992-2010 

w/ recent 

years 

avail. via 

LIMS  

Nutrient and 

Sediment Loads 

for Water 

Quality 

Calibration  

*Dates represent total span for all data sets combined. Individual station records vary. 

**Now part of the DEP Water Quality dataset. 

 

 

 

 

 

 

 

http://prism.oregonstate.edu/
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Table 6.3. Inventory of time-series data used for reservoir modeling.  

Data Type 
Data 

Source 
Data Description Dates* 

Modeling 

Needs 

Meteorology DEP 

Air Temperature, Relative 

Humidity, Solar Radiation, PAR, 

Wind Speed, Wind Direction, and 

Precipitation 

1994-June, 2010 

Period of record 

avail. Operations 

Model Input 

Keypoint and 

Reservoir 

Operations 

DEP 

Tunnel Water Quality, Flow and 

Temperature; Reservoir Storage, 

Spill, Withdrawal, and Elevation 

Period of record 

avail. via LIMS 
Model Input 

Streamflow USGS 
Daily and Instantaneous 

Streamflow 

Period of record 

available online 

via USGS 

Model Input 

Stream 

Hydrology 
DEP 

Stream Water Quality, Flow and 

Temperature 

Period of record 

avail. via LIMS 
Model Input 

Limnology DEP 
Reservoir Water Quality, and 

Temperature Profiles 

Period of record 

avail. via LIMS 
Model Input 

*Dates represent total span for all data sets combined. Individual station records vary. 
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7. Modeling Program Collaboration 
 

7.1. Water Research Foundation Project 4422 – Advanced Techniques 

for Monitoring Changes in NOM and Controlling DBPs Under 

Dynamic Weather Conditions  

 

The goals of this project were to develop and test the effectiveness of on-line (in-situ) 

monitoring tools that can detect changes in the character and amount of natural organic matter 

(NOM), and associated disinfection byproducts under typical operating conditions, extreme 

weather events, and future climate condition scenarios.  Most of the work involved the 

evaluation of advanced on-line instrumentation which utilizes ultraviolet (UV) absorbance and/or 

fluorescence spectral measurements to detect changes in the concentration and chemical 

character of NOM and associated formation potential for disinfection byproducts. 

To achieve these goals, water samples were collected from various DEP reservoirs and 

analyzed for a number of parameters including DBP formation potential, ultraviolet-visible light 

absorbance using both laboratory and field instruments, and laboratory fluorescence 

measurements.  Formation potential measurements included the regulated total trihalomethanes 

and haloacetic acid components as well as unregulated components including acetonitriles and 

haloketones.  XAD fractionation and polarity rapid assessment method (PRAM) were used to 

separate and characterize NOM. 

This work was completed in 2015, with the final report release in early 2016.  This study 

confirms that ultraviolet-visible spectroscopy and fluorescence can be a useful surrogate for 

natural organic material and disinfection byproducts.  Field instruments that can produce high-

quality data with minimal maintenance are commercially available.  Application of these 

instruments can provide additional information to utilities such as DEP with respect to formation 

potential, thus allowing operations to be modified in response.  However, the results indicate that 

the optical measurements do not capture all of the potential variability in formation potential, and 

that further study is needed to identify appropriate surrogate measures for formation potential 

that cannot be measured with ultraviolet-visible light absorbance or fluorescence.  In addition, 

reservoir-specific models may need to be developed in order to refine decision making about the 

optimal selection of individual water sources.  

This project was completed by researchers from Hazen and Sawyer Engineers, and the 

Department of Civil and Environmental Engineering at the University of Massachusetts, with 

sponsorship by NYCDEP and WRF. 
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7.2. Water Research Foundation Project 4590 - Wildfire Impacts on 

Drinking Water Treatment Process Performance: Development of 

Evaluation Protocols and Management Practices 

 

NYCDEP is one of six water utilities (the others being Denver Water, City of 

Westminster Colorado, San Francisco Public Utilities, Truckee Meadows Water Authority, and 

Metropolitan Water District of Southern California) participating in this WRF study, which is 

now in its second year.  Given the anticipated effect of climate change on frequency and 

intensity of wildfires, this study is evaluating the effects of wildfires on forested watersheds, 

including water quantity and availability, and water quality.  The project will develop a 

laboratory-based burn procedure to simulate the effects of wildfire on water quality and 

treatability.   

A literature review will be conducted to document how wildfires have changed water 

quality, including particulates, nutrients, metals, and organic matter.  The six participating 

utilities will supply historic data from their watersheds regarding the impact of fires.  Samples 

will be collected to monitor the impact of previous wildfires, and the treatability of samples will 

be evaluated.  Compilation of these results will allow the site-specific implications to be 

identified.  The work is being conducted by researchers at the University of Colorado and Hazen 

& Sawyer Consulting Engineers, and the project will be complete at the end of 2016. 

 

7.3. Water Utility Climate Alliance (WUCA) 

 

New York City DEP is one of ten large water utilities in the United States that form the 

Water Utility Climate Alliance.  This group was formed in order to identify, understand, assess 

the impact of climate change, and to plan and implement programs to meet climate challenges.   

WUCA members are involved in enhancing climate change research and improving water 

management decision-making to ensure that water utilities will be positioned to respond to 

climate change and protect our water supplies.  Two white papers recently released by the Water 

Utility Climate Alliance feature case studies of water utilities addressing the threat of climate 

change, including DEP. These white papers advance understanding of how the relatively new 

enterprise of climate change assessment and adaptation is developing. 

DEP is also one of four WUCA utilities (New York, Tampa Bay, Seattle, and Portland) 

participating in the Piloting Utility Modeling Applications (PUMA) project.  In this program, the 

four PUMA utilities have formed partnerships with scientific institutions to explore how to 

integrate climate considerations into their specific programs for water quality and quantity 

management.  PUMA has convened workshops where water utility representatives and 
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researchers meet to discuss and compare approaches for addressing the impact of climate change 

on water utilities.  The four utilities pursued customized approaches based on specific utility 

needs and learned important lessons in conducting assessments that may be of interest to the 

wider adaptation community. In addition, these projects attempted to create a “climate services” 

environment in which utility managers worked collaboratively and iteratively with climate 

scientists to understand both utility concerns and the ability or limitations of today’s climate 

science to respond to those concerns.  

 

7.4. Global Lake Ecological Observatory Network (GLEON) 

 

GLEON is a 10-year old organization that has been built around issues associated with 

the setup and deployment of robotic buoys for observing physical and water quality conditions in 

lakes and reservoirs, storage, processing, and analysis of the high-frequency data gathered by 

such buoys, and use of the data in modeling.  DEP staff have attended recent annual GLEON 

meetings in Quebec and South Korea.  DEP staff are also collaborating with other GLEON 

members in the intervals between meetings, including sharing of selected data.  This 

participation has helped to ensure that DEP is getting the most out of its sizable investment in 

robotic monitoring in the reservoirs and tributary streams.  DEP has made use of GLEON 

software tools in the analysis of robotic buoy data. 

DEP is also applying the reservoir hydrothermal model GLM (General Lake Model) and 

associated Aquatic Ecodynamics (AED) water quality model.  These models are “open source” 

software, and are thus open to use and revision by other researchers and professionals.  These 

models are currently being applied to Cannonsville and Neversink Reservoirs by one of the 

CUNY postdoctoral researchers working in DEP’s Water Quality Modeling Section. 

Several collaborations have developed from DEP’s participation in GLEON annual 

meetings, where scientists meet to develop ideas and tools to analyze data from an array of lake 

and reservoir sensors deployed around the globe to address local issues for individual aquatic 

ecosystems. Additionally, this network of collaborators works to document changes in lake and 

reservoir ecosystems that occur in response to different environmental conditions and stressors. 

This is done in part by sharing and interpreting high-frequency sensor data and other water 

quality and environmental data. DEP contributed data to four collaborative GLEON research 

projects in 2015. 
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1. Temperature Sentinels in Northeastern North America (NENA): In-depth Study of 

Lake Thermal Responses and Teleconnections in Northeastern North America 

 

The primary intent of this study is to examine subsurface water temperature profiles from 

lakes and reservoirs across the northeastern region of North America to determine how water 

temperature responds to regional-scale climatic drivers and teleconnections. To accomplish this, 

the researchers will examine a set of lakes and reservoirs with long-term, high resolution 

temperature profile data and a larger set of NENA lakes and reservoirs with temperature profiles 

from a single annual profile. Historical water temperature data for Cannonsville, Pepacton, 

Neversink, and Rondout reservoirs at the deepest sites at the time of peak thermal stratification 

were formatted and shared with the project lead scientist, Dr. David Richardson, SUNY New 

Paltz for use in this GLEON-sponsored study.  

 

2. GLEON Fellowship SALT project: 

A study of increasing salinization of lakes and reservoirs was conducted as part of the 

GLEON Fellowship Program in 2015. The Fellowship Program trains cohorts of graduate 

students to explore the information contained in large data sets, work in diverse international 

teams, and communicate their findings to a broad range of audiences. DEP contributed data for a 

modeling analysis of global trends and drivers of lake and reservoir salinity to assess ecological 

impacts.  Data included specific conductivity, chloride, sulfate, and sodium concentrations for 

the period of 1987 to 2014 for ten reservoirs, including Cannonsville, Pepacton, Neversink, 

Schoharie, Boyds Corners, Cross River, Croton Falls, Middle Branch, New Croton, and Kensico. 

The work was carried out in connection with the Cary Institute of Ecosystem Studies in 

Millbrook, New York. The lead investigator was Dr. Hilary Dugan, a post-doctoral scientist at 

the University of Wisconsin ̶ Madison. 

 

3. Iron concentration trends around the globe  

This project is an analysis of how iron concentrations in freshwaters around the world 

have changed over the past 20 years. Data analysis is being performed by Caroline Björnerås, a 

doctoral candidate at Lund University, Sweden, under the supervision of Dr.  Emma 

Kritzberg from Lund University and Dr. Gesa Weyhenmeyer, Uppsala University, Sweden. Data 

contributed by DEP in 2015 included iron, total organic carbon, dissolved organic carbon, water 

color, pH, sulfate, silica, dissolved oxygen, water temperature, and aluminum for two sites on 

New Croton Reservoir for the period of 1994-2009. 
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4. Effects of Climate Change on Spring-Winter Runoff and Lake Productivity 

 

The Climate Sentinels working group in GLEON is looking at the effects of ongoing 

changes in the seasonality of winter – spring streamflow on lake productivity. The initial 

hypothesis is: Changes in the timing of spring runoff, with more runoff occurring in the winter 

and early spring, will lead to reduced productivity and phytoplankton biomass during the 

summer stratified period. The foundation for this expectation is based on our current 

understanding that nutrients delivered to a lake during colder, deeply mixed, and possibly ice 

covered conditions, could be less effective at stimulating phytoplankton growth. To test the 

hypothesis we are assembling data from a large variety of lakes that meet the following minimal 

requirements:  

 

 In a geographic location where snow accumulation and melt significantly impact the 

seasonality of stream discharge.  

 A lake or reservoir with data from 1990 or earlier and continuing to present. There should 

be multiple samples per year that cover at least the period of thermal stratification.  

 Measurements of chlorophyll profiles during thermal stratification and/or measurements   

of hypolimnetic oxygen at the onset and just before the loss of thermal stratification.  

 Stream discharge measurements of a major inflow to the lake starting in 1990 or earlier, 

or measurements from a nearby stream or river than can be used to provide an index of 

lake inflow. 

Dr. Don Pierson, currently at Uppsala University, Sweden, is taking the lead with DEP data 

contributed to the project. 

 

5. Signal Processing Working Group 

The GLEON Signal Processing working group has gathered profiling buoy data from 12 

different lakes and reservoirs to assess subsurface dissolved oxygen and chlorophyll fluorescence 

maxima across lake types.  DEP has contributed 3 years (2009, 1010, and 2010) of robotic buoy 

data from the west basin of Ashokan Reservoir to this project. This project is being coordinated 

by Jennie Brentrup from Miami University of Ohio and Annie Scofield at Cornell University. 
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7.5. NYCDEP – City University of New York (CUNY) Modeling 

Program  

 

Through the reporting period, DEP has maintained a contract with the Research 

Foundation of the City University of New York (RF-CUNY) that provides support for model and 

data development by providing postdoctoral scientists who work with DEP water quality 

modeling staff, and supporting research advisors.  The work described in Sections 3.2, 4.1, 4.2, 

and 4.5 of this report has been completed largely by CUNY postdoctoral research staff, working 

together with their research advisors and staff of the Water Quality Modeling Section.  

In August, 2014, a new 4-year contract was initiated between DEP and RF-CUNY.  

Under this contract, RF-CUNY has hired four fulltime postdoctoral researchers who work in 

DEP’s Water Quality Modeling office in Kingston, NY.  Each of the researchers has an 

associated research advisor who receive part-time support under this contract.  The research that 

has been initiated by these researchers continues to be a significant and critical component of 

DEP’s modeling work.  The postdoctoral program provides support in the form of providing 

model development and application expertise, modeling software, and data sets and in three 

project areas: (1) Evaluation of the effects of climate change on watershed processes and 

reservoir water quality as a part of CCIMP; (2) evaluation of FAD programs and land use 

changes on watershed processes and stream and reservoir water quality; and (3) development of 

the modeling capability to simulate watershed loading of dissolved organic carbon (DOC), and 

reservoir and water supply concentrations of DOC and disinfection byproduct formation 

potential (DBPFP).  At the end of 2015, all four postdoctoral positions were filled. 
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8. Modeling Program Scientific Papers and Presentations 
 

 

8.1. Published Scientific Papers 

 

Mukundan, R., D. C. Pierson, E. M. Schneiderman, and M. S. Zion, 2015.  Using detailed 

monitoring data to simulate spatial sediment loading in a watershed.  Environmental 

Monitoring and Assessment, DOI 10.1007/s10661-015-4751-8 

 

Abstract: The use of watershed models as cost-effective tools to quantify the impact of 

conservation practices on water quality is often constrained by lack of data for model 

parameterization.  This study uses short-term (3 years) detailed monitoring data to guide spatially 

distributed model parameterization and modeling analysis for suspended sediment in the Upper 

Esopus Creek Watershed (UECW) that is part of the New York City water supply.  The 

calibrated Soil and Water Assessment Tool (SWAT) model simulated suspended sediment 

loading from tributary sub-basins and at the watershed outlet that were comparable to field 

measurements.  Model simulations estimated that stream channels contributed the majority 

(85%) of stream sediment in the study watershed followed by upland erosion (11%) and point 

sources (4%), consistent with previous estimates and field observations.  Long term (12 years) 

simulation of the calibrated model was used to apportion the average annual sediment yields 

from tributary sub-basins which ranged between 12 and 161 t km-2 year-1.  Model simulations 

were also used to understand the inter-annual variability and seasonality in suspended sediment 

loading in the study watershed.  We demonstrate the wider applicability of short-term detailed 

monitoring for model parameterization and calibration, and long-term simulation of water quality 

using the SWAT model. 
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8.2. Conference Presentations 

 

Association for the Sciences of Limnology and Oceanography (ASLO)  

Aquatic Sciences Meeting 

February 22-27, 2015, Granada Spain        

 

Simulating the effects of climate change on phytoplankton in a New York City 

Water Supply Reservoir          

Pierson, D. C., N. R. Samal, H. Markensten, and E. M. Owens      

 

Abstract: The impacts of climate change on the phytoplankton in Cannonsville 

Reservoir, a part of the New York City water supply, is evaluated using a coupled 

watershed and reservoir modeling system, driven by downscaled climate scenarios 

derived from CMIP3 climate models. The Generalized Watershed Loading Function 

(GWLF) model simulates streamflow as well as dissolved and particulate nutrients, 

which become inputs to a one dimensional reservoir model which includes the 

PROTECH based phytoplankton functional group algorithms.  Simulations predict that 

there will be a future 10-15% increase in total chlorophyll during the period of thermal 

stratification and that this increase will coincide with a reduction in the importance of 

diatoms and an increasing importance of cyanobacteria.   Average summer cyanobacteria 

concentrations are simulated to increase by approximately 20% -70%.  Model sensitivity 

analysis suggests that it is largely the effects of climate change on reservoir thermal 

structure as opposed to watershed loading that is responsible for the changes in 

phytoplankton.  These results are evaluated relative to previous changes in phytoplankton 

associated with point and non-point source nutrient reductions.   

 

 

Long term changes in ice seasons of twenty-one geographically distributed 

freshwater lakes: Modeling Simulations and Observations   

N. R. Samal, K. D. Jöhnk, D. C. Pierson, M. Leppäranta, H. Yao, B. R. Hargreaves, T. 

Kratz, S. Sharma, A. Laas, D. Hamilton, R. Adrian, J. Rusak, D. Oezkundakci, C. 

Williamson, D. Vachon, B. Denfeld, G. Kirillin, K. Czajkowski and L. Camarero 

 

Abstract: Long term trends and variability in the seasonality of lake ice dynamics are 

some of the clearest indicators of changes in climate conditions. The timing of ice 

formation, ice cover duration and ice loss in lakes and reservoirs will modulate the 

impact of regional weather conditions on lake thermal structure and mixing, and thus will 

ultimately influence phytoplankton succession and trophic status of a lake. Here a simple 

lake ice model that predicts lake ice timings and thickness has been applied to 21 
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freshwater lakes and reservoirs around the globe. The model is driven by measurements 

of air temperature and wind speed, as these are the most important factors influencing 

formation and breakup. The effects of snowfall and solar radiation on ice characteristics 

are not explicitly considered but can be parameterized. Even though the model does not 

make detailed calculations of the ice cover energy budget it reproduces long-term trends 

allowing for historical analysis of ice cover in these geographically distributed lakes. 

Work of this ongoing GLEON project will include simple snow cover estimates derived 

from precipitation and temperature data.    

 

 

Gordon Research Conference and Seminar: Catchment Science 

June 13-14, 2015 

Andover, MA 

Innovative Models for the Organic Carbon Budget of New York City (NYC) 

Reservoirs. 

Li, Y., K.E. Moore, R.Van Dreason, P.C. Hanson. 

 

Abstract: In order to investigate the role of climate change in the carbon cycling of 

aquatic systems, it is necessary to better understand organic carbon (OC) budgets at the 

catchment scale.  However, present studies on OC budgets are incomplete and uncertain 

due to the complicated nature of cycling processes in lakes and reservoirs.  This study 

used the Framework for Aquatic Biogeochemical Models (FABM) to theoretically 

explore the classic “Nutrient Phytoplankton Zooplankton Detritus” (NPZD) model for the 

carbon cycling processes.  Two NYC reservoirs with different catchment characteristics 

were preliminarily examined to evaluate the role of allochthonous carbon and to 

approximate the OC budgets for these reservoirs.  This work will provide an improved 

basis for water quality model structure, uncertainty analysis, and could ultimately lead to 

improved modeling tools to help manage and plan for a regional water supply that serves 

more than 9 million residents in NYC and upstate communities in a changing climate. 
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Gordon Research Conference and Seminar: Drinking Water Disinfection By-Products 

August 8-14, 2015 

South Hadley, MA. 

 

Conceptual Model for Simulating Disinfection By-Products (DBPs) Precursors in 

New York City (NYC) Reservoirs 

Li, Y., R. Van Dreason., D.A. Smith K.E. Moore, P.C. Hanson, and E.M. Owens  

 

Abstract: With more stringent regulatory requirements for disinfection byproducts 

(DBPs) in drinking water by USEPA, it is important to better understand the origins of 

DBP precursors in water supply systems.  Due to the complex chemical characteristics 

associated with DBP precursor origins, many DBP models are empirical and are unable 

to identify the relative importance of autochthonous and allochthonous sources of DBP 

precursors.  This study used Cannonsville Reservoir, one of the NYC water supply 

reservoirs, to preliminarily investigate algal-produced precursors compared to terrestrial 

sources.  Observed time series of nutrients (total phosphorus and nitrogen, TP and TN), 

algal abundance (based on chlorophyll concentration), and organic matter (dissolved and 

total organic carbon, DOC and TOC) during 1995-2014 illustrate long-term patterns of 

the water quality variables that are commonly related to DBP formation.  Furthermore, 

the relationships between TN, OC, and DBP formation potential (DBPFP) were studied 

in 2007 and 2008 to develop a conceptual model for studying algal-produced DOC as a 

source of DBP precursors.  This conceptual model will help in the development of 

mechanistic models to simulate and potentially predict DBP precursors, with the ultimate 

goal of understanding the potential changes in DBP precursors in the NYC water supply 

under climate change. 

 

 

The Occurrence of Dissolved Organic Carbon in the Catskill Mountain Watersheds 

of the NYC Water Supply 

R. Van Dreason, R. Mukundan 

 

Abstract: An empirical model was recently developed by Mukundan and Van Dreason 

(2014) that indicated that organic carbon concentration was the most important factor 

explaining trihalomethane (THM) formation within the NYC distribution system.  THMs 

and other Disinfection by-products (DBPs) occur in drinking water as a result of a 

reaction between organic matter naturally occurring in the water and the disinfectant (e.g. 

chlorine) added to control microbial contaminants.  THMs and other DBPs are a major 

concern to water suppliers because of their suspected carcinogenic properties. 
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Because of its important role in regulating DBP formation, in this presentation we will 

describe the occurrence of DOC within the Catskill Mountain portion of NYC’s water 

supply system.  Regional and seasonal patterns will be compared using data collected 

from the Catskill reservoirs. We also examine the patterns in DOC concentrations over 

time, since increases in the reservoirs could have important ramifications on future DBP 

formation in the distribution system. 

 

 

NYC Watershed Science and Technical Conference 

September 9, 2015 

West Point, New York 

 

Performance Assessment of Stochastic Weather Generators for Precipitation over 

Catskill Mountain watersheds, New York, USA 

Acharya, N., A. Frei, K.E. Moore, and J. Mayfield 

 

Abstract: The New York City Department of Environmental Protection (DEP) has 

performed studies to assess the potential impacts of climate change on the availability of 

high quality water in this water supply system.  To better address this, there is a need to 

develop future climate scenarios that can be used as inputs to the DEP’s integrated suite 

of hydrological models.  There are two familiar approaches used to incorporate climate 

change into vulnerability analyses viz., top-down and bottom-up approaches.  Top-down 

approaches use scenarios from Global Climate Models (GCMs).  Bottom-up approaches 

identify the climate vulnerabilities of a water supply system over a wide range of 

potential climate changes.  Stochastic weather generators are often employed in bottom-

up risk assessments to simulate potential shifts in both long-term (decadal) precipitation 

means and persistence as well as in extreme daily precipitation amounts.  The main goal 

of the current work is to document the performance of two weather generators, the widely 

used generator WGEN, and the comparatively new and sophisticated WeaGETS, in 

simulating precipitation over the Catskill Mountain region.  The performances of these 

two weather generators are compared in order to assess their capabilities of reproducing 

the observed statistical properties including the probability distributions, means and 

variances, and the frequencies and magnitudes of extreme events. 

 

 

Trends of Chlorophyll and Phytoplankton for New York City’s West of Hudson 

Reservoirs (1988-2014) 

 Ray Homolac, NYCDEP 
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Abstract: The New York City Department of Environmental Protection (DEP) performs 

limnology surveys on most of the water supply reservoirs and many water quality 

monitoring parameters are analyzed.  The historical record of DEP data will be examined 

for long-term trends of chlorophyll a and total phytoplankton in the Catskill/Delaware 

System reservoirs.  An overview of the time period 1988 through 2014 will be presented 

leading to a more in depth focus for 2004 through 2014. 

 

 

Exploration and Evaluation of Long-Term Water Quality Data 

Karen Moore, NYCDEP 

 

Abstract: An important goal in watershed protection is to document changes in water 

quality and look for linkages to what is occurring on the landscape.  We applied statistical 

methods including Weighted Regressions for Time, Discharge, and Season (WRTDS) to 

the major inflows of New York City water supply West-of-Hudson reservoirs to look at 

water quality changes and corresponding explanatory variables related to land 

management, climatic, and hydrologic conditions. 

 

 

Development of a Watershed Timeline to Chronicle Historical Events for Potential 

Contribution to Changes in Water Quality 

David Quentin, NYCDEP 

 

Abstract: There are many natural events that can affect a watershed, and the quality of 

the water, that may require a change in the operation of a water supply.  With this in 

mind, a New York City Watershed Event Timeline (“Timeline”) was developed to 

ascertain “cause and effect” relationships by linking significant environmental events 

(e.g. droughts and hurricanes) within the New York City Department of Environmental 

Protection (DEP) watersheds to water quality variations.  Moreover, the effects these 

events have on DEP operations and infrastructure (e.g., alum treatment, wastewater 

treatment plant operations, intensified monitoring) can be related for planning purposes.  

This timeline portrays information from 1985 to the present, and will continue to be a 

“living document” that can be updated as needed with more information, and new 

parameter headings that directly relate to other aspects of water supply operation. 
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Best Management Practices and their Impact on Turbidity in Stony Clove Creek 

Jim Mayfield, Karen Moore, and Danyelle Davis, NYCDEP 

 

Abstract: Stony Clover Creek has been identified as the predominant source for turbidity 

and suspended sediment in the Ashokan Reservoir basin.  Four best management 

practices (BMPs) were designed and installed in an effort to reduce the sediment and 

turbidity.  A water quality monitoring program and a channel morphology monitoring 

program has also been conducted on this reach.  The data collected to date by DEP and 

USGS will be examined to quantify the effects of BMPs. 

 

 

Overview of Hillview Reservoir Protozoan Data and Update on Related Research 

Studies – New York City Water Supply 

Kerri Alderisio, NYCDEP 

 

Abstract: As the pre-finished water reservoir for New York City’s water supply, 

Hillview Reservoir is a critical component to the drinking water system.  Protozoan 

sampling was conducted from  2006-2008, and again from 2011 to the present as a result 

of an administrative order related to covering the reservoir as described in the LT2.  An 

overview of the data will be presented as well as up-to-date results related to any 

pathogen research associated with Hillview Reservoir. 

 

 

Giardia Concentrations in New York City’s West of Hudson Streams and 

Reservoirs: Catskill Watershed Case Study 

Christian Pace and Kerri Alderisio, NYCDEP 

 

Abstract: Since 2002 the NYCDEP has taken over 2,800 protozoan samples from West-

of-Hudson streams and reservoir outlet sites.  This presentation will summarize this data 

and illustrate Giardia reductions as water travels down through the watersheds and from 

reservoir to reservoir.  The presence of seasonal and long-term trends at some locations 

will be discussed and additional focus will be given to the Schoharie watershed where 

additional sites have been selected and sampled over the last few years.  
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Fifth International Workshop on Climate Informatics 

September 24-25, 2015 

National Center for Atmospheric Research, Boulder, CO 

 

Analysis of Weather Generators: Extreme Events 

Acharya, N., A. Frei, and E. M. Owens 

 

Abstract: Stochastic weather generators (WGs) are often used to simulate synthetic 

weather time series based on observed statistical properties in a particular location.  Most 

studies evaluate WG skill on average properties.  Our objective is to assess how the WGs 

perform in simulating extremes, especially high precipitation amounts.  We analyzed 13 

different WGs using two parallel approaches: extreme event indices associated with large 

precipitation events; and recurrence intervals based on the Generalized Extreme Value 

(GEV) distribution. 

 

 

Global Lake Ecological Observatory Network (GLEON) Meeting 

October 12-16, 2015 

Chuncheon, South Korea 

 

Use of Robotic Monitoring and Modeling to Forecast the Downstream Impact of 

Rapid Drawdown of Cannonsville Reservoir 

Owens, E.M., L.L. Janus, and A. Matonse 

 

Abstract: Turbidity is of special concern in the 19 drinking water reservoirs that serve 

the nine million consumers in City of New York because of its potential to interfere with 

disinfection.  In July 2015, a pressurized flow of turbid water from a bore hole occurred 

during a geotechnical investigation of a site immediately downstream of Cannonsville 

Reservoir.  A possible source of the pressure and turbid water flow was the reservoir 

itself, which raised the question of whether or not the dam was undermined.  While this 

source was judged to be very unlikely, rapid reservoir drawdown was initiated by 

maximizing both the transfer of drinking water to downstream Rondout Reservoir and the 

release to the river downstream of the dam.  While increases in turbidity in Cannonsville 

are most closely linked to runoff events, turbidity also increases with drawdown.  In the 

absence of a turbidity model for the upstream reservoir, an elevation-turbidity 

relationship was developed for Cannonsville using available historical data.  Robotic 

monitoring of turbidity in the two reservoirs and the connecting aqueduct, together with a 

two-dimensional turbidity model of the downstream (Rondout) reservoir, were used to 

forecast the impact of the unprecedented drawdown of Cannonsville on turbidity in 
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Rondout, a terminal reservoir of the water supply.  Robotic monitoring was used to 

provide near real time data on the storage, flow and turbidity conditions in the system, 

and to initialize the model to current conditions.  Three weeks into the drawdown, the 

pressurized water source was determined to be an artesian aquifer, the bore hole was 

sealed, safety concerns were eliminated, and the drawdown was halted.  Nonetheless, this 

episode provided meaningful lessons on the importance and role of monitoring and 

modeling in dealing with emergency events. 

 

 

Dissolved Oxygen and Phytoplankton Seasonality in New York City (NYC) 

Reservoirs of Contrasting Trophic Status 

Li, Y., P. C. Hanson, K. E. Moore, E. M. Owens, L. L. Janus, and R. VanDreason. 

 

Abstract: An increase in human activities and associated increased nutrient loading have 

resulted in eutrophication and water quality degradation in lakes and reservoirs 

worldwide.  This study considers two New York City water supply reservoirs 

(Cannonsville and Neversink) with differing trophic states to investigate dissolved 

oxygen (DO) and phytoplankton dynamics.  Seasonal patterns of water temperature and 

DO profiles were examined, and the dominant phytoplankton species were identified for 

NYC reservoirs.  Based on the phytoplankton identification, six functional groups were 

chosen to characterize the successional patterns of phytoplankton in Cannonsville 

Reservoir.  Capturing the successional patterns and oxygen dynamics are important steps 

in the application of the LakeMetabolizer software, and in simulations using the GLM-

FABM-AED models to predict primary production and carbon cycling.  This work may 

ultimately help in planning management of reservoirs in a regional water supply that 

serves more than 9 million residents and upstate communities under changing climate 

conditions. 

 

 

International Soil and Water Assessment Tool (SWAT) Conference 

October 14-16, 2015 

Purdue University, West Lafayette, IN 

 

Reducing equifinality in semi-distributed models by using spatial wetness 

information and reducing complexity in the SWAT-Hillslope model 

Hoang, L., E.M. Schneiderman, T.S. Steenhuis, S.M. Pradhanang, K.E. Moore, and                  

E.M. Owens 
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Abstract: Estimating model parameters in simulation models can be problematic because 

of the non-linearity and interdependence of the parameter sets since changes of some 

parameters might be compensated by others. It is not uncommon when calibrating 

distributed hydrological models against discharge at the basin outlet to find multiple 

parameter vectors with reasonably good performance. This is known as equifinality 

which contributes to uncertainty of model predictions. Equifinality for semi-distributed 

hydrological models may be reduced by employing conceptually appropriate models, 

calibrating with both spatial and temporal observations, and by reducing complexity. We 

will apply our conceptual model to the Catskill Mountains (New York State) where 

subsurface connectivity determines the wetting pattern in the landscape. The model used 

is SWAT-Hillslope, a modified version of SWAT that incorporates topographic 

characteristics in Hydrological Response Unit (HRU) definition and introduces a perched 

water table with the ability to route interflow from “dryer” to “wetter” HRU wetness 

classes. Calibration of discharge at the outlet of the watershed with SWAT-Hillslope was 

carried out by randomly generating a large number of parameter sets using the Monte 

Carlo sampling method. The preliminary result shows that SWAT-Hillslope could predict 

discharge well with Nash-Sutcliffe Efficiency of more than 0.6 and 0.8 for daily and 

monthly time steps, respectively, and was not affected significantly by reducing the HRU 

number. As expected, multiple parameter sets could be identified that performed equally 

well in predicting outlet discharge in the calibration period, but resulted in diverse 

performances in the validation period. Constraining the parameters further with available 

spatial information on moisture contents and location of saturated soils reduces 

equifinality. We expect improved model performance by adjusting the model structure to 

better represent the landscape and by reducing complexity and equifinality. 

 

 

American Geophysical Union Fall Meeting 

December 14-18, 2015 

San Francisco, CA 

 

Realistically Predicting Saturation-Excess Runoff with El-SWAT   

Hoang, L., E. M. Schneiderman, T. S. Steenhuis, K. E. Moore, E. M. Owens 

Abstract: Saturation excess runoff (SER) is without doubt the major runoff mechanism 

in the humid well vegetated areas where infiltration rates often exceed the medium 

rainfall intensity. Despite its preponderance, incorporating SER in the distributed models 

has been slow and fraught with difficulties. The short term objective of this paper to 

adjust the generally used Soil and Water Assessment Tool (SWAT) to include SER and 

test the results in the Catskill Mountains that is the source of most of New York City’s 
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water. The long term goal is to use the adjusted distributed runoff mechanism in water 

quality models to aid in the design of effective management practices. The current 

version of SWAT uses information of soil plant characteristics and hydrologic condition 

to predict runoff and thus is implicitly based on infiltration-excess runoff. Previous 

attempts to incorporate SER mechanism in SWAT fell short because they were unable to 

distribute water from a Hydrological Response Unit (HRU) to another. In the current 

version called El-SWAT, this shortcoming has been overcome by redefining HRU to 

include landscape position through the topographic or other user-defined index, grouping 

the newly defined HRU into wetness classes and by introducing a perched water table 

with the ability to route interflow from “dryer” to “wetter” HRU wetness classes. 

Mathematically, the perched aquifer is a non-linear reservoir that generates rapid 

subsurface stormflow as the perched water table rises. The El-SWAT model was tested in 

the Town Brook watershed in the upper reaches of the West Branch of the Delaware in 

the Catskill Mountains. The results showed that El-SWAT could predict discharge well 

with Nash-Sutcliffe Efficiency of 0.69 and 0.84 for daily and monthly time steps. 

Compared to the original SWAT model, El-SWAT predicted less surface runoff and 

groundwater flow and a greater lateral flow component. The saturated areas in El-SWAT 

were concentrated in locations with high topographic index and was in agreement with 

field observations. With the incorporation of topography characteristics and the addition 

of the perched aquifer, El-SWAT gives a realistic representation of hydrological 

processes and will lead to better water quality models where the source of the surface 

runoff matters. 

 

Evaluation of stochastic weather generators for capturing the statistics of extreme 

precipitation events in Catskill Mountain watersheds, New York State 

Acharya, N., A. Frei, J. Chen, and E. M. Owens 

 

Abstract: Watersheds located in the Catskill Mountains area, part of the eastern plateau 

climate region of New York, contributes about 90% of New York City’s municipal water 

supply, serving 9 million New Yorkers with about 1.2 billion gallons of clean drinking 

water each day.  The New York City Department of Environmental Protection has an 

ongoing series of studies to assess the potential impacts of climate change on the 

availability of high quality water in this water supply system.  Recent studies identify 

increasing trends in total precipitation and in the frequency of extreme precipitation 

events in this region.  The objectives of the present study are: to analyze the probabilistic 

structure of extreme precipitation based on historical observations, and to evaluate the 

abilities of stochastic weather generators (WG), statistical models that produce synthetic 

weather time series based on observed statistical properties at a particular location, to 

simulate the statistical properties of extreme precipitation events over this region.  The 

generalized extreme value distribution (GEV) has been applied to the annual block 
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maxima of precipitation for 60 years (1950 to 2009) observed data in order to estimate 

the events with return periods of 50, 75, and 100 years.  These results were then used to 

evaluate a total of 13 WGs: 12 parametric WGs including all combinations of three 

different Markov chain (MC) models (1st, 2nd, and 3rd) and four different probability 

distributions (exponential, gamma, skewed normal and mixed exponential); and on semi-

parametric WG based on k-nearest neighbor bootstrapping.  Preliminary results suggest 

that three-parameter (skewed normal and mixed exponential) and semi-parametric (k-

nearest neighbor bootstrapping) WGs are more consistent with observations.  It is also 

found that first order MC models perform as well as second or third order MC models. 
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